1
|
Sun M, Chen WM, Wu SY, Zhang J. Protective Effects Against Dementia Undergo Different Statin Type, Intensity, and Cumulative Dose in Older Adult Type 2 Diabetes Mellitus Patients. J Am Med Dir Assoc 2024; 25:470-479.e1. [PMID: 38128583 DOI: 10.1016/j.jamda.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study investigated the relationship between statin use and dementia risk in older adults with type 2 diabetes (T2DM). It also assessed the impact of various statin types, dosage intensity, and cumulative doses on dementia risk. DESIGN Employing the inverse probability of treatment weighting (IPTW) Cox hazards model, this research explored the influence of statin utilization on dementia incidence. SETTING AND PARTICIPANTS The study included older adult T2DM patients aged 60 years or older who received statins (case group) and those who did not (control group) during the follow-up period. METHODS The IPTW Cox hazards model quantified the association between statin use and dementia incidence. Subgroup analyses investigated different statin types, usage intensity, and cumulative dose-dependent relationships with dementia risk, measured by adjusted hazard ratios (aHRs) with corresponding 95% CIs. RESULTS Statin users experienced a significant reduction in dementia risk (aHR: 0.47, 95% CI: 0.46-0.48). Subgroup analysis using IPTW Cox regression revealed varying dementia incidence reductions among users of different statin types, with aHRs (95% CIs) ranging from 0.09 to 0.69. Multivariate analyses unveiled a dose-dependent relationship, showing reduced dementia incidence based on cumulative defined daily doses (cDDDs) per year. The corresponding aHRs (95% CIs) were 0.20 to 0.72 across quartiles 4 to 1 of cDDD-years, with a significant trend (P < .001). The optimal daily statin use was 0.88 defined daily doses (DDDs), associated with the lowest dementia risk. CONCLUSIONS AND IMPLICATIONS Statins significantly reduced dementia risk in older adult T2DM patients. Higher cumulative defined daily doses (cDDD-years) were linked to more substantial risk reductions. This research underscores the clinical benefits of statin use in preventing dementia in this population and calls for further investigation into the underlying mechanisms. It also raises the possibility of influencing policy decisions to manage dementia risk in this vulnerable group.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab 2021; 33:1911-1925. [PMID: 34562355 DOI: 10.1016/j.cmet.2021.09.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
High levels of cholesterol are generally considered to be associated with atherosclerosis. In the past two decades, however, a number of studies have shown that excess cholesterol accumulation in various tissues and organs plays a critical role in the pathogenesis of multiple diseases. Here, we summarize the effects of excess cholesterol on disease pathogenesis, including liver diseases, diabetes, chronic kidney disease, Alzheimer's disease, osteoporosis, osteoarthritis, pituitary-thyroid axis dysfunction, immune disorders, and COVID-19, while proposing that excess cholesterol-induced toxicity is ubiquitous. We believe this concept will help broaden the appreciation of the toxic effect of excess cholesterol, and thus potentially expand the therapeutic use of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Disease, Jinan, Shandong 250062, China.
| |
Collapse
|
3
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
4
|
Dulka K, Szabo M, Lajkó N, Belecz I, Hoyk Z, Gulya K. Epigenetic Consequences of in Utero Exposure to Rosuvastatin: Alteration of Histone Methylation Patterns in Newborn Rat Brains. Int J Mol Sci 2021; 22:ijms22073412. [PMID: 33810299 PMCID: PMC8059142 DOI: 10.3390/ijms22073412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed for Western blot or immunohistochemical analyses. Several antibodies that recognize different methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific markers in the newborn brains demonstrated that prenatal RST administration did not affect the composition and cell type ratios as compared to the controls. Prenatal RST administration did, however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover, significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2% and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone methylation marks on tissue sections indicated that most of the increase at these sites belonged to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect neuronal differentiation and development.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - Melinda Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - István Belecz
- Department of Medical Biology, University of Szeged, 6720 Szeged, Hungary;
| | - Zsófia Hoyk
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary;
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
- Correspondence:
| |
Collapse
|
5
|
