1
|
Soltwisch J, Palmer A, Hong H, Majer J, Dreisewerd K, Marshall P. Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry. Anal Chem 2024; 96:10294-10301. [PMID: 38864171 DOI: 10.1021/acs.analchem.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 μL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Andrew Palmer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Hyundae Hong
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jan Majer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Peter Marshall
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
2
|
Shin M, Seo M, Lee K, Yoon K. Super-resolution techniques for biomedical applications and challenges. Biomed Eng Lett 2024; 14:465-496. [PMID: 38645589 PMCID: PMC11026337 DOI: 10.1007/s13534-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Super-resolution (SR) techniques have revolutionized the field of biomedical applications by detailing the structures at resolutions beyond the limits of imaging or measuring tools. These techniques have been applied in various biomedical applications, including microscopy, magnetic resonance imaging (MRI), computed tomography (CT), X-ray, electroencephalogram (EEG), ultrasound, etc. SR methods are categorized into two main types: traditional non-learning-based methods and modern learning-based approaches. In both applications, SR methodologies have been effectively utilized on biomedical images, enhancing the visualization of complex biological structures. Additionally, these methods have been employed on biomedical data, leading to improvements in computational precision and efficiency for biomedical simulations. The use of SR techniques has resulted in more detailed and accurate analyses in diagnostics and research, essential for early disease detection and treatment planning. However, challenges such as computational demands, data interpretation complexities, and the lack of unified high-quality data persist. The article emphasizes these issues, underscoring the need for ongoing development in SR technologies to further improve biomedical research and patient care outcomes.
Collapse
Affiliation(s)
- Minwoo Shin
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Minjee Seo
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyunghyun Lee
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
3
|
Chen B, Vavrek M, Cancilla MT. From molecules to visuals: Empowering drug discovery and development with mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5029. [PMID: 38656528 DOI: 10.1002/jms.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Over the past three decades, mass spectrometry imaging (MSI) has emerged as a valuable tool for the spatial localization of drugs and metabolites directly from tissue surfaces without the need for labels. MSI offers molecular specificity, making it increasingly popular in the pharmaceutical industry compared to conventional imaging techniques like quantitative whole-body autoradiography (QWBA) and immunohistochemistry, which are unable to distinguish parent drugs from metabolites. Across the industry, there has been a consistent uptake in the utilization of MSI to investigate drug and metabolite distribution patterns, and the integration of MSI with omics technologies in preclinical investigations. To continue the further adoption of MSI in drug discovery and development, we believe there are two key areas that need to be addressed. First, there is a need for accurate quantification of analytes from MSI distribution studies. Second, there is a need for increased interactions with regulatory agencies for guidance on the utility and incorporation of MSI techniques in regulatory filings. Ongoing efforts are being made to address these areas, and it is hoped that MSI will gain broader utilization within the industry, thereby becoming a critical ingredient in driving drug discovery and development.
Collapse
Affiliation(s)
- Bingming Chen
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| | - Mark T Cancilla
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| |
Collapse
|
4
|
Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. Spatial pharmacology using mass spectrometry imaging. Trends Pharmacol Sci 2024; 45:67-80. [PMID: 38103980 PMCID: PMC10842749 DOI: 10.1016/j.tips.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers. We also highlight the emerging potential of comprehensive spatial pharmacology through integration of multimodal MSI data with other spatial technologies. Finally, we describe how to overcome challenges including improving reproducibility and compound annotation to generate robust conclusions that will improve drug discovery and development processes.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Noreen Hosny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
6
|
Lillja J, Duncan KD, Lanekoff I. Ion-to-Image, i2i, a Mass Spectrometry Imaging Data Analysis Platform for Continuous Ionization Techniques. Anal Chem 2023; 95:11589-11595. [PMID: 37505508 PMCID: PMC10413325 DOI: 10.1021/acs.analchem.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Mass spectrometry imaging (MSI) techniques generate data that reveal spatial distributions of molecules on a surface with high sensitivity and selectivity. However, processing large volumes of mass spectrometry data into useful ion images is not trivial. Furthermore, data from MSI techniques using continuous ionization sources where data are acquired in line scans require different data handling strategies compared to data collected from pulsed ionization sources where data are acquired in grids. In addition, for continuous ionization sources, the pixel dimensions are influenced by the mass spectrometer duty cycle, which, in turn, can be controlled by the automatic gain control (AGC) for each spectrum (pixel). Currently, there is a lack of data-handling software for MSI data generated with continuous ionization sources and AGC. Here, we present ion-to-image (i2i), which is a MATLAB-based application for MSI data acquired with continuous ionization sources, AGC, high resolution, and one or several scan filters. The source code and a compiled installer are available at https://github.com/LanekoffLab/i2i. The application includes both quantitative, targeted, and nontargeted data processing strategies and enables complex data sets to be processed in minutes. The i2i application has high flexibility for generating, processing, and exporting MSI data both from simple full scans and more complex scan functions interlacing MSn and SIM scan data sets, and we anticipate that it will become a valuable addition to the existing MSI software toolbox.
