1
|
Lee M, Park SH, Kim YJ, Bae JS, Lee JH, Lee SH, Kim C, Lee K, Kim Y. Impact of Systolic Blood Viscosity on Deep White Matter Hyperintensities in Patients With Acute Ischemic Stroke. J Am Heart Assoc 2024; 13:e034162. [PMID: 39041635 DOI: 10.1161/jaha.123.034162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Elevated blood viscosity (BV), a critical determinant in blood rheology, is a contributing factor in cerebrovascular diseases. The specific influence of BV on small vessel disease burden remains unexplored. This study aims to examine the relationship between BV and regional white matter hyperintensity (WMH) volume in patients with acute ischemic stroke. METHODS AND RESULTS We enrolled a cohort of 302 patients with acute ischemic stroke or transient ischemic attack who were admitted to a hospital within 7 days of symptom onset in this study. We measured whole BV using a scanning capillary-tube viscometer and categorized systolic blood viscosity into 3 groups based on established references. We quantified and normalized WMH volumes using automated localization and segmentation software by NEUROPHET Inc. We performed multivariable logistic regression analysis to assess the correlation between systolic BV and WMH. The mean subject age was 66.7±13.4 years, and 38.7% (n=117) of the participants were female. Among a total of 302 patients, patients with higher deep WMH volume (T3) were typically older and had an atrial fibrillation, strokes of cardioembolic or undetermined cause, elevated levels of C-reactive protein, diastolic blood viscosity and systolic BV. A multivariable adjustment revealed a significant association between high systolic BV and increased deep-WMH volume (odds ratio [OR], 2.636 [95% CI, 1.225-5.673]). CONCLUSIONS Elevated systolic BV is more likely to be associated with deep WMH volume in patients with acute ischemic stroke or transient ischemic attack. These findings reveal novel therapeutic strategies focusing on blood rheology to enhance cerebral microcirculation in stroke management.
Collapse
Affiliation(s)
- Minwoo Lee
- Department of Neurology Hallym University Sacred Heart Hospital, Hallym University College of Medicine Anyang Republic of Korea
| | - Soo-Hyun Park
- Department of Neurology Soonchunhyang University Seoul Hospital Seoul Republic of Korea
| | - Yeo Jin Kim
- Department of Neurology, Kangdong Sacred Heart Hospital Hallym University College of Medicine Seoul Republic of Korea
| | - Jong Seok Bae
- Department of Neurology, Kangdong Sacred Heart Hospital Hallym University College of Medicine Seoul Republic of Korea
| | - Ju-Hun Lee
- Department of Neurology, Kangdong Sacred Heart Hospital Hallym University College of Medicine Seoul Republic of Korea
| | - Sang-Hwa Lee
- Department of Neurology Chuncheon Sacred Heart Hospital, Hallym University College of Medicine Chuncheon Republic of Korea
| | - Chulho Kim
- Department of Neurology Chuncheon Sacred Heart Hospital, Hallym University College of Medicine Chuncheon Republic of Korea
| | - Kijeong Lee
- Research Institute, NEUROPHET Inc Seoul Republic of Korea
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital Hallym University College of Medicine Seoul Republic of Korea
| |
Collapse
|
2
|
Buckley RJ, Innes CRH, Kelly PT, Hlavac MC, Beckert L, Melzer TR, Jones RD. Cerebral perfusion is not impaired in persons with moderate obstructive sleep apnoea when awake. Sleep Breath 2024; 28:1609-1616. [PMID: 38717716 DOI: 10.1007/s11325-024-03048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE It is well established that, together with a multitude of other adverse effects on health, severe obstructive sleep apnoea causes reduced cerebral perfusion and, in turn, reduced cerebral function. Less clear is the impact of moderate obstructive sleep apnoea (OSA). Our aim was to determine if cerebral blood flow is impaired in people diagnosed with moderate OSA. METHODS Twenty-four patients diagnosed with moderate OSA (15 ≤ apnoea-hypopnea index (AHI) < 30) were recruited (aged 32-72, median 59 years, 10 female). Seven controls (aged 42-73 years, median 62 years, 4 female) with an AHI < 5 were also recruited. The OSA status of all participants was confirmed at baseline by unattended polysomnography and they had an MRI arterial-spin-labelling scan of cerebral perfusion. RESULTS Neither global perfusion nor voxel-wise perfusion differed significantly between the moderate-OSA and control groups. We also compared the average perfusion across three regional clusters, which had been found in a previous study to have significant perfusion differences with moderate-severe OSA versus control, and found no significant difference in perfusion between the two groups. The perfusions were also very close, with means of 50.2 and 51.8 mL/100 g/min for the moderate-OSAs and controls, respectively, with a negligible effect size (Cohen's d = 0.10). CONCLUSION We conclude that cerebral perfusion is not impaired in people with moderate OSA and that cerebral flow regulatory mechanisms can cope with the adverse effects which occur in moderate OSA. This is an important factor in clinical decisions for prescription of continuous positive airway pressure therapy (CPAP).
Collapse
Affiliation(s)
- Russell J Buckley
- New Zealand Brain Research Institute, 66 Stewart Street, Christchurch, 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Carrie R H Innes
- New Zealand Brain Research Institute, 66 Stewart Street, Christchurch, 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Paul T Kelly
- Sleep Unit, Christchurch Hospital, Christchurch, New Zealand
| | | | - Lutz Beckert
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Sleep Unit, Christchurch Hospital, Christchurch, New Zealand
| | - Tracy R Melzer
- New Zealand Brain Research Institute, 66 Stewart Street, Christchurch, 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Richard D Jones
- New Zealand Brain Research Institute, 66 Stewart Street, Christchurch, 8011, New Zealand.
- Department of Medicine, University of Otago, Christchurch, New Zealand.
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
- Department of Medical Physics & Bioengineering, Christchurch Hospital, Christchurch, New Zealand.
- Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
3
|
Goyal A, Ekelmans A, Frishman W. Exploring the Intersection of Dementia and Myocardial Infarction: Vascular Perspectives. Cardiol Rev 2024:00045415-990000000-00272. [PMID: 38771949 DOI: 10.1097/crd.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Emerging evidence underscores the relationship between myocardial infarction and dementia, implicating a profound influence on patient health. The bidirectional relationship between myocardial infarction and dementia is highlighted by pathophysiological changes in vasculature function, lifestyle factors, and environmental influences. Our literature review aims to explore the complex relationship between these 2 pathologies and highlight the pathways by which they mutually influence each other.
Collapse
Affiliation(s)
- Anjali Goyal
- From the School of Medicine, New York Medical College, Valhalla, NY
| | | | - William Frishman
- From the School of Medicine, New York Medical College, Valhalla, NY
- Department of Medicine, New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
6
|
Ogoh S. Cardiac output-mediated regulation of cerebral blood flow during exercise: Clinical perspectives on the indirect impact of muscle metaboreflex. Exp Physiol 2024. [PMID: 38500291 DOI: 10.1113/ep091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The muscle metaboreflex stimulates the elevation of arterial blood pressure, aiming to rectify the oxygen deficit by enhancing oxygen delivery to support muscle activity. Moreover, activating the muscle metaboreflex significantly increases cardiac output (CO) by increasing factors such as heart rate, ventricular contractility, preload, stroke volume and mobilization of central blood volume. Previous studies indicate that ageing and cardiovascular diseases modify the muscle metaboreflex during exercise, limiting the ability to increase CO during physical activity. Alongside reduced exercise capacity, the attenuated rise in CO due to abnormal muscle metaboreflex in these patients impedes the increase in cerebral blood flow during exercise. Considering that CO plays a pivotal role in regulating cerebral blood flow adequately during exercise, this occurrence might contribute to an elevated risk of cerebral diseases, and it could also, at least, reduce the effective role of exercise in preventing cerebral disease and dementia among elderly individuals and patients with cardiovascular conditions. Therefore, it is important to consider this phenomenon when optimizing the effectiveness of exercise rehabilitation in patients with cardiovascular disease to prevent cerebral diseases and dementia.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
7
|
Han SJ, Xu QQ, Pan H, Liu WJ, Dai QQ, Lin HY, Cui HR, You LZ, Wu YZ, Wei XH, Shang HC. Network pharmacology and molecular docking prediction, combined with experimental validation to explore the potential mechanism of Qishen Yiqi pills against HF-related cognitive dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116570. [PMID: 37187360 DOI: 10.1016/j.jep.2023.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qishen Yiqi Pills (QSYQ) is a classical herbal formula for treating heart failure (HF) and has potential efficacy in improving cognitive function. The latter is one of the most common complications in patients with HF. However, there is no study on treating HF-related cognitive dysfunction by QSYQ. AIMS OF THE STUDY The study aims to investigate the effect and mechanism of QSYQ on treating post-HF cognitive dysfunction based on network pharmacology and experimental validation. MATERIALS AND METHODS Network pharmacology analysis and molecular docking was used to explore endogenous targets of QSYQ in treating cognitive impairment. Ligation of the anterior descending branch of the left coronary artery and sleep deprivation (SD) were used to induce HF-related cognitive dysfunction in rats. The efficacy and potential signal targets of QSYQ were then verified by functional evaluation, pathological staining, and molecular biology experiments. RESULTS 384 common targets were identified by intersecting QSYQ 'compound targets' and 'cognitive dysfunction' disease targets. KEGG analysis showed these targets were enriched to the cAMP signal, and four marks responsible for regulating the cAMP signal were successfully docked with core compounds of QSYQ. Animal experiments demonstrated that QSYQ significantly ameliorated cardiac function and cognitive function in rats suffering from HF and SD, inhibited the reduction of cAMP and BDNF content, reversed the upregulation of PDE4 and downregulation of CREB, suppressed the loss of neurons, and restored the expression of synaptic protein PSD95 in the hippocampus. CONCLUSION This study clarified that QSYQ could improve HF-related cognitive dysfunction by modulating cAMP-CREB-BDNF signals. It provides a rich basis for the potential mechanism of QSYQ in the treatment of heart failure with cognitive dysfunction.