Rahman SO, Hussain S, Alzahrani A, Akhtar M, Najmi AK. Effect of statins on amyloidosis in the rodent models of Alzheimer's disease: Evidence from the preclinical meta-analysis. Brain Res 2020; 1749:147115. [PMID: 32918868 DOI: 10.1016/j.brainres.2020.147115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Previous studies have shown contrasting results in determining efficacy of statins against amyloid beta accumulation. The aim of this study was to assess the impact of statin in AD. METHOD We searched PubMed and Embase for relevant preclinical studies. A meta-analysis of the statin's efficacy on amyloidosis and cognitive impairment was performed. Also, stratified analysis was performed on several covariates including the type of statin used, gender and age of rodents and duration of statin therapy, to account for the reported heterogeneity in the results obtained. The study protocol was registered in PROSPERO (CRD42018102557). RESULT 17 studies including 22 comparisons, containing a sample size of 446 rodents, participated in the meta-analysis of statin's effect on overall Aβ deposition. Although the effect of statin on overall Aβ deposition was found to be protective (p < 0.00001) but as we categorized the efficacy of statin on different Aβ species (soluble and insoluble Aβ40/42) and Aβ plaque load, we found that significance in the protection decreased. A stratified meta-analysis demonstrated a significant role in the duration of statin supplements and rodent's age on the heterogeneity of the results. Statin administered to rodents for the longest duration (>6 months) and younger rodents (<6 months of age) demonstrated significant efficacy of statin on Aβ deposition. CONCLUSION Statin showed reduction in Aβ level but stratified analysis revealed that this effect of statin was dependent on rodent's age and duration of the treatment.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Ahmad SI, Ali G, Muhammad T, Ullah R, Umar MN, Hashmi AN. Synthetic β-hydroxy ketone derivative inhibits cholinesterases, rescues oxidative stress and ameliorates cognitive deficits in 5XFAD mice model of AD. Mol Biol Rep 2020; 47:9553-9566. [PMID: 33211296 DOI: 10.1007/s11033-020-05997-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a progressive, chronic and age-related neurodegenerative disorder that affects millions of people across the world. In pursuit of new anti-AD remedies, 2-[Hydroxy-(4-nitrophenyl)methyl]-cyclopentanone (NMC), a β hydroxyl ketone derivative was studied to explore its neuroprotective potentials against AD. The in-vitro AChE and BuChE enzymes inhibition were evaluated by Ellman protocol and antioxidant potentials of NMC by DPPH free radical scavenging assay. In-vivo behavioral studies were performed in the transgenic 5xFAD mice model of AD using shallow water maze (SWM), Paddling Y-Maze (PYM), elevated plus maze (EPM) and balance beam (BB) tests. Also, the ex-vivo cholinesterase inhibitory effects of NMC and histopathological analysis of amyloid-β plaques were determined in the frontal cortex and hippocampal regions of the mice brain. NMC exhibited significant in vitro anti-cholinesterase enzyme potentials with an IC50 value of 67 μg/ml against AChE and 96 μg/ml against BuChE respectively. Interestingly, the activities of AChE and BuChE enzymes were also significantly lower in the cortex and hippocampus of NMC-treated groups. Also, in the DPPH assessment, NMC displayed substantial antioxidant properties with an IC50 value observed as 171 μg/ml. Moreover, histopathological analysis via thioflavin-s staining displayed significantly lower plaques depositions in the cortex and hippocampus region of NMC-treated mice groups. Furthermore, SWM, PYM, EPM, and BB behavioral analysis indicated that NMC enhanced spatial learning, memory consolidation and improved balance performance. Altogether, to the best of our knowledge, we believe that NMC may serve as a potential and promising anti-cholinesterase, antioxidant and neuroprotective agent against AD.
Collapse
Affiliation(s)
- Syed Ilyas Ahmad
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Tahir Muhammad
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 620 University Ave, Toronto, ON, M5G 2C1, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | | | - Aisha Nasir Hashmi
- Translational Genomics Laboratory, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45600, Pakistan
| |
Collapse
|
7
|