Collapse
Affiliation(s)
- Johan Lillja
- Department
of Chemistry − BMC, Uppsala University, Uppsala, 752 37, Sweden
| | - Kyle D. Duncan
- Department
of Chemistry − BMC, Uppsala University, Uppsala, 752 37, Sweden
- Department
of Chemistry, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | - Ingela Lanekoff
- Department
of Chemistry − BMC, Uppsala University, Uppsala, 752 37, Sweden
| |
Collapse
|
7
|
Zhou Y, Jiang X, Wang X, Huang J, Li T, Jin H, He J. Promise of spatially resolved omics for tumor research. J Pharm Anal 2023; 13:851-861. [PMID: 37719191 PMCID: PMC10499658 DOI: 10.1016/j.jpha.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tumors are spatially heterogeneous tissues that comprise numerous cell types with intricate structures. By interacting with the microenvironment, tumor cells undergo dynamic changes in gene expression and metabolism, resulting in spatiotemporal variations in their capacity for proliferation and metastasis. In recent years, the rapid development of histological techniques has enabled efficient and high-throughput biomolecule analysis. By preserving location information while obtaining a large number of gene and molecular data, spatially resolved metabolomics (SRM) and spatially resolved transcriptomics (SRT) approaches can offer new ideas and reliable tools for the in-depth study of tumors. This review provides a comprehensive introduction and summary of the fundamental principles and research methods used for SRM and SRT techniques, as well as a review of their applications in cancer-related fields.
Collapse
Affiliation(s)
- Yanhe Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 10050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 10050, China
| |
Collapse
|
8
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
9
|
Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 2023; 41:404-420. [PMID: 36800999 DOI: 10.1016/j.ccell.2023.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
The tumor microenvironment (TME) is composed of many different cellular and acellular components that together drive tumor growth, invasion, metastasis, and response to therapies. Increasing realization of the significance of the TME in cancer biology has shifted cancer research from a cancer-centric model to one that considers the TME as a whole. Recent technological advancements in spatial profiling methodologies provide a systematic view and illuminate the physical localization of the components of the TME. In this review, we provide an overview of major spatial profiling technologies. We present the types of information that can be extracted from these data and describe their applications, findings and challenges in cancer research. Finally, we provide a future perspective of how spatial profiling could be integrated into cancer research to improve patient diagnosis, prognosis, stratification to treatment and development of novel therapeutics.
Collapse
Affiliation(s)
- Ofer Elhanani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Uri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Rebouta J, Dória ML, Campos F, Araújo F, Loureiro AI. DESI-MSI-based technique to unravel spatial distribution of COMT inhibitor Tolcapone. Int J Pharm 2023; 633:122607. [PMID: 36641138 DOI: 10.1016/j.ijpharm.2023.122607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Ascertaining compound exposure and its spatial distribution are essential steps in the drug development process. Desorption electrospray ionization mass spectrometry (DESI-MSI) is a label-free imaging technique capable of simultaneously identify and visualize the distribution of a diverse range of biomolecules. In this study, DESI-MSI was employed to investigate spatial distribution of tolcapone in rat liver and brain coronal - frontal and striatal -sections after a single oral administration of 100 mg/Kg of tolcapone, brain-penetrant compound. Tolcapone was evenly distributed in liver tissue sections whereas in the brain it showed differential distribution across brain regions analyzed, being mainly located in the olfactory bulb, basal forebrain region, striatum, and pre-frontal cortex (PFC; cingulate, prelimbic and infralimbic area). Tolcapone concentration in tissues was compared using DESI-MSI and liquid-chromatography mass spectrometry (LC-MS/MS). DESI-MSI technique showed a higher specificity on detecting tolcapone in liver sections while in the brain samples DESI-MSI did not allow a feasible quantification. Indeed, DESI-MSI is a qualitative technique that allows to observe heterogeneity on distribution but more challenging regarding accurate measurements. Overall, tolcapone was successfully localized in liver and brain tissue sections using DESI-MSI, highlighting the added value that this technique could provide in assisting tissue-specific drug distribution studies.
