1
|
Zagadailov E, Al-Samkari H, Boscoe AN, McGee B, Shi S, Macaulay D, Shi L, Garcia-Horton V. Mortality among US veterans with a physician-documented diagnosis of pyruvate kinase deficiency. Hematology 2024; 29:2290746. [PMID: 38095306 DOI: 10.1080/16078454.2023.2290746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Real-world studies of pyruvate kinase (PK) deficiency and estimates of mortality are lacking. This retrospective observational study aimed to identify patients with PK deficiency and compare their overall survival (OS) to that of a matched cohort without PK deficiency. Patients with ≥1 diagnosis code related to PK deficiency were selected from the US Veterans Health Administration (VHA) database (01/1995-07/2019); patients with a physician-documented diagnosis were included (PK deficiency cohort; index: date of first diagnosis code related to PK deficiency). Patients in the PK deficiency cohort were matched 1:5 to patients from the general VHA population (non-PK deficiency cohort; index: random visit date during match's index year). OS from index was compared between the two cohorts. Eighteen patients in the PK deficiency cohort were matched to 90 individuals in the non-PK deficiency cohort (both cohorts: mean age 57 years, 94% males; median follow-up 6.0 and 8.0 years, respectively). At follow-up, patients in the non-PK deficiency cohort had significantly longer OS than the PK deficiency cohort (median OS: 17.1 vs. 10.9 years; hazard ratio: 2.3; p = 0.0306). During their first-year post-index, 75% and 40% of the PK deficiency cohort had laboratory-confirmed anemia and iron overload, respectively. Among patients who died, cause of death was highly heterogeneous. These results highlight the increased risk of mortality and substantial clinical burden among patients with PK deficiency. While the intrinsic characteristics of the VHA database may limit the generalizability of the results, this is the first real-world study to characterize mortality in patients with PK deficiency.
Collapse
Affiliation(s)
| | - Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bryan McGee
- Agios Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Lizheng Shi
- School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, USA
| | | |
Collapse
|
2
|
Loh JB, Ross JM, Musallam KM, Kuo KHM. Trans-acting genetic modifiers of clinical severity in heterozygous β-Thalassemia trait. Ann Hematol 2024; 103:4437-4447. [PMID: 39316111 DOI: 10.1007/s00277-024-06007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
There is a group of beta (β)-thalassemia trait 'carriers' (with heterozygous mutations) who should be asymptomatic with minor abnormalities in their hematological parameters, but experience more severe disease manifestations than predicted based solely on their β-globin genotype. This review focuses on literature describing trans-acting genetic modifiers outside of the α- and β-globin gene clusters that could cause this phenomenon. These genetic modifiers are categorized into: mutations affecting the quantity of alpha-globin products, non-globin mutations affecting erythropoiesis, membranopathies, enzymopathies and erythrocyte-independent modifiers of complications relating to β-thalassemia. Although some genetic determinants seem to correlate more directly with β-thalassemia trait severity, such as mutations in SUPT5H, PIEZO1 and hereditary elliptocytosis, the difficulties of linking the contribution of other modulating factors are elucidated in this review. Targeted next generation sequencing of hemolytic anemias can be helpful but also raises another quandary in interpreting variants of uncertain significance. The accrual of knowledge, along with the increased availability of genetic testing for genetic modifiers has considerable potential for clinical applications such as genetic counselling, decision-making for clinical interventions and prognostication, and perhaps generating new therapeutic targets.
Collapse
Affiliation(s)
- Joanna B Loh
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jules M Ross
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Khaled M Musallam
- Center for Research on Rare Blood Disorders (CR-RBD), Burjeel Medical City, Abu Dhabi, United Arab Emirates
- Division of Hematology/Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Kevin H M Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Parekh DS, Eaton WA, Thein SL. Recent developments in the use of pyruvate kinase activators as a new approach for treating sickle cell disease. Blood 2024; 143:866-871. [PMID: 38118071 PMCID: PMC10940061 DOI: 10.1182/blood.2023021167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023] Open
Abstract
ABSTRACT Pyruvate kinase (PK) is a key enzyme in glycolysis, the sole source of adenosine triphosphate, which is essential for all energy-dependent activities of red blood cells. Activating PK shows great potential for treating a broad range of hemolytic anemias beyond PK deficiency, because they also enhance activity of wild-type PK. Motivated by observations of sickle-cell complications in sickle-trait individuals with concomitant PK deficiency, activating endogenous PK offers a novel and promising approach for treating patients with sickle-cell disease.
