1
|
Zhou J, Zhou J, Liu R, Liu Y, Meng J, Wen Q, Luo Y, Liu S, Li H, Ba L, Du J. The oxidant-antioxidant imbalance was involved in the pathogenesis of chronic rhinosinusitis with nasal polyps. Front Immunol 2024; 15:1380846. [PMID: 38756779 PMCID: PMC11096511 DOI: 10.3389/fimmu.2024.1380846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Although oxidative stress is involved in the pathophysiological process of chronic rhinosinusitis with nasal polyps (CRSwNP), the specific underlying mechanism is still unclear. Whether antioxidant therapy can treat CRSwNP needs further investigation. Methods Immunohistochemistry, immunofluorescence, western blotting and quantitative polymerase chain reaction (qPCR) analyses were performed to detect the distribution and expression of oxidants and antioxidants in nasal polyp tissues. qPCR revealed correlations between oxidase, antioxidant enzymes and inflammatory cytokine levels in CRSwNP patients. Human nasal epithelial cells (HNEpCs) and primary macrophages were cultured to track the cellular origin of oxidative stress in nasal polyps(NPs) and to determine whether crocin can reduce cellular inflammation by increasing the cellular antioxidant capacity. Results The expression of NOS2, NOX1, HO-1 and SOD2 was increased in nasal epithelial cells and macrophages derived from nasal polyp tissue. Oxidase levels were positively correlated with those of inflammatory cytokines (IL-5 and IL-6). Conversely, the levels of antioxidant enzymes were negatively correlated with those of IL-13 and IFN-γ. Crocin inhibited M1 and M2 macrophage polarization as well as the expression of NOS2 and NOX1 and improved the antioxidant capacity of M2 macrophages. Moreover, crocin enhanced the ability of antioxidants to reduce inflammation via the KEAP1/NRF2/HO-1 pathway in HNEpCs treated with SEB or LPS. Additionally, we observed the antioxidant and anti-inflammatory effects of crocin in nasal explants. Conclusion Oxidative stress plays an important role in the development of CRSwNP by promoting various types of inflammation. The oxidative stress of nasal polyps comes from epithelial cells and macrophages. Antioxidant therapy may be a promising strategy for treating CRSwNP.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Department of Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University, Chengdu, China
| | - Ruowu Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yafeng Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Meng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wen
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yirui Luo
- Department of Otolaryngology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Shixi Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Luo Ba
- Department of Otolaryngology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Jintao Du
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jin L, Tan S, Fan K, Wang Y, Yu S. Research Progress of Hydrogen on Chronic Nasal Inflammation. J Inflamm Res 2023; 16:2149-2157. [PMID: 37220503 PMCID: PMC10200111 DOI: 10.2147/jir.s413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Chronic nasal mucosal inflammatory disease is a common nasal disease, which is involved by inflammatory cells and a variety of cytokines. Its main pathological features are inflammatory reaction, increased secretion, mucosal swelling and thickening of nasal cavity or paranasal sinuses.It mainly includes chronic rhinitis (divided into allergic rhinitis, non-allergic rhinitis), chronic sinusitis (divided into with nasal polyps, without nasal polyps type), etc.The main symptoms of chronic rhinitis are nasal itching, sneezing, runny nose, and nasal congestion. The main symptoms of chronic sinusitis are nasal congestion, purulent or sticky nasal discharge, headache, and reduced sense of smell. They are a type of disease with a high incidence rate and seriously affect the quality of human life.Although the etiology and treatment of this type of disease have been extensively studied, there are still many aspects that are unclear.Currently, oxidative stress is believed to be an important link in the pathogenesis of chronic inflammatory diseases of the nasal mucosa. Therefore, anti-oxidative stress is a direction of research for the treatment of chronic nasal mucosal inflammatory diseases.Hydrogen, as a medically therapeutic gas, has been extensively studied for its antioxidant, anti-inflammatory, and anti-damage properties, and has been used in the treatment of various diseases.Although there are relatively few studies on the use of hydrogen for nasal inflammation, its positive effects have also been found. This article systematically summarizes the relevant research on the use of hydrogen to improve chronic nasal mucosal inflammation, with the aim of clarifying the ideas and indicating the direction for further research in the future.