Collapse
Key Words
- Arachidonic acid, 5Z,8Z,11Z,14Z-eicosatetraenoic acid, AA
- COMT
- DESI-MSI
- Docosahexaenoic acid, 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid, Cervonic acid
- Epinephrine, 4-[1-hydroxy-2-(methylamino)ethyl]-1,2-benzenediol monohydrochloride
- Mass spectrometry imaging
- Metanephrine, 4-hydroxy-3-methoxy-α-[(methylamino)methyl]-benzenemethanol
- Phosphatidylethanolamine 40:6, 1,2-diacyl-sn-glycero-3-phosphoethanolamine
- Phosphatidylethanolamine O-36:3, PE(O-16:0/20:3) 1-hexadecyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine, PE(O-18:0/18:3) 1-octadecyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine
- S-adenosyl-l-methionine, 5′-[[(3S)-3-amino-3-carboxypropyl]methylsulfonio]-5′-deoxy-adenosine, dihydrochloride
- Tolcapone
- Tolcapone, (3,4-dihydroxy-5-nitrophenyl)(4-methylphenyl)-methanone
- Tolcapone-d4, (3,4-dihydroxy-5-nitrophenyl)(4-methylphenyl-2,3,5,6-d4)methanone
Collapse
Affiliation(s)
- Joana Rebouta
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal.
| | - M Luísa Dória
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Filipa Campos
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Francisca Araújo
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Ana I Loureiro
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| |
Collapse
|
11
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
12
|
Multimodal imaging distribution assessment of a liposomal antibiotic in an infectious disease model. J Control Release 2022; 352:199-210. [PMID: 36084816 DOI: 10.1016/j.jconrel.2022.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.
Collapse
|
13
|
Stopka SA, van der Reest J, Abdelmoula WM, Ruiz DF, Joshi S, Ringel AE, Haigis MC, Agar NYR. Spatially resolved characterization of tissue metabolic compartments in fasted and high-fat diet livers. PLoS One 2022; 17:e0261803. [PMID: 36067168 PMCID: PMC9447892 DOI: 10.1371/journal.pone.0261803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists between cell types, within tissues, and subcellular compartments. The liver plays an essential role in maintaining whole-body metabolic homeostasis and is structurally defined by metabolic zones. These zones are well-understood on the transcriptomic level, but have not been comprehensively characterized on the metabolomic level. Mass spectrometry imaging (MSI) can be used to map hundreds of metabolites directly from a tissue section, offering an important advance to investigate metabolic heterogeneity in tissues compared to extraction-based metabolomics methods that analyze tissue metabolite profiles in bulk. We established a workflow for the preparation of tissue specimens for matrix-assisted laser desorption/ionization (MALDI) MSI that can be implemented to achieve broad coverage of central carbon, nucleotide, and lipid metabolism pathways. Herein, we used this approach to visualize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly organized metabolic tissue compartmentalization in livers, which becomes disrupted under high fat diet. Fasting caused changes in the abundance of several metabolites, including increased levels of fatty acids and TCA intermediates while fatty livers had higher levels of purine and pentose phosphate-related metabolites, which generate reducing equivalents to counteract oxidative stress. This spatially conserved approach allowed the visualization of liver metabolic compartmentalization at 30 μm pixel resolution and can be applied more broadly to yield new insights into metabolic heterogeneity in vivo.
Collapse
Affiliation(s)
- Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
| | - Jiska van der Reest
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Walid M. Abdelmoula
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
| | - Daniela F. Ruiz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, United Statees of America
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Alison E. Ringel
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA, United Statees of America
- * E-mail: (MCH); (NYRA)
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United Statees of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United Statees of America
- * E-mail: (MCH); (NYRA)
| |
Collapse
|
14
|
Nwabufo CK, Aigbogun OP. The Role of Mass Spectrometry Imaging in Pharmacokinetic Studies. Xenobiotica 2022; 52:811-827. [PMID: 36048000 DOI: 10.1080/00498254.2022.2119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although liquid chromatography-tandem mass spectrometry is the gold standard analytical platform for the quantification of drugs, metabolites, and biomarkers in biological samples, it cannot localize them in target tissues.The localization and quantification of drugs and/or their associated metabolites in target tissues is a more direct measure of bioavailability, biodistribution, efficacy, and regional toxicity compared to the traditional substitute studies using plasma.Therefore, combining high spatial resolution imaging functionality with the superior selectivity and sensitivity of mass spectrometry into one analytical technique will be a valuable tool for targeted localization and quantification of drugs, metabolites, and biomarkers.Mass spectrometry imaging (MSI) is a tagless analytical technique that allows for the direct localization and quantification of drugs, metabolites, and biomarkers in biological tissues, and has been used extensively in pharmaceutical research.The overall goal of this current review is to provide a detailed description of the working principle of MSI and its application in pharmacokinetic studies encompassing absorption, distribution, metabolism, excretion, and toxicity processes, followed by a discussion of the strategies for addressing the challenges associated with the functional utility of MSI in pharmacokinetic studies that support drug development.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Omozojie P Aigbogun
