1
|
Auzenbergs M, Maure C, Kang H, Clark A, Brady O, Sahastrabuddhe S, Abbas K. Programmatic considerations and evidence gaps for chikungunya vaccine introduction in countries at risk of chikungunya outbreaks: Stakeholder analysis. PLoS Negl Trop Dis 2024; 18:e0012075. [PMID: 38574163 PMCID: PMC11020901 DOI: 10.1371/journal.pntd.0012075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/16/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Chikungunya can have longstanding effects on health and quality of life. Alongside the recent approval of the world's first chikungunya vaccine by the US Food and Drug Administration in November 2023 and with new chikungunya vaccines in the pipeline, it is important to understand the perspectives of stakeholders before vaccine rollout. Our study aim is to identify key programmatic considerations and gaps in Evidence-to-Recommendation criteria for chikungunya vaccine introduction. We used purposive and snowball sampling to identify global, national, and subnational stakeholders from outbreak prone areas, including Latin America, Asia, and Africa. Semi-structured in-depth interviews were conducted and analysed using qualitative descriptive methods. We found that perspectives varied between tiers of stakeholders and geographies. Unknown disease burden, diagnostics, non-specific disease surveillance, undefined target populations for vaccination, and low disease prioritisation were critical challenges identified by stakeholders that need to be addressed to facilitate rolling out a chikungunya vaccine. Future investments should address these challenges to generate useful evidence for decision-making on new chikungunya vaccine introduction.
Collapse
Affiliation(s)
- Megan Auzenbergs
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Clara Maure
- International Vaccine Institute, Seoul, South Korea
| | - Hyolim Kang
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew Clark
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oliver Brady
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Kaja Abbas
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
3
|
CXCL10 Signaling Contributes to the Pathogenesis of Arthritogenic Alphaviruses. Viruses 2020; 12:v12111252. [PMID: 33147869 PMCID: PMC7692144 DOI: 10.3390/v12111252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.
Collapse
|
4
|
Foresto RD, Santos DWDCL, Hazin MAA, Leyton ATZ, Tenório NC, Viana LA, Cristelli MP, Silva Júnior HT, Pestana JOM. Chikungunya in a kidney transplant recipient: a case report. ACTA ACUST UNITED AC 2020; 41:575-579. [PMID: 31419273 PMCID: PMC6979562 DOI: 10.1590/2175-8239-jbn-2018-0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
In 2004, a global spread of Chikungunya fever affected most tropical and subtropical regions of the world. In 2016, an outbreak occurred in Northeast Brazil with hundreds of cases documented. Solid organ transplant recipients have a modified immune response to infection and the clinical course is usually different from immunocompetent patients. The diagnosis can be challenging in this population. Most reports describe patients residing in endemic areas, although we must emphasize the importance of differential diagnosis in kidney transplanted travelers who visit endemic regions, such as Northeast Brazil. Here, we reported a case of a kidney transplant recipient that acquired Chikungunya fever after a trip to an endemic region at Northeast Brazil during the outbreak in 2016, with a good clinical evolution. We also present warning recommendations for travelers to endemic areas as additional measures to prevent disease outbreaks.
Collapse
Affiliation(s)
- Renato Demarchi Foresto
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | | | - Maria Amélia Aguiar Hazin
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | - Alejandro Túlio Zapata Leyton
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | | | | | | | - Hélio Tedesco Silva Júnior
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| | - José Osmar Medina Pestana
- Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, SP, Brasil.,Hospital do Rim, Divisão de Nefrologia, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
6
|
Rezza G, Weaver SC. Chikungunya as a paradigm for emerging viral diseases: Evaluating disease impact and hurdles to vaccine development. PLoS Negl Trop Dis 2019; 13:e0006919. [PMID: 30653504 PMCID: PMC6336248 DOI: 10.1371/journal.pntd.0006919] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chikungunya fever (CHIKF) is an emerging infectious disease caused by an alphavirus transmitted by Aedes spp. mosquitoes. Because mosquito control programs are not highly efficient for outbreak containment, vaccines are essential to reduce the burden of disease. Although no licensed vaccine against CHIKF is yet available, many highly promising candidates are undergoing preclinical studies, and a few of them have been tested in human trials of phase 1 or 2. Here, we review recent findings regarding the need for a CHIKF vaccine and provide an update on vaccines nearing or having entered clinical trials. We also address needs to tackle bottlenecks to vaccine development—including scientific and financial barriers—and to accelerate the development of vaccines; several actions should be taken: (i) design efficacy trials to be conducted during the course of outbreaks; (ii) evaluate the opportunity for adopting the “animal rule”for demonstration of efficacy for regulatory purposes; (iii) strengthen the collective commitment of nations, international organizations, potential donors and industry; (iv) stimulate public and/or private partnerships to invest in vaccine development and licensure; and (v) identify potential markets for an effective and safe CHIKF vaccine.