Collapse
Affiliation(s)
- Ling Jin
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Shiwang Tan
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Kai Fan
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Yang Wang
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Shaoqing Yu
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
3
|
Huang J, Xu Y. Autoimmunity: A New Focus on Nasal Polyps. Int J Mol Sci 2023; 24:ijms24098444. [PMID: 37176151 PMCID: PMC10179643 DOI: 10.3390/ijms24098444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) has long been considered a benign, chronic inflammatory, and hyperplastic disease. Recent studies have shown that autoimmune-related mechanisms are involved in the pathology of nasal polyps. Activated plasma cells, eosinophils, basophils, innate type 2 lymphocytes, mast cells, and proinflammatory cytokine in polyp tissue indicate the mobilization of innate and adaptive immune pathways during polyp formation. The discovery of a series of autoantibodies further supports the autoimmune nature of nasal polyps. Local homeostasis dysregulation, infection, and chronic inflammation may trigger autoimmunity through several mechanisms, including autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, activation or inhibition of receptors, bystander activation, dysregulation of Toll-Like Receptors (TLRs), epitope spreading, autoantigens complementarity. In this paper, we elaborated on the microbiome-mediated mechanism, abnormal host immunity, and genetic changes to update the role of autoimmunity in the pathogenesis of chronic rhinosinusitis with nasal polyps.
Collapse
Affiliation(s)
- Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
4
|
Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Bankoglu EE, Bonassi S, Boutet-Robinet E, Brunborg G, Chao C, Cooke MS, Costa C, Costa S, Dhawan A, de Lapuente J, Bo' CD, Dubus J, Dusinska M, Duthie SJ, Yamani NE, Engelward B, Gaivão I, Giovannelli L, Godschalk R, Guilherme S, Gutzkow KB, Habas K, Hernández A, Herrero O, Isidori M, Jha AN, Knasmüller S, Kooter IM, Koppen G, Kruszewski M, Ladeira C, Laffon B, Larramendy M, Hégarat LL, Lewies A, Lewinska A, Liwszyc GE, de Cerain AL, Manjanatha M, Marcos R, Milić M, de Andrade VM, Moretti M, Muruzabal D, Novak M, Oliveira R, Olsen AK, Owiti N, Pacheco M, Pandey AK, Pfuhler S, Pourrut B, Reisinger K, Rojas E, Rundén-Pran E, Sanz-Serrano J, Shaposhnikov S, Sipinen V, Smeets K, Stopper H, Teixeira JP, Valdiglesias V, Valverde M, van Acker F, van Schooten FJ, Vasquez M, Wentzel JF, Wnuk M, Wouters A, Žegura B, Zikmund T, Langie SAS, Azqueta A. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 2023; 18:929-989. [PMID: 36707722 PMCID: PMC10281087 DOI: 10.1038/s41596-022-00754-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Soňa Vodenková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Abdulhadi Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Bradford, UK
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gunnar Brunborg
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Alok Dhawan
- Centre of BioMedical Research, SGPGIMS Campus, Lucknow, India
| | - Joaquin de Lapuente
- Toxicology Department, AC MARCA Group, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Julien Dubus
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-Lez-Durance, France
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Susan J Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, Scotland
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Bevin Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isabel Gaivão
- Genetics and Biotechnology Department and Veterinary and Animal Research Centre (CECAV), Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Khaled Habas
- School of Chemistry and Bioscience, Faculty of Life Sciences, Bradford University, Bradford, UK
| | - Alba Hernández
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Oscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Siegfried Knasmüller
- Institute of Cancer Research, Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ingeborg M Kooter
- Department Circular Economy and Environment, the Netherlands Organisation for Applied Scientific Research-TNO, Utrecht, The Netherlands
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Marcelo Larramendy
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Ludovic Le Hégarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Angélique Lewies
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa
| | - Anna Lewinska
- Department of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Guillermo E Liwszyc
- Laboratory of Ecotoxicology, Faculty of Natural Sciences and Museum, National University of La Plata, La Plata, Argentina
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mugimane Manjanatha
- Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, Jefferson, AR, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola de Vallès, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciuma, Brazil
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Perugia, Italy