Xuan K, Zhao T, Qu G, Liu H, Chen X, Sun Y. The efficacy of statins in the treatment of Alzheimer's disease: a meta-analysis of randomized controlled trial. Neurol Sci 2020; 41:1391-1404. [PMID: 31930449 DOI: 10.1007/s10072-020-04243-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a common type of dementia, which has caused heavy global economic and health burden, and the using of statins to treat AD has caused widely debated. The purpose of this meta-analysis is to explore the effect of statins in the treatment of Alzheimer's disease. METHODS Studies were retrieved by searching PubMed, Embase, Cochrane library, OvisdSP, Web of Science, Chinese Nation Knowledge Infrastructure (CNKI) and Chinese Biomedical Database (CBM) databases before March 31, 2019. We extracted the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognitive (ADAS-Cog), Neuropsychiatric Inventory (NPI), Activities of Daily Living (ADL) scale score, and other information. The pooled Weighted Mean Difference (WMD) and their 95% confidence intervals (95% CI) were calculated with random effect model or fixed random effect model. RESULTS A total of nine randomized controlled trials were included that contained 1489 patients; of them, 742 patients in the statins group, 747 patients in the control group. There were nine studies used the MMSE scale, five studies used the ADAS-Cog scale, four studies used the NPI scale, and six studies used the ADL scale. Meta-analysis of the nine studies that reported the MMSE scale scores indicated that there is no significant effect of statins as compared with control group (the pooled WMD = 1.09, 95% CI, - 0.00, 2.18, p = 0.05, I2 = 87.9%). Meta-analysis of the five studies that reported the ADAS-Cog scale scores also indicated that there is no significant effect of statins as compared with control group (the pooled WMD = - 0.16, 95% CI, - 2.67, 2.36, p = 0.90, I2 = 80.1%). Meta-analysis of the four studies that reported the NPI scale scores indicated that treatment with statins could slow the rise in the NPI scale scores (the pooled WMD = - 1.16, 95% CI, - 1.88, - 0.44, p = 0.002, I2 = 45.4%). Meta-analysis of the six studies that reported the ADL scale scores indicated that treatment with statins could improve patients' daily living ability (the pooled WMD = - 4.06, 95% CI, - 6.88, - 1.24, p = 0.005, I2 = 86.7%). Results of subgroup analysis indicated that the use of statins in the short term (≤ 12 months) associated with the change of the MMSE scale scores (the pooled WMD = 1.78, 95% CI, 0.53, 3.04, p = 0.005, I2 = 79.6%). Sensitivity analysis and publication bias test were both negative, and the results were relatively reliable and stable. CONCLUSION Statins used in AD patients had beneficial effects on the scores of MMSE scale in the short term (≤ 12 months), and statins could slow the deterioration of neuropsychiatric status and significantly improve activities of daily living ability in AD patients, but statins did not show an advantage in the change of the ADAS-Cog scale scores.
Collapse
Affiliation(s)
- Kun Xuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tianming Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Center for Evidence-Based Practice, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
Fanaee-Danesh E, Gali CC, Tadic J, Zandl-Lang M, Carmen Kober A, Agujetas VR, de Dios C, Tam-Amersdorfer C, Stracke A, Albrecher NM, Manavalan APC, Reiter M, Sun Y, Colell A, Madeo F, Malle E, Panzenboeck U. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer's disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2224-2245. [PMID: 31055081 DOI: 10.1016/j.bbadis.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is characterized by overproduction, impaired clearance, and deposition of amyloid-β peptides (Aβ) and connected to cholesterol homeostasis. Since the blood-brain barrier (BBB) is involved in these processes, we investigated effects of the retinoid X receptor agonist, bexarotene (Bex), and the peroxisome proliferator-activated receptor α agonist and antioxidant, astaxanthin (Asx), on pathways of cellular cholesterol metabolism, amyloid precursor protein processing/Aβ production and transfer at the BBB in vitro using primary porcine brain capillary endothelial cells (pBCEC), and in 3xTg AD mice. Asx/Bex downregulated transcription/activity of amyloidogenic BACE1 and reduced Aβ oligomers and ~80 kDa intracellular 6E10-reactive APP/Aβ species, while upregulating non-amyloidogenic ADAM10 and soluble (s)APPα production in pBCEC. Asx/Bex enhanced Aβ clearance to the apical/plasma compartment of the in vitro BBB model. Asx/Bex increased expression levels of ABCA1, LRP1, and/or APOA-I. Asx/Bex promoted cholesterol efflux, partly via PPARα/RXR activation, while cholesterol biosynthesis/esterification was suppressed. Silencing of LRP-1 or inhibition of ABCA1 by probucol reversed Asx/Bex-mediated effects on levels of APP/Aβ species in pBCEC. Murine (m)BCEC isolated from 3xTg AD mice treated with Bex revealed elevated expression of APOE and ABCA1. Asx/Bex reduced BACE1 and increased LRP-1 expression in mBCEC from 3xTg AD mice when compared to vehicle-treated or non-Tg treated mice. In parallel, Asx/Bex reduced levels of Aβ oligomers in mBCEC and Aβ species in brain soluble and insoluble fractions of 3xTg AD mice. Our results suggest that both agonists exert beneficial effects at the BBB by balancing cholesterol homeostasis and enhancing clearance of Aβ from cerebrovascular endothelial cells.
