1
|
Nesci S. Proton leak through the UCPs and ANT carriers and beyond: A breath for the electron transport chain. Biochimie 2023; 214:77-85. [PMID: 37336388 DOI: 10.1016/j.biochi.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Mitochondria produce heat as a result of an ineffective H+ cycling of mitochondria respiration across the inner mitochondrial membrane (IMM). This event present in all mitochondria, known as proton leak, can decrease protonmotive force (Δp) and restore mitochondrial respiration by partially uncoupling the substrate oxidation from the ADP phosphorylation. During impaired conditions of ATP generation with F1FO-ATPase, the Δp increases and IMM is hyperpolarized. In this bioenergetic state, the respiratory complexes support H+ transport until the membrane potential stops the H+ pump activity. Consequently, the electron transfer is stalled and the reduced form of electron carriers of the respiratory chain can generate O2∙¯ triggering the cascade of ROS formation and oxidative stress. The physiological function to attenuate the production of O2∙¯ by Δp dissipation can be attributed to the proton leak supported by the translocases of IMM.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, BO, Italy.
| |
Collapse
|
2
|
Pinho ACO, Santos D, Baldeiras I, Burgeiro A, Leal EC, Carvalho E. Mitochondrial respiration in thoracic perivascular adipose tissue of diabetic mice. J Endocrinol 2022; 254:169-184. [PMID: 35904484 DOI: 10.1530/joe-21-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Introduction Thoracic perivascular adipose tissue (tPVAT) has a phenotype resembling brown AT. Dysfunctional tPVAT appears to be linked to vascular dysfunction. Methods We evaluated uncoupling protein 1 (UCP1) expression by Western blot, oxidative stress by measuring lipid peroxidation, the antioxidant capacity by HPLC and spectrophotometry, and mitochondrial respiration by high-resolution respirometry (HRR) in tPVAT, compared to inguinal white AT (iWAT), obtained from non-diabetic (NDM) and streptozocin-induced diabetic (STZ-DM) mice. Mitochondrial respiration was assessed by HRR using protocol 1: complex I and II oxidative phosphorylation (OXPHOS) and protocol 2: fatty acid oxidation (FAO) OXPHOS. OXPHOS capacity in tPVAT was also evaluated after UCP1 inhibition by guanosine 5'-diphosphate (GDP). Results UCP1 expression was higher in tPVAT when compared with iWAT in both NDM and STZ-DM mice. The malondialdehyde concentration was elevated in tPVAT from STZ-DM compared to NDM mice. Glutathione peroxidase and reductase activities, as well as reduced glutathione levels, were not different between tPVAT from NDM and STZ-DM mice but were lower compared to iWAT of STZ-DM mice. OXPHOS capacity of tPVAT was significantly decreased after UCP1 inhibition by GDP in protocol 1. While there were no differences in the OXPHOS capacity between NDM and STZ-DM mice in protocol 1, it was increased in STZ-DM compared to NDM mice in protocol 2. Moreover, complex II- and FAO-linked respiration were elevated in STZ-DM mice under UCP1 inhibition. Conclusions Pharmacological therapies could be targeted to modulate UCP1 activity with a significant impact in the uncoupling of mitochondrial bioenergetics in tPVAT.
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Diana Santos
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Ana Burgeiro
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Emelindo C Leal
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, Coimbra, Portugal
- APDP-Portuguese Diabetes Association, Lisbon, Portugal
| |
Collapse
|
3
|
Zhang M, Wang L, Wen D, Ren C, Chen S, Zhang Z, Hu L, Yu Z, Tombran-Tink J, Zhang X, Li X, Barnstable CJ. Neuroprotection of retinal cells by Caffeic Acid Phenylethyl Ester(CAPE) is mediated by mitochondrial uncoupling protein UCP2. Neurochem Int 2021; 151:105214. [PMID: 34710532 DOI: 10.1016/j.neuint.2021.105214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
Oxidative stress due to mitochondrial produced reactive oxygen species is a major cause of damage seen in many retinal degenerative diseases. Caffeic acid phenylethyl ester (CAPE) is protective agent in multiple tissues and is reported to have anti-oxidant properties. Systemically applied CAPE protected retinal ganglion cells from ischemic injury induced by increased intraocular pressure. CAPE provided complete protection for ARPE19 retinal pigment epithelial cells against tert-butyl hydrogen peroxide and reduced both basal and LPS-stimulated ROS production. The major effect of CAPE was mediated by the mitochondrial uncoupling protein UCP2 since both pharmacological inhibition of UCP2 and siRNA-induced knockdown removed the ability of CAPE to block ROS production. Based on common structural features, CAPE may be acting as a mimetic of the natural UCP2 homeostatic regulator 4-hydroxy-2-nonenal. CAPE may provide a valuable tool to treat oxidative stress-related damage in retinal and other degenerative diseases.
Collapse
Affiliation(s)
- Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Liming Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Dejia Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Changjie Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Lanlan Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Zihao Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China.
