1
|
Kettle AJ, Ashby LV, Winterbourn CC, Dickerhof N. Superoxide: The enigmatic chemical chameleon in neutrophil biology. Immunol Rev 2023; 314:181-196. [PMID: 36609987 DOI: 10.1111/imr.13183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The burst of superoxide produced when neutrophils phagocytose bacteria is the defining biochemical feature of these abundant immune cells. But 50 years since this discovery, the vital role superoxide plays in host defense has yet to be defined. Superoxide is neither bactericidal nor is it just a source of hydrogen peroxide. This simple free radical does, however, have remarkable chemical dexterity. Depending on its environment and reaction partners, superoxide can act as an oxidant, a reductant, a nucleophile, or an enzyme substrate. We outline the evidence that inside phagosomes where neutrophils trap, kill, and digest bacteria, superoxide will react preferentially with the enzyme myeloperoxidase, not the bacterium. By acting as a cofactor, superoxide will sustain hypochlorous acid production by myeloperoxidase. As a substrate, superoxide may give rise to other forms of reactive oxygen. We contend that these interactions hold the key to understanding the precise role superoxide plays in neutrophil biology. State-of-the-art techniques in mass spectrometry, oxidant-specific fluorescent probes, and microscopy focused on individual phagosomes are needed to identify bactericidal mechanisms driven by superoxide. This work will undoubtably lead to fascinating discoveries in host defense and give a richer understanding of superoxide's varied biology.
Collapse
Affiliation(s)
- Anthony J Kettle
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Louisa V Ashby
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Christine C Winterbourn
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Nina Dickerhof
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Solo P, Arockia doss M, Prasanna D. Designing and docking studies of imidazole-based drugs as potential inhibitors of myeloperoxidase (MPO) mediated inflammation and oxidative stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
4
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
5
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
6
|
Cidade H, Rocha V, Palmeira A, Marques C, Tiritan ME, Ferreira H, Lobo JS, Almeida IF, Sousa ME, Pinto M. In silico and in vitro antioxidant and cytotoxicity evaluation of oxygenated xanthone derivatives. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Ali I, Khan SN, Chatzicharalampous C, Bai D, Abu-Soud HM. Catalase prevents myeloperoxidase self-destruction in response to oxidative stress. J Inorg Biochem 2019; 197:110706. [PMID: 31103890 DOI: 10.1016/j.jinorgbio.2019.110706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Catalase (CAT) and myeloperoxiase (MPO) are heme-containing enzymes that have attracted attention for their role in the etiology of numerous respiratory disorders such as cystic fibrosis, bronchial asthma, and acute hypoxemic respiratory failure. However, information regarding the interrelationship and competition between the two enzymes, free iron accumulation, and decreased levels of non-enzymatic antioxidants at sites of inflammation is still lacking. Myeloperoxidase catalyzes the generation of hypochlorous acid (HOCl) from the reaction of hydrogen peroxide (H2O2) and chloride (Cl-). Self-generated HOCl has recently been proposed to auto-inhibit MPO through a mechanism that involves MPO heme destruction. Here, we investigate the interplay of MPO, HOCl, and CAT during catalysis, and explore the crucial role of MPO inhibitors and HOCl scavengers in protecting the catalytic site from protein modification of both enzymes against oxidative damage mediated by HOCl. We showed that CAT not only competes with MPO for H2O2 but also scavenges HOCl. The protective role provided by CAT versus the damaging effect provided by HOCl depends in part on the ratio between MPO/CAT and the affinity of the enzymes towards H2O2 versus HOCl. The severity of such damaging effects mainly depends on the ratio of HOCl to enzyme heme content. In addition to its effect in mediating protein modification and aggregation, HOCl oxidatively destroys the catalytic sites of the enzymes, which contain porphyrin rings and iron. Thus, modulation of MPO/CAT activities may be a fundamental feature of catalysis, and functions to down-regulate HOCl synthesis and prevent hemoprotein heme destruction and/or protein modification.