Collapse
Affiliation(s)
- Dina S. Parekh
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - William A. Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Liu T, Padyana AK, Judd ET, Jin L, Hammoudeh D, Kung C, Dang L. Structure-Based Design of AG-946, a Pyruvate Kinase Activator. ChemMedChem 2024; 19:e202300559. [PMID: 38109501 DOI: 10.1002/cmdc.202300559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Pyruvate kinase (PK) is the enzyme that catalyzes the conversion of phosphoenolpyruvate and adenosine diphosphate to pyruvate and adenosine triphosphate in glycolysis and plays a crucial role in regulating cell metabolism. We describe the structure-based design of AG-946, an activator of PK isoforms, including red blood cell-specific forms of PK (PKR). This was designed to have a pseudo-C2-symmetry matching its allosteric binding site on the PK enzyme, which increased its potency toward PKR while reducing activity against off-targets observed from the original scaffold. AG-946 (1) demonstrated activation of human wild-type PK (half-maximal activation concentration [AC50 ]=0.005 μM) and a panel of mutated PK proteins (K410E [AC50 =0.0043 μM] and R510Q [AC50 =0.0069 μM]), (2) displayed a significantly longer half-time of activation (>150-fold) compared with 6-(3-methoxybenzyl)-4-methyl-2-(methylsulfinyl)-4,6-dihydro-5H-thieno[2',3':4,5]pyrrolo[2,3-d]pyridazin-5-one, and (3) stabilized PKR R510Q, an unstable mutant PKR enzyme, and preserved its catalytic activity under increasingly denaturing conditions. As a potent, oral, small-molecule allosteric activator of wild-type and mutant PKR, AG-946 was advanced to human clinical trials.
Collapse
Affiliation(s)
- Tao Liu
- Ensem Therapeutics, 880 Winter St, Waltham, MA 02451, USA
| | | | - Evan T Judd
- Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Lei Jin
- Agios Pharmaceuticals, Inc., 88 Sidney St, Cambridge, MA, USA
| | - Dalia Hammoudeh
- Agios Pharmaceuticals Inc., 88 Sidney St, Cambridge, MA, USA
| | - Charles Kung
- Remix Therapeutics, 100 Forge Rd, Watertown, MA 02472, USA
| | - Lenny Dang
- Verolix, Inc., 800 Boylston St. Unit 900147, Boston, MA, 02199, USA
| |
Collapse
|
5
|
Xu JZ. Pyruvate kinase activators: targeting red cell metabolism in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:107-113. [PMID: 38066891 PMCID: PMC10727103 DOI: 10.1182/hematology.2023000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hemoglobin S (HbS) polymerization, red blood cell (RBC) sickling, chronic anemia, and vaso-occlusion are core to sickle cell disease (SCD) pathophysiology. Pyruvate kinase (PK) activators are a novel class of drugs that target RBC metabolism by reducing the buildup of the glycolytic intermediate 2,3-diphosphoglycerate (2,3-DPG) and increasing production of adenosine triphosphate (ATP). Lower 2,3-DPG level is associated with an increase in oxygen affinity and reduction in HbS polymerization, while increased RBC ATP may improve RBC membrane integrity and survival. There are currently 3 PK activators in clinical development for SCD: mitapivat (AG-348), etavopivat (FT-4202), and the second-generation molecule AG-946. Preclinical and clinical data from these 3 molecules demonstrate the ability of PK activators to lower 2,3-DPG levels and increase ATP levels in animal models and patients with SCD, as well as influence a number of potential pathways in SCD, including hemoglobin oxygen affinity, RBC sickling, RBC deformability, RBC hydration, inflammation, oxidative stress, hypercoagulability, and adhesion. Furthermore, early-phase clinical trials of mitapivat and etavopivat have demonstrated the safety and tolerability of PK activators in patients with SCD, and phase 2/3 trials for both drugs are ongoing. Additional considerations for this novel therapeutic approach include the balance between increasing hemoglobin oxygen affinity and tissue oxygen delivery, the cost and accessibility of these drugs, and the potential of multimodal therapy with existing and novel therapies targeting different disease mechanisms in SCD.