| | - Colin J Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
5
|
Gonzalez Porras MA, Stojkova K, Vaicik MK, Pelowe A, Goddi A, Carmona A, Long B, Qutub AA, Gonzalez A, Cohen RN, Brey EM. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Rep 2021; 11:5442. [PMID: 33686208 PMCID: PMC7940610 DOI: 10.1038/s41598-021-84828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and the metabolic disease epidemic has led to an increase in morbidity and mortality. A rise in adipose thermogenic capacity via activation of brown or beige fat is a potential treatment for metabolic diseases. However, an understanding of how local factors control adipocyte fate is limited. Mice with a null mutation in the laminin α4 (LAMA4) gene (KO) exhibit resistance to obesity and enhanced expression of thermogenic fat markers in white adipose tissue (WAT). In this study, changes in WAT extracellular matrix composition in the absence of LAMA4 were evaluated using liquid chromatography/tandem mass spectrometry. KO-mice showed lower levels of collagen 1A1 and 3A1, and integrins α7 (ITA7) and β1 (ITB1). ITA7-ITB1 and collagen 1A1-3A1 protein levels were lower in brown adipose tissue compared to WAT in wild-type mice. Immunohistochemical staining confirmed lower levels and different spatial distribution of ITA7 in KO-WAT. In culture studies, ITA7 and LAMA4 levels decreased following a 12-day differentiation of adipose-derived stem cells into beige fat, and knock-down of ITA7 during differentiation increased beiging. These results demonstrate that extracellular matrix interactions regulate adipocyte thermogenic capacity and that ITA7 plays a role in beige adipose formation. A better understanding of the mechanisms underlying these interactions can be used to improve systemic energy metabolism and glucose homeostasis.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Amanda Pelowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anna Goddi
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alanis Carmona
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Byron Long
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Amina A Qutub
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
6
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
7
|
DeMoranville KJ, Carter WA, Pierce BJ, McWilliams SR. Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes. Am J Physiol Regul Integr Comp Physiol 2020; 319:R637-R652. [PMID: 32966121 DOI: 10.1152/ajpregu.00163.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Training and diet are hypothesized to directly stimulate key molecular pathways that mediate animal performance, and flight training, dietary fats, and dietary antioxidants are likely important in modulating molecular metabolism in migratory birds. This study experimentally investigated how long-distance flight training, as well as diet composition, affected the expression of key metabolic genes in the pectoralis muscle and the liver of European starlings (Sturnus vulgaris, n = 95). Starlings were fed diets composed of either a high or low polyunsaturated fatty acid (PUFA; 18:2n-6) and supplemented with or without a water-soluble antioxidant, and one-half of these birds were flight trained in a wind-tunnel while the rest were untrained. We measured the expression of 7 (liver) or 10 (pectoralis) key metabolic genes in flight-trained and untrained birds. Fifty percent of genes involved in mitochondrial metabolism and fat utilization were upregulated by flight training in the pectoralis (P < 0.05), whereas flight training increased the expression of only one gene responsible for fatty acid hydrolysis [lipoprotein lipase (LPL)] in the liver (P = 0.04). Dietary PUFA influenced the gene expression of LPL and fat transporter fatty acid translocase (CD36) in the pectoralis and one metabolic transcription factor [peroxisome proliferator-activated receptor (PPAR)-α (PPARα)] in the liver, whereas dietary antioxidants had no effect on the metabolic genes measured in this study. Flight training initiated a simpler causal network between PPARγ coactivators, PPARs, and metabolic genes involved in mitochondrial metabolism and fat storage in the pectoralis. Molecular metabolism is modulated by flight training and dietary fat quality in a migratory songbird, indicating that these environmental factors will affect the migratory performance of birds in the wild.
Collapse
Affiliation(s)
- Kristen J DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island
| | - Wales A Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island
| | - Barbara J Pierce
- Department of Biology, Sacred Heart University, Fairfield, Connecticut
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
8
|
Jimenez AG, Winward JD, Walsh KE, Champagne AM. Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs. J Exp Biol 2020; 223:jeb221804. [PMID: 32457060 DOI: 10.1242/jeb.221804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
There is ample evidence that cell membrane architecture contributes to metabolism and aging in animals; however, the aspects of this architecture that determine the rate of metabolism and longevity are still being debated. The 'membrane pacemaker' hypothesis of metabolism and of aging, respectively, suggest that increased lipid unsaturation and large amounts of polyunsaturated fatty acids (PUFAs) in cell membranes increase the cellular metabolic rate as well as the vulnerability of the cell to oxidative damage, thus increasing organismal metabolic rate and decreasing longevity. Here, we tested these hypotheses by experimentally altering the membrane fatty acid composition of fibroblast cells derived from small and large breed dogs by incubating them in a medium enriched in the monounsaturated fatty acid (MUFA) oleic acid (OA, 18:1) to decrease the total saturation. We then measured cellular metabolic parameters and correlated these parameters with membrane fatty acid composition and oxidative stress. We found that cells from small dogs and OA-incubated cells had lower maximal oxygen consumption and basal oxygen consumption rates, respectively, which are traits associated with longer lifespans. Furthermore, although we did not find differences in oxidative stress, cells from small dogs and OA-treated cells exhibited reduced ATP coupling efficiency, suggesting that these cells are less prone to producing reactive oxygen species. Membrane fatty acid composition did not differ between cells from large and small dogs, but cells incubated with OA had more monounsaturated fatty acids and a higher number of double bonds overall despite a decrease in PUFAs. Our results suggest that increasing the monounsaturation of dog cell membranes may alter some metabolic parameters linked to increases in longevity.
Collapse
Affiliation(s)
| | - Joshua D Winward
- Colgate University, Biology Department, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kenneth E Walsh
- University of Southern Indiana, Chemistry Department, 8600 University Blvd, Evansville, IN 47712, USA
| | - Alex M Champagne
- University of Southern Indiana, Biology Department, 8600 University Blvd, Evansville, IN 47712, USA
| |
Collapse
|
9
|
Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model. Mol Cell Biochem 2020; 470:87-98. [PMID: 32394310 DOI: 10.1007/s11010-020-03749-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Inflammatory bowel disease (IBD) is often associated with a decrease in energy-dependent nutrient uptake across the jejunum that serves as the main site for absorption in the small intestine. This association has prompted us to investigate the bioenergetics underlying the alterations in jejunal absorption in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in rats. We have found that mitochondrial oxygen consumption did not change in state 2 and state 3 respirations but showed an increase in state 4 respiration indicating a decrease in the respiratory control ratio of jejunal mitochondria during the peak of inflammation. This decrease in the coupling state was found to be guanosine diphosphate-sensitive, hence, implicating the involvement of uncoupling protein-2 (UCP2). Furthermore, the study has reported that the production of reactive oxygen species (ROS), known to be activators of UCP2, correlated negatively with UCP2 activity. Thus, we suggest that ROS production in the jejunum might be activating UCP2 which has an antioxidant activity, and that uncoupling of the mitochondria decreases the efficiency of energy production, leading to a decrease in energy-dependent nutrient absorption. Hence, this study is the first to account for an involvement of energy production and a role for UCP2 in the absorptive abnormalities of the small intestine in animal models of colitis.
