1
|
Challal S, Skiba A, Langlois M, Esguerra CV, Wolfender JL, Crawford AD, Skalicka-Woźniak K. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116740. [PMID: 37315641 DOI: 10.1016/j.jep.2023.116740] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.
Collapse
Affiliation(s)
- Soura Challal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Adrianna Skiba
- Department of Natural Product Chemistry, Medical University of Lublin, Poland
| | - Mélanie Langlois
- Luxembourg Centre for Systems Biomedicine (LCSB), Belval, Luxembourg
| | - Camila V Esguerra
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway; Institute for Orphan Drug Discovery, Bremerhavener Innovations- und Gründerzentum (BRIG), Bremerhaven, Germany
| | | |
Collapse
|
2
|
Aboulthana WM, Ibrahim NES, Hassan AK, Bassaly WK, Abdel-Gawad H, Taha HA, Ahmed KA. The hepato- and neuroprotective effect of gold Casuarina equisetifolia bark nano-extract against Chlorpyrifos-induced toxicity in rats. J Genet Eng Biotechnol 2023; 21:158. [PMID: 38040926 PMCID: PMC10692062 DOI: 10.1186/s43141-023-00595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The bark of Casuarina equisetifolia contains several active phytoconstituents that are suitable for the biosynthesis of gold nanoparticles (Au-NPs). These nanoparticles were subsequently evaluated for their effectiveness in reducing the toxicity induced by Chlorpyrifos (CPF) in rats. RESULTS Various hematological and biochemical measurements were conducted in this study. In addition, markers of oxidative stress and inflammatory reactions quantified in liver and brain tissues were evaluated. Histopathological examinations were performed on both liver and brain tissues. Furthermore, the native electrophoretic protein and isoenzyme patterns were analyzed, and the relative expression levels of apoptotic genes in these tissues were determined. The hematological and biochemical parameters were found to be severely altered in the group injected with CPF. However, the administration of Au-C. equisetifolia nano-extract normalized these levels in all treated groups. The antioxidant system markers showed a significant decrease (P ≤ 0.05) in conjunction with elevated levels of inflammatory and fibrotic markers in both liver and brain tissues of the CPF-injected group. In comparison, the pre-treated group exhibited a reduction in these markers when treated with the nano-extract, as opposed to the CPF-injected group. Additionally, the nano-extract mitigated the severity of histopathological lesions induced by CPF in both liver and brain tissues, with a higher ameliorative effect observed in the pre-treated group. Electrophoretic assays conducted on liver and brain tissues revealed that the nano-extract prevented the qualitative changes induced by CPF in the pre-treated group. Furthermore, the molecular assay demonstrated a significant increase in the relative expression of apoptotic genes in the CPF-injected rats. Although the nano-extract ameliorated the relative expression of these genes compared to the CPF-injected group, it was unable to restore their values to normal levels. CONCLUSION Our results demonstrated that the nano-extract effectively reduced the toxicity induced by CPF in rats at hematological, biochemical, histopathological, physiological, and molecular levels, in the group pre-treated with the nano-extract.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Amgad Kamal Hassan
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Wagdy Khalil Bassaly
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Researches Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hamdy Ahmed Taha
- Applied Organic Chemistry Department, Chemical Industries Researches Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Amar SK, Donohue KB, Gust KA. Cellular and molecular responses to ethyl-parathion in undifferentiated SH-SY5Y cells provide neurotoxicity pathway indicators for organophosphorus impacts. Toxicol Sci 2022; 191:285-295. [PMID: 36458919 PMCID: PMC9936206 DOI: 10.1093/toxsci/kfac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