Collapse
Affiliation(s)
- Julia Z. Xu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Brown TS, Lakra R, Master S, Ramadas P. Sickle Cell Trait: Is It Always Benign? J Hematol 2023; 12:123-127. [PMID: 37435414 PMCID: PMC10332861 DOI: 10.14740/jh958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 07/13/2023] Open
Abstract
Sickle cell disease is a well-known homozygous inherited hemoglobinopathy that causes vaso-occlusive phenomena and chronic hemolysis. Vaso-occlusion results in sickle cell crisis and can eventually lead to complications involving multiple organ systems. However, the heterozygous counterpart, sickle cell trait (SCT) has less clinical significance as these patients are generally asymptomatic. This case series examines three unrelated patients with SCT ranging from the age of 27 to 61 years, who presented with pain in multiple long bones. Hemoglobin electrophoresis confirmed a diagnosis of SCT. Radiographic images of the affected sites showed osteonecrosis (ON). Interventions included pain management and bilateral hip replacement in two of the patients. Historically, vaso-occlusive disease in patients with SCT with no evidence of hemolysis or other hallmark findings of sickle cell disease is rare. There are limited reported cases of ON in SCT patients. Clinicians should explore other hemoglobinopathies not tested on routine hemoglobin electrophoresis and alternative risk factors for ON in these patients.
Collapse
Affiliation(s)
- Tyiesha Sharron Brown
- Department of Internal Medicine, Louisiana Health Science Center Shreveport, Shreveport, LA, USA
| | - Rachaita Lakra
- Department of Internal Medicine, Louisiana Health Science Center Shreveport, Shreveport, LA, USA
| | - Samip Master
- Department of Hematology and Oncology, Louisiana Health Science Center Shreveport, Shreveport, LA, USA
| | - Poornima Ramadas
- Department of Hematology and Oncology, Louisiana Health Science Center Shreveport, Shreveport, LA, USA
| |
Collapse
|
7
|
Alramadhani D, Aljahdali AS, Abdulmalik O, Pierce BD, Safo MK. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities. Int J Mol Sci 2022; 23:7448. [PMID: 35806451 PMCID: PMC9266828 DOI: 10.3390/ijms23137448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder that affects millions of individuals worldwide. Chronic anemia, hemolysis, and vasculopathy are associated with SCD, and their role has been well characterized. These symptoms stem from hemoglobin (Hb) polymerization, which is the primary event in the molecular pathogenesis of SCD and contributes to erythrocyte or red blood cell (RBC) sickling, stiffness, and vaso-occlusion. The disease is caused by a mutation at the sixth position of the β-globin gene, coding for sickle Hb (HbS) instead of normal adult Hb (HbA), which under hypoxic conditions polymerizes into rigid fibers to distort the shapes of the RBCs. Only a few therapies are available, with the universal effectiveness of recently approved therapies still being monitored. In this review, we first focus on how sickle RBCs have altered metabolism and then highlight how this understanding reveals potential targets involved in the pathogenesis of the disease, which can be leveraged to create novel therapeutics for SCD.
Collapse
Affiliation(s)
- Dina Alramadhani
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Anfal S. Aljahdali
- Department of Pharmaceutical Chemistry, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia;
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - B. Daniel Pierce
- Department of Biology, University of Richmond, Richmond, VA 23173, USA;
| | - Martin K. Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
8
|
Quezado ZMN, Kamimura S, Smith M, Wang X, Heaven MR, Jana S, Vogel S, Zerfas P, Combs CA, Almeida LEF, Li Q, Quezado M, Horkayne-Szakaly I, Kosinski PA, Yu S, Kapadnis U, Kung C, Dang L, Wakim P, Eaton WA, Alayash AI, Thein SL. Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model. Blood Cells Mol Dis 2022; 95:102660. [PMID: 35366607 DOI: 10.1016/j.bcmd.2022.102660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.