Collapse
|
10
|
Zhang Y, Sheedy C, Nilsson D, Goss GG. Evaluation of interactive effects of UV light and nano encapsulation on the toxicity of azoxystrobin on zebrafish. Nanotoxicology 2019; 14:232-249. [DOI: 10.1080/17435390.2019.1690064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yueyang Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Claudia Sheedy
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Denise Nilsson
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Director of Office of Environmental Nanosafety, University of Alberta, Edmonton, Canada
- National Institute for Nanotechnology, Edmonton, Canada
| |
Collapse
|
11
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
12
|
Fadel JJ, Bahr GM, Echtay KS. Absence of effect of the antiretrovirals Duovir and Viraday on mitochondrial bioenergetics. J Cell Biochem 2018; 119:10384-10392. [PMID: 30187948 DOI: 10.1002/jcb.27384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/02/2018] [Indexed: 11/06/2022]
Abstract
Most toxicity associated with antiretroviral drugs is thought to result from disruption of mitochondrial function. Unfortunately, there are no validated laboratory markers for clinically assessing the onset of mitochondrial toxicity associated with antiretroviral therapy. In a previous study on mitochondrial hepatocytes, the protease inhibitor lopimune was shown to induce mitochondrial toxicity by increasing reactive oxygen species (ROS) production and decreasing respiratory control ratio (RCR) reflecting compromised mitochondrial efficiency in adenosine triphosphate production. Mitochondrial dysfunction and ROS production were directly correlated with the expression of uncoupling protein 2 (UCP2). In the current study we aim to determine the toxicity of nucleoside or nucleotide and nonnucleoside reverse-transcriptase inhibitors, Duovir and Viraday on liver mitochondria isolated from treated mice by monitoring UCP2 expression. Our results showed that both Duovir and Viraday had no effect on mitochondrial respiration states 2, 3, 4, and on RCR. In addition, ROS generation and UCP2 expression were not affected. In conclusion, our results indicate the difference in the mechanism of action of distinct classes of antiretroviral drugs on mitochondrial functions and may associate UCP2 expression with subclinical mitochondrial damage as marker of cellular oxidative stress.
Collapse
Affiliation(s)
- Jessy J Fadel
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Georges M Bahr
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
13
|
Pan HC, Lee CC, Chou KM, Lu SC, Sun CY. Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore) 2017; 96:e8053. [PMID: 28984759 PMCID: PMC5737995 DOI: 10.1097/md.0000000000008053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1-3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1-3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin.
Collapse
Affiliation(s)
- Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuei-Mei Chou
- Divisions of Endocrinology and Metabolism, Department of Internal Medicine
| | - Shang-Chieh Lu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
14
|
Uncoupling protein 1 controls reactive oxygen species in brown adipose tissue. Proc Natl Acad Sci U S A 2017; 114:7744-7746. [PMID: 28710335 DOI: 10.1073/pnas.1709064114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev 2017; 165:115-128. [DOI: 10.1016/j.mad.2016.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
16
|
Cho I, Hwang GJ, Cho JH. Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans. Mol Cells 2016; 39:680-6. [PMID: 27646689 PMCID: PMC5050532 DOI: 10.14348/molcells.2016.0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans. A ucp-4 mutant showed increased mitochondrial membrane protential in association with increased neuronal defects during aging, and the neurons of ucp-4 overexpressing animals showed decreased neuronal defects during aging. These results suggest that UCP-4 may be involved in neuroprotection during aging via relieving mitochondrial membrane protential. We also investigated the relationship between UCP-4 and innate immunity because increased ROS can affect innate immunity. ucp-4 mutant displayed increased resistance to the pathogen Staphylococcus aureus compared to wild type. The enhanced immunity in the ucp-4 mutant could be related to increased mitochondrial membrane protential, presumably followed by increased ROS. In summary, UCP-4 might have an important role in neuronal aging and innate immune responses through mediating mitochondrial membrane protential.
Collapse
Affiliation(s)
- Injeong Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| | - Gyu Jin Hwang
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| |
Collapse
|
17
|
Montesanto A, Crocco P, Anfossi M, Smirne N, Puccio G, Colao R, Maletta R, Passarino G, Bruni AC, Rose G. The Genetic Variability of UCP4 Affects the Individual Susceptibility to Late-Onset Alzheimer’s Disease and Modifies the Disease’s Risk in APOE-ɛ4 Carriers. J Alzheimers Dis 2016; 51:1265-74. [DOI: 10.3233/jad-150993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alberto Montesanto
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre, ASP CZ, Lamezia Terme (CZ), Italy
| | | | | | - Rosanna Colao
- Regional Neurogenetic Centre, ASP CZ, Lamezia Terme (CZ), Italy
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Amalia C. Bruni
- Regional Neurogenetic Centre, ASP CZ, Lamezia Terme (CZ), Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| |
Collapse
|
18
|
Diolez P, Bourdel-Marchasson I, Calmettes G, Pasdois P, Detaille D, Rouland R, Gouspillou G. Hypothesis on Skeletal Muscle Aging: Mitochondrial Adenine Nucleotide Translocator Decreases Reactive Oxygen Species Production While Preserving Coupling Efficiency. Front Physiol 2015; 6:369. [PMID: 26733871 PMCID: PMC4679911 DOI: 10.3389/fphys.2015.00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS). Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT) appearing during aging that results in a decrease in membrane potential - and therefore ROS production-but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential) of isolated mitochondria from skeletal muscles (gastrocnemius) of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling) or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating-in vivo-conditions. Thus, for equivalent ATP turnover (cellular ATP demand), coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies.