Collapse
Affiliation(s)
- Iyad Ali
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA; Department of Biochemistry and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 7, Palestine
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Forbes LV, Kettle AJ. A multi-substrate assay for finding physiologically effective inhibitors of myeloperoxidase. Anal Biochem 2018; 544:13-21. [DOI: 10.1016/j.ab.2017.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022]
|
9
|
Maiocchi SL, Morris JC, Rees MD, Thomas SR. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochem Pharmacol 2017; 135:90-115. [PMID: 28344126 DOI: 10.1016/j.bcp.2017.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
Abstract
The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H2O2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation.
Collapse
Affiliation(s)
- Sophie L Maiocchi
- Mechanisms of Disease & Translational Research, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martin D Rees
- Mechanisms of Disease & Translational Research, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Shane R Thomas
- Mechanisms of Disease & Translational Research, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Van Antwerpen P, Zouaoui Boudjeltia K. Rational drug design applied to myeloperoxidase inhibition. Free Radic Res 2015; 49:711-20. [DOI: 10.3109/10715762.2015.1027201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Hypobromous acid, a powerful endogenous electrophile: Experimental and theoretical studies. J Inorg Biochem 2015; 146:61-8. [PMID: 25771434 DOI: 10.1016/j.jinorgbio.2015.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/26/2022]
Abstract
Hypobromous acid (HOBr) is an inorganic acid produced by the oxidation of the bromide anion (Br(-)). The blood plasma level of Br(-) is more than 1,000-fold lower than that of chloride anion (Cl(-)). Consequently, the endogenous production of HOBr is also lower compared to hypochlorous acid (HOCl). Nevertheless, there is much evidence of the deleterious effects of HOBr. From these data, we hypothesized that the reactivity of HOBr could be better associated with its electrophilic strength. Our hypothesis was confirmed, since HOBr was significantly more reactive than HOCl when the oxidability of the studied compounds was not relevant. For instance: anisole (HOBr, k2=2.3×10(2)M(-1)s(-1), HOCl non-reactive); dansylglycine (HOBr, k2=7.3×10(6)M(-1)s(-1), HOCl, 5.2×10(2)M(-1)s(-1)); salicylic acid (HOBr, k2=4.0×10(4)M(-1)s(-1), non-reactive); 3-hydroxybenzoic acid (HOBr, k2=5.9×10(4)M(-1)s(-1), HOCl, k2=1.1×10(1)M(-1)s(-1)); uridine (HOBr, k2=1.3×10(3)M(-1)s(-1), HOCl non-reactive). The compounds 4-bromoanisole and 5-bromouridine were identified as the products of the reactions between HOBr and anisole or uridine, respectively, i.e. typical products of electrophilic substitutions. Together, these results show that, rather than an oxidant, HOBr is a powerful electrophilic reactant. This chemical property was theoretically confirmed by measuring the positive Mulliken and ChelpG charges upon bromine and chlorine. In conclusion, the high electrophilicity of HOBr could be behind its well-established deleterious effects. We propose that HOBr is the most powerful endogenous electrophile.