Collapse
Affiliation(s)
- Song-Jie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qian-Qian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hai'e Pan
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wen-Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qian-Qian Dai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hong-Yuan Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yu-Zhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
8
|
Zhao RY, Wei PJ, Sun X, Zhang DH, He QY, Liu J, Chang JL, Yang Y, Guo ZN. Role of lipocalin 2 in stroke. Neurobiol Dis 2023; 179:106044. [PMID: 36804285 DOI: 10.1016/j.nbd.2023.106044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.
Collapse
Affiliation(s)
- Ruo-Yu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Peng-Ju Wei
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jie Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jun-Lei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| |
Collapse
|
9
|
Wu Y, Chen L, Zhong F, Zhou K, Lu C, Cheng X, Wang S. Cognitive impairment in patients with heart failure: molecular mechanism and therapy. Heart Fail Rev 2023:10.1007/s10741-022-10289-9. [PMID: 36593370 DOI: 10.1007/s10741-022-10289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
Heart failure (HF) is associated with multiple organ dysfunction and many comorbidities. Its incidence is high among the elderly and is a major health burden worldwide. Cognitive impairment (CI) is highly prevalent in older patients with HF, which is an abnormality in one or more of the items of cognition, attention, memory, language, psychomotor function, and visual spatial acuity. Studies have shown that the incidence of CI in HF patients is between 13 and 54%, and patients with both conditions have poor self-care ability and prognosis, as well as increased mortality rates. However, the mechanisms of CI development in HF patients are still unclear. In this review, we describe the epidemiology and risk factors as well as measures of improving CI in HF patients. We update the latest pathophysiological mechanisms related to the neurocognitive changes in HF patients, expounding on the mechanisms associated with the development of CI in HF patients.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Anesthesiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Liwen Chen
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Feng Zhong
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Kaiyi Zhou
- Department of Anesthesiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Chao Lu
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Xiao Cheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Wang
- Department of Anesthesiology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Department of Anesthesiology, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
11
|
He Y, Chen X, Wu M, Hou X, Zhou Z. What type of cell death occurs in chronic cerebral hypoperfusion? A review focusing on pyroptosis and its potential therapeutic implications. Front Cell Neurosci 2023; 17:1073511. [PMID: 36937182 PMCID: PMC10017988 DOI: 10.3389/fncel.2023.1073511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major global disease with chronic cerebral blood flow reduction. It is also the main cause of cognitive impairment and neurodegenerative diseases. Pyroptosis, a novel form of cell death, is characterized by the rupture of the cell membrane and the release of pro-inflammatory mediators. In recent years, an increasing number of studies have identified the involvement of pyroptosis and its mediated inflammatory response in the pathological process of CCH. Therefore, preventing the activation of pyroptosis following CCH is beneficial to inhibit the inflammatory cascade and reduce brain injury. In this review, we discuss the research progress on the relationship between pyroptosis and CCH, in order to provide a reference for research in related fields.
Collapse
Affiliation(s)
- Yuxuan He
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Neurology, School of Medicine, Chongqing University, Chongqing, China
| | - Xi Chen
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Wu
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Xianhua Hou Zhenhua Zhou
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Xianhua Hou Zhenhua Zhou
| |
Collapse
|
12
|
Sun L, Hui L, Li Y, Chen X, Liu R, Ma J. Pathogenesis and research progress in leukoaraiosis. Front Hum Neurosci 2022; 16:902731. [PMID: 36061509 PMCID: PMC9437627 DOI: 10.3389/fnhum.2022.902731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Leukoaraiosis is a common imaging marker of cerebral small vessel disease. In recent years, with the continuous advances in brain imaging technology, the detection rate of leukoaraiosis is higher and its clinical subtypes are gradually gaining attention. Although leukoaraiosis has long been considered an incidental finding with no therapeutic necessity, there is now growing evidence linking it to, among other things, cognitive impairment and a high risk of death after stroke. Due to different research methods, some of the findings are inconsistent and even contradictory. Therefore, a comprehensive and in-depth study of risk factors for leukoaraiosis is of great clinical significance. In this review, we summarize the literature on leukoaraiosis in recent years with the aim of elucidating the disease in terms of various aspects (including pathogenesis, imaging features, and clinical features, etc.).
Collapse
Affiliation(s)
- Lingqi Sun
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Lin Hui
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Li
- Department of Ultrasound Medicine, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Xian Chen
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Rong Liu
- Department of Neurology, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu, China
| | - Ji Ma
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Tian Y, Zheng Y, Wang Q, Yan F, Tao Z, Zhao F, Wang Y, Huang Y, Li F, Du Y, Wang N, Luo Y. Berberine Ameliorates Cognitive Impairment by Regulating Microglial Polarization and Increasing Expression of Anti-inflammatory Factors following Permanent Bilateral Common Carotid Artery Occlusion in Rats. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:869-879. [PMID: 35142272 DOI: 10.2174/1871527321666220124140323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion is associated with vascular cognitive impairment, and there are no specific therapeutic agents for use in clinical practice. Berberine has demonstrated good neuroprotective effects in models of acute cerebral ischemia; however, whether it can alleviate cognitive impairment caused by chronic cerebral hypoperfusion has rarely been investigated. OBJECTIVE The present study aimed to explore the mechanism by which berberine alleviates cognitive impairment resulting from chronic cerebral hypoperfusion. METHODS Forty-two male Sprague-Dawley rats were randomly divided into three groups: sham, model, and berberine. The models of chronic cerebral hypoperfusion were established via permanent bilateral common carotid artery occlusion (BCCAO). Cognitive function was evaluated using the Morris water maze, while neuronal damage and microglial activation and polarization were evaluated using western blotting and immunofluorescence, respectively. Enzyme-linked immunosorbent assays were used to detect the expression of anti-inflammatory factors including interleukin- 4 (IL-4) and interleukin-10 (IL-10). RESULTS Rats exhibited cognitive dysfunction after BCCAO, which was significantly attenuated following the berberine intervention. Levels of synaptophysin and NeuN were decreased in states of chronic cerebral hypoperfusion, during which microglial activation and a transition from the M2 to M1 phenotype were observed. Berberine treatment also significantly reversed these features. Moreover, levels of IL-4 and IL-10 expression increased significantly after berberine treatment. CONCLUSION Berberine may mitigate vascular cognitive dysfunction by promoting neuronal plasticity, inhibiting microglial activation, promoting transformation from an M1 to an M2 phenotype, and increasing levels of IL-4 and IL-10 expression.
Collapse
Affiliation(s)
- Yue Tian
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yuqing Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fengjuan Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yitong Du
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ningqun Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Gallego I, Villate-Beitia I, Saenz-Del-Burgo L, Puras G, Pedraz JL. Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacol Rev 2022; 74:439-461. [PMID: 35302047 DOI: 10.1124/pharmrev.121.000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Laura Saenz-Del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| |
Collapse
|
15
|
Wu-Chung EL, Leal SL, Denny BT, Cheng SL, Fagundes CP. Spousal caregiving, widowhood, and cognition: A systematic review and a biopsychosocial framework for understanding the relationship between interpersonal losses and dementia risk in older adulthood. Neurosci Biobehav Rev 2022; 134:104487. [PMID: 34971701 PMCID: PMC8925984 DOI: 10.1016/j.neubiorev.2021.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
Abstract
Accumulating research suggests that stressful life events, especially those that threaten close intimate bonds, are associated with an increased risk of dementia. Grieving the loss of a spouse, whether in the form of caregiving or after the death, ranks among 'life's most significant stressors', evoking intense psychological and physiological distress. Despite numerous studies reporting elevated dementia risk or poorer cognition among spousal caregivers and widow(er)s compared to controls, no review has summarized findings across cognitive outcomes (i.e., dementia incidence, cognitive impairment rates, cognitive performance) or proposed a theoretical model for understanding the links between partner loss and abnormal cognitive decline. The current systematic review summarizes findings across 64 empirical studies. Overall, both cross-sectional and longitudinal studies revealed an adverse association between partner loss and cognitive outcomes. In turn, we propose a biopsychosocial model of cognitive decline that explains how caregiving and bereavement may position some to develop cognitive impairment or Alzheimer's disease and related dementias. More longitudinal studies that focus on the biopsychosocial context of caregivers and widow(er)s are needed.
Collapse
Affiliation(s)
- E Lydia Wu-Chung
- Department of Psychological Sciences, Rice University, Houston, TX, United States.