Collapse
Affiliation(s)
- Philippe Diolez
- INSERM U1045 - Centre de Recherche Cardio-Thoracique de Bordeaux and LIRYC, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, CHU de Bordeaux Pessac, France
| | - Isabelle Bourdel-Marchasson
- CHU de Bordeaux, Pôle de Gérontologie CliniqueBordeaux, France; Résonance Magnétique des Systèmes Biologiques, UMR 5536 Centre National de la Recherche Scientifique, Université de BordeauxBordeaux, France
| | - Guillaume Calmettes
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Philippe Pasdois
- INSERM U1045 - Centre de Recherche Cardio-Thoracique de Bordeaux and LIRYC, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, CHU de Bordeaux Pessac, France
| | - Dominique Detaille
- INSERM U1045 - Centre de Recherche Cardio-Thoracique de Bordeaux and LIRYC, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, CHU de Bordeaux Pessac, France
| | - Richard Rouland
- Résonance Magnétique des Systèmes Biologiques, UMR 5536 Centre National de la Recherche Scientifique, Université de Bordeaux Bordeaux, France
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Université du Québec À Montréal Montréal, QC, Canada
| |
Collapse
|
19
|
Wang G, Kang N, Gong H, Luo Y, Bai C, Chen Y, Ji X, Huang C, Dong Q. Upregulation of uncoupling protein Ucp2 through acute cold exposure increases post-thaw sperm quality in zebrafish. Cryobiology 2015; 71:464-71. [DOI: 10.1016/j.cryobiol.2015.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
|
20
|
Kramer PA, Duan J, Qian WJ, Marcinek DJ. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function. Front Physiol 2015; 6:347. [PMID: 26635632 PMCID: PMC4658434 DOI: 10.3389/fphys.2015.00347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar, and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington Seattle, WA, USA
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington Seattle, WA, USA ; Department of Bioengineering, University of Washington Seattle, WA, USA
| |
Collapse
|
21
|
Giménez-Dejoz J, Kolář MH, Ruiz FX, Crespo I, Cousido-Siah A, Podjarny A, Barski OA, Fanfrlík J, Parés X, Farrés J, Porté S. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase. PLoS One 2015; 10:e0134506. [PMID: 26222439 PMCID: PMC4519324 DOI: 10.1371/journal.pone.0134506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
Abstract
Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Michal H. Kolář
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Neuroscience and Medicine (INM-9) and Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Francesc X. Ruiz
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire-Centre de Biologie Intégrative, CNRS, INSERM, UdS, Illkirch CEDEX, France
| | - Isidro Crespo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alexandra Cousido-Siah
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire-Centre de Biologie Intégrative, CNRS, INSERM, UdS, Illkirch CEDEX, France
| | - Alberto Podjarny
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire-Centre de Biologie Intégrative, CNRS, INSERM, UdS, Illkirch CEDEX, France
| | - Oleg A. Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
McCarty MF, DiNicolantonio JJ, O'Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart 2015; 2:e000262. [PMID: 26113985 PMCID: PMC4477151 DOI: 10.1136/openhrt-2015-000262] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023] Open
Abstract
Capsaicin, the phytochemical responsible for the spiciness of peppers, has the potential to modulate metabolism via activation of transient receptor potential vanilloid 1 (TRPV1) receptors, which are found not only on nociceptive sensory neurons, but also in a range of other tissues. TRPV1 activation induces calcium influx, and in certain tissues this is associated with increased activation or expression of key proteins such as endothelial nitric oxide synthase (eNOS), uncoupling protein 2 (UCP2), KLF2, PPARdelta, PPARgamma, and LXRα. The calcium influx triggered by TRPV1 activation in endothelial cells mimics the impact of shear stress in this regard, activating and increasing the expression of eNOS-but also increasing expression of cox-2, thrombomodulin, and nrf2-responsive antioxidant enzymes, while decreasing expression of proinflammatory proteins. Hence, dietary capsaicin has favourably impacted endothelium-dependent vasodilation in rodents. TRPV1-mediated induction of LXRα in foam cells promotes cholesterol export, antagonising plaque formation. Capsaicin-mediated activation of TRPV1-expressing neurons in the gastrointestinal tract promotes sympathetically mediated stimulation of brown fat, raising metabolic rate. The increased expression of UCP2 induced by TRPV1 activation exerts a protective antioxidant effect on the liver in non-alcoholic fatty liver disease, and on vascular endothelium in the context of hyperglycaemia. In rodent studies, capsaicin-rich diets have shown favourable effects on atherosclerosis, metabolic syndrome, diabetes, obesity, non-alcoholic fatty liver, cardiac hypertrophy, hypertension and stroke risk. Clinically, ingestion of capsaicin-or its less stable non-pungent analogue capsiate-has been shown to boost metabolic rate modestly. Topical application of capsaicin via patch was found to increase exercise time to ischaemic threshold in patients with angina. Further clinical studies with capsaicin administered in food, capsules, or via patch, are needed to establish protocols that are tolerable for most patients, and to evaluate the potential of capsaicin for promoting vascular and metabolic health.
Collapse
Affiliation(s)
| | | | - James H O'Keefe
- Mid America Heart Institute, St. Luke's Hospital , Kansas City, Missouri , USA
| |
Collapse
|
23
|
Lopimune-induced mitochondrial toxicity is attenuated by increased uncoupling protein-2 level in treated mouse hepatocytes. Biochem J 2015; 468:401-7. [PMID: 26173235 DOI: 10.1042/bj20150195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/13/2015] [Indexed: 02/01/2023]
Abstract
Although the protease inhibitor (PI) Lopimune has proven to be effective, no studies have examined the side effects of Lopimune on mitochondrial bioenergetics in hepatocytes. The objective of the present study is to evaluate mitochondrial respiration, production of reactive oxygen species (ROS) and expression of uncoupling protein-2 (UCP2) in mouse hepatocytes following Lopimune administration. Mitochondria were extracted from mouse liver using differential centrifugation and hepatocytes were isolated by the collagenase perfusion procedure. Mitochondrial respiration was measured using a Rank Brothers oxygen electrode. ROS production in hepatocytes was monitored by flow cytometry using a 2',7'-dichlorofluorescin diacetate probe and UCP2 protein expression was detected by Western blotting. We found that Lopimune induced a significant decrease of approximately 30% in the respiratory control ratio (RCR) starting from day 4 until day 9 of treatment. This decrease was due to an increase in state 4 respiration, reflecting an increase in mitochondrial proton leak. State 2 and state 3 respirations were not affected. Moreover, ROS production significantly increased by about 2-fold after day 1 of treatment and decreased after day 3, returning to the resting level on day 5. Interestingly, UCP2 which is absent from control hepatocytes, was expressed starting from day 4 of treatment. Our findings indicate that Lopimune-induced proton leak, mediated by UCP2, may represent a response to inhibit the production of ROS as a negative feedback regulatory mechanism. These results imply a potential involvement of UCP2 in the regulation of oxidative stress and add new insights into the understanding of mitochondrial toxicity induced by PIs.