Collapse
|
12
|
Zhang H, Jing X, Shi Y, Xu H, Du J, Guan T, Weihrauch D, Jones DW, Wang W, Gourlay D, Oldham KT, Hillery CA, Pritchard KA. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J Lipid Res 2013; 54:3016-29. [PMID: 23883583 DOI: 10.1194/jlr.m038273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H₂O₂ consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kettle AJ, Albrett AM, Chapman AL, Dickerhof N, Forbes LV, Khalilova I, Turner R. Measuring chlorine bleach in biology and medicine. Biochim Biophys Acta Gen Subj 2013; 1840:781-93. [PMID: 23872351 DOI: 10.1016/j.bbagen.2013.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
14
|
Freewan M, Rees MD, Plaza TSS, Glaros E, Lim YJ, Wang XS, Yeung AWS, Witting PK, Terentis AC, Thomas SR. Human indoleamine 2,3-dioxygenase is a catalyst of physiological heme peroxidase reactions: implications for the inhibition of dioxygenase activity by hydrogen peroxide. J Biol Chem 2012; 288:1548-67. [PMID: 23209301 DOI: 10.1074/jbc.m112.410993] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H(2)O(2)) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H(2)O(2) inhibited dioxygenase activity in a manner abrogated by l-Trp. Dioxygenase inhibition correlated with IDO-catalyzed H(2)O(2) consumption, compound I-mediated formation of protein-centered radicals, altered protein secondary structure, and opening of the distal heme pocket to promote nonproductive substrate binding; these changes were inhibited by l-Trp, the heme ligand cyanide, or free radical scavengers. Protection by l-Trp coincided with its oxidation into oxindolylalanine and kynurenine and the formation of a compound II-type ferryl-oxo heme. Physiological peroxidase substrates, ascorbate or tyrosine, enhanced rIDO-mediated H(2)O(2) consumption and attenuated H(2)O(2)-induced protein oxidation and dioxygenase inhibition. In the presence of H(2)O(2), rIDO catalytically consumed nitric oxide (NO) and utilized nitrite to promote 3-nitrotyrosine formation on IDO. The promotion of H(2)O(2) consumption by peroxidase substrates, NO consumption, and IDO nitration was inhibited by l-Trp. This study identifies IDO as a heme peroxidase that, in the absence of substrates, self-inactivates dioxygenase activity via compound I-initiated protein oxidation. l-Trp protects against dioxygenase inactivation by reacting with compound I and retarding compound II reduction to suppress peroxidase turnover. Peroxidase-mediated dioxygenase inactivation, NO consumption, or protein nitration may modulate the biological actions of IDO expressed in inflammatory tissues where the levels of H(2)O(2) and NO are elevated and l-Trp is low.
Collapse
Affiliation(s)
- Mohammed Freewan
- Centre for Vascular Research and School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pattison DI, Davies MJ, Hawkins CL. Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 2012; 46:975-95. [DOI: 10.3109/10715762.2012.667566] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Meotti FC, Jameson GNL, Turner R, Harwood DT, Stockwell S, Rees MD, Thomas SR, Kettle AJ. Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem 2011; 286:12901-11. [PMID: 21266577 PMCID: PMC3075637 DOI: 10.1074/jbc.m110.172460] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/14/2010] [Indexed: 12/23/2022] Open
Abstract
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 10(5) M(-1) s(-1) for compound I and 1.7 × 10(4) M(-1) s(-1) for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease.
Collapse
Affiliation(s)
- Flavia C. Meotti
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - Guy N. L. Jameson
- the Department of Chemistry, University of Otago, Dunedin, New Zealand, and
| | - Rufus Turner
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - D. Tim Harwood
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - Samantha Stockwell
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| | - Martin D. Rees
- the Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shane R. Thomas
- the Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anthony J. Kettle
- From the Free Radical Research Group, Department of Pathology, University of Otago, P. O. Box 4345, 8140 Christchurch, New Zealand
| |
Collapse
|
17
|
Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 2010; 48:8-19. [PMID: 21297906 PMCID: PMC3022070 DOI: 10.3164/jcbn.11-006fr] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/10/2010] [Indexed: 12/21/2022] Open
Abstract
There is considerable interest in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase and lactoperoxidase, may play in a wide range of human pathologies. This has been sparked by rapid developments in our understanding of the basic biochemistry of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of biomarkers that can be used damage induced by these oxidants in vivo, and the recent identification of a number of compounds that show promise as inhibitors of these enzymes. Such compounds offer the possibility of modulating damage in a number of human pathologies. This reviews recent developments in our understanding of the biochemistry of myeloperoxidase, the oxidants that this enzyme generates, and the use of inhibitors to inhibit such damage.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| |