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Holm NB, Deryabina M, Knudsen CB, Janfelt C. Tissue distribution and metabolic profiling of cyclosporine (CsA) in mouse and rat investigated by DESI and MALDI mass spectrometry imaging (MSI) of whole-body and single organ cryo-sections. Anal Bioanal Chem 2022; 414:7167-7177. [PMID: 35953725 DOI: 10.1007/s00216-022-04269-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Therapeutic peptides are a fast-growing class of pharmaceuticals. Like small molecules, the costs associated with their discovery and development are significant. In addition, since the preclinical data guides first-in-human studies, there is a need for analytical techniques that accelerate and improve our understanding of the absorption, distribution, metabolism, and excretion (ADME) characteristics of early drug candidates. Mass spectrometry imaging (MSI), which can be used to visualize drug distribution in intact tissue, has been extensively used to study small molecule drugs, but only applied to a limited extent to larger molecules, such as peptides, after dosing. Herein, we use MSI to obtain spatial information on the distribution and metabolism of a peptide drug. The immunosuppressant cyclosporine (CsA), a cyclic undecapeptide, was used as a-proof-of-concept peptide and investigated by desorption electrospray ionization (DESI) MSI. Calibration curves were made based on a spiked tissue homogenate model. Different washing protocols were tested to improve sensitivity, but CsA, being a quite lipophilic peptide, was found not to benefit from tissue washing. The distribution of CsA and its metabolites were mapped in whole-body mouse sections and within rat organs. Whole-body DESI-MSI studies in mice showed widespread distribution of CsA with highest abundance in organs like the pancreas and liver. After 24 h, hydroxy and dihydroxy metabolites of CsA were detected predominantly in the intestines, which were largely devoid of CsA. In addition to the DESI-MSI experiments, MALDI-MSI was also conducted on rat jejunum at higher spatial resolution, revealing the morphology of the jejenum at greater detail; however, DESI provided similar results for drug and metabolite distribution in rat jejunum at apparent slightly better sensitivity. Given its label-free nature, MSI could provide valuable ADME insight, especially for candidates in the early-stage pipeline before radiolabeling.
Collapse
Affiliation(s)
- Niels Bjerre Holm
- Department of Bioanalysis and Pharmacokinetics, Zealand Pharma A/S, Sydmarken 11, 2860, Søborg, Denmark
- Department of Pharmacy, Copenhagen University, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Maria Deryabina
- Department of Bioanalysis and Pharmacokinetics, Zealand Pharma A/S, Sydmarken 11, 2860, Søborg, Denmark
| | - Carsten Boye Knudsen
- Department of Bioanalysis and Pharmacokinetics, Zealand Pharma A/S, Sydmarken 11, 2860, Søborg, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Copenhagen University, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
16
|
Becquart C, Stulz R, Thomen A, Dost M, Najafinobar N, Dahlén A, Andersson S, Ewing AG, Kurczy ME. Intracellular Absolute Quantification of Oligonucleotide Therapeutics by NanoSIMS. Anal Chem 2022; 94:10549-10556. [PMID: 35830231 DOI: 10.1021/acs.analchem.2c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antisense oligonucleotide (ASO)-based therapeutics hold great potential for the treatment of a variety of diseases. Therefore, a better understanding of cellular delivery, uptake, and trafficking mechanisms of ASOs is highly important for early-stage drug discovery. In particular, understanding the biodistribution and quantifying the abundance of ASOs at the subcellular level are needed to fully characterize their activity. Here, we used a combination of electron microscopy and NanoSIMS to assess the subcellular concentrations of a 34S-labeled GalNAc-ASO and a naked ASO in the organelles of primary human hepatocytes. We first cross-validated the method by including a 127I-labeled ASO, finding that the absolute concentration of the lysosomal ASO using two independent labeling strategies gave matching results, demonstrating the strength of our approach. This work also describes the preparation of external standards for absolute quantification by NanoSIMS. For both the 34S and 127I approaches used for our quantification methodology, we established the limit of detection (5 and 2 μM, respectively) and the lower limit of quantification (14 and 5 μM, respectively).
