1
|
Yarana C, Maneechote C, Khuanjing T, Ongnok B, Prathumsap N, Thanasrisuk S, Pattanapanyasat K, Chattipakorn SC, Chattipakorn N. Potential roles of 4HNE-adducted protein in serum extracellular vesicles as an early indicator of oxidative response against doxorubicin-induced cardiomyopathy in rats. Curr Res Toxicol 2023; 5:100134. [PMID: 37964944 PMCID: PMC10641738 DOI: 10.1016/j.crtox.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Late-onset cardiomyopathy is becoming more common among cancer survivors, particularly those who received doxorubicin (DOXO) treatment. However, few clinically available cardiac biomarkers can predict an unfavorable cardiac outcome before cell death. Extracellular vesicles (EVs) are emerging as biomarkers for cardiovascular diseases and others. This study aimed to measure dynamic 4-hydroxynonenal (4HNE)-adducted protein levels in rats treated chronically with DOXO and examine their link with oxidative stress, antioxidant gene expression in cardiac tissues, and cardiac function. Twenty-two male Wistar rats were randomly assigned to receive intraperitoneal injection of normal saline (n = 8) or DOXO (3 mg/kg, 6 doses, n = 14). Before and after therapy, serum EVs and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were determined. Tunable resistive pulse sensing was used to measure EV size and concentration. ELISA was used to assess 4HNE-adducted protein in EVs and cardiac tissues. Differential-display reverse transcription-PCR was used to quantitate cardiac Cat and Gpx1 gene expression. Potential correlations between 4HNE-adducted protein levels in EVs, cardiac oxidative stress, antioxidant gene expression, and cardiac function were determined. DOXO-treated rats showed more serum EV 4HNE-adducted protein than NSS-treated rats at day 9 and later endpoints, whereas NT-proBNP levels were not different between groups. Moreover, on day 9, surviving rats' EVs had higher levels of 4HNE-adducted protein, and these correlated positively with concentrations of heart tissue 4HNE adduction and copy numbers of Cat and Gpx1, while at endpoint correlated negatively with cardiac functions. Therefore, 4HNE-adducted protein in serum EVs could be an early, minimally invasive biomarker of the oxidative response and cardiac function in DOXO-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chontida Yarana
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasa Thanasrisuk
- Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants (Basel) 2023; 12:281. [PMID: 36829839 PMCID: PMC9952760 DOI: 10.3390/antiox12020281] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.
Collapse
Affiliation(s)
- Michael Amponsah-Offeh
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
4
|
Choi SW, Choi SW, Jeon YK, Moon SH, Zhang YH, Kim SJ. Suppression of hERG K + current and cardiac action potential prolongation by 4-hydroxynonenal via dual mechanisms. Redox Biol 2018; 19:190-199. [PMID: 30172983 PMCID: PMC6122396 DOI: 10.1016/j.redox.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress under pathological conditions, such as ischemia/reperfusion and inflammation, results in the production of various reactive chemicals. Of these chemicals, 4-hydroxynonenal (4-HNE), a peroxidation product of ω6-polyunsaturated fatty acid, has garnered significant attention. However, the effect of 4-HNE on cardiac electrophysiology has not yet been reported. In the present study, we investigated the effects of 4-HNE on several cardiac ion channels, including human ether-a-go-go-related (hERG) channels, using the whole-cell patch clamp technique. Short-term exposure to 100 μM 4-HNE (4-HNE100S), which mimics local levels under oxidative stress, decreased the amplitudes of rapidly activating delayed rectifier K+ current (IKr) in guinea pig ventricular myocytes (GPVMs) and HEK293T cells overexpressing hERG (IhERG). MS analysis revealed the formation of 4-HNE-hERG adduct on specific amino acid residues, including C276, K595, H70, and H687. Long-term treatment (1–3 h) with 10 μM 4-HNE (4-HNE10L), suppressed IKr and IhERG, but not IKs and ICa,L. Action potential duration (APD) of GPVMs was prolonged by 37% and 64% by 4-HNE100S and 4-HNE10L, respectively. Western blot analysis using surface biotinylation revealed a reduction in mature membrane hERG protein after treatment with 4-HNE10L. Proteasomal degradation inhibitors, such as bortezomib, prevented the 4-HNE10L-induced decrease in mature hERG, suggesting a retrograde degradation of membrane hERG due to 4-HNE. Taken together, 4-HNE100S and 4-HNE10L suppressed IhERG via functional inhibition and downregulation of membrane expression of hERG, respectively. The exposure of 4-HNE under pathological oxidative stress may increase the risk of proarrhythmic events via APD prolongation. 4-HNE-mediated hERG channel modification causes cardiac action potential prolongation. 4-HNE inhibits hERG channel by post-translational modification at Cys276, Lys595, His70, and His687. Long-term exposure to 4-HNE decreases membrane hERG channel expression.