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rui Oliveira
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD 223268/50), Oslo, Norway
| | - Norah Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Alok K Pandey
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, The Procter & Gamble Co, Cincinnati, OH, USA
| | - Bertrand Pourrut
- Laboratoire Ecologie fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Ville Sipinen
- Norwegian Scientific Committee for Food and Environment, Oslo, Norway
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo NanoToxGen, CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Biología, Facultad de Ciencias, A Coruña, Spain
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | | | - Frederik-Jan van Schooten
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | | | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Annelies Wouters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tomas Zikmund
- Biocev, 1st Medical Faculty, Charles University, Vestec, Czech Republic
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
5
|
Lee SH, Han MS, Lee TH, Lee DB, Park JH, Lee SH, Kim TH. Hydrogen peroxide attenuates rhinovirus-induced anti-viral interferon secretion in sinonasal epithelial cells. Front Immunol 2023; 14:1086381. [PMID: 36860857 PMCID: PMC9968966 DOI: 10.3389/fimmu.2023.1086381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Background Altered innate defense mechanisms, including an imbalance between oxidants and antioxidants release, have been implicated in the pathogenesis of chronic rhinosinusitis (CRS). The aim of this study is to investigate whether oxidative stress may attenuate the secretion of anti-viral interferons in human sinonasal mucosa. Methods The levels of H2O2 in nasal secretion were increased in patients with CRS with nasal polyps, compared with that of CRS patients without nasal polyps and control subjects. Normal sinonasal epithelial cells derived from healthy subjects were cultured under an air-liquid interface. The cultured cells were infected with rhinovirus 16 (RV 16) or treated with poly (I: C), TLR3 agonist, after being pretreated with an oxidative stressor, H2O2 or antioxidant, N-acetylcysteine (NAC). Thereafter, the expression levels of type I (IFN-β) and type III (IFN-λ1 and λ2) interferons and interferon-stimulated genes (ISGs) were evaluated with RT-qPCR, ELISA, and western blot. Results The data showed that the production of type I (IFN-β) and type III (IFN-λ1 and λ2) interferons and ISGs was upregulated in cells infected with RV 16 or treated with poly (I: C). However, their up-regulated expression was attenuated in cells pretreated with H2O2, but not inhibited in cells pretreated with NAC. In line with these data, the up-regulated expression of TLR3, RIG-1, MDA5, and IRF3 was reduced in cells pretreated with H2O2, but not attenuated in cells treated with NAC. Furthermore, cells transfected with Nrf2 siRNA showed decreased secretion of anti-viral interferons whereas sulforaphane treatment enhanced the secretory capacity of antiviral interferons. Conclusions These results suggest that the production of RV16-induced antiviral interferons may be attenuated by oxidative stress.
Collapse
Affiliation(s)
- Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Mun Soo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Hoon Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Bin Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung Hyeok Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zorlu ME, Uygur KK, Yılmaz NS, Demirel ÖÖ, Aydil U, Kızıl Y, Uslu S. Evaluation of Advanced Oxidation Protein Products (AOPP) and Superoxide Dismutase (SOD) Tissue Levels in Patients with Nasal Polyps. Indian J Otolaryngol Head Neck Surg 2022; 74:4824-4830. [PMID: 36742727 PMCID: PMC9895680 DOI: 10.1007/s12070-022-03124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/10/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to eveluate levels of advanced oxidation protein products (AOPP) which are thought to increase in the polyp tissue and superoxide dismutase (SOD), an antioxidant enzyme, with using specthrophotometry in polyp tissue and healthy mucosa. 30 nasal polyp patients without inflammatory disease except for nasal polyposis were included in the study. The control group consisted of 18 patients who did not have allergy, asthma, inflammatory and granulomatous disease and planned surgery due to septum deviation and concha hypertrophy. AOPP and SOD tissue levels were measured by spectrophotometry in polyp tissue specimens taken from patients with nasal polyps and concha samples taken from patients in the control group. The mean AOPP tissue level of patients in the nasal polyposis group was statistically significantly higher than the control group. (p < 0.05). The mean SOD activity level was significantly lower in the nasal polyposis group than the control group. (p < 0.05) As a result of this study, high AOPP levels in polyp tissue and low SOD levels in polyp tissue compared to healthy nasal mucosa, oxidative stress plays an important role in nasal polyp development.