Collapse
Affiliation(s)
- Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jairaj A, Shirisha P, Abdul MSM, Fatima U, Tiwari RVC, Moothedath M. Adult Immunization - Need of the Hour. J Int Soc Prev Community Dent 2018; 8:475-481. [PMID: 30596036 PMCID: PMC6280562 DOI: 10.4103/jispcd.jispcd_347_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 11/15/2022] Open
Abstract
Immunization is the process of making individuals immune. Childhood immunization is a common process for various aliments, but adult immunization in the Indian scenario is obscure. Officially, India has been declared polio-free, which is an achievement despite cultural, political, economic, geographic, and so many other factors. The changing demographics of adult, geriatric population and growing cost of health-care maintenance are a concern in developing countries like India. Thus, promoting healthy lifestyle needs prevention, early detection, and management of various diseases and disorders. Certainly, prevention in adults is yet to be tapped completely, so that goal of 100% prevention can be achieved. Various fraternities of medical association have come up with guidelines for adult immunization schedules in India. The present paper reviews infectious diseases such as anthrax, chikungunya, cholera, dengue, influenza, and malaria in this section of the review. We humbly request all health-care professionals and educators to educate the mass for adult immunization. So that, cost involved for treatment and workforce for the management of diseases can be better utilized in some other needed areas.
Collapse
Affiliation(s)
| | - P Shirisha
- Department of Humanities and Social Sciences, IIT Madras, Chennai, Tamil Nadu, India
| | | | - Urooj Fatima
- Skin and Laser Care Centre, Dr. Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia
| | - Rahul Vinay Chandra Tiwari
- Department of Oral and Maxillofacial Surgery and Dentistry, Jubilee Mission Medical College Hospital and Research Center, Thrissur, Kerala, India
| | - Muhamood Moothedath
- Department of Public Health Dentistry, College of Applied Health Sciences in Ar Rass, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
|
9
|
Affiliation(s)
- Mobeen H Rathore
- University of Florida Center for HIV/AIDS Research, Education and Service (UF CARES), 910 North Jefferson Street, Jacksonville, FL 32209, USA; Infectious Diseases and Immunology, Wolfson Children's Hospital, 800 Prudential Drive, Jacksonville, FL 32207, USA.
| | - Jonathan Runyon
- Nicklaus Children's Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA
| | - Tanveer-Ul Haque
- Infectious Diseases and Immunology, Wolfson Children's Hospital, 800 Prudential Drive, Jacksonville, FL 32207, USA
| |
Collapse
|
10
|
Yang S, Fink D, Hulse A, Pratt RD. Regulatory considerations in development of vaccines to prevent disease caused by Chikungunya virus. Vaccine 2017; 35:4851-4858. [PMID: 28760614 DOI: 10.1016/j.vaccine.2017.07.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. Chikungunya disease (CHIK) in humans is characterized by sudden onset of high fever, cutaneous rash, myalgia and debilitating polyarthralgia. Until recently the virus was considered endemic to only Africa and Asia, but since 2004 CHIK has spread to previously non-endemic regions, including Europe and the Americas, thereby emerging as a global health threat. Although a variety of CHIKV vaccine candidates have been tested in animals, and a few have advanced to human clinical trials, no licensed vaccine is currently available for prevention of disease. In this article, we review recent efforts in CHIKV vaccine development and discuss regulatory considerations for CHIKV vaccine licensure under U.S. FDA regulations. Several licensure pathways are available, and the most appropriate licensure pathway for a CHIK vaccine will depend on the type of evidence that can be generated to demonstrate the vaccine's effectiveness. If "traditional approval" following demonstration of direct benefit in adequate and well-controlled clinical disease endpoint studies is not possible, the Accelerated Approval and Animal Rule pathways are potential alternatives. In terms of vaccine safety, the potential for vaccine associated arthralgia and antibody-dependent enhancement of infectivity and disease severity are important issues that should be addressed in both pre-clinical and clinical studies. CHIK vaccine developers are encouraged to communicate with the FDA during all stages of vaccine development.