Collapse
Affiliation(s)
- Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yin-Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Asselin C, Ducharme A, Ntimbane T, Ruiz M, Fortier A, Guertin MC, Lavoie J, Diaz A, Levy É, Tardif JC, Des Rosiers C. Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure. Redox Biol 2013; 2:148-55. [PMID: 24494189 PMCID: PMC3909262 DOI: 10.1016/j.redox.2013.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Measurements of oxidative stress biomarkers in patients with heart failure (HF) have yielded controversial results. This study aimed at testing the hypothesis that circulating levels of the lipid peroxidation product 4-hydroxynonenal bound to thiol proteins (4HNE-P) are strongly associated with those of its potential precursors, namely n-6 polyunsaturated fatty acids (PUFA). METHODS AND RESULTS Circulating levels of 4HNE-P were evaluated by gas chromatography-mass spectrometry in 71 control subjects and 61 ambulatory symptomatic HF patients along with various other clinically- and biochemically-relevant parameters, including other oxidative stress markers, and total levels of fatty acids from all classes, which reflect both free and bound to cholesterol, phospholipids and triglycerides. All HF patients had severe systolic functional impairment despite receiving optimal evidence-based therapies. Compared to controls, HF patients displayed markedly lower circulating levels of HDL- and LDL-cholesterol, which are major PUFA carriers, as well as of PUFA of the n-6 series, specifically linoleic acid (LA; P=0.001). Circulating 4HNE-P in HF patients was similar to controls, albeit multiple regression analysis revealed that LA was the only factor that was significantly associated with circulating 4HNE-P in the entire population (R (2)=0.086; P=0.02). In HF patients only, 4HNE-P was even more strongly associated with LA (P=0.003) and HDL-cholesterol (p<0.0002). Our results demonstrate that 4HNE-P levels, expressed relative to HDL-cholesterol, increase as HDL-cholesterol plasma levels decrease in the HF group only. CONCLUSION Results from this study emphasize the importance of considering changes in lipids and lipoproteins in the interpretation of measurements of lipid peroxidation products. Further studies appear warranted to explore the possibility that HDL-cholesterol particles may be a carrier of 4HNE adducts.
Collapse
Key Words
- 4-Hydroxynnonenal
- 4HNE, 4-hydroxynonenal
- 4HNE-P, 4-hydroxynonenal bound to circulating thiol proteins
- AA, arachidonic acid
- CRP, C-reactive protein
- DHA, docosahexanaenoic acid
- EPA, eicosapentaenoic acid
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- HF, heart failure
- HFC-MHI, heart failure clinic of the Montreal Heart Institute
- HOMA-IR, homeostatic model assessment of insulin resistance
- Heart failure patients
- LA, linoleic acid
- Linoleic acid
- Lipid peroxidation
- MDA, malondialdehyde
- MPO, myeloperoxidase
- NT-pro-BNP, N-terminal proB-type natriuretic peptide
- NYHA, New York Heart Association
- Oxidative stress
- PUFA, polyunsaturated fatty acids
- Polyunsaturated fatty acids
- RAS, renin-angiotensin system
- TBARS, thiobarbituric acid-reactive substances
- TNF, tumor necrosis factor
- eGFR, estimated glomerular filtration rate
Collapse
Affiliation(s)
- Caroline Asselin
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Anique Ducharme
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Thierry Ntimbane
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Annik Fortier
- Montreal Heart Institute Coordinating Center, Montreal, Quebec, Canada
| | | | - Joël Lavoie
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Ariel Diaz
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Émile Levy
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada H1T 1C8
| |
Collapse
|
6
|
Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2013; 48:251-63. [PMID: 24237196 DOI: 10.3109/10715762.2013.864761] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE), a reactive aldehyde, is generated from polyunsaturated fatty acids (PUFAs) in biological membranes. Reactive oxygen species (ROS) generated during oxidative stress react with PUFAs to form aldehydes like 4-HNE, which inactivates proteins and DNA by forming hybrid covalent chemical addition compounds called adducts. The ensuing chain reaction results in cellular dysfunction and tissue damage. It includes a wide spectrum of events ranging from electron transport chain dysfunction to apoptosis. In addition, 4-HNE directly depresses contractile function, enhances ROS formation, modulates cell signaling pathways, and can contribute to many cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and cardiomyopathy. Therefore, targeting 4-HNE could help reverse these pathologies. This review will focus on 4-HNE generation, the role of 4-HNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4-HNE-induced toxicity, regulation of 4-HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4-HNEinduced toxicity.