Collapse
Affiliation(s)
- Mehmet Ekrem Zorlu
- Department of Otolaryngology and Head and Neck Surgery, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Saim Cikrikci Street, Karabaglar, Izmir Izmir, Turkey
- Department of Otorhinolaryngology and Head and Neck Surgery, Gazi University School of Medicine, 06500 Beşevler, Ankara, Turkey
| | - K. Kemal Uygur
- Department of Otorhinolaryngology and Head and Neck Surgery, Gazi University School of Medicine, 06500 Beşevler, Ankara, Turkey
| | - Niyazi Samet Yılmaz
- Department of Biochemistry, Polatlı Duatepe State Hospital, Ankara, Turkey
- Department of Biochemistry, Gazi University School of Medicine, Beşevler, Ankara Turkey
| | - Özlem Özbaş Demirel
- Department of Biochemistry, Ankara Training and Research Hospital, Ankara, Turkey
| | - Utku Aydil
- Department of Otorhinolaryngology and Head and Neck Surgery, Gazi University School of Medicine, 06500 Beşevler, Ankara, Turkey
| | - Yusuf Kızıl
- Department of Otorhinolaryngology and Head and Neck Surgery, Gazi University School of Medicine, 06500 Beşevler, Ankara, Turkey
| | - Sabri Uslu
- Department of Otorhinolaryngology and Head and Neck Surgery, Gazi University School of Medicine, 06500 Beşevler, Ankara, Turkey
| |
Collapse
|
7
|
章 薇, 许 昱. [Analysis of serum Vitamin C expression level and its correlation with immune function in adult patients with chronic sinusitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:382-385;388. [PMID: 35483691 PMCID: PMC10128259 DOI: 10.13201/j.issn.2096-7993.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Objective:To investigate the expression of Vitamin C in adult patients with chronic rhinosinusitis(CRS) and its correlation with immune function. Methods:A total of 315 patients who underwent nasal endoscopic surgery at the Department of Otolaryngology Head and Neck Surgery and undergoing nasal endoscopic surgery were collected from Renmin Hospital of Wuhan University from May 2018 to June 2020, including 207 CRS patients, who were divided into CRS without nasal polyps(CRSsNP) group(110 cases) and CRS with nasal polyps(CRSwNP) group(97 cases); 108 patients with nasal septum correction were selected as the control group. All patients underwent serum Vitamin A, C, D, and E tests. Among them, 107 patients(39 in the control group, 35 in the CRSsNP group, and 33 in the CRSwNP group) were treated with serum IL-2, TNF-α, IFN-γ, IL-4, IL-5, IL-6, IL-10, etc. Detection of cytokines and immune protein levels such as IgA, IgM, IgG, C3, and C4. Results:The serum levels of Vitamin C and IL-10 in the CRSwNP group were significantly lower than those in the control group(P<0.05), and the serum C4 level was significantly higher(P<0.05); the serum Vitamin C level decreased with the level of IL-10, the decline is positively correlated, while negatively correlated with C4 levels; CRSsNP patients also had lower Vitamin C levels and higher C3 and C4 levels. Conclusion:The Vitamin C level in adult patients with CRS is lower than that in the normal population, and the level of C4 is higher; the level of IL-10 in patients with CRSwNP is lower; Vitamin C affects the immune balance and antioxidant level of patients, and in the pathogenesis of CRS and nasal polyps play a certain role.