High-fidelity nonanimal screening methods are needed that can rapidly and accurately characterize organophosphorus compound (OP)-induced neurotoxicity. Herein, the efficacy of human neuroblastoma cell line (SH-SY5Y) to provide molecular and cellular responses characteristic of the OP neurotoxicity pathway was investigated in response to the OP-model compound, ethyl-parathion. Undifferentiated SH-SY5Y cells were exposed to ethyl-parathion for 30 min at 0 (control), 0.5, 2.5, 5, 10, and 25 µg/ml. Dose-responsive reductions in cell viability were observed with significant reductions at ≥10 µg/ml. From these results, ethyl-parathion exposures of 0 (control), 5, and 10 µg/ml were selected to examine bioindicators underlying the OP neurotoxicity pathway including: reactive oxygen species (ROS), cell membrane peroxidation, mitochondrial membrane potential (MMP), and apoptosis. Ethyl-parathion elicited highly significant increases in ROS relative to controls (p < .01) at both exposure concentrations, confirmed using N-acetyl cysteine (NAC) as a ROS quencher which alleviated ROS increases. A response characteristic of increased ROS exposure, cell membrane-lipid peroxidation, significantly increased (p < .05) at the highest ethyl-parathion exposure (10 µg/ml). As a likely consequence of membrane-lipid peroxidation, ethyl-parathion-induced reductions in MMP were observed with significant effects at 10 µg/ml, reducing MMP by 58.2%. As a culmination of these cellular-damage indicators, apoptosis progression was investigated by phosphatidylserine translocation where ethyl-parathion-induced dose-responsive, highly significant (p < .01) increases at both 5 and 10 µg/ml. Overall, the mechanistic responses observed in undifferentiated SH-SY5Y cells corresponded with in vivo mammalian results demonstrating potential for this nonanimal model to provide accurate OP neurotoxicology screening.
Collapse
Affiliation(s)
- Saroj K Amar
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA,US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, USA
| | - Keri B Donohue
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, USA
| | - Kurt A Gust
- To whom correspondence should be addressed at US Army, Engineer Research and Development Center, Environmental Laboratory EPP, 3909 Halls Ferry Rd, Vicksburg, MS 39180, USA. E-mail:
| |
Collapse
|
4
|
Elamin AAE, Deniz OG, Kaplan S. The effects of Gum Arabic, curcumin (Curcuma longa) and Garcinia kola on the rat hippocampus after electromagnetic field exposure: A stereological and histological study. J Chem Neuroanat 2022; 120:102060. [PMID: 34915150 DOI: 10.1016/j.jchemneu.2021.102060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
The present study was designed to focus on the potential effects of the electromagnetic field (EMF) emitted by mobile phones on hippocampal pyramidal neurons and to investigate the role of curcumin (Cur), Garcinia kola (GK) and Gum Arabic (GA) in reducing these adverse effects. Fifty-four 12-week-old male Wistar albino rats were used. These were randomly divided into nine groups of six rats each. The control, Cur, GK and GA groups were not exposed to EMF, while the sham group was kept in the EMF exposure system without being exposed to EMF. The EMF+Cur, EMF+GK, EMF+GA and EMF groups were exposed to 900 MHz EMF for one hour a day for 28 days. The number of the pyramidal neurons in the cornu ammonis (CA) of the hippocampus was estimated using the optical fractionator technique. Histopathological changes were evaluated under light and electron microscopes. The activities of the superoxide dismutase (SOD) and catalase (CAT) enzymes were also evaluated from serum samples. Significant levels of CAT and SOD activities were observed in the EMF group compared to the control group (p = 0.000; p = 0.001) respectively. Microscopic observations showed that dark-coloured nuclei with unclear neuron boundaries were frequently observed in the EMF group. Stereological data analysis revealed a significant decrease in the CA's total number of pyramidal neurons in the EMF group compared to the control and sham groups (p = 0.000; p = 0.000) respectively. Cur and GK were observed to provide significant protection in the EMF+Cur and EMF+GK groups compared to the EMF group (p = 0.000; p = 0.000) respectively. No significant difference was observed between the EMF+GA group and EMF group (p = 0.989). Exposure to 900 MHz EMF causes severe alterations in the number and structure of hippocampal pyramidal neurons. Cur and GK exhibit a protective effect against these deleterious effects, but GA showed no protective effect.