Collapse
Affiliation(s)
- V R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System , Detroit, MI , USA
| | | |
Collapse
|
7
|
Li Q, Tomcik K, Zhang S, Puchowicz MA, Zhang GF. Dietary regulation of catabolic disposal of 4-hydroxynonenal analogs in rat liver. Free Radic Biol Med 2012; 52:1043-53. [PMID: 22245097 PMCID: PMC3289253 DOI: 10.1016/j.freeradbiomed.2011.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/17/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022]
Abstract
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Kristyen Tomcik
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Shenghui Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | | | - Guo-Fang Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
- Corresponding author: Guo-Fang Zhang, Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., W-G48, Cleveland, OH, 44106-4954, Tel.: 216 368 6533, Fax: 216 368 6560,
| |
Collapse
|
8
|
Stanley WC, Dabkowski ER, Ribeiro RF, O'Connell KA. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res 2012; 110:764-76. [PMID: 22383711 PMCID: PMC3356700 DOI: 10.1161/circresaha.111.253104] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/27/2011] [Indexed: 02/07/2023]
Abstract
There is growing evidence suggesting that dietary fat intake affects the development and progression of heart failure. Studies in rodents show that in the absence of obesity, replacing refined carbohydrate with fat can attenuate or prevent ventricular expansion and contractile dysfunction in response to hypertension, infarction, or genetic cardiomyopathy. Relatively low intake of n-3 polyunsaturated fatty acids from marine sources alters cardiac membrane phospholipid fatty acid composition, decreases the onset of new heart failure, and slows the progression of established heart failure. This effect is associated with decreased inflammation and improved resistance to mitochondrial permeability transition. High intake of saturated, monounsaturated, or n-6 polyunsaturated fatty acids has also shown beneficial effects in rodent studies. The underlying mechanisms are complex, and a more thorough understanding is needed of the effects on cardiac phospholipids, lipid metabolites, and metabolic flux in the normal and failing heart. In summary, manipulation of dietary fat intake shows promise in the prevention and treatment of heart failure. Clinical studies generally support high intake of n-3 polyunsaturated fatty acids from marine sources to prevent and treat heart failure. Additional clinical and animals studies are needed to determine the optimal diet in terms of saturated, monounsaturated, and n-6 polyunsaturated fatty acids intake for this vulnerable patient population.