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Bryan T Denny
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Samantha L Cheng
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Christopher P Fagundes
- Department of Psychological Sciences, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Yaremenko LM, Grabovoy AN, Shepelev SE. Expression of Cytoskeletal Proteins in Neurons of the Rat Sensorimotor Cortex upon Hypoperfusion of the Brain and Sensitization by Cerebral Antigen. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Lee EC, Hong DY, Lee DH, Park SW, Lee JY, Jeong JH, Kim EY, Chung HM, Hong KS, Park SP, Lee MR, Oh JS. Inflammation and Rho-Associated Protein Kinase-Induced Brain Changes in Vascular Dementia. Biomedicines 2022; 10:biomedicines10020446. [PMID: 35203655 PMCID: PMC8962349 DOI: 10.3390/biomedicines10020446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with vascular dementia, caused by cerebral ischemia, experience long-term cognitive impairment due to the lack of effective treatment. The mechanisms of and treatments for vascular dementia have been investigated in various animal models; however, the insufficient information on gene expression changes that define pathological conditions hampers progress. To investigate the underlying mechanism of and facilitate treatment development for vascular dementia, we established a mouse model of chronic cerebral hypoperfusion, including bilateral carotid artery stenosis, by using microcoils, and elucidated the molecular pathway underlying vascular dementia development. Rho-associated protein kinase (ROCK) 1/2, which regulates cellular structure, and inflammatory cytokines (IL-1 and IL-6) were upregulated in the vascular dementia model. However, expression of claudin-5, which maintains the blood–brain barrier, and MAP2 as a nerve cell-specific factor, was decreased in the hippocampal region of the vascular dementia model. Thus, we revealed that ROCK pathway activation loosens the tight junction of the blood–brain barrier and increases the influx of inflammatory cytokines into the hippocampal region, leading to neuronal death and causing cognitive and emotional dysfunction. Our vascular dementia model allows effective study of the vascular dementia mechanism. Moreover, the ROCK pathway may be a target for vascular dementia treatment development in the future.
Collapse
Affiliation(s)
- Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
| | - Ji Hun Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
| | - Eun-Young Kim
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
| | - Hyung-Min Chung
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Ki-Sung Hong
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
| | - Se-Pill Park
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (E.-Y.K.); (H.-M.C.); (K.-S.H.); (S.-P.P.)
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea; (E.C.L.); (D.-Y.H.); (D.-H.L.); (S.-W.P.); (J.Y.L.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea;
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
18
|
Goh FQ, Kong WKF, Wong RCC, Chong YF, Chew NWS, Yeo TC, Sharma VK, Poh KK, Sia CH. Cognitive Impairment in Heart Failure-A Review. BIOLOGY 2022; 11:179. [PMID: 35205045 PMCID: PMC8869585 DOI: 10.3390/biology11020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
Cognitive impairment (CI) is common in heart failure (HF). Patients with HF demonstrate reduced global cognition as well as deficits in multiple cognitive domains compared to controls. Degree of CI may be related to HF severity. HF has also been associated with an increased risk of dementia. Anatomical brain changes have been observed in patients with HF, including grey matter atrophy and increased white matter lesions. Patients with HF and CI have poorer functional independence and self-care, more frequent rehospitalisations as well as increased mortality. Pathophysiological pathways linking HF and CI have been proposed, including cerebral hypoperfusion and impaired cerebrovascular autoregulation, systemic inflammation, proteotoxicity and thromboembolic disease. However, these mechanisms are poorly understood. We conducted a search on MEDLINE, Embase and Scopus for original research exploring the connection between HF and CI. We then reviewed the relevant literature and discuss the associations between HF and CI, the patterns of brain injury in HF and their potential mechanisms, as well as the recognition and management of CI in patients with HF.
Collapse
Affiliation(s)
- Fang Qin Goh
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
| | - William K. F. Kong
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| | - Raymond C. C. Wong
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| | - Yao Feng Chong
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Nicholas W. S. Chew
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
| | - Tiong-Cheng Yeo
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| | - Vijay Kumar Sharma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (F.Q.G.); (W.K.F.K.); (R.C.C.W.); (N.W.S.C.); (T.-C.Y.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
19
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
20
|
Fu Z, Xu Q, Zhang C, Bai H, Chen X, Zhang Y, Luo W, Lin G. Admission Systolic Blood Pressure Predicts Post-Operative Delirium of Acute Aortic Dissection Patients in the Intensive Care Unit. Int J Gen Med 2021; 14:5939-5948. [PMID: 34584446 PMCID: PMC8464373 DOI: 10.2147/ijgm.s329689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Post-operative delirium (POD) is a common complication after aortic surgery with poor outcomes. Blood pressure may play a role in the occurrence of POD. The study aimed to identify whether admission systolic blood pressure (SBP) level in the intensive care unit (ICU) is correlated with POD in acute Stanford type A aortic dissection (AAAD) patients undergoing aortic surgery. Patients and Methods We conducted a single-center retrospective cohort study enrolling consecutive 205 patients with acute type A aortic dissection undergoing aortic surgery. Patients were divided into 3 groups: low, normal, and high SBP level group. Outcomes of interest were POD, 30-day mortality and other complications including acute kidney injury, cardiac complications, spinal cord ischemia, stroke, and pneumonia. Confusion Assessment Method for Intensive Care Unit (CAM-ICU) method was used to assess POD. Univariate and multivariate logistic regression, Cox regression, and subgroup analysis were performed to uncover the association between SBP and POD. Results The mean age of these patients was 51±16 years old. Thirty-six patients (17.6%) developed POD. Patients with high admission SBP were more likely to develop POD (P < 0.01). Univariate analysis showed that high admission SBP was associated with a higher risk of POD among AAAD patients (OR, 3.514; 95% CI, 1.478-8.537, P < 0.01). Multivariate logistic regression model confirmed that high SBP was an independent predictor of POD. Subgroup analysis indicated that patients with anemia and high admission SBP were at higher risk of POD. Conclusion High admission SBP was positively associated with the incidence of POD in AAAD patients who underwent surgical repair in ICU.
Collapse
Affiliation(s)
- Zuli Fu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chiyuan Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Bai
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yanfeng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wanjun Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
21
|
Effects of GV14 Acupuncture on Cerebral Blood Flow Velocity in the Basilar and Middle Cerebral Arteries and CO 2 Reactivity during Hypercapnia in Normal Individuals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9319413. [PMID: 34539808 PMCID: PMC8445714 DOI: 10.1155/2021/9319413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
The Governing Vessel 14 (GV14) (Dazhui) is one of the acupuncture points referred to as "seven acupoints for stroke." Nevertheless, there is a scarcity of research on the effects of acupuncture treatment at GV14. This study investigated the effects of acupuncture at GV14 on cerebral blood flow (CBF), especially that in the basilar artery (BA) and the middle cerebral arteries (MCA). Sixteen healthy men aged 20 to 29 years were enrolled in this study. CBF velocity and cerebrovascular reactivity (CVR) were measured using transcranial Doppler sonography (TCD). The following were assessed: closed circuit rebreathing- (CCR-) induced carbon dioxide (CO2) reactivity, modified blood flow velocity at 40 mmHg (CV40) on BA and MCAs, blood pressure (BP), and heart rate (HR). Observed results were obtained after comparison with the baseline evaluation. Statistically significant elevations in CO2 reactivity were recorded in the BA (3.28 to 4.70, p < 0.001) and MCAs (right: 3.81 to 5.25, p=0.001; left: 3.84 to 5.12, p=0.005) after acupuncture at GV14. The CV40 increased statistically significantly only in the BA (45.49 to 50.41, p=0.003). No change was observed in BP (106.83 to 107.08 (mmHg), p=0.335) and HR (77 to 75 (bpm), p=0.431). Acupuncture at GV14 improved CBF velocity. These results could be explained by the regulation of endothelium-dependent vessel dilation effected by acupuncture. This trial is registered with Korean Clinical Trial Registry (http://cris.nih.go.kr; registration number: KCT0004787).