Collapse
|
24
|
Fang L, Bai C, Chen Y, Dai J, Xiang Y, Ji X, Huang C, Dong Q. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Cryobiology 2014; 69:386-93. [DOI: 10.1016/j.cryobiol.2014.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/07/2014] [Accepted: 09/17/2014] [Indexed: 01/22/2023]
|
25
|
|
26
|
Dasuri K, Ebenezer P, Fernandez-Kim SO, Zhang L, Gao Z, Bruce-Keller AJ, Freeman LR, Keller JN. Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome. Free Radic Res 2012; 47:8-19. [PMID: 23025469 DOI: 10.3109/10715762.2012.733003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center , Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rodrigues M, Turner O, Stolz D, Griffith LG, Wells A. Production of reactive oxygen species by multipotent stromal cells/mesenchymal stem cells upon exposure to fas ligand. Cell Transplant 2012; 21:2171-87. [PMID: 22526333 DOI: 10.3727/096368912x639035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multipotent stromal cells (MSCs) can be differentiated into osteoblasts and chondrocytes, making these cells candidates to regenerate cranio-facial injuries and lesions in long bones. A major problem with cell replacement therapy, however, is the loss of transplanted MSCs at the site of graft. Reactive oxygen species (ROS) and nonspecific inflammation generated at the ischemic site have been hypothesized to lead to MSCs loss; studies in vitro show MSCs dying both in the presence of ROS or cytokines like FasL. We questioned whether MSCs themselves may be the source of these death inducers, specifically whether MSCs produce ROS under cytokine challenge. On treating MSCs with FasL, we observed increased ROS production within 2 h, leading to apoptotic death after 6 h of exposure to the cytokine. N-acetyl cysteine, an antioxidant, is able to protect MSCs from FasL-induced ROS production and subsequent ROS-dependent apoptosis, though the MSCs eventually succumb to ROS-independent death signaling. Epidermal growth factor (EGF), a cell survival factor, is able to protect cells from FasL-induced ROS production initially; however, the protective effect wanes with continued FasL exposure. In parallel, FasL induces upregulation of the uncoupling protein UCP2, the main uncoupling protein in MSCs, which is not abrogated by EGF; however, the production of ROS is followed by a delayed apoptotic cell death despite moderation by UCP2. FasL-induced ROS activates the stress-induced MAPK pathways JNK and p38MAPK as well as ERK, along with the activation of Bad, a proapoptotic protein, and suppression of survivin, an antiapoptotic protein; the latter two key modulators of the mitochondrial death pathway. FasL by itself also activates its canonical extrinsic death pathway noted by a time-dependent degradation of c-FLIP and activation of caspase 8. These data suggest that MSCs participate in their own demise due to nonspecific inflammation, holding implications for replacement therapies.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
28
|
Ho PW, Ho JW, Liu HF, So DH, Tse ZH, Chan KH, Ramsden DB, Ho SL. Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease. Transl Neurodegener 2012; 1:3. [PMID: 23210978 PMCID: PMC3506996 DOI: 10.1186/2047-9158-1-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease.
Collapse
Affiliation(s)
- Philip Wl Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 2011; 18:52-8. [PMID: 21917523 DOI: 10.1016/j.molmed.2011.08.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 12/18/2022]
Abstract
Nutrient availability is critical for the physiological functions of all tissues. By contrast, an excess of nutrients such as carbohydrate and fats impair health and shorten life due by stimulating chronic diseases, including diabetes, cancer and neurodegeneration. The control of circulating glucose and lipid levels involve mitochondria in both central and peripheral mechanisms of metabolism regulation. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in physiological and pathological processes related to glucose and lipid metabolism, and in this review we discuss the latest data on the relationships between UCP2 and glucose and lipid sensing from the perspective of specific hypothalamic neuronal circuits and peripheral tissue functions. The goal is to provide a framework for discussion of future therapeutic strategies for metabolism-related chronic diseases.
Collapse
|
30
|
Qin S, Rodrigues GA. Differential roles of AMPKα1 and AMPKα2 in regulating 4-HNE-induced RPE cell death and permeability. Exp Eye Res 2010; 91:818-24. [PMID: 21029733 DOI: 10.1016/j.exer.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/18/2010] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
Lipid peroxidation products such as 4-hydroxy-2-nonenal (4-HNE) cause dysfunction and death of retinal pigmented epithelial (RPE) cells, thereby leading to retinal degeneration. The molecular mechanisms underlying their action remain elusive however. In this study, the roles of AMP-activated protein kinase (AMPK) in 4-HNE-induced RPE cell dysfunction and viability were addressed. 4-HNE caused RPE cell death and down-regulated basal activity of AMPK as evidenced by decreased Thr(172) phosphorylation of AMPKα. Exposure of RPE cells to the AMPK inhibitor, compound C also led to cell death, indicating that RPE cell death is correlated with 4-HNE modulation of AMPK activity. ARPE19 cells express both AMPKα1 and AMPKα2 with predominant expression of the AMPKα1 isoform. siRNA studies revealed that knockdown of AMPKα1 expression sensitized RPE cells to 4-HNE. Intriguingly, knockdown of AMPKα2 protected RPE cells from 4-HNE injury. Sub-lethal doses of 4-HNE induced an increase in RPE monolayer permeability, as measured by reduction in trans-epithelial resistance (TER). Knockdown of AMPKα2 but not AMPKα1 significantly restored RPE cell barrier function. No further protection was observed by knockdown of both AMPKα1 and AMPKα2. In contrast, knockdown of AMPKα1 and/or AMPKα2 did not reverse the 4-HNE's inhibitory effects on production of IL-8 and MCP-1. These data demonstrate that AMPKα1 and AMPKα2 play distinct roles in regulating 4-HNE effects on RPE function and viability. Therefore, selective modulation of AMPKα activity may benefit patients with retinal degeneration associated with RPE cell atrophy.