Collapse
Affiliation(s)
- Sixun Yang
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Doran Fink
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Andrea Hulse
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - R Douglas Pratt
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
11
|
Rezza G. Vaccines against chikungunya, Zika and other emerging Aedes mosquito-borne viruses: unblocking existing bottlenecks. Future Virol 2016. [DOI: 10.2217/fvl-2016-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of Aedes mosquito-borne viral diseases is a global public health challenge. Since mosquito control programs are not highly efficient for outbreak containment, vaccines are essential to limit disease burden. Besides yellow fever vaccines, a vaccine against dengue is now available, while research on vaccines against Zika has just started. Several vaccine candidates against chikungunya are undergoing preclinical studies, and few of them have been tested in Phase II trials. To overcome hurdles and speed-up the development of vaccines against these viral diseases, several actions should be planned: first, the ‘animal rule’ could be considered for regulatory purposes; second, public–private partnership should be stimulated; third, countries, international organizations and donors commitment should be strengthened, and potential markets identified.
Collapse
Affiliation(s)
- Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00142 Roma, Italy
| |
Collapse
|
12
|
Staveness D, Abdelnabi R, Near KE, Nakagawa Y, Neyts J, Delang L, Leyssen P, Wender PA. Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway. JOURNAL OF NATURAL PRODUCTS 2016; 79:680-4. [PMID: 26900711 PMCID: PMC4942189 DOI: 10.1021/acs.jnatprod.5b01017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chikungunya virus (CHIKV) has been spreading rapidly, with over one million confirmed or suspected cases in the Americas since late 2013. Infection with CHIKV causes devastating arthritic and arthralgic symptoms. Currently, there is no therapy to treat this disease, and the only medications focus on relief of symptoms. Recently, protein kinase C (PKC) modulators have been reported to inhibit CHIKV-induced cell death in cell assays. The salicylate-derived bryostatin analogues described here are structurally simplified PKC modulators that are more synthetically accessible than the natural product bryostatin 1, a PKC modulator and clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication. Evaluation of the anti-CHIKV activity of these salicylate-derived bryostatin analogues in cell culture indicates that they are among the most potent cell-protective agents reported to date. Given that they are more accessible and significantly more active than the parent natural product, they represent new therapeutic leads for controlling CHIKV infection. Significantly, these analogues also provide evidence for the involvement of a PKC-independent pathway. This adds a fundamentally distinct aspect to the importance or involvement of PKC modulation in inhibition of chikungunya virus replication, a topic of recent and growing interest.
Collapse
Affiliation(s)
- Daryl Staveness
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Rana Abdelnabi
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven–University of Leuven, B-3000 Leuven, Belgium
| | - Katherine E. Near
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Yu Nakagawa
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven–University of Leuven, B-3000 Leuven, Belgium
| | - Leen Delang
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven–University of Leuven, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven–University of Leuven, B-3000 Leuven, Belgium
| | - Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Staveness D, Abdelnabi R, Schrier AJ, Loy B, Verma VA, DeChristopher BA, Near KE, Neyts J, Delang L, Leyssen P, Wender PA. Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death. JOURNAL OF NATURAL PRODUCTS 2016; 79:675-9. [PMID: 26900625 PMCID: PMC4928627 DOI: 10.1021/acs.jnatprod.5b01016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 05/21/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus showing a recent resurgence and rapid spread worldwide. While vaccines are under development, there are currently no therapies to treat this disease, except for over-the-counter (OTC) analgesics, which alleviate the devastating arthritic and arthralgic symptoms. To identify novel inhibitors of the virus, analogues of the natural product bryostatin 1, a clinical lead for the treatment of cancer, Alzheimer's disease, and HIV eradication, were investigated for in vitro antiviral activity and were found to be among the most potent inhibitors of CHIKV replication reported to date. Bryostatin-based therapeutic efforts and even recent anti-CHIKV strategies have centered on modulation of protein kinase C (PKC). Intriguingly, while the C ring of bryostatin primarily drives interactions with PKC, A- and B-ring functionality in these analogues has a significant effect on the observed cell-protective activity. Significantly, bryostatin 1 itself, a potent pan-PKC modulator, is inactive in these assays. These new findings indicate that the observed anti-CHIKV activity is not solely mediated by PKC modulation, suggesting possible as yet unidentified targets for CHIKV therapeutic intervention. The high potency and low toxicity of these bryologs make them promising new leads for the development of a CHIKV treatment.