Collapse
Affiliation(s)
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Suleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
5
|
Curcumin Decreases Hippocampal Neurodegeneration and Nitro-Oxidative Damage to Plasma Proteins and Lipids Caused by Short-Term Exposure to Ozone. Molecules 2021; 26:molecules26134075. [PMID: 34279415 PMCID: PMC8272084 DOI: 10.3390/molecules26134075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Neurodegeneration is the consequence of harmful events affecting the nervous system that lead to neuronal death. Toxic substances, including air pollutants, are capable of inducing neurodegeneration. Ozone (O3) is the most oxidative toxic pollutant. O3 reacts with cellular components and forms reactive oxygen and nitrogen species, triggering nitro-oxidative damage during short-term exposure. Curcumin (CUR) is a natural phenolic molecule bearing well-documented antioxidant and anti-inflammatory biological activities in diverse experimental models. The aim of this work was to evaluate the effect of preventive dietary administration of CUR against hippocampal neurodegeneration and nitro-oxidative damage caused by short-term exposure to O3. Eighty Wistar male rats were distributed into four experimental groups, twenty rats each: intact control; CUR dietary supplementation without O3 exposure; exposure to 0.7 ppm of O3; and exposed to O3 with CUR dietary supplementation. Five rats from each group were sacrificed at 1, 2, 4, and 8 h of exposure. The CUR dose was 5.6 mg/kg and adjusted according to food consumption. CUR significantly decreased oxidative damage to plasma lipids and proteins, as well as neurodegeneration in CA1 and CA3 hippocampal regions. Concluding, CUR proved effective protection in decreasing neurodegeneration in the hippocampus and prevented systemic oxidative damage.
Collapse
|
6
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 2020; 72:769-782. [PMID: 32458309 DOI: 10.1007/s43440-020-00112-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system, and are important players in both brain injury and neurodegenerative disease. Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), the major active component of turmeric, belongs to the curcuminoid family that was originally isolated from the plant Curcuma longa. Several studies suggest that curcumin may have a beneficial impact on the brain pathology and aging. These effects are due to curcumin's antioxidant, free-radical scavenging, and anti-inflammatory activity. In light of this, our current review aims to discuss the role of astrocytes as essential players in neurodegenerative diseases and suggest that curcumin is capable of direct inhibition of astrocyte activity with a particular focus on its effects in Alexander disease, Alzheimer's disease, ischemia stroke, spinal cord injury, Multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Samira Eghbaliferiz
- Department of Pharmacognosy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Biochemistry, Safety, Pharmacological Activities, and Clinical Applications of Turmeric: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7656919. [PMID: 32454872 PMCID: PMC7238329 DOI: 10.1155/2020/7656919] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Turmeric (Curcuma longa L.) is a popular natural drug, traditionally used for the treatment of a wide range of diseases. Its root, as its most popular part used for medicinal purposes, contains different types of phytochemicals and minerals. This review summarizes what is currently known on biochemistry, safety, pharmacological activities (mechanistically), and clinical applications of turmeric. In short, curcumin is considered as the fundamental constituent in ground turmeric rhizome. Turmeric possesses several biological activities including anti-inflammatory, antioxidant, anticancer, antimutagenic, antimicrobial, antiobesity, hypolipidemic, cardioprotective, and neuroprotective effects. These reported pharmacologic activities make turmeric an important option for further clinical research. Also, there is a discussion on its safety and toxicity.