Collapse
Affiliation(s)
- 薇 章
- 武汉大学人民医院耳鼻咽喉头颈外科(武汉,430060)Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - 昱 许
- 武汉大学人民医院耳鼻咽喉头颈外科(武汉,430060)Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- 武汉大学人民医院耳鼻咽喉头颈外科研究所Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University
| |
Collapse
|
8
|
Ramanathan M, Tharakan A, Sidhaye VK, Lane AP, Biswal S, London NR. Disruption of Sinonasal Epithelial Nrf2 Enhances Susceptibility to Rhinosinusitis in a Mouse Model. Laryngoscope 2021; 131:713-719. [PMID: 32628788 PMCID: PMC7785671 DOI: 10.1002/lary.28884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS Oxidative stress has been postulated to play an important role in chronic rhinosinusitis. Nrf2 is a transcription factor that is involved in the regulation of multiple antioxidant genes, and its function has been previously shown to be important in sinonasal inflammation. Although the sinonasal implications of whole body Nrf2-/- has been reported, the function of sinonasal epithelial expression of Nrf2 has not been studied. The primary aim of this study was to generate a mouse model that is genetically deficient in epithelial-specific Nrf2 and to understand its role in regulating sinonasal inflammation. STUDY DESIGN Basic science. METHODS An epithelial-specific Nrf2 knockout mouse was generated by crossing Krt5-cre(K5) with Nrf2flox/flox . A papain-induced model of rhinosinusitis was performed in the resulting K5 Nrf2-/- mouse. Immunohistochemistry was performed to quantify goblet cell hyperplasia. Mucosal cellular infiltrates were quantified using flow cytometry, and tissue cytokines were measured using an enzyme-linked immunosorbent assay. Lastly, the cellular source of type 2 cytokines was determined using intracellular cytokine staining. RESULTS Papain-sensitized mice lacking epithelial-specific Nrf2 demonstrate increased goblet cell hyperplasia, significant tissue eosinophilia, and statistically significant increase in mucosal IL-13 when compared to Nrf2 wild-type mice. Lastly, mucosal T cells were identified as the cellular source of IL-13. CONCLUSIONS We demonstrate enhanced severity of eosinophilic sinonasal inflammation from disruption of the epithelial-specific Nrf2 pathway. The responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to eosinophilic inflammation and may have potential as a therapeutic target for chronic rhinosinusitis. LEVEL OF EVIDENCE NA Laryngoscope, 131:713-719, 2021.
Collapse
Affiliation(s)
| | - Anuj Tharakan
- Johns Hopkins Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD
| | - Venkataramana K. Sidhaye
- Division of Pulmonary Medicine, Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Andrew P. Lane
- Johns Hopkins Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD
| | - Shyam Biswal
- Division of Pulmonary Medicine, Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nyall R. London
- Johns Hopkins Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD
| |
Collapse
|
9
|
Popov IB, Shcherbakov DA, Tyryk OB, Aleksanyan TA. [New approach to treatment of polypous rhinosinusitis]. Vestn Otorinolaringol 2020; 85:48-51. [PMID: 32628383 DOI: 10.17116/otorino20208503148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ANNOTATION Polypous rhinosinusitis (PRS) is a hardly treatable disease due to the unknown etiology and recurrent course. Standard treatment regimens are aimed at removing polyps and reducing the activity of inflammation, while little attention is paid to pathogenesis factors such as oxidative stress and mucociliary insufficiency. OBJECTIVE To improve the combined treatment of PRS. MATERIAL AND METHODS The study involved 98 patients (50 people - the study group, 48 people - control group). The structure of the comorbid pathology of patients in the control group was selected so as to correspond to the pathology in the study group. Patients of both groups received combined treatment, including surgical treatment in accordance with the FESS principles, followed by the prescription of 200 mcg mometasone furoate in each half of the nose for 6 months. The treatment of patients of the study group also included the drug N-acetylcysteine - 3 ml (300 mg) in each maxillary sinus intrasurgicaly, then 600 mg orally in the morning after meals for 6 months. Survey methods included a questionnaire survey using the SNOT-22 questionnaire, the prevalence of the polypous process was assessed by endoscopy (Claus Bachert scale) and CT (Lund-Mackay scale), and mucociliary function was also evaluated by performing a saccharin test. The results were compared with each other before surgery and after 6, 12 and 24 months after surgery. RESULTS Patients who have been taking N-acetylcysteine for a long time have a more pronounced and long-term improvement in their general condition (according to SNOT-22, an average by 1.7 times, p<0.05) compared with patients in the control group. Also, the frequency of relapses decreases and the effectiveness of surgical treatment increases (according to the Lund-Mackey scale - 5.02 in the experimental group and 10.75 in the control; according to S. Bachert - 1 point and 3 points, respectively). CONCLUSIONS Long-term use of N-acetylcysteine in PRS increases the effectiveness of surgical treatment, reduces the frequency of relapses, and also improves the general condition of patients.
