1
|
Chae YK, Oh Y, Kim L, Park JH, Djunadi TA, Shah Z, Chung LIY, Yoon SM, Duan R, Lee J, Kim S, Bharat A. Bilateral orthotopic lung transplantation for the patient with lung-limited invasive mucinous adenocarcinoma: a case-based literature review. Oncologist 2024:oyae263. [PMID: 39487975 DOI: 10.1093/oncolo/oyae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/08/2024] [Indexed: 11/04/2024] Open
Abstract
Invasive mucinous adenocarcinoma (IMA) of lung is a unique subset of adenocarcinomas characterized by an intrapulmonary aerogenous spread resulting in multicentric, multilobar, and bilateral lesions with a low frequency of distant metastasis. The treatment options for IMA are limited, and advanced IMA has a poor prognosis, with a median survival of less than a year. Lung transplantation performed in a handful of selected patients showed improved survival outcomes and clinical improvement. However, high postoperative recurrence rates have been observed and recurrence appeared to originate from the primary tumor in many cases. Techniques, such as non-sequential double lung transplantation utilizing cardiopulmonary bypass, have been performed to reduce recurrence. Here, we present the first case of bilateral lung transplantation employing cardiopulmonary bypass in a patient with stage ⅣA lung-limited IMA without lymph node or distant metastasis. At 15 months post-transplantation, the patient remains stable with no evidence of disease recurrence or organ rejection. Additionally, we describe the classification, clinical outcomes, protein expression, and genetic characteristics of IMA. IMA was previously classified as a subset of bronchioalveolar carcinoma (BAC), which is invasive and mucinous with goblet or columnar cells secreting mucin. We reviewed and summarized the lung transplantation cases reported to date for BAC. The 5-year overall survival and disease-free survival have been reported approximately 50% (range, 39-100) and 50% (range, 35-100), respectively. The literature shows these outcomes are comparable to bilateral lung transplantation performed for non-cancerous pulmonary disease.
Collapse
Affiliation(s)
- Young Kwang Chae
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Youjin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, United States
| | - Leeseul Kim
- Ascension Saint Francis Hospital Evanston, Evanston, IL, United States
| | - Joo Hee Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Trie Arni Djunadi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zunairah Shah
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL, United States
| | - Liam Il-Young Chung
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sung Mi Yoon
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard Duan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeeyeon Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- School of Medicine, Kyungpook, National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Samuel Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Fernández-Maestre I, Cai SF, Levine RL. A View of Myeloid Transformation through the Hallmarks of Cancer. Blood Cancer Discov 2024; 5:377-387. [PMID: 39422551 PMCID: PMC11528188 DOI: 10.1158/2643-3230.bcd-24-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
The development of myeloid malignancies is influenced by a range of cell-intrinsic and cell-extrinsic factors, which can be conceptualized using the hallmarks of cancer. Although many facets of myeloid transformation are similar to those in solid tumors, there are also notable differences. Unlike solid tumors, hematologic malignancies typically exhibit fewer genetic mutations, which have been well characterized. However, understanding the cell-extrinsic factors contributing to myeloid malignancies can be challenging due to the complex interactions in the hematopoietic microenvironment. Researchers need to focus on these intricate factors to prevent the early onset of myeloid transformation and develop appropriate interventions. Significance: Myeloid malignancies are common in the elderly, and acute myeloid leukemia has an adverse prognosis in older patients. Investigating cell-extrinsic factors influencing myeloid malignancies is crucial to developing approaches for preventing or halting disease progression and predicting clinical outcomes in patients with advanced disease. Whereas successful intervention may require targeting various mechanisms, understanding the contribution of each cell-extrinsic factor will help prioritize clinical targets.
Collapse
Affiliation(s)
- Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering, Cancer Center, New York, New York
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering, Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Mehta S, Medicherla KM, Gulati S, Sharma N, Parveen R, Mishra AK, Gupta S, Suravajhala P. Whole Exome Sequencing of Adult Indians with Apparently Acquired Aplastic Anaemia: Initial Experience at Tertiary Care Hospital. Diseases 2024; 12:225. [PMID: 39329894 PMCID: PMC11430975 DOI: 10.3390/diseases12090225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Aplastic anaemia (AA) is a rare hypocellular bone marrow disease with a large number of mutations in the telomerase reverse transcriptase gene (TERT), leading to bone marrow failure. We used our benchmarked whole exome sequencing (WES) pipeline to identify variants in adult Indian subjects with apparently acquired AA. For 36 affected individuals, we sequenced coding regions to a mean coverage of 100× and a sufficient depth was achieved. Downstream validation and filtering to call mutations in patients treated with Cyclosporin A (CsA) identified variants associated with AA. We report four mutations across the genes associated with the AA, TERT and CYP3A5, in addition to other genes, viz., IFNG, PIGA, NBS/NBN, and MPL. We demonstrate the application of WES to discover the variants associated with CsA responders and non-responders in an Indian cohort.