Collapse
|
22
|
Liu Q, Bhuiyan MIH, Liu R, Song S, Begum G, Young CB, Foley LM, Chen F, Hitchens TK, Cao G, Chattopadhyay A, He L, Sun D. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. J Neuroinflammation 2021; 18:187. [PMID: 34454529 PMCID: PMC8403348 DOI: 10.1186/s12974-021-02234-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) causes white matter damage and cognitive impairment, in which astrogliosis is the major pathology. However, underlying cellular mechanisms are not well defined. Activation of Na+/H+ exchanger-1 (NHE1) in reactive astrocytes causes astrocytic hypertrophy and swelling. In this study, we examined the role of NHE1 protein in astrogliosis, white matter demyelination, and cognitive function in a murine CCH model with bilateral carotid artery stenosis (BCAS). METHODS Sham, BCAS, or BCAS mice receiving vehicle or a selective NHE1 inhibitor HOE642 were monitored for changes of the regional cerebral blood flow and behavioral performance for 28 days. Ex vivo MRI-DTI was subsequently conducted to detect brain injury and demyelination. Astrogliosis and demyelination were further examined by immunofluorescence staining. Astrocytic transcriptional profiles were analyzed with bulk RNA-sequencing and RT-qPCR. RESULTS Chronic cerebral blood flow reduction and spatial working memory deficits were detected in the BCAS mice, along with significantly reduced mean fractional anisotropy (FA) values in the corpus callosum, external capsule, and hippocampus in MRI DTI analysis. Compared with the sham control mice, the BCAS mice displayed demyelination and axonal damage and increased GFAP+ astrocytes and Iba1+ microglia. Pharmacological inhibition of NHE1 protein with its inhibitor HOE642 prevented the BCAS-induced gliosis, damage of white matter tracts and hippocampus, and significantly improved cognitive performance. Transcriptome and immunostaining analysis further revealed that NHE1 inhibition specifically attenuated pro-inflammatory pathways and NADPH oxidase activation. CONCLUSION Our study demonstrates that NHE1 protein is involved in astrogliosis with pro-inflammatory transformation induced by CCH, and its blockade has potentials for reducing astrogliosis, demyelination, and cognitive impairment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Ruijia Liu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Cullen B Young
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA.
| |
Collapse
|
23
|
Babayiğit E, Murat S, Mert KU, Çavuşoğlu Y. Assesment of Cerebral Blood Flow Velocities with Transcranial Doppler Ultrasonography in Heart Failure Patients with Reduced Ejection Fraction. J Stroke Cerebrovasc Dis 2021; 30:105706. [PMID: 33690030 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Heart and brain interaction is a well-known entity in heart failure (HF) and left ventricular systolic dysfunction poses an increased risk for stroke and cognitive impairment. Transcranial Doppler (TCD) provides valuable information on cerebral blood flow velocities (CBFV). However, less is known about CBFV in HF patients with reduced EF. So, we aimed to evaluate CBFV by means of TCD in patients with HF and reduced ejection fraction (HFrEF). METHODS This study included 46 HFrEF patients (mean age 65.2±11 years, mean EF 20.1±3.8%) who underwent to TCD examination. In addition, 26 healthy individuals with sinus rhythm and EF >50% were included in the study as a control group. Peak systolic, mean and end diastolic flow velocities of the both right and left middle cerebral artery (RMCA and LMCA) were analyzed. In subgroup analysis, HFrEF patients compared according to rhythm. Correlation analyses was performed in HFrEF group between EF and TCD velocities. RESULTS The average of RMCA and LMCA peak systolic and mean flow velocities were significantly lower in HF patients than those in control group (76,06±23,7 cm/s and 48,49±16,4 cm/s in HF group vs 87,84±14,5 cm/s and 56,41±10,7 cm/s in control group, p=0,025 and p=0,016, respectively, for RMCA and 75,1±22,3 cm/s and 47,57±14.8 cm/s in HF group vs 88,73±17,7 cm/s and 57,15±12,4 cm/s in control group, p=0,009 and p=0,007, respectively, for LMCA). The average mean flow velocity of RMCA and LMCA was significantly lower in HFrEF patients with AF than HFrEF patients with sinus rhythm. (P=0.04 and P= 0.03, respectively) In correlation analysis, EF was significantly positively correlated with both LMCA and RMCA flow velocities in HFrEF group. CONCLUSION This study showed that HFrEF patients have lower CBFV as compared to healthy controls and HFrEF patients with AF rhythm have lower CBFV compared to HFrEF with sinus rhythm which might be one of the explanations of the adverse interaction between heart and brain in HFrEF.
Collapse
Affiliation(s)
- Erdi Babayiğit
- Kulu State Hospital, Department of Cardiology, Konya, Turkey.
| | - Selda Murat
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Cardiology, Eskisehir 26480, Turkey
| | - Kadir Uğur Mert
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Cardiology, Eskisehir 26480, Turkey
| | - Yüksel Çavuşoğlu
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Cardiology, Eskisehir 26480, Turkey
| |
Collapse
|
24
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:ijms22042051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
- Correspondence:
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
25
|
Transcranial Doppler for Early Prediction of Cognitive Impairment after Aneurysmal Subarachnoid Hemorrhage and the Associated Clinical Biomarkers. Stroke Res Treat 2020; 2020:8874605. [PMID: 33299539 PMCID: PMC7704183 DOI: 10.1155/2020/8874605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022] Open
Abstract
Methods Prospective study included 40 cases with acute aSAH. Initial evaluation by Glasgow Coma Scale (GCS) and the severity of aSAH was detected by both the clinical Hunt and Hess and radiological Fisher's grading scales. TCD was done for all patients five times within 10 days measuring the mean flow velocities (MFVs) of cerebral arteries. At the 3-month follow-up, patients were classified into two groups according to Montreal Cognitive Assessment (MoCA) scale: the first group was 31 cases (77.5%) with intact cognitive functions and the other group was 9 cases (22.5%) with impaired cognition. Results Patients with impaired cognitive functions showed significantly lower mean GCS (p = 0.03), significantly higher mean Hunt and Hess scale grades (p = 0.04), significantly higher mean diabetes mellitus (DM) (p = 0.03), significantly higher mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) (p = 0.02 and p = 0.005, respectively), and significantly higher MFVs measured within the first 10 days. The patients with cognitive impairment were accompanied by a higher incidence of hydrocephalus (p = 0.01) and a higher incidence of delayed cerebral ischemia (DCI) (p < 0.001). Logistic regression analysis detected that MFV ≥ 86 cm/s in the middle cerebral artery (MCA), MFV ≥ 68 cm/s in the anterior cerebral artery (ACA), and MFV ≥ 45 cm/s in the posterior cerebral artery (PCA) were significantly associated with increased risk of cognitive impairment. Conclusion Cognitive impairment after the 3-month follow-up phase in aSAH patients was 22.5%. Acute hydrocephalus and DCI are highly associated with poor cognitive function in aSAH. Increased MFV is a strong predictor for poor cognitive function in aSAH. This trial is registered with NCT04329208.
Collapse
|
26
|
Neurovascular Coupling Impairment in Heart Failure with Reduction Ejection Fraction. Brain Sci 2020; 10:brainsci10100714. [PMID: 33036338 PMCID: PMC7601077 DOI: 10.3390/brainsci10100714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The hemodynamic consequences of a persistent reduced ejection fraction and unknown cardiac output on the brain have not been thoroughly studied. We sought to explore the status of the mechanisms of cerebrovascular regulation in patients with heart failure with reduced (HFrEF) and recovered (HFrecEF) ejection fraction. We monitored cerebral blood flow velocity (CBFV) with transcranial Doppler and blood pressure. Cerebral autoregulation, assessed by transfer function from the spontaneous oscillations of blood pressure to CBFV and neurovascular coupling (NVC) with visual stimulation were compared between groups of HFrEF, HFrecEF and healthy controls. NVC was significantly impaired in HFrEF patients with reduced augmentation of CBFV during stimulation (overshoot systolic CBFV 19.11 ± 6.92 vs. 22.61 ± 7.78 vs. 27.92 ± 6.84, p = 0.04), slower upright of CBFV (rate time to overshoot: 1.19 ± 3.0 vs. 3.06 (4.30) vs. 2.90 ± 3.84, p = 0.02); p = 0.023) and reduced arterial oscillatory properties (natural frequency 0.17 ± 0.06 vs. 0.20 ± 0.09 vs. 0.24 ± 0.07, p = 0.03; attenuation 0.34 ± 0.24 vs. 0.48 ± 0.35 vs. 0.50 ± 0.23, p = 0.05). Cerebral autoregulation was preserved. The neurovascular unit of subjects with chronically reduced heart pumping capability is severely dysfunctional. Dynamic testing with transcranial Doppler could be useful in these patients, but whether it helps in predicting cognitive impairment must be addressed in future prospective studies.
Collapse
|
27
|
Non-invasive markers of vascular disease: An opportunity for early diagnosis of cognitive impairment. Atherosclerosis 2020; 312:101-103. [PMID: 33051024 DOI: 10.1016/j.atherosclerosis.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023]
|
28
|
An Iatrogenic Model of Brain Small-Vessel Disease: Post-Radiation Encephalopathy. Int J Mol Sci 2020; 21:ijms21186506. [PMID: 32899565 PMCID: PMC7555594 DOI: 10.3390/ijms21186506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
We studied 114 primitive cerebral neoplasia, that were surgically treated, and underwent radiotherapy (RT), and compared their results to those obtained by 190 patients diagnosed with subcortical vascular dementia (sVAD). Patients with any form of primitive cerebral neoplasia underwent whole-brain radiotherapy. All the tumor patients had regional field partial brain RT, which encompassed each tumor, with an average margin of 2.6 cm from the initial target tumor volume. We observed in our patients who have been exposed to a higher dose of RT (30–65 Gy) a cognitive and behavior decline similar to that observed in sVAD, with the frontal dysexecutive syndrome, apathy, and gait alterations, but with a more rapid onset and with an overwhelming effect. Multiple mechanisms are likely to be involved in radiation-induced cognitive impairment. The active site of RT brain damage is the white matter areas, particularly the internal capsule, basal ganglia, caudate, hippocampus, and subventricular zone. In all cases, radiation damage inside the brain mainly focuses on the cortical–subcortical frontal loops, which integrate and process the flow of information from the cortical areas, where executive functions are “elaborated” and prepared, towards the thalamus, subthalamus, and cerebellum, where they are continuously refined and executed. The active mechanisms that RT drives are similar to those observed in cerebral small vessel disease (SVD), leading to sVAD. The RT’s primary targets, outside the tumor mass, are the blood–brain barrier (BBB), the small vessels, and putative mechanisms that can be taken into account are oxidative stress and neuro-inflammation, strongly associated with the alteration of NMDA receptor subunit composition.