Collapse
Affiliation(s)
- Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xunde Wang
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R Heaven
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quan Li
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, USA
| | | | - Shaoxia Yu
- Agios Pharmaceuticals Inc, Cambridge, MA 02139, USA
| | | | - Charles Kung
- Agios Pharmaceuticals Inc, Cambridge, MA 02139, USA
| | - Lenny Dang
- Agios Pharmaceuticals Inc, Cambridge, MA 02139, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Wang X, Gardner K, Tegegn MB, Dalgard CL, Alba C, Menzel S, Patel H, Pirooznia M, Fu YP, Seifuddin FT, Thein SL. Genetic variants of PKLR are associated with acute pain in sickle cell disease. Blood Adv 2022; 6:3535-3540. [PMID: 35271708 PMCID: PMC9198922 DOI: 10.1182/bloodadvances.2021006668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Acute pain, the most prominent complication of sickle cell disease (SCD), results from vaso-occlusion triggered by sickling of deoxygenated red blood cells (RBCs). Concentration of 2,3-diphosphoglycerate (2,3-DPG) in RBCs promotes deoxygenation by preferentially binding to the low-affinity T conformation of HbS. 2,3-DPG is an intermediate substrate in the glycolytic pathway in which pyruvate kinase (gene PKLR, protein PKR) is a rate-limiting enzyme; variants in PKLR may affect PKR activity, 2,3-DPG levels in RBCs, RBC sickling, and acute pain episodes (APEs). We performed a candidate gene association study using 2 cohorts: 242 adult SCD-HbSS patients and 977 children with SCD-HbSS or SCD-HbSβ0 thalassemia. Seven of 47 PKLR variants evaluated in the adult cohort were associated with hospitalization: intron 4, rs2071053; intron 2, rs8177970, rs116244351, rs114455416, rs12741350, rs3020781, and rs8177964. All 7 variants showed consistent effect directions in both cohorts and remained significant in weighted Fisher's meta-analyses of the adult and pediatric cohorts using P < .0071 as threshold to correct for multiple testing. Allele-specific expression analyses in an independent cohort of 52 SCD adults showed that the intronic variants are likely to influence APE by affecting expression of PKLR, although the causal variant and mechanism are not defined.
Collapse
Affiliation(s)
- Xunde Wang
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Kate Gardner
- School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Department of Haematology, Guy and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mickias B. Tegegn
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, and
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Camille Alba
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Stephan Menzel
- School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
10
|
Decreased activity and stability of pyruvate kinase in sickle cell disease: a novel target for mitapivat therapy. Blood 2021; 137:2997-3001. [PMID: 33690814 DOI: 10.1182/blood.2020008635] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
|
11
|
O'Connor FG, Franzos MA, Nye NS, Nelson DA, Shell D, Voss JD, Anderson SA, Coleman NJ, Thompson AA, Harmon KG, Deuster PA. Summit on Exercise Collapse Associated with Sickle Cell Trait: Finding the "Way Ahead". Curr Sports Med Rep 2021; 20:47-56. [PMID: 33395130 DOI: 10.1249/jsr.0000000000000801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although largely benign, sickle cell trait (SCT) has been associated with exertion-related events, to include sudden death. In 2011, a summit on SCT introduced the term exercise collapse associated with SCT (ECAST). A series of ECAST deaths in military personnel in 2019 prompted reevaluation of current efforts and led to a second summit in October 2019 hosted by the Consortium for Health and Military Performance of the Uniformed Services University in Bethesda, MD. The goals were to (1) review current service policies on SCT screening, (2) develop draft procedural instructions for executing current policy on SCT within the Department of Defense, (3) develop draft clinical practice guidelines for management of ECAST, (4) establish a framework for education on SCT and ECAST, and (5) prepare a research agenda to address identified gaps.
Collapse
Affiliation(s)
- Francis G O'Connor
- Department of Military and Emergency Medicine, Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105:2218-2228. [PMID: 33054047 PMCID: PMC7556514 DOI: 10.3324/haematol.2019.241141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/therapy
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Humans
- Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy.