Collapse
|
9
|
Mandal M, Jaiswal P, Mishra A. Curcumin loaded nanoparticles reversed monocrotophos induced motor impairment and memory deficit: Role of oxidative stress and intracellular calcium level. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Dietary Curcumin Prevented Astrocytosis, Microgliosis, and Apoptosis Caused by Acute and Chronic Exposure to Ozone. Molecules 2019; 24:molecules24152839. [PMID: 31387223 PMCID: PMC6696019 DOI: 10.3390/molecules24152839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Ozone is the most oxidant tropospheric pollutant gas, causing damage through the formation of reactive oxygen and nitrogen species. Reactive species induce the nuclear factor-kappa B (NF-κB) activation leading to neuroinflammation characterized by astrocytosis, microgliosis, and apoptotic cell death. There is interest in evaluating the pharmacological activity of natural antioxidants to confer neuroprotection against the damage caused by ozone in highly polluted cities. Curcumin has been proven to exert a protective action in the central nervous system (CNS) of diverse experimental models, with no side effects. The aim of this work is to evaluate the effect of curcumin in a preventive and therapeutic manner against the astrocytosis, microgliosis, and apoptosis induced by ozone in rat hippocampus. Fifty Wistar rats were distributed into five experimental groups: The intact control, curcumin fed control, ozone-exposed group, and the preventive and therapeutic groups receiving the curcumin supplementation while exposed to ozone. Ozone caused astrocytosis and microgliosis, as well as apoptosis in the hippocampus. Meanwhile, curcumin was able to decrease the activation of microglia and astrocytes, and apoptotic cell death in both periods of exposure. Therefore, we propose that curcumin could be used as a molecule capable of counteracting the damage caused by ozone in the CNS.
Collapse
|
11
|
Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience 2019; 406:1-21. [DOI: 10.1016/j.neuroscience.2019.02.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
|
12
|
Kim J, Kim J, Huang Z, Goo N, Bae HJ, Jeong Y, Park HJ, Cai M, Cho K, Jung SY, Bae SK, Ryu JH. Theracurmin Ameliorates Cognitive Dysfunctions in 5XFAD Mice by Improving Synaptic Function and Mitigating Oxidative Stress. Biomol Ther (Seoul) 2019; 27:327-335. [PMID: 31006181 PMCID: PMC6513190 DOI: 10.4062/biomolther.2019.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
As the elderly population is increasing, Alzheimer’s disease (AD) has become a global issue and many clinical trials have been conducted to evaluate treatments for AD. As these clinical trials have been conducted and have failed, the development of new theraphies for AD with fewer adverse effects remains a challenge. In this study, we examined the effects of Theracurmin on cognitive decline using 5XFAD mice, an AD mouse model. Theracurmin is more bioavailable form of curcumin, generated with submicron colloidal dispersion. Mice were treated with Theracurmin (100, 300 and 1,000 mg/kg) for 12 weeks and were subjected to the novel object recognition test and the Barnes maze test. Theracurmin-treated mice showed significant amelioration in recognition and spatial memories compared those of the vehicle-treated controls. In addition, the antioxidant activities of Theracurmin were investigated by measuring the superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels. The increased MDA level and decreased SOD and GSH levels in the vehicle-treated 5XFAD mice were significantly reversed by the administration of Theracurmin. Moreover, we observed that Theracurmin administration elevated the expression levels of synaptic components, including synaptophysin and post synaptic density protein 95, and decreased the expression levels of ionized calcium-binding adapter molecule 1 (Iba-1), a marker of activated microglia. These results suggest that Theracurmin ameliorates cognitive function by increasing the expression of synaptic components and by preventing neuronal cell damage from oxidative stress or from the activation of microglia. Thus, Theracurmin would be useful for treating the cognitive dysfunctions observed in AD.