Collapse
Affiliation(s)
- Sudhir Mehta
- Department of General Medicine, SMS Medical College and Hospital, JLN Marg, Jaipur 302004, India; (S.G.); (N.S.)
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302011, India; (K.M.M.); (S.G.)
- Bioclues.org, Hyderabad 501511, India
| | - Sandhya Gulati
- Department of General Medicine, SMS Medical College and Hospital, JLN Marg, Jaipur 302004, India; (S.G.); (N.S.)
| | - Nidhi Sharma
- Department of General Medicine, SMS Medical College and Hospital, JLN Marg, Jaipur 302004, India; (S.G.); (N.S.)
| | | | | | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302011, India; (K.M.M.); (S.G.)
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad 501511, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, India
| |
Collapse
|
4
|
Shivarov V, Tsvetkova G, Micheva I, Hadjiev E, Petrova J, Ivanova A, Madjarova G, Ivanova M. Differential modulation of mutant CALR and JAK2 V617F-driven oncogenesis by HLA genotype in myeloproliferative neoplasms. Front Immunol 2024; 15:1427810. [PMID: 39351227 PMCID: PMC11439724 DOI: 10.3389/fimmu.2024.1427810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Ilina Micheva
- Department of Clinical Hematology, Saint Marina University Hospital, Medical University Varna, Varna, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Jasmina Petrova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Galia Madjarova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
5
|
Muhsen IN, Zubair AC, Niederwieser T, Hashmi SK. Space exploration and cancer: the risks of deeper space adventures. Leukemia 2024; 38:1872-1875. [PMID: 38969730 DOI: 10.1038/s41375-024-02298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Ibrahim N Muhsen
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Jacksonville, FL, USA
- Sheikh Shakhbout Medical City-Mayo Clinic Joint Venture, Abu Dhabi, UAE
| | - Tobias Niederwieser
- University of Colorado Boulder, Ann and H.J. Smead Department of Aerospace Engineering Sciences, BioServe Space Technologies, 429 UCB, Boulder, CO, 80309, USA
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Sheikh Shakbout Medical City, Abu Dhabi, UAE.
- Medical and Clinical Affairs, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
6
|
Segura-Díaz A, Stuckey R, Florido Y, Sobas M, Álvarez-Larrán A, Ferrer-Marín F, Pérez-Encinas M, Carreño-Tarragona G, Fox ML, Tazón Vega B, Cuevas B, López Rodríguez JF, Sánchez-Farías N, González-Martín JM, Gómez-Casares MT, Bilbao-Sieyro C. DNMT3A/TET2/ASXL1 Mutations are an Age-independent Thrombotic Risk Factor in Polycythemia Vera Patients: An Observational Study. Thromb Haemost 2024; 124:669-675. [PMID: 38190984 PMCID: PMC11199052 DOI: 10.1055/a-2239-9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Polycythemia vera (PV) patients are classified as high or low thrombotic risk based on age and prior history of thrombosis. Despite adherence to treatment recommendations, vascular events remain frequent, leading us to question whether thrombotic risk stratification could be improved. We previously reported an association between thrombotic events and mutations in DTA genes (DNMT3A, TET2, and ASXL1). The objective of this study was to confirm this observation in a larger series of PV patients. METHODS PV patients with a minimum follow-up of 3 years were recruited from 8 European centers. Medical history was searched for thrombotic event recorded at any time and next-generation sequencing carried out with a myeloid panel. Multivariable logistic regression evaluated the impact of variables on thrombotic risk. Kaplan-Meier thrombosis-free survival curves were compared by the log rank test. Associations in the total cohort were confirmed in a case-control study to exclude selection bias. RESULTS Of the 136 patients recruited, 74 (56.1%) had a thrombotic event, with an incidence density of 2.83/100 person-years. In multivariable analysis, DTA mutation was a risk factor for thrombotic event, being predictive for shorter thrombosis-free survival in the whole cohort (p = 0.007), as well as in low-risk patients (p = 0.039) and older patients (p = 0.009), but not for patients with a prediagnostic event. A gender- and age-matched case-control study confirmed the increased risk of thrombotic event for PV patients with a DTA mutation. CONCLUSION Our results support the use of molecular testing at diagnosis to help predict which PV patients are at higher risk of developing thrombosis.