Collapse
Affiliation(s)
- Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Alexandra Carmen Kober
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Vicente Roca Agujetas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Cristina de Dios
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Department of Biomedicine, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | | | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
10
|
Pose E, Trebicka J, Mookerjee RP, Angeli P, Ginès P. Statins: Old drugs as new therapy for liver diseases? J Hepatol 2019; 70:194-202. [PMID: 30075229 DOI: 10.1016/j.jhep.2018.07.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
In addition to lowering cholesterol levels, statins have pleiotropic effects, particularly anti-inflammatory, antiangiogenic, and antifibrotic, that may be beneficial in some chronic inflammatory conditions. Statins have only recently been investigated as a potential treatment option in chronic liver diseases because of concerns related to their safety in patients with impaired liver function. A number of experimental studies in animal models of liver diseases have shown that statins decrease hepatic inflammation, fibrogenesis and portal pressure. In addition, retrospective cohort studies in large populations of patients with cirrhosis and pre-cirrhotic conditions have shown that treatment with statins, with the purpose of decreasing high cholesterol levels, was associated with a reduced risk of disease progression, hepatic decompensation, hepatocellular carcinoma development, and death. These beneficial effects persisted after adjustment for disease severity and other potential confounders. Finally, a few randomised controlled trials have shown that treatment with simvastatin decreases portal pressure (two studies) and mortality (one study). Statin treatment was generally well tolerated but a few patients developed severe side effects, particularly rhabdomyolysis. Despite these promising beneficial effects, further randomised controlled trials in large series of patients with hard clinical endpoints should be performed before statins can be recommended for use in clinical practice.
Collapse
Affiliation(s)
- Elisa Pose
- Liver Unit, Hospital Clinic, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Germany; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Institute for Bioengineering of Catalonia, Barcelona, Spain
| | | | - Paolo Angeli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Pere Ginès
- Liver Unit, Hospital Clinic, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain; Centro de Investigaciones Biomédicas en Red Enfermedades Hepáticas y Digestivas, Catalonia, Spain.
| |
Collapse
|
11
|
Abstract
Population-based clinic-pathological studies have established that the most common pathological substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer's disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these could be just two frequent unrelated comorbidities in the elderly, epidemiological research has reinforced the idea that mid-life (age <65 years) vascular risk factors increase the risk of late-onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such as leisure activities, physical exercise, and Mediterranean diet are considered protective against AD. Remarkably, several large population-based longitudinal epidemiological studies have recently indicated that the incidence and prevalence of dementia might be decreasing in Western countries. Although it remains unclear whether these positive trends are attributable to neuropathologically definite AD versus CVID, based on these epidemiological data it has been estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss the current evidence about modifiable risk factors for AD derived from epidemiological, preclinical, and interventional studies, and analyze the opportunities for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Shakour N, Bianconi V, Pirro M, Barreto GE, Hadizadeh F, Sahebkar A. In silico evidence of direct interaction between statins and β‐amyloid. J Cell Biochem 2018; 120:4710-4715. [DOI: 10.1002/jcb.27761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/06/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine University of Perugia Perugia Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine University of Perugia Perugia Italy
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
13
|
Carroll CB, Wyse RKH. Simvastatin as a Potential Disease-Modifying Therapy for Patients with Parkinson's Disease: Rationale for Clinical Trial, and Current Progress. JOURNAL OF PARKINSONS DISEASE 2018; 7:545-568. [PMID: 29036837 PMCID: PMC5676977 DOI: 10.3233/jpd-171203] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many now believe the holy grail for the next stage of therapeutic advance surrounds the development of disease-modifying approaches aimed at intercepting the year-on-year neurodegenerative decline experienced by most patients with Parkinson’s disease (PD). Based on recommendations of an international committee of experts who are currently bringing multiple, potentially disease-modifying, PD therapeutics into long-term neuroprotective PD trials, a clinical trial involving 198 patients is underway to determine whether Simvastatin provides protection against chronic neurodegeneration. Statins are widely used to reduce cardiovascular risk, and act as competitive inhibitors of HMG-CoA reductase. It is also known that statins serve as ligands for PPARα, a known arbiter for mitochondrial size and number. Statins possess multiple cholesterol-independent biochemical mechanisms of action, many of which offer neuroprotective potential (suppression of proinflammatory molecules & microglial activation, stimulation of endothelial nitric oxide synthase, inhibition of oxidative stress, attenuation of α-synuclein aggregation, modulation of adaptive immunity, and increased expression of neurotrophic factors). We describe the biochemical, physiological and pharmaceutical credentials that continue to underpin the rationale for taking Simvastatin into a disease-modifying trial in PD patients. While unrelated to the Simvastatin trial (because this conducted in patients who already have PD), we discuss conflicting epidemiological studies which variously suggest that statin use for cardiovascular prophylaxis may increase or decrease risk of developing PD. Finally, since so few disease-modifying PD trials have ever been launched (compared to those of symptomatic therapies), we discuss the rationale of the trial structure we have adopted, decisions made, and lessons learnt so far.