Collapse
Affiliation(s)
- I B Popov
- Tyumen State Medical University of the Ministry of Health of Russia, Tyumen, Russia.,Neftyanik Hospital, Tyumen, Russia
| | - D A Shcherbakov
- Tyumen State Medical University of the Ministry of Health of Russia, Tyumen, Russia.,Neftyanik Hospital, Tyumen, Russia
| | | | - T A Aleksanyan
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology of the Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
10
|
London NR, Tharakan A, Mendiola M, Chen M, Dobzanski A, Sussan TE, Zaykaner M, Han AH, Lane AP, Sidhaye V, Biswal S, Ramanathan M. Nrf2 activation via Keap1 deletion or sulforaphane treatment reduces Ova-induced sinonasal inflammation. Allergy 2019; 74:1780-1783. [PMID: 30843229 DOI: 10.1111/all.13766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nyall R. London
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Anuj Tharakan
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Michelle Mendiola
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Mengfei Chen
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Alex Dobzanski
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Thomas E. Sussan
- Department of Environmental Health Sciences Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
| | - Michael Zaykaner
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Andrew H. Han
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Andrew P. Lane
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| | - Venkataramana Sidhaye
- Department of Environmental Health Sciences Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
| | - Shyam Biswal
- Department of Environmental Health Sciences Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
| | - Murugappan Ramanathan
- Johns Hopkins Department of Otolaryngology ‐ Head and Neck Surgery Baltimore Maryland
| |
Collapse
|
11
|
London NR, Tharakan A, Mendiola M, Sussan TE, Chen M, Dobzanski A, Lane AP, Sidhaye V, Biswal S, Ramanathan M. Deletion of Nrf2 enhances susceptibility to eosinophilic sinonasal inflammation in a murine model of rhinosinusitis. Int Forum Allergy Rhinol 2018; 9:114-119. [PMID: 30281933 DOI: 10.1002/alr.22222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Oxidative stress exacerbates lower airway diseases including asthma and chronic obstructive pulmonary disease (COPD); however, its role in upper airway (sinonasal) chronic inflammatory disorders is less clear. Nuclear erythroid 2 p45-related factor (Nrf2) is an endogenous mechanism that upon activation invokes an antioxidant response pathway via nuclear translocation and upregulation of cytoprotective genes. We sought to determine whether deletion of Nrf2 enhances susceptibility to allergic sinonasal inflammation in vivo. METHODS Nrf2-/- mice were subjected to the ovalbumin (Ova)-induced murine model of rhinosinusitis and indices of sinonasal inflammation and epithelial barrier dysfunction were assessed. RESULTS We show that deletion of Nrf2 results in enhances indices of allergen-induced sinonasal inflammation including aggravated eosinophil accumulation and goblet cell hyperplasia. An exaggerated increase in epithelial derived inflammatory cytokines including interleukin 33 (IL-33) and thymic stromal lymphopoietin (TSLP) was observed in the nasal lavage fluid and sinonasal mucosal tissue of Nrf2-/- mice. Furthermore, Nrf2-/- mice showed heightened Ova-induced barrier dysfunction as measured by serum albumin accumulation in nasal lavage fluid of mice. CONCLUSION These data show that the endogenous Nrf2 pathway limits Ova-induced sinonasal inflammation, epithelial derived inflammatory cytokine production, and epithelial barrier dysfunction in vivo and identify a potential therapeutic target in the management of allergic sinonasal inflammatory disorders. This is the first study to our knowledge which shows that Nrf2 regulates allergic inflammation in the sinonasal cavity in vivo.
Collapse
Affiliation(s)
- Nyall R London
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Anuj Tharakan
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Michelle Mendiola
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Thomas E Sussan
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mengfei Chen
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Alex Dobzanski
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Andrew P Lane
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery, Baltimore, MD
| | - Venkataramana Sidhaye
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | |
Collapse
|
12
|
Metformin and epothilone A treatment up regulate pro-apoptotic PARP-1, Casp-3 and H2AX genes and decrease of AKT kinase level to control cell death of human hepatocellular carcinoma and ovary adenocarcinoma cells. Toxicol In Vitro 2017; 47:48-62. [PMID: 29117515 DOI: 10.1016/j.tiv.2017.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
High mortality rates in ovarian and liver cancer are largely a result of resistance to currently used chemotherapy. Here, we investigated genotoxic and pro-oxidant effects of metformin (MET) and epothilone A (A) in combination with respect to apoptosis in HepG2 and SKOV-3 cancer cells. Reactive oxygen species (ROS) was studied using 2',7'-dichlorodihydrofluoresein diacetate, and samples were analyzed for the presence and absence of the N-acetylcysteine (NAC). Expression of genes involved in programmed cell death, oxidative and alkylating DNA damage was measured. Probes were analyzed in the presence of Akt or nuclear factor-κB inhibitor. Compared to either drug alone, combination of epothilone A and metformin was more potent; decreased Akt level; and elevated percentage of apoptotic cells, induced cell cycle arrest at G1 phase and elevated the sub-G1 cell population by increasing the mRNA level of caspase-3, poly (ADP-ribose) polymerase-1 and H2AX. The anticancer effect of the drug combination was partially reversed by NAC supplementation, suggesting that ROS generation is required to induce apoptosis. The present study demonstrates that novel combination such as epothilone A and MET show promise in expanding ovarian and liver cancer therapy.