Collapse
Affiliation(s)
- Suofu Qin
- Retinal Disease Research, Department of Biological Sciences, Allergan, Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
| | | |
Collapse
|
31
|
Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA. Mitochondria: the missing link between preconditioning and neuroprotection. J Alzheimers Dis 2010; 20 Suppl 2:S475-85. [PMID: 20463394 DOI: 10.3233/jad-2010-100669] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The quote "what does not kill you makes you stronger" perfectly describes the preconditioning phenomenon - a paradigm that affords robust brain tolerance in the face of neurodegenerative insults. Over the last few decades, many attempts have been made to identify the molecular mechanisms involved in preconditioning-induced protective responses, and recent data suggests that many of these mechanisms converge on the mitochondria, positing mitochondria as master regulators of preconditioning-triggered endogenous neuroprotection. In this review, we critically discuss evidence for the involvement of mitochondria within the preconditioning paradigm. We will highlight the crucial targets and mediators by which mitochondria are integrated into neuroprotective signaling pathways that underlie preconditioning, putting focus on mitochondrial respiratory chain and mitochondrial reactive oxygen species, mitochondrial ATP-sensitive potassium channels, mitochondrial permeability transition pore, uncoupling proteins, and mitochondrial antioxidant enzyme manganese superoxide dismutase. We also discuss the role of mitochondria in the induction of hypoxia-inducible factor-1, a transcription factor engaged in preconditioning-mediated neuroprotective effects. The identification of intrinsic mitochondrial mechanisms involved in preconditioning will provide new insights which can be translated into potential pharmacological interventions aimed at counteracting neurodegeneration.
Collapse
Affiliation(s)
- Sónia C Correia
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Amérand A, Vettier A, Moisan C, Belhomme M, Sébert P. Sex-related differences in aerobic capacities and reactive oxygen species metabolism in the silver eel. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:741-747. [PMID: 19680762 DOI: 10.1007/s10695-009-9348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
Silver European eels (Anguilla anguilla L.) need to develop important aerobic capacities to cope with their long fasting spawning migration at depth, particularly males which are about half the size of females. Moreover, they have to face potential oxidative stress because reactive oxygen species (ROS) production is linked to the increase in metabolic rate. Thus, aerobic metabolism was globally evaluated in male and female silver eels exposed to a 10.1 MPa hydrostatic pressure (1,000 m depth). Oxygen consumption (MO(2)), ROS production and antioxidant enzyme activities were measured in the muscle fibres. Males showed a trend in both higher rate of aerobic metabolism and ROS production than females. After pressure exposure, ROS production was inversely correlated to metabolic rate only in males. By facilitating MO(2) rise with no harmful effects by ROS, the supposed enhanced aerobic capacities of males could speed up the sustained swimming. In females, the tendency to lower metabolic rate and higher catalase activity would make them less vulnerable to ROS effects. These results are in agreement with the hypothesis for different migration depths between genders.
Collapse
Affiliation(s)
- A Amérand
- EA 4324 ORPHY, UFR Sciences et Techniques, Université Européenne de Bretagne, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238, BREST Cedex 3, France.
| | - A Vettier
- EA 4324 ORPHY, UFR Sciences et Techniques, Université Européenne de Bretagne, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238, BREST Cedex 3, France
- EA 2069, Unité de Recherche "Vignes et Vins de Champagne" Stress & Environnement, Laboratoire d'Eco-Toxicologie, UFR Sciences Exactes et Naturelles, Université de REIMS Champagne-Ardenne, Campus du Moulin de la Housse, BP 1039, 51 687, Reims Cedex 2, France
| | - C Moisan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université Européenne de Bretagne, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238, BREST Cedex 3, France
| | - M Belhomme
- EA 4324 ORPHY, UFR Sciences et Techniques, Université Européenne de Bretagne, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238, BREST Cedex 3, France
| | - P Sébert
- EA 4324 ORPHY, UFR Sciences et Techniques, Université Européenne de Bretagne, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238, BREST Cedex 3, France
| |
Collapse
|
33
|
Abstract
Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular 'aldehydic load'. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | | | |
Collapse
|
34
|
Liu Y, Chen L, Xu X, Vicaut E, Sercombe R. Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC PHYSIOLOGY 2009; 9:17. [PMID: 19772611 PMCID: PMC2754976 DOI: 10.1186/1472-6793-9-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND A major endogenous protective mechanism in many organs against ischemia/reperfusion (I/R) injury is ischemic preconditioning (IPC). By moderately uncoupling the mitochondrial respiratory chain and decreasing production of reactive oxygen species (ROS), IPC reduces apoptosis induced by I/R by reducing cytochrome c release from the mitochondria. One element believed to contribute to reduce ROS production is the uncoupling protein UCP2 (and UCP3 in the heart). Although its implication in IPC in the brain has been shown in vitro, no in vivo study of protein has shown its upregulation. Our first goal was to determine in rat hippocampus whether UCP2 protein upregulation was associated with IPC-induced protection and increased ROS production. The second goal was to determine whether the peptide ghrelin, which possesses anti-oxidant and protective properties, alters UCP2 mRNA levels in the same way as IPC during protection. RESULTS After global forebrain ischemia (15 min) with 72 h reperfusion (I/R group), we found important neuronal lesion in the rat hippocampal CA1 region, which was reduced by a preceding 3-min preconditioning ischemia (IPC+I/R group), whereas the preconditioning stimulus alone (IPC group) had no effect. Compared to control, UCP2 protein labelling increased moderately in the I/R (+39%, NS) and IPC+I/R (+28%, NS) groups, and substantially in the IPC group (+339%, P < 0.05). Treatment with superoxide dismutase (10000 U/kg ip) at the time of a preconditioning ischemia greatly attenuated (-73%, P < 0.001) the increase in UCP2 staining at 72 h, implying a role of oxygen radicals in UCP2 induction.Hippocampal UCP2 mRNA showed a moderate increase in I/R (+33%, P < 0.05) and IPC+I/R (+40%, P < 0.05) groups versus control, and a large increase in the IPC group (+333%, P < 0.001). In ghrelin experiments, the I/R+ghrelin group (3 daily administrations) showed considerable protection of CA1 neurons versus I/R animals, and increased hippocampal UCP2 mRNA (+151%, P < 0.001). CONCLUSION We confirm that IPC causes increased expression of UCP2 protein in vivo, at a moment appropriate for protection against I/R in the hippocampus. The two dissimilar protective strategies, IPC and ghrelin administration, were both associated with upregulated UCP2, suggesting that UCP2 may often represent a final common pathway in protection from I/R.