Collapse
Affiliation(s)
- Jihyun Kim
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehoon Kim
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zhouchi Huang
- College of Pharmacy and Integrated Research Institute of Parmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Nayeon Goo
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jung Bae
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yongwoo Jeong
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Jae Park
- Departments of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mudan Cai
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungnam Cho
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo Yun Jung
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Parmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jong Hoon Ryu
- Departments of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea.,Departments of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Li J, Li X, Bi H, Li B. The MEK/ERK/CREB signaling pathway is involved in atrazine induced hippocampal neurotoxicity in Sprague Dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:673-681. [PMID: 30580161 DOI: 10.1016/j.ecoenv.2018.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Atrazine (ATR) is a commonly used artificial synthetic herbicide world-wide, which has been implicated as a potential threat to human health. Previous studies have demonstrated that exposure to ATR affects hippocampus-dependent learning and memory in rodents, but the exact molecular mechanism remains to be elucidated. In this study, we investigated the effect of ATR on the hippocampus of postnatal day 35 male Sprague Dawley (SD) rats administered doses of either 10 or 100 mg/kg body weight (BW)/day of ATR for a period of 30 days. A Morris water maze (MWM) test revealed that ATR treatment impaired memory performance in the spatial probe test, especially amongst the high-dose group. Moreover, analysis by electron microscopy showed that hippocampal neuron ultrastructure in the dentate gyrus (DG) and cornu ammonis 1 (CA1) sub-regions was impaired in the ATR-treated groups. Finally, a downregulation in the mRNA and protein expression levels of members of the MEK/ERK/CREB pathway and downstream factors brain-derived neurotrophic factor (BDNF) and Zif268 was observed in hippocampal tissue following ATR treatment. Taken together, these results suggest that developmental exposure to ATR is able to induce functional and morphological lesions in the hippocampus of SD rats, and that the MEK/ERK/CREB signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Jianan Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China
| | - Xueting Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China
| | - Haoran Bi
- Department of Epidemiology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, 157 Baojian Road, Nan Gang District, Harbin 150081, China.
| |
Collapse
|
14
|
Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A. Effects of Curcumin on Microglial Cells. Neurotox Res 2019; 36:12-26. [PMID: 30949950 DOI: 10.1007/s12640-019-00030-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
Microglia are innate immune system cells which reside in the central nervous system (CNS). Resting microglia regulate the homeostasis of the CNS via phagocytic activity to clear pathogens and cell debris. Sometimes, however, to protect neurons and fight invading pathogens, resting microglia transform to an activated-form, producing inflammatory mediators, such as cytokines, chemokines, iNOS/NO and cyclooxygenase-2 (COX-2). Excessive inflammation, however, leads to damaged neurons and neurodegenerative diseases (NDs), such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Curcumin is a phytochemical isolated from Curcuma longa. It is widely used in Asia and has many therapeutic properties, including antioxidant, anti-viral, anti-bacterial, anti-mutagenic, anti-amyloidogenic and anti-inflammatory, especially with respect to neuroinflammation and neurological disorders (NDs). Curcumin is a pleiotropic molecule that inhibits microglia transformation, inflammatory mediators and subsequent NDs. In this mini-review, we discuss the effects of curcumin on microglia and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Morgayn I Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
15
|
Abdel-Diam MM, Samak DH, El-Sayed YS, Aleya L, Alarifi S, Alkahtani S. Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3659-3665. [PMID: 30535736 DOI: 10.1007/s11356-018-3907-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The ubiquitous use of diazinon (DZN, an organophosphorus insecticide) has increased the probability of occupational, public, and the ecosystem exposure; these exposures are linked to negative health outcomes. The flavonoids curcumin (CUR) and quercetin (QUE) exert significant anti-inflammatory and antioxidant activities against toxicants, including insecticides. However, it is unclear whether their combination enhances these activities. Therefore, 40 albino rat were divided randomly into the CTR, DZN, CUR + DZN, QUE + DZN, and CUR + QUE + DZN groups, which are treated daily via gavage for 28 days. DZN induced neurohepatic inflammation and oxidative damage, which was confirmed by significant (P < 0.05) induction of aspartate and alanine aminotransferases, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase, and tumor necrosis factor-α and inhibition of acetylcholinesterase activity. Furthermore, the liver and brain of DZN-exposed rats exhibited a notable elevation in MDA level paralleled with reduction in antioxidant molecules, i.e., glutathione, superoxide dismutase, glutathione peroxidase, and catalase. The pretreatment of DZN-intoxicated rats with CUR or QUE substantially mitigated neurohepatic dysfunction and inflammation and improved liver and brain antioxidant status with reducing oxidative stress levels. Furthermore, pretreatment with CUR + QUE synergistically restored the neurohepatic dysfunction and oxidative levels to approximately normal levels. The overall results suggested that CUR or QUE inhibits DZN-mediated neurohepatic toxicity via their favorable anti-inflammatory, antioxidant, and free radical-scavenging activities. Moreover, both QUE and CUR may be mutual adjuvant agents against oxidative stress neurohepatic damages.