Collapse
|
29
|
Gannon J, Claffey P, Laird E, Newman L, Kenny RA, Briggs R. The cross-sectional association between diabetes and orthostatic hypotension in community-dwelling older people. Diabet Med 2020; 37:1299-1307. [PMID: 31770459 DOI: 10.1111/dme.14187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 01/28/2023]
Abstract
AIMS Orthostatic hypotension is a recognized complication of diabetes, but studies examining prevalence in diabetes are limited. The aim of this study was to ascertain the prevalence of orthostatic hypotension and the pattern of orthostatic BP response in a cohort of people with diabetes aged ≥ 50 years, embedded within the Irish Longitudinal Study of Ageing. METHODS Orthostatic hypotension was defined as a drop in systolic blood pressure (SBP) ≥ 20 mmHg or drop in diastolic blood pressure (DBP) ≥ 10 mmHg at 30 s after standing. Diabetes was defined by self-report but cross-checked against HbA1c and medication records. Multilevel mixed effects linear regression models were used to compare orthostatic BP in people with and without diabetes. RESULTS Some 3222 people were included, 7% (213 of 3222) of whom had diabetes. Prevalence of orthostatic hypotension in the group with diabetes was 22% (46 of 213) vs. 13% in those without diabetes; χ2 = 12.43; P < 0.001. Multilevel models demonstrated prolonged recovery of DBP in people with diabetes, with only 41% (87 of 213) returning to baseline by 60 s. Logistic regression models demonstrated that diabetes was associated with a significantly increased likelihood of orthostatic hypotension (odds ratio 1.84, 95% confidence interval 1.30-2.59; P = 0.001) and this remained robust after controlling for covariates. CONCLUSION Over one-fifth of older people with diabetes had orthostatic hypotension. Recovery of DBP is related to dynamic changes in total peripheral resistance and impairment of this baroreflex-mediated response may explain the higher prevalence in diabetes. Given the prognostic implications when co-existing with diabetes, orthostatic hypotension may represent a potentially modifiable risk factor for adverse outcomes in late-life diabetes.
Collapse
Affiliation(s)
- J Gannon
- Mercers Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - P Claffey
- Mercers Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - E Laird
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - L Newman
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - R A Kenny
- Mercers Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - R Briggs
- Mercers Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Sachdeva R, Jia M, Wang S, Yung A, Zheng MMZ, Lee AHX, Monga A, Leong S, Kozlowski P, Fan F, Roman RJ, Phillips AA, Krassioukov AV. Vascular-Cognitive Impairment following High-Thoracic Spinal Cord Injury Is Associated with Structural and Functional Maladaptations in Cerebrovasculature. J Neurotrauma 2020; 37:1963-1970. [PMID: 32394805 DOI: 10.1089/neu.2019.6913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Individuals living with chronic spinal cord injury (SCI) often exhibit impairments in cognitive function, which impede their rehabilitation and transition into the community. Although a number of clinical studies have demonstrated the impact of impaired cardiovascular control on cognitive impairment, the mechanistic understanding of this deleterious relationship is still lacking. The present study investigates whether chronic disruption of cardiovascular control following experimental SCI results in cerebrovascular decline and vascular cognitive impairment. Fourteen weeks following a high thoracic SCI (at the third thoracic segment), rats were subjected to a battery of in vivo and in vitro physiological assessments, cognitive-behavioral tests, and immunohistochemical approaches to investigate changes in cerebrovascular structure and function in the middle cerebral artery (MCA). We show that in the MCA of rats with SCI, there is a 55% (SCI vs. control: 13.4 ± 1.9% vs. 29.63 ± 2.8%, respectively) reduction in the maximal vasodilator response to carbachol, which is associated with reduced expression of endothelial marker cluster of differentiation 31 (CD31) and transient receptor potential cation channel 4 (TRPV 4) channels. Compared with controls, MCAs in rats with SCI were found to have 50% (SCI vs. control: 1.5 ± 0.2 vs. 1 ± 0.1 a.u., respectively) more collagen 1 in the media of vascular wall and 37% (SCI vs. control: 30.5 ± 2.9% vs. 42.0 ± 4.0%, respectively) less distensibility at physiological intraluminal pressure. Further, the cerebral blood flow (CBF) in the hippocampus was reduced by 32% in the SCI group (SCI vs. control: 44.3 ± 4.5 mL/100 g/min vs. 65.0 ± 7.2 mL/100 g/min, respectively) in association with impairment of short-term memory based on a novel object recognition test. There were no changes in the sympathetic innervation of the vasculature and passive structure in the SCI group. Chronic experimental SCI is associated with structural alterations and endothelial dysfunction in cerebral arteries that likely contribute to significantly reduced CBF and vascular cognitive impairment.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Mengyao Jia
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Mei Mu Zi Zheng
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Monga
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Leong
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada.,G.F. Strong Rehabilitation Center, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Holm H, Nägga K, Nilsson ED, Ricci F, Melander O, Hansson O, Bachus E, Fedorowski A, Magnusson M. High circulating levels of midregional proenkephalin A predict vascular dementia: a population-based prospective study. Sci Rep 2020; 10:8027. [PMID: 32415209 PMCID: PMC7229155 DOI: 10.1038/s41598-020-64998-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Midregional Pro-enkephalin A (MR-PENK A) and N-terminal Protachykinin A (NT-PTA) have been associated with vascular dementia. However, the longitudinal relationship between these biomarkers and incident dementia has not been fully investigated. In the population-based Malmö Preventive Project, circulating levels of MR-PENK A and NT-PTA were determined in a random sample of 5,323 study participants (mean age: 69 ± 6 years) who were followed-up over a period of 4.6 ± 1.6 years. The study sample included 369 patients (7%) who were diagnosed in the same period with dementia. We analyzed relationship of MR-PENK A and NT-PTA with the risk of developing dementia by using multivariable-adjusted Cox regression models adjusted for traditional risk factors. Increased plasma levels of MR-PENK A were associated with higher risk of incident vascular dementia whereas no associations were found with all-cause or Alzheimer dementia. The risk of vascular dementia was mainly conferred by the highest quartile of MR-PENK as compared with lower quartiles. Elevated levels of NT-PTA yielded significant association with all-cause dementia or dementia subtypes. Elevated plasma concentration of MR-PENK A independently predicts vascular dementia in the general population. MR-PENK A may be used as an additional tool for identifying vascular subtype in ambiguous dementia cases.
Collapse
Affiliation(s)
- H Holm
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden. .,Department of Cardiology, Skåne University Hospital, Malmö, Sweden.
| | - K Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - E D Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - F Ricci
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.,Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, G.d'Annunzio University, Chieti, Italy
| | - O Melander
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - E Bachus
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - A Fedorowski
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - M Magnusson
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Vinciguerra L, Lanza G, Puglisi V, Fisicaro F, Pennisi M, Bella R, Cantone M. Update on the Neurobiology of Vascular Cognitive Impairment: From Lab to Clinic. Int J Mol Sci 2020; 21:E2977. [PMID: 32340195 PMCID: PMC7215552 DOI: 10.3390/ijms21082977] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Collapse
Affiliation(s)
- Luisa Vinciguerra
- Department of Neurology and Stroke Unit, ASST Cremona, 26100 Cremona, Italy; (L.V.); (V.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, 94018 Troina, Italy
| | - Valentina Puglisi
- Department of Neurology and Stroke Unit, ASST Cremona, 26100 Cremona, Italy; (L.V.); (V.P.)
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, 93100 Caltanissetta, Italy;
| |
Collapse
|
33
|
Update on the Neurobiology of Vascular Cognitive Impairment: From Lab to Clinic. Int J Mol Sci 2020. [PMID: 32340195 DOI: 10.3390/ijms21082977.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Collapse
|
34
|
Moretti R, Caruso P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int J Mol Sci 2020; 21:E1095. [PMID: 32046035 PMCID: PMC7036993 DOI: 10.3390/ijms21031095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The arteriosclerosis-dependent alteration of brain perfusion is one of the major determinants in small vessel disease, since small vessels have a pivotal role in the brain's autoregulation. Nevertheless, as far as we know, endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia that is related to small vessel disease (SVD), also being defined as subcortical vascular dementia (sVAD), as well as microglia activation, chronic hypoxia and hypoperfusion, vessel-tone dysregulation, altered astrocytes, and pericytes functioning blood-brain barrier disruption. The molecular basis of this pathology remains controversial. The apparent consequence (or a first event, too) is the macroscopic alteration of the neurovascular coupling. Here, we examined the possible mechanisms that lead a healthy aging process towards subcortical dementia. We remarked that SVD and white matter abnormalities related to age could be accelerated and potentiated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors, which are, to the best of our knowledge, mostly unknown. Metabolic demands, active neurovascular coupling, correct glymphatic process, and adequate oxidative and inflammatory responses could be bulwarks in defense of the correct aging process; their impairments lead to a potentially catastrophic and non-reversible condition.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
35
|
Kim JS, Lee S, Suh SW, Bae JB, Han JH, Byun S, Han JW, Kim JH, Kim KW. Association of Low Blood Pressure with White Matter Hyperintensities in Elderly Individuals with Controlled Hypertension. J Stroke 2020; 22:99-107. [PMID: 32027795 PMCID: PMC7005351 DOI: 10.5853/jos.2019.01844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Both hypertension and hypotension increase cerebral white matter hyperintensities. However, the effects of hypotension in individuals with treated hypertension are unknown. We analyzed the association of low blood pressure with the location and amount of white matter hyperintensities between elderly individuals with controlled hypertension and those without hypertension.