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|
13
|
Begovich K, Yelon D, Wilhelm JE. PRPS polymerization influences lens fiber organization in zebrafish. Dev Dyn 2020; 249:1018-1031. [PMID: 32243675 DOI: 10.1002/dvdy.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The self-assembly of metabolic enzymes into filaments or foci highlights an intriguing mechanism for the regulation of metabolic activity. Recently, we identified the conserved polymerization of phosphoribosyl pyrophosphate synthetase (PRPS), which catalyzes the first step in purine nucleotide synthesis, in yeast and cultured mammalian cells. While previous work has revealed that loss of PRPS activity regulates retinal development in zebrafish, the extent to which PRPS filament formation affects tissue development remains unknown. RESULTS By generating novel alleles in the zebrafish PRPS paralogs, prps1a and prps1b, we gained new insight into the role of PRPS filaments during eye development. We found that mutations in prps1a alone are sufficient to generate abnormally small eyes along with defects in head size, pigmentation, and swim bladder inflation. Furthermore, a loss-of-function mutation that truncates the Prps1a protein resulted in the failure of PRPS filament assembly. Lastly, in mutants that fail to assemble PRPS filaments, we observed disorganization of the actin network in the lens fibers. CONCLUSIONS The truncation of Prps1a blocked PRPS filament formation and resulted in a disorganized lens fiber actin network. Altogether, these findings highlight a potential role for PRPS filaments during lens fiber organization in zebrafish.
Collapse
Affiliation(s)
- Kyle Begovich
- Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Division of Biological Sciences, University of California, San Diego, California, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - James E Wilhelm
- Howard Hughes Medical Institute (HHMI) Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Division of Biological Sciences, University of California, San Diego, California, USA
| |
Collapse
|
14
|
Xu JZ, Thein SL. The carrier state for sickle cell disease is not completely harmless. Haematologica 2019; 104:1106-1111. [PMID: 31097635 PMCID: PMC6545856 DOI: 10.3324/haematol.2018.206060] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/29/2019] [Indexed: 01/19/2023] Open
Affiliation(s)
- Julia Zhe Xu
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MA, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MA, USA
| |
Collapse
|
15
|
Treating sickle cell disease by targeting HbS polymerization. Blood 2017; 129:2719-2726. [PMID: 28385699 DOI: 10.1182/blood-2017-02-765891] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 01/11/2023] Open
Abstract
Although the root cause of sickle cell disease is the polymerization of hemoglobin S (HbS) to form fibers that make red cells less flexible, most drugs currently being assessed in clinical trials are targeting the downstream sequelae of this primary event. Less attention has been devoted to investigation of the multiple ways in which fiber formation can be inhibited. In this article, we describe the molecular rationale for 5 distinct approaches to inhibiting polymerization and also discuss progress with the few antipolymerization drugs currently in clinical trials.
Collapse
|
16
|
Abstract
Sickle cell disease is one of the best characterized human monogenic disorders. Complex genotype/phenotype correlations clearly demonstrate the interaction of multiple genetic and environmental factors. In the last 20 years, scientific research has applied genetic approaches to dissect some of these modifiers. This review highlights the more recent genetic association studies that have been applied to unravel the genetic modifiers of sickle cell disease including Hb F genetics, and the key genetic variants identified. Illumination of such modifying factors may guide future therapeutic interventions and improve prediction of disease severity, with implications for genetic counseling, prenatal diagnosis and implementation of high risk therapy.
Collapse
Affiliation(s)
- Swee Lay Thein
- Department of Molecular Haematology, King's College London, London, UK.
| |
Collapse
|
17
|
Manco L, Vagace JM, Relvas L, Rebelo U, Bento C, Villegas A, Letícia Ribeiro M. Chronic haemolytic anaemia because of pyruvate kinase (PK) deficiency in a child heterozygous for haemoglobin S and no clinical features of sickle cell disease. Eur J Haematol 2009; 84:89-90. [PMID: 19758413 DOI: 10.1111/j.1600-0609.2009.01353.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
MESH Headings
- Adult
- Anemia, Hemolytic, Congenital Nonspherocytic/blood
- Anemia, Hemolytic, Congenital Nonspherocytic/complications
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Child
- Erythrocyte Indices
- Female
- Hemoglobin, Sickle/metabolism
- Heterozygote
- Humans
- Male
- Mutation, Missense
- Oxygen/blood
- Phenotype
- Point Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/blood
- Pyruvate Metabolism, Inborn Errors/enzymology
- Pyruvate Metabolism, Inborn Errors/genetics
- Sickle Cell Trait/blood
- Sickle Cell Trait/complications
- Sickle Cell Trait/genetics
- beta-Globins/genetics
Collapse
|