Collapse
Affiliation(s)
- Mohamed M Abdel-Diam
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Dalia H Samak
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Saud Alarifi
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Curcumin Exerted Neuroprotection against Ozone-Induced Oxidative Damage and Decreased NF- κB Activation in Rat Hippocampus and Serum Levels of Inflammatory Cytokines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9620684. [PMID: 30693069 PMCID: PMC6332875 DOI: 10.1155/2018/9620684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Ozone is a harmful tropospheric pollutant, causing the formation of reactive oxygen and nitrogen species that lead to oxidative damage in living beings. NF-κB can be activated in response to oxidative damage, inducing an inflammatory response. Nowadays, there are no reliable results that consolidate the use of antioxidants to protect from damage caused by ozone, particularly in highly polluted cities. Curcumin has a strong antioxidant activity and is a potent inhibitor of NF-κB activation with no side effects. The aim of this study is to evaluate the effect of curcumin in preventive and therapeutic approaches against oxidative damage, NF-κB activation, and the rise in serum levels of IL-1β and TNF-α induced by acute and chronic exposure to ozone in rat hippocampus. One hundred male Wistar rats were distributed into five groups; the intact control, curcumin-fed control, the ozone-exposed group, and the preventive and therapeutic groups. These last two groups were exposed to ozone and received food supplemented with curcumin. Lipid peroxidation was determined by spectrophotometry, and protein oxidation was evaluated by immunodetection of carbonylated proteins and densitometry analysis. Activation of NF-κB was assessed by electrophoretic mobility shift assay (EMSA), and inflammatory cytokines (IL-1β and TNF-α) were determined by ELISA. Curcumin decreased NF-κB activation and serum levels of inflammatory cytokines as well as protein and lipid oxidation, in both therapeutic and preventive approaches. Curcumin has proven to be a phytodrug against the damage caused by the environmental exposure to ozone.
Collapse
|
17
|
Developmental Exposure to Atrazine Impairs Spatial Memory and Downregulates the Hippocampal D1 Dopamine Receptor and cAMP-Dependent Signaling Pathway in Rats. Int J Mol Sci 2018; 19:ijms19082241. [PMID: 30065202 PMCID: PMC6121906 DOI: 10.3390/ijms19082241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/21/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Atrazine (ATR) is a widely used herbicide that has been implicated as a neurotoxicant. Recent experimental evidence has implicated that ATR exposure also appears to have adverse effects on the hippocampus, which is a critical region for learning and memory. The aim of the present study was to investigate the effects of ATR toxicity on the hippocampus of developing rats. Postnatal day (PND) 28 male Sprague⁻Dawley (SD) rats received ATR by oral gavage at 10 or 100 mg/kg bodyweight (BW) for 30 consecutive days and were sacrificed at PND 90. Behavioral test results indicated that spatial learning and memory were affected by ATR treatment. Electron microscopy analysis showed that the ultrastructures of the hippocampus were altered in the ATR-treated groups, as compared to the control group. Additionally, ATR treatment impacted dopamine and D1 dopamine receptor (D1DR) contents through different mechanisms. Reduced mRNA and protein expression levels of factors involved in the cAMP-dependent signaling pathway were also detected. These results indicate that the developmental exposure of rats to ATR can damage the hippocampus and spatial memory, which might be related to the downregulation of expression levels of the D1DR and its downstream signaling pathway.