Methods We enrolled 505 community-dwelling, cognitively normal elderly individuals from the participants of the Korean Longitudinal Study on Cognitive Aging and Dementia. We measured blood pressure three times in a sitting position using a mercury sphygmomanometer and defined low systolic and diastolic blood pressure as ≤110 and ≤60 mm Hg, respectively. We segmented and quantified the periventricular and deep white matter hyperintensities from 3.0 Tesla fluid-attenuated inversion recovery magnetic resonance images.
Results Low systolic blood pressure was independently associated with larger volume of periventricular white matter hyperintensity (P=0.049). The interaction between low systolic blood pressure and hypertension was observed on the volume of periventricular white matter hyperintensity (P=0.005). Low systolic blood pressure was associated with the volume of periventricular white matter hyperintensity in individuals with controlled hypertension (F1,248=6.750, P=0.010), but not in those without hypertension (P=0.380). Low diastolic blood pressure was not associated with the volumes of white matter hyperintensities regardless of presence of controlled hypertension.
Conclusions Low systolic blood pressure seems to be associated with larger volume of periventricular white matter hyperintensity in the individuals with a historyof hypertension but not in those without hypertension.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Subin Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Seung Wan Suh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Hyun Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seonjeong Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea.,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Lidington D, Fares JC, Uhl FE, Dinh DD, Kroetsch JT, Sauvé M, Malik FA, Matthes F, Vanherle L, Adel A, Momen A, Zhang H, Aschar-Sobbi R, Foltz WD, Wan H, Sumiyoshi M, Macdonald RL, Husain M, Backx PH, Heximer SP, Meissner A, Bolz SS. CFTR Therapeutics Normalize Cerebral Perfusion Deficits in Mouse Models of Heart Failure and Subarachnoid Hemorrhage. JACC Basic Transl Sci 2019; 4:940-958. [PMID: 31909302 PMCID: PMC6939007 DOI: 10.1016/j.jacbts.2019.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters. This normalization correlates with reduced neuronal injury. Therefore, CFTR therapeutics have emerged as valuable clinical tools to manage cerebrovascular dysfunction, impaired cerebral perfusion, and neuronal injury.
Collapse
Key Words
- CBF, cerebral blood flow
- CFTR, cystic fibrosis transmembrane conductance regulator
- HF, heart failure
- MAP, mean arterial pressure
- MOPS, 3-morpholinopropanesulfonic acid
- MRI, magnetic resonance imaging
- NIH, National Institutes of Health
- PCA, posterior cerebral artery
- S1P, sphingosine-1-phosphate
- SAH, subarachnoid hemorrhage
- TNF, tumor necrosis factor
- TPR, total peripheral resistance
- cognitive impairment
- corrector compounds
- cystic fibrosis transmembrane conductance regulator (CFTR)
- myogenic vasoconstriction
- sphingosine-1-phosphate
- tumor necrosis factor
- vascular smooth muscle cells
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Jessica C. Fares
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Danny D. Dinh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Jeffrey T. Kroetsch
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Meghan Sauvé
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Firhan A. Malik
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Frank Matthes
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lotte Vanherle
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Arman Adel
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Abdul Momen
- Division of Cell & Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | | | - Warren D. Foltz
- STTARR Innovation Centre, Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Hoyee Wan
- Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Research and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Physical Sciences Platform and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Manabu Sumiyoshi
- Division of Neurosurgery, St. Michael’s Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Biosciences, Department of Neurosurgery, University of Tokushima Graduate School, Tokushima, Japan
| | - R. Loch Macdonald
- Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre for Biomedical Research and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cell & Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter H. Backx
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Scott P. Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Anja Meissner
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Wallenberg Center for Molecular Medicine and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Moretti R, Peinkhofer C. B Vitamins and Fatty Acids: What Do They Share with Small Vessel Disease-Related Dementia? Int J Mol Sci 2019; 20:E5797. [PMID: 31752183 PMCID: PMC6888477 DOI: 10.3390/ijms20225797] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have been written on vitamin supplementation, fatty acid, and dementia, but results are still under debate, and no definite conclusion has yet been drawn. Nevertheless, a significant amount of lab evidence confirms that vitamins of the B group are tightly related to gene control for endothelium protection, act as antioxidants, play a co-enzymatic role in the most critical biochemical reactions inside the brain, and cooperate with many other elements, such as choline, for the synthesis of polyunsaturated phosphatidylcholine, through S-adenosyl-methionine (SAM) methyl donation. B-vitamins have anti-inflammatory properties and act in protective roles against neurodegenerative mechanisms, for example, through modulation of the glutamate currents and a reduction of the calcium currents. In addition, they also have extraordinary antioxidant properties. However, laboratory data are far from clinical practice. Many studies have tried to apply these results in everyday clinical activity, but results have been discouraging and far from a possible resolution of the associated mysteries, like those represented by Alzheimer's disease (AD) or small vessel disease dementia. Above all, two significant problems emerge from the research: No consensus exists on general diagnostic criteria-MCI or AD? Which diagnostic criteria should be applied for small vessel disease-related dementia? In addition, no general schema exists for determining a possible correct time of implementation to have effective results. Here we present an up-to-date review of the literature on such topics, shedding some light on the possible interaction of vitamins and phosphatidylcholine, and their role in brain metabolism and catabolism. Further studies should take into account all of these questions, with well-designed and world-homogeneous trials.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
38
|
Toledo C, Lucero C, Andrade DC, Díaz HS, Schwarz KG, Pereyra KV, Arce-Álvarez A, López NA, Martinez M, Inestrosa NC, Del Rio R. Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging (Albany NY) 2019; 11:5924-5942. [PMID: 31447429 PMCID: PMC6738419 DOI: 10.18632/aging.102150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Age represents the highest risk factor for death due to cardiovascular disease. Heart failure (HF) is the most common cardiovascular disease in elder population and it is associated with cognitive impairment (CI), diminishing learning and memory process affecting life quality and mortality in these patients. In HF, CI has been associated with inadequate O2 supply to the brain; however, an important subset of HF patients displays CI with almost no alteration in cerebral blood flow. Importantly, nothing is known about the pathophysiological mechanisms underpinning CI in HF with no change in brain tissue perfusion. Here, we aimed to study memory performance and learning function in a rodent model of HF that shows no change in blood flow going to the brain. We found that HF rats presented learning impairments and memory loss. In addition, HF rats displayed a decreased level of Wnt/β-catenin signaling downstream elements in the hippocampus, one pathway implicated largely in aging diseases. Taken together, our results suggest that in HF rats CI is associated with dysfunction of the Wnt/β-catenin signaling pathway. The mechanisms involved in the alterations of Wnt/β-catenin signaling in HF and its contribution to the development/maintenance of CI deserves future investigations.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A López
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
39
|
Caruso P, Signori R, Moretti R. Small vessel disease to subcortical dementia: a dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit. Vasc Health Risk Manag 2019; 15:259-281. [PMID: 31496716 PMCID: PMC6689673 DOI: 10.2147/vhrm.s190470] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background Small vessels have the pivotal role for the brain’s autoregulation. The arteriosclerosis-dependent alteration of the brain perfusion is one of the major determinants in small vessel disease. Endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia (sVAD). sVAD increases morbidity and disability. Epidemiological studies have shown that sVAD shares with cerebrovascular disease most of the common risk factors. The molecular basis of this pathology remains controversial. Purpose To detect the possible mechanisms between small vessel disease and sVAD, giving a broad vision on the topic, including pathological aspects, clinical and laboratory findings, metabolic process and cholinergic dysfunction. Methods We searched MEDLINE using different search terms (“vascular dementia”, “subcortical vascular dementia”, “small vessel disease”, “cholinergic afferents”, etc). Publications were selected from the past 20 years. Searches were extended to Embase, Cochrane Library, and LILIACS databases. All searches were done from January 1, 1998 up to January 31, 2018. Results A total of 560 studies showed up, and appropriate studies were included. Associations between traditional vascular risk factors have been isolated. We remarked that SVD and white matter abnormalities are seen frequently with aging and also that vascular and endothelium changes are related with age; the changes can be accelerated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors. Conclusion Small vessel disease and the related dementia are two pathologies that deserve attention for their relevance and impact in clinical practice. Hypertension might be a historical problem for SVD and SVAD, but low pressure might be even more dangerous; CBF regional selective decrease seems to be a critical factor for small vessel disease-related dementia. In those patients, endothelium damage is a super-imposed condition. Several issues are still debatable, and more research is needed.