Collapse
Affiliation(s)
- Cécile Becquart
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism CVRM, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Rouven Stulz
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43138 Gothenburg, Sweden
| | | | - Maryam Dost
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism CVRM, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Neda Najafinobar
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43138 Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43138 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Michael E Kurczy
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism CVRM, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| |
Collapse
|
17
|
Baijnath S, Kaya I, Nilsson A, Shariatgorji R, Andrén PE. Advances in spatial mass spectrometry enable in-depth neuropharmacodynamics. Trends Pharmacol Sci 2022; 43:740-753. [DOI: 10.1016/j.tips.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
18
|
Mellinger AL, Muddiman DC, Gamcsik MP. Highlighting Functional Mass Spectrometry Imaging Methods in Bioanalysis. J Proteome Res 2022; 21:1800-1807. [PMID: 35749637 DOI: 10.1021/acs.jproteome.2c00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mass spectrometry imaging (MSI) methods provide a molecular map of tissue content but little information on tissue function. Mapping tissue function is possible using several well-known examples of "functional imaging" such as positron emission tomography and functional magnetic resonance imaging that can provide the spatial distribution of time-dependent biological processes. These functional imaging methods represent the net output of molecular networks influenced by local tissue environments that are difficult to predict from molecular/cellular content alone. However, for decades, MSI methods have also been demonstrated to provide functional imaging data on a variety of biological processes. In fact, MSI exceeds some of the classic functional imaging methods, demonstrating the ability to provide functional data from the nanoscale (subcellular) to whole tissue or organ level. This Perspective highlights several examples of how different MSI ionization and detection technologies can provide unprecedented detailed spatial maps of time-dependent biological processes, namely, nucleic acid synthesis, lipid metabolism, bioenergetics, and protein metabolism. By classifying various MSI methods under the umbrella of "functional MSI", we hope to draw attention to both the unique capabilities and accessibility with the aim of expanding this underappreciated field to include new approaches and applications.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| |
Collapse
|
19
|
Munley KM, Wade KL, Pradhan DS. Uncovering the seasonal brain: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a biochemical approach for studying seasonal social behaviors. Horm Behav 2022; 142:105161. [PMID: 35339904 DOI: 10.1016/j.yhbeh.2022.105161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Many animals show pronounced changes in physiology and behavior across the annual cycle, and these adaptations enable individuals to prioritize investing in the neuroendocrine mechanisms underlying reproduction and/or survival based on the time of year. While prior research has offered valuable insight into how seasonal variation in neuroendocrine processes regulates social behavior, the majority of these studies have investigated how a single hormone influences a single behavioral phenotype. Given that hormones are synthesized and metabolized via complex biochemical pathways and often act in concert to control social behavior, these approaches provide a limited view of how hormones regulate seasonal changes in behavior. In this review, we discuss how seasonal influences on hormones, the brain, and social behavior can be studied using liquid chromatography-tandem mass spectrometry (LC-MS/MS), an analytical chemistry technique that enables researchers to simultaneously quantify the concentrations of multiple hormones and the activities of their synthetic enzymes. First, we examine studies that have investigated seasonal plasticity in brain-behavior interactions, specifically by focusing on how two groups of hormones, sex steroids and nonapeptides, regulate sexual and aggressive behavior. Then, we explain the operations of LC-MS/MS, highlight studies that have used LC-MS/MS to study the neuroendocrine mechanisms underlying social behavior, both within and outside of a seasonal context, and discuss potential applications for LC-MS/MS in the field of behavioral neuroendocrinology. We propose that this cutting-edge technology will provide a more comprehensive understanding of how the multitude of hormones that comprise complex neuroendocrine networks affect seasonal variation in the brain and behavior.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kristina L Wade
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
20
|
Angerer TB, Bour J, Biagi JL, Moskovets E, Frache G. Evaluation of 6 MALDI-Matrices for 10 μm Lipid Imaging and On-Tissue MSn with AP-MALDI-Orbitrap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:760-771. [PMID: 35358390 PMCID: PMC9074099 DOI: 10.1021/jasms.1c00327] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mass spectrometry imaging is a technique uniquely suited to localize and identify lipids in a tissue sample. Using an atmospheric pressure (AP-) matrix-assisted laser desorption ionization (MALDI) source coupled to an Orbitrap Elite, numerous lipid locations and structures can be determined in high mass resolution spectra and at cellular spatial resolution, but careful sample preparation is necessary. We tested 11 protocols on serial brain sections for the commonly used MALDI matrices CHCA, norharmane, DHB, DHAP, THAP, and DAN in combination with tissue washing and matrix additives to determine the lipid coverage, signal intensity, and spatial resolution achievable with AP-MALDI. In positive-ion mode, the most lipids could be detected with CHCA and THAP, while THAP and DAN without additional treatment offered the best signal intensities. In negative-ion mode, DAN showed the best lipid coverage and DHAP performed superiorly for gangliosides. DHB produced intense cholesterol signals in the white matter. One hundred fifty-five lipids were assigned in positive-ion mode (THAP) and 137 in negative-ion mode (DAN), and 76 peaks were identified using on-tissue tandem-MS. The spatial resolution achievable with DAN was 10 μm, confirmed with on tissue line-scans. This enabled the association of lipid species to single neurons in AP-MALDI images. The results show that the performance of AP-MALDI is comparable to vacuum MALDI techniques for lipid imaging.