Collapse
Affiliation(s)
- Adrián Segura-Díaz
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Yanira Florido
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Marta Sobas
- Department of Hematology and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | | | - Francisca Ferrer-Marín
- Hematology Department, Hospital Morales Messeguer, Instituto Murciano de Investigación Biosanitaria, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Manuel Pérez-Encinas
- Hematology Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - María L. Fox
- Hematology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Beatriz Cuevas
- Hematology Department, Hospital Universitario de Burgos, Burgos, Spain
| | - Juan F. López Rodríguez
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Nuria Sánchez-Farías
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | | | - María T. Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Morphology Department, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | | |
Collapse
|
7
|
Zawacka JE. p53 biology and reactivation for improved therapy in MDS and AML. Biomark Res 2024; 12:34. [PMID: 38481290 PMCID: PMC10936007 DOI: 10.1186/s40364-024-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/01/2024] [Indexed: 11/02/2024] Open
Abstract
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) originate from preleukemic hematopoietic conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenia of undetermined significance (CCUS) and have variable outcomes despite the successful implementation of targeted therapies. The prognosis differs depending on the molecular subgroup. In patients with TP53 mutations, the most inferior outcomes across independent studies were observed. Myeloid malignancies with TP53 mutations have complex cytogenetics and extensive structural variants. These factors contribute to worse responses to induction therapy, demethylating agents, or venetoclax-based treatments. Survival of patients with biallelic TP53 gene mutations is often less than one year but this depends on the type of treatment applied. It is still controversial whether the allelic state of mutant TP53 impacts the outcomes in patients with AML and high-risk MDS. Further studies are needed to justify estimating TP53 LOH status for better risk assessment. Yet, TP53-mutated MDS, MDS/AML and AML are now classified separately in the International Consensus Classification (ICC). In the clinical setting, the wild-type p53 protein is reactivated pharmacologically by targeting p53/MDM2/MDM4 interactions and mutant p53 reactivation is achieved by refolding the DNA binding domain to wild-type-like conformation or via targeted degradation of the mutated protein. This review discusses our current understanding of p53 biology in MDS and AML and the promises and failures of wild-type and mutant p53 reactivation in the clinical trial setting.
Collapse
Affiliation(s)
- Joanna E Zawacka
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Biochemistry, Laboratory of Biophysics and p53 Protein Biology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Love SAM, Collins JM, Anthony KM, Buchheit SF, Butler EN, Bey GS, Gondalia R, Hayden KM, Zannas AS, Bick AG, Manson JE, Desai PM, Natarajan P, Bhattacharya R, Jaiswal S, Barac A, Reiner A, Kooperberg C, Stewart JD, Whitsel EA. Individual and Neighborhood-level Socioeconomic Status and Somatic Mutations Associated With Increased Risk of Cardiovascular Disease and Mortality: A Cross-Sectional Analysis in the Women's Health Initiative. Womens Health Issues 2024; 34:197-207. [PMID: 38061917 PMCID: PMC10978295 DOI: 10.1016/j.whi.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), the expansion of leukemogenic mutations in white blood cells, has been associated with increased risk of atherosclerotic cardiovascular diseases, cancer, and mortality. OBJECTIVE We examined the relationship between individual- and neighborhood-level socioeconomic status (SES) and CHIP and evaluated effect modification by interpersonal and intrapersonal resources. METHODS The study population included 10,799 postmenopausal women from the Women's Health Initiative without hematologic malignancy or antineoplastic medication use. Individual- and neighborhood (Census tract)-level SES were assessed across several domains including education, income, and occupation, and a neighborhood-level SES summary z-score, which captures multiple dimensions of SES, was generated. Interpersonal and intrapersonal resources were self-reports. CHIP was ascertained based on a prespecified list of leukemogenic driver mutations. Weighted logistic regression models adjusted for covariates were used to estimate risk of CHIP as an odds ratio (OR) and 95% confidence interval (95% CI). RESULTS The interval-scale neighborhood-level SES summary z-score was associated with a 3% increased risk of CHIP: OR (95% CI) = 1.03 (1.00-1.05), p = .038. Optimism significantly modified that estimate, such that among women with low/medium and high levels of optimism, the corresponding ORs (95% CIs) were 1.03 (1.02-1.04) and 0.95 (0.94-0.96), pInteraction < .001. CONCLUSIONS Our findings suggest that reduced risk of somatic mutation may represent a biological pathway by which optimism protects contextually advantaged but at-risk women against age-related chronic disease and highlight potential benefits of long-term, positive psychological interventions.