Collapse
Affiliation(s)
- Paola Caruso
- Department of Medical, Surgical and Health Sciences, Neurology Clinic, University of Trieste, Trieste, Italy
| | - Riccardo Signori
- Department of Medical, Surgical and Health Sciences, Neurology Clinic, University of Trieste, Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, Neurology Clinic, University of Trieste, Trieste, Italy
| |
Collapse
|
40
|
Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR. Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metab Brain Dis 2019; 34:1001-1010. [PMID: 31016464 DOI: 10.1007/s11011-019-00394-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
Abstract
Nigella sativa, a plant widely used in traditional medicine, possesses anti-inflammatory, antioxidant and neuroprotective properties. In the present study, we investigated the effect of hydroalcoholic extract of N. sativa seeds (NSE) and its active constituent, thymoquinone (TQ), on learning and memory deficits, hippocampal acetylcholine esterase (AChE) activity, and markers of redox status, mainly lipid peroxidation and superoxide dismutase (SOD) activity following cerebral hypoperfusion in rats. Cerebral hypoperfusion was induced by permanent occlusion of bilateral common carotid arteries (2VO). Male Wistar rats were administered either a vehicle (sham group: 10 ml/kg/day, ip), NSE (100, 200, and 400 mg/kg/day, ip), TQ (10, 20, and 40 mg/kg/day, ip), or donepezil (5 mg/kg/day, ip) for 10 days (three days before and seven days after ligation). Spatial learning and memory deficits were investigated using the Morris water maze (MWM) task. 2VO produced significant learning and memory deficits as evidenced by increased latency time to reach the hidden platform, increased swimming time, and decreased time spent in the target quadrant in the probe trial in the MWM task. There was also a significant increase in the lipid peroxidation level and AChE activity, and a significant decrease in SOD activity in the hippocampal portion of hypoperfused rats, as compared with the sham group. Treatment with NSE (400 mg/kg/day; p < 0.001) and TQ (40 mg/kg/day; p < 0.001), as well as donepezil significantly prevented learning and memory impairments and alleviated changes in the hippocampal lipid peroxide level and SOD and AChE activities in this model. In conclusion, our data suggest that N. sativa and thymoquinone have a beneficial role in cerebrovascular insufficiency states and dementia.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh S Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Toledo C, Andrade DC, Díaz HS, Inestrosa NC, Del Rio R. Neurocognitive Disorders in Heart Failure: Novel Pathophysiological Mechanisms Underpinning Memory Loss and Learning Impairment. Mol Neurobiol 2019; 56:8035-8051. [PMID: 31165973 DOI: 10.1007/s12035-019-01655-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) is a major public health issue affecting more than 26 million people worldwide. HF is the most common cardiovascular disease in elder population; and it is associated with neurocognitive function decline, which represent underlying brain pathology diminishing learning and memory faculties. Both HF and neurocognitive impairment are associated with recurrent hospitalization episodes and increased mortality rate in older people, but particularly when they occur simultaneously. Overall, the published studies seem to confirm that HF patients display functional impairments relating to attention, memory, concentration, learning, and executive functioning compared with age-matched controls. However, little is known about the molecular mechanisms underpinning neurocognitive decline in HF. The present review round step recent evidence related to the possible molecular mechanism involved in the establishment of neurocognitive disorders during HF. We will make a special focus on cerebral ischemia, neuroinflammation and oxidative stress, Wnt signaling, and mitochondrial DNA alterations as possible mechanisms associated with cognitive decline in HF. Also, we provide an integrative mechanism linking pathophysiological hallmarks of altered cardiorespiratory control and the development of cognitive dysfunction in HF patients. Graphical Abstract Main molecular mechanisms involved in the establishment of cognitive impairment during heart failure. Heart failure is characterized by chronic activation of brain areas responsible for increasing cardiac sympathetic load. In addition, HF patients also show neurocognitive impairment, suggesting that the overall mechanisms that underpin cardiac sympathoexcitation may be related to the development of cognitive disorders in HF. In low cardiac output, HF cerebral infarction due to cardiac mural emboli and cerebral ischemia due to chronic or intermittent cerebral hypoperfusion has been described as a major mechanism related to the development of CI. In addition, while acute norepinephrine (NE) release may be relevant to induce neural plasticity in the hippocampus, chronic or tonic release of NE may exert the opposite effects due to desensitization of the adrenergic signaling pathway due to receptor internalization. Enhanced chemoreflex drive is a major source of sympathoexcitation in HF, and this phenomenon elevates brain ROS levels and induces neuroinflammation through breathing instability. Importantly, both oxidative stress and neuroinflammation can induce mitochondrial dysfunction and vice versa. Then, this ROS inflammatory pathway may propagate within the brain and potentially contribute to the development of cognitive impairment in HF through the activation/inhibition of key molecular pathways involved in neurocognitive decline such as the Wnt signaling pathway.
Collapse
Affiliation(s)
- C Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de investigación en fisiología del ejercicio, Universidad Mayor, Santiago, Chile
| | - H S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - R Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
42
|
Sachdeva R, Nightingale TE, Krassioukov AV. The Blood Pressure Pendulum following Spinal Cord Injury: Implications for Vascular Cognitive Impairment. Int J Mol Sci 2019; 20:ijms20102464. [PMID: 31109053 PMCID: PMC6567094 DOI: 10.3390/ijms20102464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cognitive impairment following spinal cord injury (SCI) has received considerable attention in recent years. Among the various systemic effects of SCI that contribute towards cognitive decline in this population, cardiovascular dysfunction is arguably one of the most significant. The majority of individuals with a cervical or upper-thoracic SCI commonly experience conditions called orthostatic hypotension and autonomic dysreflexia, which are characterized by dangerous fluctuations in systemic blood pressure (BP). Herein, we review the potential impact of extreme BP lability on vascular cognitive impairment (VCI) in individuals with SCI. Albeit preliminary in the SCI population, there is convincing evidence that chronic hypotension and hypertension in able-bodied individuals results in devastating impairments in cerebrovascular health, leading to VCI. We discuss the pertinent literature, and while drawing mechanistic comparisons between able-bodied cohorts and individuals with SCI, we emphasize the need for additional research to elucidate the mechanisms of cognitive impairment specific to the SCI population. Lastly, we highlight the current and potential future therapies to manage and treat BP instability, thereby possibly mitigating VCI in the SCI population.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, BC V5Z 2G9, Canada.
| |
Collapse
|
43
|
Li HB. Restorative effect of modified dioscorea pills on the structure of hippocampal neurovascular unit in an animal model of chronic cerebral hypoperfusion. Heliyon 2019; 5:e01567. [PMID: 31183430 PMCID: PMC6488689 DOI: 10.1016/j.heliyon.2019.e01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction A considerable part of old people suffer from Chronic Cerebral Hypoperfusion (CCH) in their long lives but have no way to change. The Modified Dioscorea Pills (MDP), a Chinese compound herbal prescription, has good clinical efficacy for CCH related diseases such as Vascular Dementia, whereas, what happened and how MDP works in CCH need to be clarified. Here, we investigate the neural inflammation and gliosis, neuronal apoptosis and regeneration in an animal model of CCH and interfered with MDP to explore some mechanisms of this Chinese herbal medication. Methods 40 rats were randomly divided into Sham operated Group, Model Group and MDP Group according to a Random Number Table. CCH models were made by the modified 2-VO (two vessels occlusion) operation. The intelligence of rats were measured by Morris Water Maze (MWM) test; H & E staining and transmission electron microscope (TEM) were applied to observe the pathological and ultrastructural changes in hippocampus; The expression of key genes including growth associated protein 43 (GAP-43) and vascular endothelial growth factor (VEGF) and key protein including Bax, Bcl-2, nuclear factor-κB (NF-κB p65), microtubule associated protein-2 (MAP-2), Oligodendrocyte transcription factor 2(Olig-2), glial fibrillary acidic protein (GFAP) of hippocampus were detected. Results CCH lead to learning and memorial impairment and MDP can partly restore them; Neural inflammation, Neuronal apoptosis and astrocyte hyperplasia were common in Model Group but they were partly reversed by MDP; The expressions of GAP-43mRAN and VEGF mRNA in Model Group were much higher than those in Sham operated Group, but they reached the highest in MDP Group (P < 0.01 or P < 0.05). Conclusions Through regulating the expressions of key genes and proteins, MDP partly restore the intrinsic structure of Neurovascular Unit (NVU) in hippocampus, which revealed one of its therapeutic mechanisms on CCH.