Collapse
Affiliation(s)
- Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | | |
Collapse
|
14
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Wang S, Zhang X, Zhai L, Sheng X, Zheng W, Chu H, Zhang G. Atorvastatin Attenuates Cognitive Deficits and Neuroinflammation Induced by Aβ 1-42 Involving Modulation of TLR4/TRAF6/NF-κB Pathway. J Mol Neurosci 2018; 64:363-373. [PMID: 29417448 DOI: 10.1007/s12031-018-1032-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory damage aggravates the progression of Alzheimer's disease (AD) and the mechanism of inflammatory damage may provide a new therapeutic window for the treatment of AD. Toll-like receptor 4 (TLR4)-mediated signaling can regulate the inflammatory process. However, changes in TLR4 signaling pathway induced by beta-amyloid (Aβ) have not been well characterized in brain, especially in the hippocampus. In the present study, we explored the changes of TLR4 signaling pathway induced by Aβ in the hippocampus and the role of atorvastatin in modulating this signal pathway and neurotoxicity induced by Aβ. Experimental AD rats were induced by intrahippocampal injection of Aβ1-42, and the rats were treated with atorvastatin by oral gavage from 3 weeks before to 6 days after injections of Aβ1-42. To determine the spatial learning and memory ability of rats in the AD models, Morris water maze (MWM) was performed. The expression of the glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule-1 (Iba-1), TLR4, tumor necrosis factor receptor-associated factor 6 (TRAF6), and nuclear transcription factor (NF)-κB (NF-κB) protein in the hippocampus was detected by immunohistochemistry and Western blot. Compared to the control group, increased expression of TLR4, TRAF6, and NF-κB was observed in the hippocampus at 7 days post-injection of Aβ (P < 0.01). Furthermore, atorvastatin treatment significantly ameliorated cognitive deficits of rats, attenuated microglia and astrocyte activation, inhibited apoptosis, and down-regulated the expression of TLR4, TRAF6, and NF-κB, both at the mRNA and protein levels (P < 0.01). TLR4 signaling pathway is thus actively involved in Aβ-induced neuroinflammation and atorvastatin treatment can exert the therapeutic benefits for AD via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liuyu Zhai
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Xiaona Sheng
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China.
| | - Weina Zheng
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Hongshan Chu
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Guohua Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
16
|
Cheng BF, Gao YX, Lian JJ, Guo DD, Liu TT, Xie YF, Wang L, Yang HJ, Wang M, Feng ZW. Anti-inflammatory effects of pitavastatin in interleukin-1β-induced SW982 human synovial cells. Int Immunopharmacol 2017; 50:224-229. [DOI: 10.1016/j.intimp.2017.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/09/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
17
|
Faghihi N, Mohammadi MT. Anticonvulsant and Antioxidant Effects of Pitavastatin Against Pentylenetetrazol-Induced Kindling in Mice. Adv Pharm Bull 2017; 7:291-298. [PMID: 28761832 PMCID: PMC5527244 DOI: 10.15171/apb.2017.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose: The pleiotropic effects of statins (antioxidant and anti-inflammation) have been reported by previous studies. Therefore, we aimed to determine whether pitavastatin has protective effects against pentylenetetrazol (PTZ)-induced kindling in mice and also whether pitavastatin improves the brain antioxidant capacity and attenuates the oxidative injuries in kindled mice.
Methods: Twenty-four mice were randomly divided into four groups (each group n=6); control, PTZ-kindling and PTZ-kindled rats treated with pitavastatin (1&4 mg/kg). PTZ kindling seizures were induced by repetitive intraperitoneal injections of PTZ (65 mg/kg) every 48 hours till day twenty-one. Animals received daily oral pitavastatin for twenty-one days. Latency, score and duration of the seizures were recorded. The activities of catalase (CAT) ad superoxide dismutase (SOD), and likewise the contents of malondialdehyde (MDA) and nitrate were assessed in the brains of all rats.
Results: There was a progressive reduction in latency of the kindled rats in the next injections of PTZ. Pitavastatin reduced this value (latency) particularly at higher dose. Seizures duration and score also decreased in treatment groups. SOD and CAT activities significantly decreased in PTZ-kindling group by 62% and 64%, respectively, but pitavastatin did not significantly change the SOD and CAT activities. Brain MDA and nitrate significantly increased in PTZ-kindling group by 53% and 30%, respectively. Pitavastatin at higher dose significantly decreased the MDA and nitrate contents of PTZ-kindling rats by 45% and 32%, respectively.