Collapse
Affiliation(s)
- Tina B. Angerer
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jerome Bour
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Luc Biagi
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| | | | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Advanced Characterization platform, Materials Research
and Technology, 41, rue
du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
21
|
Strittmatter N, Richards FM, Race AM, Ling S, Sutton D, Nilsson A, Wallez Y, Barnes J, Maglennon G, Gopinathan A, Brais R, Wong E, Serra MP, Atkinson J, Smith A, Wilson J, Hamm G, Johnson TI, Dunlop CR, Kaistha BP, Bunch J, Sansom OJ, Takats Z, Andrén PE, Lau A, Barry ST, Goodwin RJA, Jodrell DI. Method To Visualize the Intratumor Distribution and Impact of Gemcitabine in Pancreatic Ductal Adenocarcinoma by Multimodal Imaging. Anal Chem 2022; 94:1795-1803. [PMID: 35005896 DOI: 10.1021/acs.analchem.1c04579] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Translational Medicine, Oncology R&D, Astra Zeneca, Cambridge CB4 0WG, United Kingdom
| | - Alan M Race
- Institute of Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35032 Marburg, Germany
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Daniel Sutton
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Yann Wallez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Jennifer Barnes
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Gareth Maglennon
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Rebecca Brais
- Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, United Kingdom
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB12 6GH, United Kingdom
| | - Maria Paola Serra
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - James Atkinson
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Joanne Wilson
- DMPK, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Timothy I Johnson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Brajesh P Kaistha
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Clinical IO group, Early Oncology, AstraZeneca, Cambridge CB12 6GH, United Kingdom
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
- Rosalind Franklin Institute, Didcot OX11 0QS, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
- Rosalind Franklin Institute, Didcot OX11 0QS, United Kingdom
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
22
|
Agrawal I, Tripathi P, Biswas S. Mass Spectrometry Based Protein Biomarkers and Drug Target Discovery and Clinical Diagnosis in Age-Related Progressing Neurodegenerative Diseases. Drug Metab Rev 2022; 54:22-36. [PMID: 35038284 DOI: 10.1080/03602532.2022.2029475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases correspond to overly complex health disorders that are driven by intersecting pathophysiology that are often trapped in vicious cycles of degeneration and cognitive decline. The usual diagnostic route of these diseases is based on postmortem examination that involves identifying pathology that is specific to the disease in the brain. However, in such cases, accurate diagnosis of the specific disease is limited because clinical disease presentations are often complex that do not easily allow to discriminate patient's cognitive, behavioral, and functional impairment profiles. Additionally, an early identification and therapeutic intervention of these diseases is pivotal to slow the progression of neurodegeneration and extend healthy life span. Mass spectrometry-based techniques have proven to be hugely promising in biological sample analysis and discovery of biomarkers including protein and peptide biomarkers for potential drug target discovery. Recent studies on these biomarkers have demonstrated their potential for applications in early diagnostics and identifying therapeutic targets to battle against neurodegenerative diseases. In this review, we have presented principles of mass spectrometry (MS) and the associated workflows in analyzing and imaging biological samples for discovery of biomarkers. We have especially focused on age- related progressing neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FTD) and the related MS-based biomarkers developments for these diseases. Finally, we present a future perspective discussing the potential research directions ahead.
Collapse
Affiliation(s)
- Ishita Agrawal
- Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pallavi Tripathi
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Shyamasri Biswas
- USA Prime Biotech LLC, 1330 NW 6th St., Suite A-2, Gainesville, FL 32601, USA
| |
Collapse
|
23
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
24
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
25
|
Solon E, Groseclose MR, Ho S, Tanaka K, Nakada N, Linehan S, Nishidate M, Yokoi H, Kaji H, Urasaki Y, Watanabe K, Ishida T, Komatsu R, Yoshida K, Yamazaki H, Saito K, Saito Y, Tanaka Y. Imaging Mass Spectrometry (IMS) for drug discovery and development survey: Results on methods, applications and regulatory compliance. Drug Metab Pharmacokinet 2021; 43:100438. [DOI: 10.1016/j.dmpk.2021.100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
|
26
|
Metodiev MD, Steven RT, Loizeau X, Takats Z, Bunch J. Modality Agnostic Model for Spatial Resolution in Mass Spectrometry Imaging: Application to MALDI MSI Data. Anal Chem 2021; 93:15295-15305. [PMID: 34767361 DOI: 10.1021/acs.analchem.1c02470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Image resolution in mass spectrometry imaging (MSI) is governed by the sampling probe, the motion of the stage relative to the probe, and the noise inherent for the sample and instrumentation employed. A new image formation model accounting for these variables is presented here. The model shows that the size of the probe, stage velocity, and the rate at which the probe consumes material from the surface govern the amount of blur present in the image. However, the main limiting factor for resolution is the signal-to-noise ratio (SNR). To evaluate blurring and noise effects, a new computational method for measuring lateral resolution in MSI is proposed. A spectral decomposition of the observed image signal and noise is used to determine a resolution number. To evaluate this technique, a silver step edge was prepared. This device was imaged at different pixels sizes using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). A modulation transfer function (MTF) and a noise power spectrum (NPS) were computed for each single-ion image, and resolution was defined as the point of intersection between the MTF and the NPS. Finally, the algorithm was also applied to a MALDI MSI tissue data set.