Collapse
Affiliation(s)
- William C Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
9
|
Rybka J, Kupczyk D, Kędziora-Kornatowska K, Pawluk H, Czuczejko J, Szewczyk-Golec K, Kozakiewicz M, Antonioli M, Carvalho LA, Kędziora J. Age-related changes in an antioxidant defense system in elderly patients with essential hypertension compared with healthy controls. Redox Rep 2011; 16:71-7. [PMID: 21722415 DOI: 10.1179/174329211x13002357050897] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Oxidative stress has been reported to increase with aging. Oxidative stress is also associated with hypertension, and antioxidant treatment has been shown to enhance antioxidant defense system. We therefore aimed to analyze the relationship between aging and some markers of oxidative stress in elderly patients with essential hypertension compared with healthy controls. MATERIAL AND METHODS Blood was collected from 18 patients with essential hypertension and 21 age- and sex-matched healthy controls aged over 65. Patients were on their usual medications while participating in the study. Oxidative stress parameters were investigated by measuring the concentration of glutathione (GSH) in whole blood and activities of glutathione peroxidase (GPx-1), glutathione reductase (GR), catalase (CAT), and Cu-Zn superoxide dismutase (CuZn SOD, SOD-1) in erythrocytes. GSH, GPx-1, GR, CAT, and CuZn SOD correlations with age were expressed as Pearson product-moment correlation coefficient r. Independent-samples T test was used to compare mean values of parameters between groups. RESULTS (1) Among all parameters analyzed herein, the activity of SOD-1 showed the most explicit decrease in relation to age, both in healthy controls and hypertensive subjects with r values of -0.54 (P = 0.05) and -0.68 (P < 0.01), respectively. (2) Age-related changes in parameters of oxidative stress did not differ significantly between groups. (3) Mean activity of SOD-1 was significantly higher (P < 0.05) in elderly hypertensives (2341.7 ± 213.71 U/g Hb) when compared with healthy controls (2199.7 ± 213.66 U/g Hb). (4) Mean GSH level was significantly higher (P < 0.01) in patients (3.1 ± 0.29 mmol/l) than in controls (2.8 ± 0.37 mmol/l). (5) Increased level of GSH in hypertension was followed by significantly (P < 0.01) higher activity of GR in this group when compared with controls (83.4 ± 15.25 and 64.1 ± 9.40 U/g Hb, respectively). CONCLUSIONS (1) The antioxidant barrier changes in elderly subjects with senescence. (2) CuZn SOD activity is negatively correlated with age and this association is not altered by factors that modulate the enzyme activity, such as hypertension and antihypertensive treatment. (3) Significantly higher concentration of GSH and significantly higher GR activity in patients may suggest a significant role of GSH metabolism in the pathogenesis of hypertension, as well as its contribution to the effect of antihypertensive treatment.
Collapse
Affiliation(s)
- Joanna Rybka
- Department of Biochemistry, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochem J 2011; 435:519-28. [PMID: 21275902 DOI: 10.1042/bj20101390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During cardiac remodelling, the heart generates higher levels of reactive species; yet an intermediate 'compensatory' stage of hypertrophy is associated with a greater ability to withstand oxidative stress. The mechanisms underlying this protected myocardial phenotype are poorly understood. We examined how a cellular model of hypertrophy deals with electrophilic insults, such as would occur upon ischaemia or in the failing heart. For this, we measured energetics in control and PE (phenylephrine)-treated NRCMs (neonatal rat cardiomyocytes) under basal conditions and when stressed with HNE (4-hydroxynonenal). PE treatment caused hypertrophy as indicated by augmented atrial natriuretic peptide and increased cellular protein content. Hypertrophied myocytes demonstrated a 2.5-fold increase in ATP-linked oxygen consumption and a robust augmentation of oligomycin-stimulated glycolytic flux and lactate production. Hypertrophied myocytes displayed a protected phenotype that was resistant to HNE-induced cell death and a unique bioenergetic response characterized by a delayed and abrogated rate of oxygen consumption and a 2-fold increase in glycolysis upon HNE exposure. This augmentation of glycolytic flux was not due to increased glucose uptake, suggesting that electrophile stress results in utilization of intracellular glycogen stores to support the increased energy demand. Hypertrophied myocytes also had an increased propensity to oxidize HNE to 4-hydroxynonenoic acid and sustained less protein damage due to acute HNE insults. Inhibition of aldehyde dehydrogenase resulted in bioenergetic collapse when myocytes were challenged with HNE. The integration of electrophile metabolism with glycolytic and mitochondrial energy production appears to be important for maintaining myocyte homoeostasis under conditions of increased oxidative stress.