Conclusion: Our findings revealed that pitavastatin can improve the behavioral expression of the PTZ-kindling rats and attenuate the seizure-induced oxidative/nitrosative damage.
Collapse
Affiliation(s)
- Nastaran Faghihi
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Atorvastatin Protects from Aβ 1-40-Induced Cell Damage and Depressive-Like Behavior via ProBDNF Cleavage. Mol Neurobiol 2016; 54:6163-6173. [PMID: 27709490 DOI: 10.1007/s12035-016-0134-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Intracerebroventricular (icv) amyloid-beta (Aβ)1-40 infusion to mice has been demonstrated to cause neurotoxicty and depressive-like behavior and it can be used to evaluate antidepressant and neuroprotective effect of drugs. Atorvastatin is a widely used statin that has demonstrated antidepressant-like effect in predictable animal behavioral models and neuroprotective effect against Aβ1-40 infusion. The purpose of this study was to determine the effect of in vivo atorvastatin treatment against Aβ1-40-induced changes in mood-related behaviors and biochemical parameters in ex vivo hippocampal slices from mice. Atorvastatin treatment (10 mg/kg, p.o., once a day for seven consecutive days) abolished depressive-like and anhedonic-like behaviors induced by Aβ1-40 (400 pmol/site, icv) infusion. Aβ1-40-induced hippocampal cell damage was reversed by atorvastatin treatment. Aβ1-40 infusion decreased glutamate uptake in hippocampal slices, and atorvastatin did not altered it. Glutamine synthetase activity was not altered by any treatment. Atorvastatin also increased hippocampal mature brain-derived neurotrophic factor (mBDNF)/precursor BDNF (proBDNF) ratio, suggesting an increase of proBDNF to mBDNF cleavage. Accordingly, increased tissue-type plasminogen activator (tPA) and p11 genic expression were observed in hippocampus of atorvastatin-treated mice. Atorvastatin displays antidepressant-like and neuroprotective effects against Aβ1-40-induced toxicity, and these effects may involve tPA- and p11-mediated cleavage of proBDNF to mBDNF.
Collapse
|
19
|
Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and Cognitive failure in Alzheimer's Disease: Benefits of Cardiovascular Therapy. Cell Mol Neurobiol 2016; 36:219-32. [PMID: 26993506 PMCID: PMC11482419 DOI: 10.1007/s10571-015-0285-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada.
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
20
|
Zhao L, Chen T, Wang C, Li G, Zhi W, Yin J, Wan Q, Chen L. Atorvastatin in improvement of cognitive impairments caused by amyloid β in mice: involvement of inflammatory reaction. BMC Neurol 2016; 16:18. [PMID: 26846170 PMCID: PMC4743318 DOI: 10.1186/s12883-016-0533-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/16/2016] [Indexed: 11/23/2022] Open
Abstract
Background The production of inflammatory cytokines resulting from amyloid β (Aβ) is associated with the initiation of Alzheimer’s disease (AD). Atorvastatin (ATV) has been reported to improve AD, however, it is unclear how the anti-inflammatory mechanism is linked with its protection against the impairment of spatial cognitive function in AD. The present study was designed to explore what mechanism was possibly involved in the anti-inflammatory pathway in regard to the ATV treatment of AD. Methods We used an AD model induced by the administration of Aβ25–35 in male C57BL/6 mice and an in vitro culture system to study the protective effects of ATV on the spatial cognitive deficits, hippocampal long-term potentiation (LTP) impairment and inflammatory reaction. Results The intragastric administration of ATV (5 mg/kg) in Aβ25–35-treated mice significantly ameliorated the spatial cognitive deficits and prevented the LTP impairment in hippocampal CA1. The increased Iba-1 positive cells and inflammatory components in the hippocampus were reduced after the ATV treatment. The anti-inflammatory and LTP protection of ATV were abolished using the replenishment of farnesyl pyrophosphate by the administration of farnesol (FOH). The hippocampal slices culture showed Aβ25–35-induced neurotoxicity in the absence of the presence of ATV. Treatment with ATV (0.5, 1, 2.5 μmol/L) dose-dependently prevented the cell damage in hippocampus induced by Aβ25–35. Conclusion The administration of ATV ameliorated the cognitive deficits, depressed the inflammatory responses, improved the LTP impairment, and prevents Aβ25-35-induced neurotoxicity in cultured hippocampal neurons. These protective functions of ATV involved the pathway of reducing farnesyl pyrophosphate (FPP).