Collapse
Affiliation(s)
- Shelly-Ann M Love
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Jason M Collins
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kurtis M Anthony
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sophie F Buchheit
- Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - Eboneé N Butler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ganga S Bey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Injury Surveillance and Analytics, Real-World Analytics Solutions, IQVIA, Durham, North Carolina
| | - Kathleen M Hayden
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Anthony S Zannas
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Institute for Trauma Recovery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, Neuroscience Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Pinkal M Desai
- Division of Hematology and Medical Oncology, Weill Cornell Medical Center, New York, New York
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Romit Bhattacharya
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ana Barac
- Division of Cardiology, MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, District of Columbia; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington; Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Larsen MK, Skov V, Kjær L, Eickhardt-Dalbøge CS, Knudsen TA, Kristiansen MH, Sørensen AL, Wienecke T, Andersen M, Ottesen JT, Gudmand-Høyer J, Snyder JA, Andersen MP, Torp-Pedersen C, Poulsen HE, Stiehl T, Hasselbalch HC, Ellervik C. Neutrophil-to-lymphocyte ratio and all-cause mortality with and without myeloproliferative neoplasms-a Danish longitudinal study. Blood Cancer J 2024; 14:28. [PMID: 38331919 PMCID: PMC10853217 DOI: 10.1038/s41408-024-00994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The neutrophil-to-lymphocyte ratio(NLR) is increased in chronic inflammation and myeloproliferative neoplasms (MPN). We hypothesize that NLR is associated with all-cause mortality and mortality by comorbidity burden in the general population and individuals with MPN. We included 835,430 individuals from The Danish General Suburban Population Study, general practitioners, and outpatient clinics. We investigated NLR on mortality stratified by prevalent and incident MPN, essential thrombocythemia (ET), polycythemia vera (PV), myelofibrosis (MF), comorbidity burden (CCI-score), and the Triple-A risk score using hazard ratio (HR) and 95% confidence interval (95%CI). NLR 1-1.9 was the reference level. During a median follow-up of 11.2 years, 197,802 deaths were recorded. All-cause mortality increased for a stepwise increasing NLR with a HR (95%CI) for NLR ≥ 6 of 2.06(2.03-2.09) for the whole population and 2.93(2.44-3.50) in prevalent MPN. ET, PV, and MF had a HR (95%CI) for NLR ≥ 2 of 2.14(1.71-2.69), 2.19(1.89-2.54), and 2.31(1.91-2.80). Results were similar for incident MPN. Mortality was higher for stepwise increasing NLR and CCI-score(pinteraction < 2×10-16), with a HR for NLR ≥ 6 of 2.23(2.17-2.29), 4.10(4.01-4.20), and 7.69(7.50-7.89), for CCI-score 0, 1-2, or ≥3. The Triple-A risk score demonstrated alignment with NLR. Increasing NLR and comorbidity burden were associated with lower survival in individuals without MPN but were even worse in prevalent and incident MPN, ET, PV, and MF.
Collapse
Affiliation(s)
- Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Marie Hvelplund Kristiansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | | | - Troels Wienecke
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Morten Andersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johnny T Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | | - Mikkel Porsborg Andersen
- Department of Cardiology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg Frederiksberg Hospital, Copenhagen, Denmark
| | - Thomas Stiehl
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Institute for Computational Biomedicine - Disease Modelling, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Zealand University Hospital, Koege, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Skov V, Thomassen M, Kjaer L, Larsen MK, Knudsen TA, Ellervik C, Kruse TA, Hasselbalch HC. Whole blood transcriptional profiling reveals highly deregulated atherosclerosis genes in Philadelphia-chromosome negative myeloproliferative neoplasms. Eur J Haematol 2023; 111:805-814. [PMID: 37640394 DOI: 10.1111/ejh.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are associated with a huge comorbidity burden, including an increased risk of cardiovascular diseases. Recently, chronic inflammation has been suggested to be the driving force for clonal evolution and disease progression in MPN but also potentially having an impact upon the development of accelerated (premature) atherosclerosis. OBJECTIVES Since chronic inflammation, atherosclerosis, and atherothrombosis are prevalent in MPNs and we have previously shown oxidative stress genes to be markedly upregulated in MPNs, we hypothesized that genes linked to development of atherosclerosis might be highly deregulated as well. METHODS Using whole blood gene expression profiling in patients with essential thrombocythemia (ET; n = 19), polycythemia vera (PV; n = 41), or primary myelofibrosis (PMF; n = 9), we herein for the first time report aberrant expression of several atherosclerosis genes. RESULTS Of 84 atherosclerosis genes, 45, 56, and 46 genes were deregulated in patients with ET, PV, or PMF, respectively. Furthermore, BCL2L1, MMP1, PDGFA, PTGS1, and THBS4 were progressively significantly upregulated and BCL2 progressively significantly downregulated from ET over PV to PMF (all FDR <0.05). CONCLUSIONS We have for the first time shown massive deregulation of atherosclerosis genes in MPNs, likely reflecting the inflammatory state in MPNs in association with in vivo activation of leukocytes, platelets, and endothelial cells being deeply involved in the atherosclerotic process.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lasse Kjaer