Collapse
|
11
|
Rubino FM, Pitton M, Di Fabio D, Colombi A. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. MASS SPECTROMETRY REVIEWS 2009; 28:725-84. [PMID: 19127566 DOI: 10.1002/mas.20207] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cancer and degenerative diseases are major causes of morbidity and death, derived from the permanent modification of key biopolymers such as DNA and regulatory proteins by usually smaller, reactive molecules, present in the environment or generated from endogenous and xenobiotic components by the body's own biochemical mechanisms (molecular adducts). In particular, protein adducts with organic electrophiles have been studied for more than 30 [see, e.g., Calleman et al., 1978] years essentially for three purposes: (a) as passive monitors of the mean level of individual exposure to specific chemicals, either endogenously present in the human body or to which the subject is exposed through food or environmental contamination; (b) as quantitative indicators of the mean extent of the individual metabolic processing which converts a non-reactive chemical substance into its toxic products able to damage DNA (en route to cancer induction through genotoxic mechanisms) or key proteins (as in the case of several drugs, pesticides or otherwise biologically active substances); (c) to relate the extent of protein modification to that of biological function impairment (such as enzyme inhibition) finally causing the specific health damage. This review describes the role that contemporary mass spectrometry-based approaches employed in the qualitative and quantitative study of protein-electrophile adducts play in the discovery of the (bio)chemical mechanisms of toxic substances and highlights the future directions of research in this field. A particular emphasis is given to the measurement of often high levels of the protein adducts of several industrial and environmental pollutants in unexposed human populations, a phenomenon which highlights the possibility that a number of small organic molecules are generated in the human organism through minor metabolic processes, the imbalance of which may be the cause of "spontaneous" cases of cancer and of other degenerative diseases of still uncharacterized etiology. With all this in mind, it is foreseen that a holistic description of cellular functions will take advantage of new analytical methods based on time-integrated metabolomic measurements of a new biological compartment, the "adductome," aimed at better understanding integrated organism response to environmental and endogenous stressors.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Laboratory for Analytical Toxicology and Metabonomics, Department of Medicine, Surgery and Odontology, Università degli Studi di Milano at Ospedale San Paolo, v. Antonio di Rudinì 8, Milano I-20142, Italy.
| | | | | | | |
Collapse
|
12
|
Dolinsky VW, Chan AYM, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JRB. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 2009; 119:1643-52. [PMID: 19289642 DOI: 10.1161/circulationaha.108.787440] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Master regulators of protein synthesis such as mammalian target of rapamycin (mTOR) and p70S6 kinase contribute to left ventricular hypertrophy. These prohypertrophic pathways are modulated by a number of kinase cascades, including the hierarchical LKB1/AMP-activated protein kinase (AMPK) energy-sensing pathway. Because oxidative stress inhibits the LKB1/AMPK signaling axis to promote abnormal cell growth in cancer cells, we investigated whether oxidative stress associated with hypertension also results in the inhibition of this kinase circuit to contribute to left ventricular hypertrophy. METHODS AND RESULTS In the spontaneously hypertensive rat, a well-established genetic model of hypertension and subsequent cardiac hypertrophy, the development of left ventricular hypertrophy is associated with an increase in the electrophilic lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE). Using isolated cardiomyocytes, we show that elevated levels of HNE result in the formation of HNE-LKB1 adducts that inhibit LKB1 and subsequent AMPK activity. Consistent with inhibition of the LKB1/AMPK signaling pathway, the mTOR/p70S6 kinase system is activated, which is permissive for cardiac myocyte cell growth. Treatment of cardiomyocytes with resveratrol prevents HNE modification of the LKB1/AMPK signaling axis and blunts the prohypertrophic p70S6 kinase response. Furthermore, administration of resveratrol to spontaneously hypertensive rats results in increased AMPK phosphorylation and activity and reduced left ventricular hypertrophy. CONCLUSIONS Our data identify a molecular mechanism in the cardiomyocyte involving the oxidative stress-derived lipid peroxidation byproduct HNE and the LKB1/AMPK signaling pathway that contributes to the development of left ventricular hypertrophy. We also suggest that resveratrol may be a potential therapy for patients at risk for developing pathological cardiac hypertrophy by preventing this prohypertrophic process.