Collapse
Affiliation(s)
- Liandong Zhao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.,Department of Neurology, The Second Hospital of Huaian, Huaian, Jiangsu, 223002, China
| | - Tingting Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Chonghui Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guoxi Li
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Wenhui Zhi
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jun Yin
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China. .,Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China.
| |
Collapse
|
21
|
Kata D, Földesi I, Feher LZ, Hackler L, Puskas LG, Gulya K. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells. Neuroscience 2015; 314:47-63. [PMID: 26633263 DOI: 10.1016/j.neuroscience.2015.11.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
Microglial activation results in profound morphological, functional and gene expression changes that affect the pro- and anti-inflammatory mechanisms of these cells. Although statins have beneficial effects on inflammation, they have not been thoroughly investigated for their ability to affect microglial functions. Therefore the effects of rosuvastatin, one of the most commonly prescribed drugs in cardiovascular therapy, either alone or in combination with bacterial lipopolysaccharide (LPS), were profiled in pure microglial cultures derived from the forebrains of 18-day-old rat embryos. To reveal the effects of rosuvastatin on a number of pro- and anti-inflammatory mechanisms, we performed morphometric, functional and gene expression studies relating to cell adhesion and proliferation, phagocytosis, pro- and anti-inflammatory cytokine (IL-1β, tumor necrosis factor α (TNF-α) and IL-10, respectively) production, and the expression of various inflammation-related genes, including those related to the above morphological parameters and cellular functions. We found that microglia could be an important therapeutic target of rosuvastatin. In unchallenged (control) microglia, rosuvastatin inhibited proliferation and cell adhesion, but promoted microspike formation and elevated the expression of certain anti-inflammatory genes (Cxcl1, Ccl5, Mbl2), while phagocytosis or pro- and anti-inflammatory cytokine production were unaffected. Moreover, rosuvastatin markedly inhibited microglial activation in LPS-challenged cells by affecting both their morphology and functions as it inhibited LPS-elicited phagocytosis and inhibited pro-inflammatory cytokine (IL-1β, TNF-α) production, concomitantly increasing the level of IL-10, an anti-inflammatory cytokine. Finally, rosuvastatin beneficially and differentially affected the expression of a number of inflammation-related genes in LPS-challenged cells by inhibiting numerous pro-inflammatory and stimulating several anti-inflammatory genes. Since the microglia could elicit pro-inflammatory responses leading to neurodegeneration, it is important to attenuate such mechanisms and promote anti-inflammatory properties, and develop prophylactic therapies. By beneficially regulating both pro- and anti-inflammatory microglial functions, rosuvastatin may be considered as a prophylactic agent in the prevention of inflammation-related neurological disorders.
Collapse
Affiliation(s)
- D Kata
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - I Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | - K Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
22
|
Strom BL, Schinnar R, Karlawish J, Hennessy S, Teal V, Bilker WB. Statin Therapy and Risk of Acute Memory Impairment. JAMA Intern Med 2015; 175:1399-405. [PMID: 26054031 PMCID: PMC5487843 DOI: 10.1001/jamainternmed.2015.2092] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE Reports on the association between statins and memory impairment are inconsistent. OBJECTIVE To assess whether statin users show acute decline in memory compared with nonusers and with users of nonstatin lipid-lowering drugs (LLDs). DESIGN, SETTING, AND PARTICIPANTS Using The Health Improvement Network database during January 13, 1987, through December 16, 2013, a retrospective cohort study compared 482,543 statin users with 2 control groups: 482,543 matched nonusers of any LLDs and all 26,484 users of nonstatin LLDs. A case-crossover study of 68,028 patients with incident acute memory loss evaluated exposure to statins during the period immediately before the outcome vs 3 earlier periods. Analysis was conducted from July 7, 2013, through January 15, 2015. RESULTS When compared with matched nonusers of any LLDs (using odds ratio [95% CI]), a strong association was present between first exposure to statins and incident acute memory loss diagnosed within 30 days immediately following exposure (fully adjusted, 4.40; 3.01-6.41). This association was not reproduced in the comparison of statins vs nonstatin LLDs (fully adjusted, 1.03; 0.63-1.66) but was also present when comparing nonstatin LLDs with matched nonuser controls (adjusted, 3.60; 1.34-9.70). The case-crossover analysis showed little association. CONCLUSIONS AND RELEVANCE Both statin and nonstatin LLDs were strongly associated with acute memory loss in the first 30 days following exposure in users compared with nonusers but not when compared with each other. Thus, either all LLDs cause acute memory loss regardless of drug class or the association is the result of detection bias rather than a causal association.