Collapse
Affiliation(s)
- Martin D Metodiev
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, U.K.,Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Rory T Steven
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, U.K
| | - Xavier Loizeau
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, U.K
| | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, U.K.,Biological Mass Spectrometry, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 OFA, U.K
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, U.K.,Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, U.K.,Biological Mass Spectrometry, The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 OFA, U.K
| |
Collapse
|
27
|
Fincher JA, Djambazova KV, Klein DR, Dufresne M, Migas LG, Van de Plas R, Caprioli RM, Spraggins JM. Molecular Mapping of Neutral Lipids Using Silicon Nanopost Arrays and TIMS Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2519-2527. [PMID: 34435768 DOI: 10.1021/jasms.1c00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate the utility of combining silicon nanopost arrays (NAPA) and trapped ion mobility imaging mass spectrometry (TIMS IMS) for high spatial resolution and specificity mapping of neutral lipid classes in tissue. Ionization of neutral lipid species such as triglycerides (TGs), cholestryl esters (CEs), and hexosylceramides (HexCers) from biological tissues has remained a challenge for imaging applications. NAPA, a matrix-free laser desorption ionization substrate, provides enhanced ionization efficiency for the above-mentioned neutral lipid species, providing complementary lipid coverage to matrix-assisted laser desorption ionization (MALDI). The combination of NAPA and TIMS IMS enables imaging of neutral lipid species at 20 μm spatial resolution while also increasing molecular coverage greater than 2-fold using gas-phase ion mobility separations. This is a significant improvement with respect to sensitivity, specificity, and spatial resolution compared to previously reported imaging studies using NAPA alone. Improved specificity for neutral lipid analysis using TIMS IMS was shown using rat kidney tissue to separate TGs, CEs, HexCers, and phospholipids into distinct ion mobility trendlines. Further, this technology allowed for the separation of isomeric species, including mobility resolved isomers of Cer(d42:2) (m/z 686.585) with distinct spatial localizations measured in rat kidney tissue section.
Collapse
Affiliation(s)
- Jarod A Fincher
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Dustin R Klein
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Lukasz G Migas
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Cell & Developmental Biology, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| |
Collapse
|
28
|
Merdas M, Lagarrigue M, Umbdenstock T, Lhumeau A, Dartiguelongue F, Vanbellingen Q, Da Violante G, Pineau C. Study of the Distribution of Acetaminophen and Its Metabolites in Rats, from the Whole-Body to Isolated Organ Levels, by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging after On-Tissue Chemical Derivatization. Anal Chem 2021; 93:13242-13250. [PMID: 34546718 DOI: 10.1021/acs.analchem.1c02487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During drug development, detailed investigations of the pharmacokinetic profile of the drug are required to characterize its absorption, distribution, metabolism, and excretion properties. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an established technique for studies of the distribution of drugs and their metabolites. It has advantages over autoradiography, which is conventionally used for distribution studies: it does not require the radiolabeling of drugs and can distinguish between the drug and its metabolites directly in the tissue. However, its lack of sensitivity in certain cases remains challenging. Novel procedures, such as on-tissue chemical derivatization (OTCD), could be developed to increase sensitivity. We used OTCD to enhance the sensitivity of MALDI-MSI for one of the most widely used drugs, acetaminophen, and to study its distribution in tissues. Without derivatization, this drug and some of its metabolites are undetectable by MALDI-MSI in the tissues of treated rats. We used 2-fluoro-1-methylpyridinium p-toluene sulfonate as a derivatization reagent, to increase the ionization yield of acetaminophen and some of its metabolites. The OTCD protocol made it possible to study the distribution of acetaminophen and its metabolites in whole-body sections at a spatial resolution of 400 μm and in complex anatomical structures, such as the testis and epididymis, at a spatial resolution <50 μm. The OTCD is also shown to be compatible with the quantification of acetaminophen by MALDI-MSI in whole-body tissues. This protocol could be applied to other molecules bearing phenol groups and presenting a low ionization efficiency.