Collapse
|
18
|
Ahmed T, Banerjee BD. HSP27 modulates survival signaling in endosulfan-exposed human peripheral blood mononuclear cells treated with curcumin. Hum Exp Toxicol 2015; 35:695-704. [PMID: 26242398 DOI: 10.1177/0960327115597986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endosulfan, a well-known organochlorine pesticide, induces apoptosis and depletion of reduced glutathione (GSH) in human peripheral blood mononuclear cells (PBMC). Thus, for the amelioration of its effect, antioxidant and antiapoptotic potential of curcumin was evaluated. For ascertaining the attenuating effect of curcumin, various biochemical indices of cell damage such as cytotoxicity, oxidative stress, apoptosis (phosphatidylserine externalization, DNA fragmentation, and cytochrome c) in human PBMC was evaluated following endosulfan exposure (0-100 µM). To assess the role of HSP27 on endosulfan-induced apoptosis, the expression of HSP27 was examined. Curcumin (25 µM) increased cell viability significantly. As evident from the restoration of GSH, antiapoptotic potential was directly proportional to their antioxidant nature of curcumin. The present study indicates that the beneficial effect of curcumin on endosulfan-induced cytotoxicity is related to the induced synthesis of HSP27, emphasizing its antioxidant and therapeutic potential as well as underscoring the mechanism of pesticide-induced toxicity at cellular level. Taken together, these findings suggest that curcumin protects against endosulfan-induced immunotoxicity in human PBMC by attenuating apoptosis.
Collapse
Affiliation(s)
- T Ahmed
- School of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, India
| | - B D Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, Delhi, India
| |
Collapse
|
19
|
Jagetia GC, Rajanikant GK. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation. Antioxidants (Basel) 2015; 4:25-41. [PMID: 26785336 PMCID: PMC4665571 DOI: 10.3390/antiox4010025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.
Collapse
|
20
|
Kaur S, Singh S, Chahal KS, Prakash A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can J Physiol Pharmacol 2014; 92:893-911. [DOI: 10.1139/cjpp-2014-0113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.
Collapse
Affiliation(s)
- Shamsherjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
- Punjab Technical University, Kapurthala 144601, Punjab, India
| | - Satinderpal Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Karan Singh Chahal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
21
|
Protective Effect of Curcumin against the Liver Toxicity Caused by Propanil in Rats. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:853697. [PMID: 27437486 PMCID: PMC4897076 DOI: 10.1155/2014/853697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/28/2014] [Accepted: 08/19/2014] [Indexed: 11/24/2022]
Abstract
We investigated the protective effects of curcumin on propanil-induced alterations in biochemical indices in blood and liver of male Wistar rats. The study consisted of four treatment groups, with six animals each, designated as control, propanil (20mg/kg), curcumin(50 mg/kg), and curcumin (50 mg/kg) + propanil (20 mg/kg). Rats were administered their respective doses orally, every other day, for 28 days. Propanil administration elicited significant (P < 0.001) increases in plasma aspartate aminotransferase and alkaline phosphatase activities, by 24% and 56%, respectively, compared to the control. Treatment with propanil elevated bilirubin, creatinine, and total cholesterol levels in rats, but these were not significant relative to controls. Administration of propanil to rats significantly (P < 0.001) increased lipid peroxidation levels. However, catalase activity, vitamin C, and reduced glutathione levels were significantly reduced. Exposure to propanil did not produce any significant changes in packed cell volume, neutrophils, and leukocyte counts. The supplementation of curcumin attenuated the adverse effects of propanil intoxication by reducing lipid peroxidation levels and restored the levels of serum enzymes and reduced glutathione. The present study showed that propanil increased oxidative stress and altered some biochemical parameters in the rats but curcumin could afford some protection to attenuate propanil-induced toxicity in the liver.