Collapse
|
18
|
Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1199-234. [PMID: 18331199 DOI: 10.1089/ars.2007.1927] [Citation(s) in RCA: 432] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A marked increase in interest has occurred over the last few years in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, may play in both disease prevention and human pathologies. This increased interest has been sparked by developments in our understanding of polymorphisms that control the levels of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of specific biomarkers that can be used in vivo to detect damage induced by these oxidants, the detection of active forms of these peroxidases at most, if not all, sites of inflammation, and a correlation between the levels of these enzymes and a number of major human pathologies. This article reviews recent developments in our understanding of the enzymology, chemistry, biochemistry and biologic roles of mammalian peroxidases and the oxidants that they generate, the potential role of these oxidants in human disease, and the use of the levels of these enzymes in disease prognosis.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, Camperdown, University of Sydney, Sydney, Australia., Faculty of Medicine, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
19
|
Galijasevic S, Abdulhamid I, Abu-Soud HM. Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase. Free Radic Biol Med 2008; 44:1570-7. [PMID: 18279680 PMCID: PMC2861567 DOI: 10.1016/j.freeradbiomed.2008.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 01/04/2023]
Abstract
Myeloperoxidase (MPO) binds H2O2 in the absence and presence of chloride (Cl-) and catalyzes the formation of potent oxidants through 1e(-) and 2e(-) oxidation pathways. These potent oxidants have been implicated in the pathogenesis of various diseases including atherosclerosis, asthma, arthritis, and cancer. Thus, inhibition of MPO and its by-products may have a wide application in biological systems. Using direct rapid kinetic measurements and H2O2-selective electrodes, we show that tryptophan (Trp), an essential amino acid, is linked kinetically to the inhibition of MPO catalysis under physiological conditions. Trp inactivated MPO in the absence and presence of plasma levels of Cl(-), to various degrees, through binding to MPO, forming the inactive complexes Trp-MPO and Trp-MPO-Cl, and accelerating formation of MPO Compound II, an inactive form of MPO. Inactivation of MPO was mirrored by the direct conversion of MPO-Fe(III) to MPO Compound II without any sign of Compound I accumulation. This behavior indicates that Trp binding modulates the formation of MPO intermediates and their decay rates. Importantly, Trp is a poor substrate for MPO Compound II and has no role in destabilizing complex formation. Thus, the overall MPO catalytic activity will be limited by: (1) the dissociation of Trp from Trp-MPO and Trp-MPO-Cl complexes, (2) the affinity of MPO Compound I toward Cl(-) versus Trp, and (3) the slow conversion of MPO Compound II to MPO-Fe(III). Importantly, Trp-dependent inhibition of MPO occurred at a wide range of concentrations that span various physiological and supplemental ranges.
Collapse
Affiliation(s)
- Semira Galijasevic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
20
|
Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug development? Br J Pharmacol 2007; 152:838-54. [PMID: 17592500 PMCID: PMC2078229 DOI: 10.1038/sj.bjp.0707358] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/09/2022] Open
Abstract
Myeloperoxidase (MPO), a member of the haem peroxidase-cyclooxygenase superfamily, is abundantly expressed in neutrophils and to a lesser extent in monocytes and certain type of macrophages. MPO participates in innate immune defence mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity of MPO is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and the initiation and propagation of acute and chronic vascular inflammatory disease. The fact that circulating levels of MPO have been shown to predict risks for major adverse cardiac events and that levels of MPO-derived chlorinated compounds are specific biomarkers for disease progression, has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, detailed information on the structure of ferric MPO and its complexes with low- and high-spin ligands is available. This, together with a thorough understanding of reaction mechanisms including redox properties of intermediates, enables a rationale attempt in developing specific MPO inhibitors that still maintain MPO activity during host defence and bacterial killing but interfere with pathophysiologically persistent activation of MPO. The various approaches to inhibit enzyme activity of MPO and to ameliorate adverse effects of MPO-derived oxidants will be discussed. Emphasis will be put on mechanism-based inhibitors and high-throughput screening of compounds as well as the discussion of physiologically useful HOCl scavengers.