Collapse
Affiliation(s)
- Daryl Staveness
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Rana Abdelnabi
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
| | - Adam J. Schrier
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brian
A. Loy
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Vishal A. Verma
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Brian A. DeChristopher
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Katherine E. Near
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
- E-mail:
| | - Leen Delang
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- Department of Microbiology and Immunology, Rega Institute for Medical
Research, Laboratory of Virology and Chemotherapy, KU Leuven−University of Leuven, B-3000 Leuven, Belgium
| | - Paul A. Wender
- Departments of Chemistry and Chemical and
Systems Biology, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|
14
|
Smalley C, Erasmus JH, Chesson CB, Beasley DWC. Status of research and development of vaccines for chikungunya. Vaccine 2016; 34:2976-2981. [PMID: 27026149 DOI: 10.1016/j.vaccine.2016.03.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/11/2016] [Indexed: 01/01/2023]
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that during the last decade has significantly expanded its geographical range and caused large outbreaks of human disease around the world. Although mortality rates associated with CHIKV outbreaks are low, acute and chronic illnesses caused by CHIKV represent a significant burden of disease largely affecting low and middle income countries. This report summarizes the current status of vaccine development for CHIKV.
Collapse
Affiliation(s)
- Claire Smalley
- Experimental Pathology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
| | - Jesse H Erasmus
- Human Pathophysiology and Translational Medicine Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
| | - Charles B Chesson
- Human Pathophysiology and Translational Medicine Graduate Program, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA; World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
15
|
Fernández-Salas I, Danis-Lozano R, Casas-Martínez M, Ulloa A, Bond JG, Marina CF, Lopez-Ordóñez T, Elizondo-Quiroga A, Torres-Monzón JA, Díaz-González EE. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antiviral Res 2015; 124:30-42. [PMID: 26518229 DOI: 10.1016/j.antiviral.2015.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/15/2022]
Abstract
The arrival of chikungunya fever (CHIKF) in Latin American countries has been expected to trigger epidemics and challenge health systems. Historically considered as dengue-endemic countries, abundant Aedes aegypti populations make this region highly vulnerable to chikungunya virus (CHIKV) circulation. This review describes the current dengue and CHIKF epidemiological situations, as well as the role of uncontrolled Ae. aegypti and Aedes albopictus vectors in spreading the emerging CHIKV. Comments are included relating to the vector competence of both species and failures of surveillance and vector control measures. Dengue endemicity is a reflection of these abundant and persistent Aedes populations that are now spreading CHIKV in the Americas. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."
Collapse
Affiliation(s)
- Ildefonso Fernández-Salas
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico; Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Av. Carlos Canseco s/n, Mitras Centro, Monterrey, Nuevo León, 64460, Mexico; Universidad Autónoma de Nuevo Leon, Facultad de Ciencias Biológicas, Ave Universidad, Pedro de Alba s/n Cd. Universitaria, San Nicolás de los Garza, Nuevo Leon, 66450, Mexico.
| | - Rogelio Danis-Lozano
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Mauricio Casas-Martínez
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Armando Ulloa
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - J Guillermo Bond
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Carlos F Marina
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Teresa Lopez-Ordóñez
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Armando Elizondo-Quiroga
- Cátedra CONACYT/Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Jorge A Torres-Monzón
- Instituto Nacional de Salud Pública, Centro Regional de Investigación en Salud Pública, 4ª. Avenida Norte esq., 19ª. Calle Poniente s/n, Colonia Centro, Tapachula, Chiapas, 30700, Mexico
| | - Esteban E Díaz-González
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Av. Carlos Canseco s/n, Mitras Centro, Monterrey, Nuevo León, 64460, Mexico; Universidad Autónoma de Nuevo Leon, Facultad de Ciencias Biológicas, Ave Universidad, Pedro de Alba s/n Cd. Universitaria, San Nicolás de los Garza, Nuevo Leon, 66450, Mexico
| |
Collapse
|