Collapse
|
13
|
Akyigit A, Keles E, Etem EO, Ozercan I, Akyol H, Sakallioglu O, Karlidag T, Polat C, Kaygusuz I, Yalcin S. Genetic polymorphism of antioxidant enzymes in eosinophilic and non-eosinophilic nasal polyposis. Eur Arch Otorhinolaryngol 2016; 274:267-273. [PMID: 27515707 DOI: 10.1007/s00405-016-4259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the paranasal sinuses, and its pathophysiology is not yet precisely known. It is suggested that oxygen free radicals play an important role in the pathogenesis of nasal polyposis. This study aimed to identify genetic polymorphisms of superoxide dismutase (SOD 2), catalase (CAT), and inducible nitric oxide synthase (iNOS) enzymes in eosinophilic CRSwNP and non-eosinophilic CRSwNP patients; the study also aimed to evaluate the effect of genetic polymorphism of antioxidant enzymes on CRSwNP etiopathogenesis. One hundred thirty patients, who received endoscopic sinus surgery due to CRSwNP, and 188 control individuals were included in this study. Nasal polyp tissues were divided into two groups histopathologically as eosinophilic CRSwNP and non-eosinophilic CRSwNP. Venous blood samples were taken from the patient and control groups. Polymorphisms in the Ala16Va1 gene, which is the most common variation of SOD-2 gene, and 21 A/T polymorphisms in catalase gene were evaluated with the restriction fragment length polymorphism method and -277 C/T polymorphism in the iNOS gene was evaluated with the DNA sequencing method. The GG genotype distribution for the (-277) A/G polymorphism in the iNOS gene was a statistically significant difference between eosinophilic CRSwNP and control groups (p < 0.05). The CC genotype distribution for the SOD2 A16V (C/T) polymorphism was not statistically significant in all groups (p > 0.05). The TT genotype distribution for the A/T polymorphism in catalase gene at position -21 was statistically significant differences in eosinophilic CRSwNP and control groups (p < 0.05). Increased free oxygen radical levels, which are considered effective factors in the pathogenesis of CRSwNP, can occur due to genetic polymorphism of enzymes in the antioxidant system and genetic polymorphism of antioxidant enzymes in eosinophilic CRSwNP patients might contribute to the pathophysiology.
Collapse
Affiliation(s)
- Abdulvahap Akyigit
- Department of ENT, Elazig Education and Research Hospital, Elazig, Turkey. .,Department of Otorhinolaryngology, Elazig Training and Research Hospital, 23119, Elazig, Turkey.
| | - Erol Keles
- Department of ENT, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ebru Onalan Etem
- Department of Medical Biology, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ibrahim Ozercan
- Department of Pathology, Firat University Faculty of Medicine, Elazig, Turkey
| | - Hatice Akyol
- Department of Pathology, Elazig Education and Research Hospital, Elazig, Turkey
| | - Oner Sakallioglu
- Department of ENT, Elazig Education and Research Hospital, Elazig, Turkey
| | - Turgut Karlidag
- Department of ENT, Firat University Faculty of Medicine, Elazig, Turkey
| | - Cahit Polat
- Department of ENT, Elazig Education and Research Hospital, Elazig, Turkey
| | - Irfan Kaygusuz
- Department of ENT, Firat University Faculty of Medicine, Elazig, Turkey
| | - Sinasi Yalcin
- Department of ENT, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|