Collapse
Affiliation(s)
- Yajun Liu
- Institute of Physiology, School of Medicine, Shandong University, Jinan 250012, Shandong, PR China.
| | | | | | | | | |
Collapse
|
35
|
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med 2009; 47:333-43. [PMID: 19427899 DOI: 10.1016/j.freeradbiomed.2009.05.004] [Citation(s) in RCA: 789] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 01/02/2023]
Abstract
Mitochondria are a quantitatively relevant source of reactive oxygen species (ROS) in the majority of cell types. Here we review the sources and metabolism of ROS in this organelle, including the conditions that regulate the production of these species, such as mild uncoupling, oxygen tension, respiratory inhibition, Ca2+ and K+ transport, and mitochondrial content and morphology. We discuss substrate-, tissue-, and organism-specific characteristics of mitochondrial oxidant generation. Several aspects of the physiological and pathological roles of mitochondrial ROS production are also addressed.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
36
|
Graier WF, Malli R, Kostner GM. Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? Trends Endocrinol Metab 2009; 20:186-93. [PMID: 19356948 PMCID: PMC4861235 DOI: 10.1016/j.tem.2009.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 01/28/2023]
Abstract
Lipotoxicity occurs as a consequence of chronic exposure of non-adipose tissue and cells to elevated concentrations of fatty acids, triglycerides and/or cholesterol. The contribution of mitochondria to lipotoxic cell dysfunction, damage and death is associated with elevated production of reactive oxygen species and initiation of apoptosis. Although there is a broad consensus on the involvement of these phenomena with lipotoxicity, the molecular mechanisms that initiate, mediate and trigger mitochondrial dysfunction in response to substrate overload remain unclear. Here, we focus on protein phosphorylation as an important phenomenon in lipotoxicity that harms mitochondria-related signal transduction and integration in cellular metabolism. Moreover, the degradation of mitochondria by mitophagy is discussed as an important landmark that leads to cellular apoptosis in lipotoxicity.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria.
| | | | | |
Collapse
|
37
|
Ledo A, Arduini A, Asensi MA, Sastre J, Escrig R, Brugada M, Aguar M, Saenz P, Vento M. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. Am J Clin Nutr 2009; 89:210-5. [PMID: 19056604 DOI: 10.3945/ajcn.2008.26845] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Preterm infants endowed with an immature antioxidant defense system are prone to oxidative stress. Hydroxyl radicals are very aggressive reactive oxygen species that lack specific antioxidants. These radicals cannot be measured directly, but oxidation byproducts of DNA or phenylalanine in urine are reliable markers of their activity. Human milk has a higher antioxidant capacity than formula. OBJECTIVE We hypothesized that oxidative stress associated with prematurity could be diminished by feeding human milk. DESIGN We recruited a cohort of stable preterm infants who lacked perinatal conditions associated with oxidative stress; were not receiving prooxidant or antioxidant drugs, vitamins, or minerals before recruitment; and were fed exclusively human milk (HM group) or preterm formula (PTF group). Collected urine was analyzed for oxidative bases of DNA [8-hydroxy-2'-deoxyguanosine (8-oxodG)/2'-deoxyguanosine (2dG) ratio] and oxidative derivatives of phenylalanine [ortho-tyrosine (o-Tyr)/Phe ratio] by HPLC coupled to tandem mass spectrometry. Healthy term newborn infants served as control subjects. RESULTS Both preterm groups eliminated greater amounts of metabolites than did the control group. However, the PTF group eliminated significantly (P < 0.02) higher amounts of 8-oxodG (8-oxodG/2dG ratio: 10.46 +/- 3.26) than did the HM group (8-oxodG/2dG ratio: 9.05 +/- 2.19) and significantly (P < 0.01) higher amounts of o-Tyr (o-Tyr/Phe ratio: 14.90 +/- 3.75) than did the HM group (o-Tyr/Phe ratio: 12.53 +/- 3.49). When data were lumped together independently of the type of feeding received, a significant correlation was established between the 8-oxodG/2dG and o-Tyr/Phe ratios in urine, dependent on gestational age and birth weight. CONCLUSION Prematurity is associated with protracted oxidative stress, and human milk is partially protective.
Collapse
Affiliation(s)
- Ana Ledo
- Division of Neonatology, Hospital Universitario Materno Infantil La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zimniak P. Detoxification reactions: relevance to aging. Ageing Res Rev 2008; 7:281-300. [PMID: 18547875 DOI: 10.1016/j.arr.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
It is widely (although not universally) accepted that organismal aging is the result of two opposing forces: (i) processes that destabilize the organism and increase the probability of death, and (ii) longevity assurance mechanisms that prevent, repair, or contain damage. Processes of the first group are often chemical and physico-chemical in nature, and are either inevitable or only under marginal biological control. In contrast, protective mechanisms are genetically determined and are subject to natural selection. Life span is therefore largely dependent on the investment into protective mechanisms which evolve to optimize reproductive fitness. Recent data indicate that toxicants, both environmental and generated endogenously by metabolism, are major contributors to macromolecular damage and physiological dysregulation that contribute to aging; electrophilic carbonyl compounds derived from lipid peroxidation appear to be particularly important. As a consequence, detoxification mechanisms, including the removal of electrophiles by glutathione transferase-catalyzed conjugation, are major longevity assurance mechanisms. The expression of multiple detoxification enzymes, each with a significant but relatively modest effect on longevity, is coordinately regulated by signaling pathways such as insulin/insulin-like signaling, explaining the large effect of such pathways on life span. The major aging-related toxicants and their cognate detoxification systems are discussed in this review.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States.