Collapse
Affiliation(s)
- Brian L Strom
- Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey2Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center fo
| | - Rita Schinnar
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelm
| | - Jason Karlawish
- Penn Memory Center, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia5Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Sean Hennessy
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelm
| | - Valerie Teal
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Warren B Bilker
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia3Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelm
| |
Collapse
|
23
|
Mendoza-Oliva A, Ferrera P, Fragoso-Medina J, Arias C. Lovastatin Differentially Affects Neuronal Cholesterol and Amyloid-β Production in vivo and in vitro. CNS Neurosci Ther 2015; 21:631-41. [PMID: 26096465 DOI: 10.1111/cns.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/08/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS Epidemiological and experimental studies indicate that high cholesterol may increase susceptibility to age-associated neurodegenerative disorders, such as Alzheimer's disease (AD). Thus, it has been suggested that statins, which are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), may be a useful therapeutic tool to diminish the risk of AD. However, several studies that analyzed the therapeutic benefits of statins have yielded conflicting results. Herein, we investigated the role of lovastatin on neuronal cholesterol homeostasis and its effects on amyloid β protein production in vivo and in vitro. METHODS AND RESULTS Lovastatin effects were analyzed in vitro using differentiated human neuroblastoma cells and in vivo in a lovastatin-fed rat model. We demonstrated that lovastatin can differentially affect the expression of APP and Aβ production in vivo and in vitro. Lovastatin-induced HMGCR inhibition was detrimental to neuronal survival in vitro via a mechanism unrelated to the reduction of cholesterol. We found that in vivo, dietary cholesterol was associated with increased Aβ production in the cerebral cortex, and lovastatin was not able to reduce cholesterol levels. However, lovastatin induced a remarkable increase in the mature form of the sterol regulatory element-binding protein-2 (SREBP-2) as well as its target gene HMGCR, in both neuronal cells and in the brain. CONCLUSIONS Lovastatin modifies the mevalonate pathway without affecting cholesterol levels in vivo and is able to reduce Aβ levels only in vitro.
Collapse
Affiliation(s)
- Aydé Mendoza-Oliva
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Patricia Ferrera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Jorge Fragoso-Medina
- Departmento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| |
Collapse
|
24
|
Abstract
INTRODUCTION Activated microglia are associated with the progression of Alzheimer's disease (AD), as well as many other neurodegenerative diseases of aging. Microglia are therefore key targets for therapeutic intervention. AREAS COVERED β-amyloid (Aβ) deposits activate the complement system, which, in turn, stimulates microglia to release neurotoxic materials. Research has focused primarily on anti-inflammatory agents to temper this toxic effect. More recently there has been a focus on converting microglia from this M1 state to an M2 state in which the toxic effects are reduced and their phagocytic activity toward Aβ enhanced. Studies in transgenic mice have suggested a number of possible anti-inflammatory approaches but they may not always be a good model. An example is vaccination with antibodies to Aβ, which is effective in mouse models, but has repeatedly failed in clinical trials. Biomarker studies indicate that AD commences many years prior to clinical onset. EXPERT OPINION A hopeful approach to a disease-modifying treatment of AD is to administer agents that inhibit the inflammatory stimulation of microglia or successfully convert them to an M2 state. However, any such treatment must be started early in the disease.
Collapse
Affiliation(s)
- Patrick L McGeer
- University of British Columbia, Kinsmen Laboratory of Neurological Research , 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3 , Canada
| | | |
Collapse
|
25
|
Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K, Ikeda Y, Kamiya T, Abe K. Telmisartan Reduces Progressive Accumulation of Cellular Amyloid Beta and Phosphorylated Tau with Inflammatory Responses in Aged Spontaneously Hypertensive Stroke Resistant Rat. J Stroke Cerebrovasc Dis 2014; 23:2580-2590. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 12/20/2022] Open
|
26
|
Abe K. [111th Scientific Meeting of the Japanese Society of Internal Medicine: Educational Lecture: 10. Dementia prevention by best medical treatment]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2014; 103:2292-2299. [PMID: 27522792 DOI: 10.2169/naika.103.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
27
|
The impact of cholesterol, DHA, and sphingolipids on Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2013:814390. [PMID: 24575399 PMCID: PMC3929518 DOI: 10.1155/2013/814390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ). Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.
Collapse
|
28
|
Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K, Yamashita T, Hishikawa N, Matsuzono K, Ikeda Y, Kamiya T, Abe K. Long-term Effect of Telmisartan on Alzheimer’s Amyloid Genesis in SHR-SR After tMCAO. Transl Stroke Res 2014; 6:107-15. [DOI: 10.1007/s12975-013-0321-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
|
29
|
Barrios V, Escobar C, Zamorano JL. Searching the place of pitavastatin in the current treatment of patients with dyslipidemia. Expert Rev Cardiovasc Ther 2014; 11:1597-612. [DOI: 10.1586/14779072.2013.844546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|