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2S2, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Distinct genomic replacements from Lewis correct diastolic dysfunction, attenuate hypertension, and reduce left ventricular hypertrophy in Dahl salt-sensitive rats. J Hypertens 2008; 26:1935-43. [PMID: 18806617 DOI: 10.1097/hjh.0b013e32830a9a5e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertension and diastolic heart failure are two common cardiovascular diseases that inflict heavy morbidity and mortality, yet relatively little is understood about their pathophysiology. The identification of quantitative trait loci for blood pressure is important in unveiling the causes of polygenic hypertension. Although Dahl salt-sensitive strain is also an excellent model for the study of diastolic heart failure, virtually nothing is known about the quantitative trait loci determining diastolic heart failure. Diastolic dysfunction often represents the onset of diastolic heart failure. METHODS We first characterized the cardiac phenotype of Dahl salt-sensitive strain and normotensive Lewis control rats by echocardiography to ascertain diastolic function. We then analyzed corresponding features of four newly developed and two existing congenic strains, each of which carries a specific chromosome substitution of Dahl salt-sensitive strain by its Lewis homologue and each lowering blood pressure. RESULTS Dahl salt-sensitive strain displayed diastolic dysfunction that was rectified in two of six congenic strains, designated as positive congenic strains, which represent the first rodent models exhibiting functional normalization of diastolic dysfunction caused by naturally occurring genetic variants. The two positive congenic strains also showed a reduction in left ventricular mass. In contrast, four of six congenic strains did not change diastolic function despite their blood pressure-lowering effects. CONCLUSION Genes present in the replaced chromosome segments of the two positive congenic strains are not commonly known to affect blood pressure, diastolic function or left ventricular mass. Consequently, novel prognostic, diagnostic and therapeutic strategies for hypertensive diastolic heart failure likely emerge from this work.
Collapse
|
14
|
Burstein B, Maguy A, Clément R, Gosselin H, Poulin F, Ethier N, Tardif JC, Hébert TE, Calderone A, Nattel S. Effects of Resveratrol (trans-3,5,4′-Trihydroxystilbene) Treatment on Cardiac Remodeling following Myocardial Infarction. J Pharmacol Exp Ther 2007; 323:916-23. [PMID: 17875610 DOI: 10.1124/jpet.107.127548] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Resveratrol (RES; trans-3,5,4'-trihydroxystilbene) has been shown to improve health and slow the progression of disease in various models. Several cardioprotective mechanisms have been identified including antioxidant, anti-inflammatory, and antifibrotic actions. Each of these actions is thought to have the ability to attenuate the pathophysiology underlying the deleterious cardiac structural remodeling that results from acute myocardial infarction (MI). Therefore, we evaluated the effect of resveratrol treatment on the progression of cardiac remodeling after MI. Four groups of rats (sham, n = 6; sham + RES, n = 21; MI, n = 26; MI + RES, n = 24) were treated for 13 weeks, starting 7 days before ligation of the left anterior descending coronary artery. Serial transthoracic echocardiography revealed that resveratrol had no effect on MI-induced left-ventricular and left-atrial dilatation or reduction in left-ventricular fractional shortening. Consistent with these findings, resveratrol did not improve the deterioration of hemodynamic function or reduce infarct size at 12 weeks post-MI. Resveratrol-treated animals did, however, show preserved cardiac contractile reserve in response to dobutamine administration. Radioligand binding revealed that MI reduced beta-adrenergic receptor density. Resveratrol administration increased beta-adrenoceptor density, so that resveratrol-treated MI rats had beta-adrenoceptor densities similar to normal rats. Real-time reverse transcription-polymerase chain reaction revealed that MI-induced changes in sarcoplasmic reticulum Ca2+-ATPase 2 and transforming growth factor beta-1 expression were unaltered by resveratrol, whereas MI-induced increases in atrial natriuretic factor (ANF) and connective tissue growth factor (CTGF) expression were attenuated. Resveratrol treatment does not improve cardiac remodeling and global hemodynamic function post-MI but does preserve contractile reserve and attenuate ANF and CTGF up-regulation.
Collapse
Affiliation(s)
- Brett Burstein
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|