Collapse
Affiliation(s)
- Mira Merdas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France.,DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| | - Thierry Umbdenstock
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Antoine Lhumeau
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Françoise Dartiguelongue
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Quentin Vanbellingen
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Georges Da Violante
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| |
Collapse
|
29
|
Matrix-Free High-Resolution Atmospheric-Pressure SALDI Mass Spectrometry Imaging of Biological Samples Using Nanostructured DIUTHAME Membranes. Metabolites 2021; 11:metabo11090624. [PMID: 34564440 PMCID: PMC8468348 DOI: 10.3390/metabo11090624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/06/2023] Open
Abstract
Applications of mass spectrometry imaging (MSI), especially matrix-assisted laser desorption/ionization (MALDI) in the life sciences are becoming increasingly focused on single cell analysis. With the latest instrumental developments, pixel sizes in the micrometer range can be obtained, leading to challenges in matrix application, where imperfections or inhomogeneities in the matrix layer can lead to misinterpretation of MS images. Thereby, the application of premanufactured, homogeneous ionization-assisting devices is a promising approach. Tissue sections were investigated using a matrix-free imaging technique (Desorption Ionization Using Through-Hole Alumina Membrane, DIUTHAME) based on premanufactured nanostructured membranes to be deposited on top of a tissue section, in comparison to the spray-coating of an organic matrix in a MALDI MSI approach. Atmospheric pressure MALDI MSI ion sources were coupled to orbital trapping mass spectrometers. MS signals obtained by the different ionization techniques were annotated using accurate-mass-based database research. Compared to MALDI MSI, DIUTHAME MS images captivated with higher signal homogeneities, higher contrast and reduced background signals, while signal intensities were reduced by about one order of magnitude, independent of analyte class. DIUTHAME membranes, being applicable only on tissue sections thicker than 50 µm, were successfully used for mammal, insect and plant tissue with a high lateral resolution down to 5 µm.
Collapse
|
30
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
31
|
Strittmatter N, England RM, Race AM, Sutton D, Moss JI, Maglennon G, Ling S, Wong E, Rose J, Purvis I, Macdonald R, Barry ST, Ashford MB, Goodwin RJA. Method to Investigate the Distribution of Water-Soluble Drug-Delivery Systems in Fresh Frozen Tissues Using Imaging Mass Cytometry. Anal Chem 2021; 93:3742-3749. [PMID: 33606520 DOI: 10.1021/acs.analchem.0c03908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging mass cytometry (IMC) offers the opportunity to image metal- and heavy halogen-containing xenobiotics in a highly multiplexed experiment with other immunochemistry-based reagents to distinguish uptake into different tissue structures or cell types. However, in practice, many xenobiotics are not amenable to this analysis, as any compound which is not bound to the tissue matrix will delocalize during aqueous sample-processing steps required for IMC analysis. Here, we present a strategy to perform IMC experiments on a water-soluble polysarcosine-modified dendrimer drug-delivery system (S-Dends). This strategy involves two consecutive imaging acquisitions on the same tissue section using the same instrumental platform, an initial laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MSI) experiment followed by tissue staining and a standard IMC experiment. We demonstrated that settings can be found for the initial ablation step that leave sufficient residual tissue for subsequent antibody staining and visualization. This workflow results in lateral resolution for the S-Dends of 2 μm followed by imaging of metal-tagged antibodies at 1 μm.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Alan M Race
- Institute of Medical Bioinformatics and Biostatistics, Philipps University of Marburg, Marburg 35037, Germany
| | - Daniel Sutton
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jennifer I Moss
- Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Edmond Wong
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jonathan Rose
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ian Purvis
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ruth Macdonald
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Simon T Barry
- Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB2 0AA, U.K.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
32
|
Design and optimisation of dendrimer-conjugated Bcl-2/x L inhibitor, AZD0466, with improved therapeutic index for cancer therapy. Commun Biol 2021; 4:112. [PMID: 33495510 PMCID: PMC7835349 DOI: 10.1038/s42003-020-01631-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Dual Bcl-2/Bcl-xL inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-xL inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer. Mathematical modelling was employed to determine the optimal release rate of the drug from the dendrimer for maximal therapeutic index in terms of preclinical anti-tumour efficacy and cardiovascular tolerability. The optimised candidate is shown to be efficacious and better tolerated in preclinical models compared with AZD4320 alone. The AZD4320-dendrimer conjugate (AZD0466) identified, through mathematical modelling, has resulted in an improved therapeutic index and thus enabled progression of this promising dual Bcl-2/Bcl-xL inhibitor into clinical development. Claire Patterson et al. present the design and development of AZD0466, a drug-dendrimer conjugate, and use preclinical and mathematical models to determine the optimal release rate of the drug from the dendrimer carrier for maximal therapeutic index in terms of anti-tumour efficacy and cardiovascular tolerability. This study identifies this promising dual Bcl-2/Bcl-xL inhibitor for progression to clinical development.
Collapse
|