Collapse
Affiliation(s)
- E Malle
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - P G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU – University of Natural Resources and Applied Life Sciences Vienna, Austria
| | - W Sattler
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - C Obinger
- Division of Biochemistry, Department of Chemistry, BOKU – University of Natural Resources and Applied Life Sciences Vienna, Austria
| |
Collapse
|
21
|
Silva SDO, Carvalho SRQ, Ximenes VF, Okada SS, Campa A. Melatonin and its kynurenin-like oxidation products affect the microbicidal activity of neutrophils. Microbes Infect 2006; 8:420-5. [PMID: 16242372 DOI: 10.1016/j.micinf.2005.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/05/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Activated phagocytes oxidize the hormone melatonin to N1-acethyl-N2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl. However, AFMK had no effect on the production of HOCl. These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections.
Collapse
Affiliation(s)
- Sueli de Oliveira Silva
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
22
|
Ximenes VF, Silva SDO, Rodrigues MR, Catalani LH, Maghzal GJ, Kettle AJ, Campa A. Superoxide-dependent Oxidation of Melatonin by Myeloperoxidase. J Biol Chem 2005; 280:38160-9. [PMID: 16148002 DOI: 10.1074/jbc.m506384200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloperoxidase uses hydrogen peroxide to oxidize numerous substrates to hypohalous acids or reactive free radicals. Here we show that neutrophils oxidize melatonin to N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) in a reaction that is catalyzed by myeloperoxidase. Production of AFMK was highly dependent on superoxide but not hydrogen peroxide. It did not require hypochlorous acid, singlet oxygen, or hydroxyl radical. Purified myeloperoxidase and a superoxide-generating system oxidized melatonin to AFMK and a dimer. The dimer would result from coupling of melatonin radicals. Oxidation of melatonin was partially inhibited by catalase or superoxide dismutase. Formation of AFMK was almost completely eliminated by superoxide dismutase but weakly inhibited by catalase. In contrast, production of melatonin dimer was enhanced by superoxide dismutase and blocked by catalase. We propose that myeloperoxidase uses superoxide to oxidize melatonin by two distinct pathways. One pathway involves the classical peroxidation mechanism in which hydrogen peroxide is used to oxidize melatonin to radicals. Superoxide adds to these radicals to form an unstable peroxide that decays to AFMK. In the other pathway, myeloperoxidase uses superoxide to insert dioxygen into melatonin to form AFMK. This novel activity expands the types of oxidative reactions myeloperoxidase can catalyze. It should be relevant to the way neutrophils use superoxide to kill bacteria and how they metabolize xenobiotics.
Collapse
Affiliation(s)
- Valdecir F Ximenes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2005; 445:199-213. [PMID: 16288970 DOI: 10.1016/j.abb.2005.09.017] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase (MPO), eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase are heme-containing oxidoreductases (EC 1.7.1.11), which bind ligands and/or undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties, and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II, and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-)catalases. Based on the published crystal structures of free MPO and its complexes with cyanide, bromide and thiocyanate as well as on sequence analysis and modeling, we critically discuss structure-function relationships. This analysis highlights similarities and distinguishing features within the mammalian peroxidases and intents to provide the molecular and enzymatic basis to understand the prominent role of these heme enzymes in host defense against infection, hormone biosynthesis, and pathogenesis.