Collapse
|
22
|
Pyun CW, Kim JH, Han KH, Hong GE, Lee CH. In vivo protective effects of dietary curcumin and capsaicin against alcohol-induced oxidative stress. Biofactors 2014; 40:494-500. [PMID: 24899543 DOI: 10.1002/biof.1172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023]
Abstract
BALB/c mice were exposed to chronic alcohol-induced oxidative stress by intragastric administration of excessive ethanol (5 g/kg body weight) during the 24-week period. Curcumin (0.016%) or capsaicin (0.014%) containing diets were fed with or without ethanol treatment in four groups. There was no statistically significant difference in the behavioral test between all groups during the experimental period. Only one alcohol-treated mouse fed a normal diet showed a behavioral disorder and died before the raising period was completed. There were no effects on the activity of catalase and superoxide dismutase in the brain. However, curcumin or capsaicin treatment prevented alcohol-induced decline in brain weight. Furthermore, the levels of malondialdehyde and phosphatidylcholine hydroperoxide were significantly reduced in the brain tissue extract. The findings of this study demonstrated and confirmed the antioxidant effect of curcumin and capsaicin against alcohol-induced oxidative stress, and they suggest a direction for further studies.
Collapse
Affiliation(s)
- Chang-Won Pyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Nam SM, Choi JH, Yoo DY, Kim W, Jung HY, Kim JW, Yoo M, Lee S, Kim CJ, Yoon YS, Hwang IK. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J Med Food 2014; 17:641-9. [PMID: 24712702 DOI: 10.1089/jmf.2013.2965] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- Sung Min Nam
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University , Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:801418. [PMID: 24454990 PMCID: PMC3885319 DOI: 10.1155/2013/801418] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 11/15/2013] [Indexed: 12/11/2022]
Abstract
Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.
Collapse
|
25
|
Kiasalari Z, Roghani M, Khalili M, Rahmati B, Baluchnejadmojarad T. Antiepileptogenic effect of curcumin on kainate-induced model of temporal lobe epilepsy. PHARMACEUTICAL BIOLOGY 2013; 51:1572-1578. [PMID: 24004105 DOI: 10.3109/13880209.2013.803128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Temporal lobe epilepsy (TLE) is an intractable neurological disorder. Curcumin is the bioactive component of turmeric with anti-epileptic and neuroprotective potential. OBJECTIVE The beneficial effect of curcumin on the intrahippocampal kainate-induced model of TLE was investigated. MATERIALS AND METHODS Rats were divided into sham, curcumin-pretreated sham, kainate and curcumin-pretreated kainate groups. The rat model of TLE was induced by unilateral intrahippocampal injection of 4 μg of kainate. Rats received curcumin p.o. at a dose of 100 mg/kg/d starting 1 week before the surgery. Seizure activity (SE) and oxidative stress-related markers were measured. Furthermore, the Timm index for evaluation of mossy fiber sprouting (MFS) and number of Nissl-stained neurons were quantified. RESULTS All rats in the kainate group had SE, while 28.5% of rats showed seizures in the curcumin-pretreated kainate group. Malondialdehyde and nitrite and nitrate levels significantly increased in the kainate group (p < 0.01 and p < 0.05, respectively), and curcumin significantly lowered these parameters (p < 0.05). Superoxide dismutase activity significantly decreased in the kainate group (p < 0.05) and curcumin did not improve it. Rats in the kainate group showed a significant reduction of neurons in Cornu Ammonis 1 (CA1) (p < 0.05), CA3 (p < 0.005) and hilar (p < 0.01) regions, and curcumin significantly prevented these changes (p < 0.05-0.005). The Timm index significantly increased in the kainate group (p < 0.005), and curcumin significantly lowered this index (p < 0.01). DISCUSSION AND CONCLUSION Curcumin pretreatment can attenuate seizures, lower some oxidative stress markers, and prevent hippocampal neuronal loss and MFS in the kainate-induced model of TLE.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University , Tehran , Iran
| | | | | | | | | |
Collapse
|
26
|
Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y, Chen W, Yu S, Yi D, Jin Z. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med 2013; 65:667-679. [PMID: 23880291 DOI: 10.1016/j.freeradbiomed.2013.07.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022]
Abstract
Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yan Lin
- Department of Scientific Research, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhenxing Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Juanjuan Yan
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an 710032, China
| | - Ning Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Song Zhang
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yue Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|