Collapse
Affiliation(s)
- H B Li
- Emergency Department of the First People's Hospital of Guiyang, No. 97, Bo-ai Road, Nanming District, Guiyang City, Guizhou Province, People's Republic of China
| |
Collapse
|
44
|
Puglisi V, Bramanti A, Lanza G, Cantone M, Vinciguerra L, Pennisi M, Bonanno L, Pennisi G, Bella R. Impaired Cerebral Haemodynamics in Vascular Depression: Insights From Transcranial Doppler Ultrasonography. Front Psychiatry 2018; 9:316. [PMID: 30061847 PMCID: PMC6055001 DOI: 10.3389/fpsyt.2018.00316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
Introduction: Late-life depression is a well-known risk factor for future dementia. Increasing evidences also show a link between cerebral hypoperfusion and neurodegeneration, although data on Transcranial Doppler ultrasonography (TCD)-derived measures in patients with "Vascular Depression" (VD) are lacking. The aim of this study was to assess and correlate TCD parameters with cognitive function and severity of subcortical ischemic vascular disease in a sample of VD patients. Methods: Seventy six patients (mean age 72.5 ± 5.3 years; 53.9% females) met the DSM-5 diagnostic criteria for unipolar major depression. Mean blood flow velocity (MBFv) and pulsatility index (PI) were recorded from the middle cerebral artery. Quantification of depressive symptoms (17-item Hamilton Depression Rating Scale -HDRS), neuropsychological test evaluating frontal lobe abilities (Stroop Color-Word test interference-Stroop T), and white matter lesions (WMLs) load according to the Fazekas visual score were also assessed. Results: WMLs severity was mild in 20 patients (group I), moderate in 32 (group II), and severe in 24 (group III). The groups were comparable in terms of clinical features, vascular risk factors profile, and HDRS score, whereas Stroop T score was worse in group III. An increased PI and a reduced MBFv were found in VD patients with severe WMLs. According to the regression analysis, a reduced MBFv was independently and significantly associated with depressive symptoms and executive dysfunction, even after adjusting for demographic features and vascular risk factors. Similarly, an independent and significant association was observed between the increase of PI and both Stroop T and WMLs severity. Conclusions: A TCD profile of low perfusion and high vascular resistance in VD patients suggests a diffuse cerebrovascular pathology likely arising from the small vessels and then extending to larger arteries. Hemodynamic dysfunction might play a pathogenic role in the development of cognitive impairment in patients with late-life depression and subcortical ischemic vascular disease. TCD represents a valuable tool in the early detection, assessment, and management of VD patients at risk for dementia.
Collapse
Affiliation(s)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti, Messina, Italy
| | | | | | | | | | - Lilla Bonanno
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technology, University of Catania, Catania, Italy
| |
Collapse
|
45
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
46
|
Zhao T, Fu Y, Sun H, Liu X. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB Life 2017; 70:60-70. [PMID: 29247598 DOI: 10.1002/iub.1704] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022]
Abstract
The aim of this study was to examine the comprehensive neuroprotective mechanism of ligustrazine, which is extracted from Ligusticum Chuanxiong Hort., against vascular dementia (VD) in rats and apoptosis in oxygen and glucose deprivation (OGD) PC12 cells. Rats were subjected to bilateral common carotid artery occlusion (BCCAO) surgery and administered ligustrazine intragastrically for 6 weeks. At the end of the experiments, the hippocampal biomarkers brain-derived neurotrophic factor (BDNF), monocyte chemotactic protein 1 (MCP-1), and homocysteine (Hcy) were examined. In experiments in vitro, OGD PC12 cells were treated with ligustrazine for 0.5, 1, 3, 6, 12, or 24 h. The cell-released biomarkers BDNF, MCP-1, and Hcy were examined. Microscopy, acridine orange-ethidium bromide (AO/EB) staining, and flow cytometry assays were performed to investigate apoptosis. Cleaved caspase-3, Bcl-2 associated X protein (Bax), and B cell lymphoma 2 (Bcl-2) expression was examined using Western blot assays. The results showed that biomarkers, including MCP-1 and Hcy, were significantly increased in both the in vivo and in vitro models, while the BDNF level was significantly decreased compared with the sham or vehicle models. Microscopy, AO/EB staining, and flow cytometry analysis showed that severe cell damage occurred in OGD PC12 cells, and apoptosis played a major role in this environment. Further Western blot studies showed that the apoptosis-related Bax/Bcl-2 protein ratio and cleaved caspase-3 were significantly increased in the experiment. However, ligustrazine profoundly suppressed the imbalance of these biomarkers, reduced cell damage, decreased the Bax/Bcl-2, and downregulated cleaved caspase-3. Pro- and anti-apoptotic biomarkers of multiple pathways including BDNF, MCP-1, and Hcy played a joint role in triggering the activation of the mitochondria-related Bax/Bcl-2 and caspase-3 apoptosis pathway in VD. Ligustrazine attenuated VD by comprehensively regulating BDNF, MCP-1, and Hcy and inactivating the Bax/Bcl-2 and caspase-3 apoptosis pathway. Our data provide novel insight into ligustrazine, which is a promising neuroprotective agent for VD disease treatment strategies. © IUBMB Life, 70(1):60-70, 2018.
Collapse
Affiliation(s)
- Tengfei Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yingxue Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, China
| | - Hao Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, China
| | - Xiaoquan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Aoki M. The impaired subjective perception of verticality independent of peripheral vestibular function in dizzy elderly with orthostatic hypotension. Aging Clin Exp Res 2017; 29:647-653. [PMID: 27568016 DOI: 10.1007/s40520-016-0624-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The elderly often complain of faintness, lightheadedness, dizziness, and unsteadiness, which may be associated with the orthostatic hypotension (OH), but most of them are subclinical. The pathogenic mechanism of subjective symptoms in the elderly with OH is controversial. AIMS The aim of this study was to assess the involvement of the irregularity of the vertical perception in the dizzy elderly with OH. METHODS This study consisted of 403 patients seeking treatment for dizziness in our hospital. The neurotological examinations include the subjective visual vertical (SVV) test and the bithermal caloric test. The self-perceived handicapping effects imposed by dizziness were assessed by the dizziness handicap inventory (DHI). The variability (standard deviation) and the average deviation of eight trials (four trials in each direction) were calculated. In addition, they underwent the orthostatic Schellong test for the diagnosis of the OH. They were separated into three groups, including patients aged ≥65 years, patients aged 50-64 years, and patients aged <50 years. RESULTS The variability of the SVV in the patients aged ≥65 years with OH was significantly larger than that in the patients aged ≥65 years without OH. There was no significant difference in the average deviation of the SVV, the canal paresis % by the bithermal caloric test, and the DHI score among groups. CONCLUSIONS The result suggests that the elderly patients with OH have subclinical impairment in the perception of the verticality independent of the peripheral vestibular function.
Collapse
|
48
|
Park JA, Lee CH. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia. J Vet Sci 2017; 18:11-16. [PMID: 27297423 PMCID: PMC5366295 DOI: 10.4142/jvs.2017.18.1.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has an important role in various biological processes in cells. In the present study, we investigated temporal changes in mTOR and phosphorylated-mTOR (p-mTOR) expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). The mTOR immunoreactivity in the pyramidal neurons and mTOR protein level in the hippocampal CA1 region were markedly decreased at 21 and 28 days after 2VO surgery. However, p-mTOR protein expression was significantly increased at 7 days following CCH but then decreased with time. The results indicate that mTOR and p-mTOR expressions change in the hippocampal CA1 region after 2VO surgery and that reduced expressions of mTOR and p-mTOR may be closely related to the CCH-induced neuronal damage in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Jin-A Park
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
49
|
Abstract
Heart failure (HF) is a systemic illness with grave implications for bodily functions. The brain, among other vital organs, often suffers insults as a result of HF, and both anatomic and functional brain abnormalities were found in the HF population. This injury was demonstrated across a wide range of clinical conditions and cardiac functions and was shown to affect patients' outcomes. Although reduced cardiac output and high burden of cardiovascular risk factors are the prevailing explanations for these findings, there are data showing the involvement of neurohormonal, nutritional, and inflammatory mechanisms in this complex process. Here, the authors review the suggested pathophysiology behind brain injury in HF, describe its effect on patients' outcomes, offer a diagnostic approach, and discuss possible therapeutic options.
Collapse
|
50
|
Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially. Transl Psychiatry 2017; 7:e1174. [PMID: 28934194 PMCID: PMC5538111 DOI: 10.1038/tp.2017.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major factor contributing to neurological disorders and cognitive decline. Autophagy activation is believed to provide both beneficial and detrimental roles during hypoxic/ischemic cellular injury. Although arginine vasopressin (AVP) has been strongly involved in many behaviors, especially in learning and memory, the effects of AVP on CCH and their molecular mechanisms remain unclear. Here, to investigate whether there was neuroprotective effects of AVP on CCH through V1a receptor (an AVP receptor) signaling, permanent bilateral carotid arteries occlusion (two vessel occlusion, 2VO) was used to establish a rat model of CCH, and hypertonic saline (5.3%) was injected intraperitoneally to induce the secretion of AVP. Results showed that hypertonic saline effectively alleviated spatial learning and memory deficit, enhanced synaptic plasticity of CA3-CA1 hippocampal synapses, upregulated N-methyl-d-aspartate receptor subunit 2B (NR2B) and postsynaptic density protein 95 (PSD-95) surface expressions, reduced oxidative stress and increased Nissl bodies in 2VO model rats. These phenomena were significantly decreased by V1a receptor antagonist SR49059. Interestingly, hypertonic saline also upregulated autophagy in the hippocampus of 2VO rats partly through V1a receptor. These findings imply that AVP has a beneficial role for the treatment of cognitive impairments partly through V1a receptor signaling in CCH, which is possibly related to improving synaptic plasticity by promoting NR2B and PSD-95 externalization and by enhancing autophagy.
Collapse
|