Collapse
Affiliation(s)
- Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, Metalloprotein Research Group, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Jantschko W, Furtmüller PG, Zederbauer M, Neugschwandtner K, Lehner I, Jakopitsch C, Arnhold J, Obinger C. Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design. Biochem Pharmacol 2005; 69:1149-57. [PMID: 15794935 DOI: 10.1016/j.bcp.2005.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 02/08/2005] [Indexed: 12/01/2022]
Abstract
Myeloperoxidase plays a fundamental role in oxidant production by neutrophils. It uses hydrogen peroxide and chloride to catalyze the production of hypochlorous acid (HOCl), which contributes to both bacterial killing and oxidative injury of host tissue. Thus, MPO is an interesting target for anti-inflammatory therapy. Here, based on the extraordinary and MPO-specific redox properties of its intermediates compound I and compound II, we present a rational approach in selection and design of reversible inhibitors of HOCl production mediated by MPO. In detail, indole and tryptamine derivatives were investigated for their ability to reduce compounds I and II and to affect the chlorinating activity of MPO. It is shown that these aromatic one-electron donors bound to the hydrophobic pocket at the distal heme cavity and were oxidized efficiently by compound I (k3), which has a one-electron reduction potential of 1.35 V. By contrast, compound II (E degrees ' of the compound II/ferric couple is 0.97 V) reduction (k4) was extremely slow. As a consequence compound II, which does not participate in the halogenation cycle, accumulated. The extent of chlorinating activity inhibition (IC50) was related to the k3/k4 ratio. The most efficient inhibitors were 5-fluorotryptamine and 5-chlorotryptamine with IC50 of 0.79 microM and 0.73 microM and k3/k4 ratios of 386,000 and 224,000, respectively. The reversible mechanism of inhibition is discussed with respect to the enzymology of MPO and the development of drugs against HOCl-dependent tissue damage.
Collapse
Affiliation(s)
- Walter Jantschko
- Department of Chemistry, Division of Biochemistry, BOKU, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fu X, Kao JLF, Bergt C, Kassim SY, Huq NP, d'Avignon A, Parks WC, Mecham RP, Heinecke JW. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation. J Biol Chem 2003; 279:6209-12. [PMID: 14670964 DOI: 10.1074/jbc.c300506200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMPs) function in homeostatic and repair processes, but unregulated catalysis by these extracellular proteinases leads to the pathological destruction of tissue proteins. An important mechanism for controlling enzyme activity might involve hypochlorous acid (HOCl), a potent oxidant produced by the myeloperoxidase system of phagocytes. We have shown that inactivation of MMP-7 (matrilysin) by HOCl coincides with the formation of a novel oxidation product, WG-4, through modification of adjacent tryptophan and glycine residues and loss of 4 atomic mass units. Here, we use mass spectrometry, UV/visible spectroscopy, hydrogen-deuterium exchange, and NMR spectroscopy to investigate the formation and structure of WG-4. For the initial step, HOCl chlorinates the indole ring of tryptophan. The resulting 3-chloroindolenine generates a previously unknown cyclic indole-amide species, in which tryptophan cross-links to the main chain nitrogen of the adjacent glycine residue to form an aromatic six-membered ring. WG-4 kinks and stiffens the peptide backbone, which may hinder the interaction of substrate with the catalytic pocket of MMP-7. Our observations indicate that specific structural motifs are important for controlling protein modification by oxidants and suggest that pericellular oxidant production by phagocytes might limit MMP activity during inflammation.
Collapse
Affiliation(s)
- Xiaoyun Fu
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jantschko W, Furtmüller PG, Allegra M, Livrea MA, Jakopitsch C, Regelsberger G, Obinger C. Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Arch Biochem Biophys 2002; 398:12-22. [PMID: 11811944 DOI: 10.1006/abbi.2001.2674] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comparative study on the reactivity of five indole derivatives (tryptamine, N-acetyltryptamine, tryptophan, melatonin, and serotonin), with the redox intermediates compound I (k2) and compound II (k3) of the plant enzyme horseradish peroxidase (HRP) and the two mammalian enzymes lactoperoxidase (LPO) and myeloperoxidase (MPO), was performed using the sequential-mixing stopped-flow technique. The calculated bimolecular rate constants (k2, k3) revealed substantial differences regarding the oxidazibility of the substrates by redox intermediates at pH 7.0 and 25 degrees C. With HRP it was shown that k2 and k3 are mainly determined by the reduction potential (Eo') of the substrate with k2 being 7-45 times higher than k3. Compound I of mammalian peroxidases was a much better oxidant than HRP compound I with the consequence that the influence of the indole structure on k2 of LPO and MPO was small varying by a factor of only 88 and 38, respectively, which is in strong contrast to a factor of 160,000 determined for k2 of HRP. Interestingly, the k3 values for all three enzymes were very similar. Oxidation of substrates by mammalian peroxidase compound II is strongly constrained by the nature of the substrate. The k3 values for the five indoles varied by a factor of 3,570 (LPO) and 200,000 (MPO), suggesting that the reduction potential of compound II of mammalian peroxidase is less positive than that of compound I, which is in contrast to the plant enzyme.