| |
Collapse
|
39
|
Furness LJ, Speakman JR. Energetics and longevity in birds. AGE (DORDRECHT, NETHERLANDS) 2008; 30:75-87. [PMID: 19424858 PMCID: PMC2527636 DOI: 10.1007/s11357-008-9054-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 05/26/2023]
Abstract
The links between energy expenditure and ageing are different at different levels of enquiry. When studies have examined the relationships between different species within a given class the association is generally negative--animals with greater metabolism per gram of tissue live shorter lives. Within species, or between classes (e.g. between birds and mammals) the association is the opposite--animals with higher metabolic rates live longer. We have previously shown in mammals that the negative association between lifespan and metabolic rate is in fact an artefact of using resting rather than daily energy expenditure, and of failing to adequately take into account the confounding effects of body size and the lack of phylogenetic independence of species data. When these factors are accounted for, across species of mammals, the ones with higher metabolism also have the largest lifetime expenditures of energy-consistent with the inter-class and intra-specific data. A previous analysis in birds did not yield the same pattern, but this may have been due to a lack of sufficient power in the analysis. Here we present an analysis of a much enlarged data set (>300 species) for metabolic and longevity traits in birds. These data show very similar patterns to those in mammals. Larger individuals have longer lives and lower per-gram resting and daily energy expenditures, hence there is a strong negative relationship between longevity and mass-specific metabolism. This relationship disappears when the confounding effects of body mass and phylogeny are accounted for. Across species of birds, lifetime expenditure of energy per gram of tissue based on both daily and resting energy expenditure is positively related to metabolic intensity, mirroring these statistical relationships in mammals and synergizing with the positive associations of metabolism with lifespan within species and between vertebrate classes.
Collapse
Affiliation(s)
- L. J. Furness
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ Scotland, UK
| | - J. R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ Scotland, UK
| |
Collapse
|
40
|
Caro P, Gómez J, López-Torres M, Sánchez I, Naudi A, Portero-Otín M, Pamplona R, Barja G. Effect of Every Other Day Feeding on Mitochondrial Free Radical Production and Oxidative Stress in Mouse Liver. Rejuvenation Res 2008; 11:621-9. [DOI: 10.1089/rej.2008.0704] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Pilar Caro
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| | - José Gómez
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| | | | - Inés Sánchez
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-IRBLLEIDA, Lleida, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida-IRBLLEIDA, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRBLLEIDA, Lleida, Spain
| | - Gustavo Barja
- Department of Animal Physiology-II, Complutense University, Madrid, Spain
| |
Collapse
|
41
|
Graier WF, Trenker M, Malli R. Mitochondrial Ca2+, the secret behind the function of uncoupling proteins 2 and 3? Cell Calcium 2008; 44:36-50. [PMID: 18282596 DOI: 10.1016/j.ceca.2008.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/20/2022]
Abstract
The underlying molecular action of the novel uncoupling proteins 2 and 3 (UCP2 and UCP3) is still under debate. The proteins have been implicated in many cell functions, including the regulation of insulin secretion and regulation of reactive oxygen species (ROS) generation. These effects have mainly been explained by suggesting that the proteins establish a proton leak through the inner mitochondrial membrane (IMM). However, accumulating data question this mechanism and suggest that UCP2 and UCP3 may play other roles, including carrying free fatty acids from the matrix towards the intermembrane space, or contributing to the mitochondrial Ca(2+) uniport. Accordingly, in this review we reflect on these actions of UCP2/UCP3 and discuss alternative explanations for the molecular mechanisms by which UCP2/UCP3 might contribute to aspects of cell function. Based on the potential role of UCP2/UCP3 in regulating mitochondrial Ca(2+) uptake, we propose a scheme whereby these proteins integrate Ca(2+)-dependent signal transduction and energy metabolism in order to meet the energy demand of the cell for its continuous response, adaptation, and stimulation to environmental input.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Molecular and Cellular Physiology Research Unit, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, Graz, Austria.
| | | | | |
Collapse
|
42
|
Kaplan P, Tatarkova Z, Racay P, Lehotsky J, Pavlikova M, Dobrota D. Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep 2007; 12:211-8. [PMID: 17925093 DOI: 10.1179/135100007x200308] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
4-hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 +/- 1.0 microM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO* radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE-protein adducts and oxidation of membrane lipids and proteins by free radicals.
Collapse
Affiliation(s)
- Peter Kaplan
- Department of Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
43
|
Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L, von Zglinicki T, Lako M. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 2007; 26:455-64. [PMID: 18055443 DOI: 10.1634/stemcells.2007-0628] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolutionary theory predicts that cellular maintenance, stress defense, and DNA repair mechanisms should be most active in germ line cells, including embryonic stem cells that can differentiate into germ line cells, whereas it would be energetically unfavorable to keep these up in mortal somatic cells. We tested this hypothesis by examining telomere maintenance, oxidative stress generation, and genes involved in antioxidant defense and DNA repair during spontaneous differentiation of two human embryonic stem cell lines. Telomerase activity was quickly downregulated during differentiation, probably due to deacetylation of histones H3 and H4 at the hTERT promoter and deacetylation of histone H3 at hTR promoter. Telomere length decreased accordingly. Mitochondrial superoxide production and cellular levels of reactive oxygen species increased as result of increased mitochondrial biogenesis. The expression of major antioxidant genes was downregulated despite this increased oxidative stress. DNA damage levels increased during differentiation, whereas expression of genes involved in different types of DNA repair decreased. These results confirm earlier data obtained during mouse embryonic stem cell differentiation and are in accordance with evolutionary predictions.
Collapse
Affiliation(s)
- Gabriele Saretzki
- Crucible Lab, Institute of Human Genetics, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Dev 2007; 124:856-67. [DOI: 10.1016/j.mod.2007.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
|