Collapse
Affiliation(s)
- Walter Jantschko
- Institute of Chemistry, University of Agricultural Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | | | | | | | | | | | | |
Collapse
|
27
|
Ximenes VF, Catalani LH, Campa A. Oxidation of melatonin and tryptophan by an HRP cycle involving compound III. Biochem Biophys Res Commun 2001; 287:130-4. [PMID: 11549265 DOI: 10.1006/bbrc.2001.5557] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described that horseradish peroxidase (HRP) and myeloperoxidase (MPO) catalyze the oxidation of melatonin, forming the respective indole ring-opening product N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) (Biochem. Biophys. Res. Commun. 279, 657-662, 2001). Although the classic peroxidatic enzyme cycle is expected to participate in the oxidation of melatonin, the requirement of a low HRP:H(2)O(2) ratio suggested that other enzyme paths might also be operative. Here we followed the formation of AFMK under two experimental conditions: predominance of HRP compounds I and II or presence of compound III. Although the consumption of substrate is comparable under both conditions, AFMK is formed in significant amounts only when compound III predominates during the reaction. Using tryptophan as substrate, N- formyl-kynurenine is formed in the presence of compound III. Both, melatonin and tryptophan efficiently prevents the formation of p-670, the inactive form of HRP. Since superoxide dismutase (SOD) inhibits the production of AFMK, we proposed that compound III acts as a source of O(-*)(2) or participates directly in the reaction, as in the case of enzyme indoleamine 2,3-dioxygenase.
Collapse
Affiliation(s)
- V F Ximenes
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-900, São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Allegra M, Furtmüller PG, Regelsberger G, Turco-Liveri ML, Tesoriere L, Perretti M, Livrea MA, Obinger C. Mechanism of reaction of melatonin with human myeloperoxidase. Biochem Biophys Res Commun 2001; 282:380-6. [PMID: 11401469 DOI: 10.1006/bbrc.2001.4582] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, it was suggested that melatonin (N-acetyl-5-methoxytryptamine) is oxidized by activated neutrophils in a reaction most probably involving myeloperoxidase (Biochem. Biophys. Res. Commun. (2000) 279, 657-662). Myeloperoxidase (MPO) is the most abundant protein of neutrophils and is involved in killing invading pathogens. To clarify if melatonin is a substrate of MPO, we investigated the oxidation of melatonin by its redox intermediates compounds I and II using transient-state spectral and kinetic measurements at 25 degrees C. Spectral and kinetic analysis revealed that both compound I and compound II oxidize melatonin via one-electron processes. The second-order rate constant measured for compound I reduction at pH 7 and pH 5 are (6.1 +/- 0.2) x 10(6) M(-1) s(-1) and (1.0 +/- 0.08) x 10(7) M(-1) s(-1), respectively. The rates for the one-electron reduction of compound II back to the ferric enzyme are (9.6 +/- 0.3) x 10(2) M(-1) s(-1) (pH 7) and (2.2 +/- 0.1) x 10(3) M(-1) s(-1) (pH 5). Thus, melatonin is a much better electron donor for compound I than for compound II. Steady-state experiments showed that the rate of oxidation of melatonin is dependent on the H(2)O(2) concentration, is not affected by superoxide dismutase, and is quickly terminated by sodium cyanide. Melatonin can markedly inhibit the chlorinating activity of MPO at both pH 7 and pH 5. The implication of these findings in the activated neutrophil is discussed.
Collapse
Affiliation(s)
- M Allegra
- Department of Pharmaceutical Toxicological and Biological Chemistry, University of Palermo, Via Carlo Forlanini, Palermo, 90123, Italy
| | | | | | | | | | | | | | | |
Collapse
|