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine A Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
11
|
Younes IE, Syler L, Hamed A. Review of clonal hematopoiesis, subtypes and its role in neoplasia and different morbidities. Leuk Res 2023; 130:107307. [PMID: 37186988 DOI: 10.1016/j.leukres.2023.107307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Clonal hematopoiesis (CH) is the development of a certain cell lineage which is the cornerstone of hematologic malignancy especially myeloid neoplasms, however, can also be found in old age (6th-7th decade). CH is caused by many different somatic mutations most commonly in DNMT3A, TET2, ASXL1, SF3B1 and TP53. It is detected by different sequencing methods, the most commonly used ones are next generation sequencing (NGS) which can be whole exome, whole genome sequencing or a panel for certain genes. CH is divided into multiple categories depending on the clinical picture associated with it into: clonal monocytosis of undetermined significance (CMUS), clonal hematopoiesis of indeterminate significance (CHIP), clonal cytopenia and monocytosis of undetermined significance (CCMUS) and clonal cytopenia of undetermined significance (CCUS). In order to diagose CH, first other hematologic malignancies must be ruled out CH is also associated with many different entities including lung cancer and some studies have shown that COVID-19 infections are affected by CH. Certain traits and infections are associated with CH including smoking, obesity, and cardiovascular disease. A minority of patients with CH progress to a malignant process (between 0.5 %-2 %) which do not require treatment, however, any patient with CH should be kept under surveillance in order to detect any malignancy early and be treated accordingly. SIMPLE SUMMARY: Clonal hematopoiesis (CH) is considered to be the predisposing factor for development of different hematologic neoplasms. With the help of NGS, patients with CH can be monitored more closely. Several studies have shown that these patients might develop hematologic neoplasms in their lifetime. It has been subdivided into multiple groups according to the clinical picture and/or blood counts.
Collapse
Affiliation(s)
| | - Lee Syler
- Department of Pathology, University of South Florida, Tampa, FL 33620, USA
| | - Amira Hamed
- Department of Pathology, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
12
|
Babarović E, Marijić B, Vranić L, Ban J, Valković T, Hadžisejdić I. A Comparison of Bone Marrow Morphology and Peripheral Blood Findings in Low and High Level JAK2 V617F Allele Burden. Diagnostics (Basel) 2023; 13:2086. [PMID: 37370982 DOI: 10.3390/diagnostics13122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cases with low level JAK2 V617F mutations are increasingly detected; however, the clinical interpretation of the low allele JAK2 burden may be challenging. The aim of this study is to analyze and compare the bone marrow morphology and peripheral blood findings in the low level JAK2 V617F allele burden (≤15% of JAK2) and high JAK2 V617F mutation burden patients (>15% JAK2). In total, 122 JAK2 V617F positive cases with concomitant bone marrow biopsies and peripheral blood findings were re-evaluated (62 low and 60 high level JAK2 V617F positive). Within the low burden group, normal looking megakaryocytes (p = 0.0005) were more frequently found, compared with those with no atypia (p = 0.0003), their number was more frequently not increased (p = 0.009), and they did not form clusters (p = 0.001). We found statistically significant difference in the number of platelet (p = 0.0003) and hematocrit levels (p = 0.032) when comparing the JAK2 V617F <3% and ≥3% mutation burden. In the high-level burden, the megakaryocytes were more frequently atypical (p = 0.054), and more frequently formed clusters (p = 0.053) with nuclei with maturation defects (p ≤ 0.0001). In conclusion, the JAK2 V617F mutation burden is reflected by morphological changes in the bone marrow and careful follow up of each and every patient with a low JAK2 V617F positivity is mandatory.
Collapse
Affiliation(s)
- Emina Babarović
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Laboratory for Molecular Pathology, Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Blažen Marijić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Luka Vranić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Internal Medicine, Clinic for Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Josipa Ban
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Toni Valković
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Internal Medicine, Clinic for Hematology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Ita Hadžisejdić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Laboratory for Molecular Pathology, Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
13
|
Grody EI, Abraham A, Shukla V, Goyal Y. Toward a systems-level probing of tumor clonality. iScience 2023; 26:106574. [PMID: 37192968 PMCID: PMC10182304 DOI: 10.1016/j.isci.2023.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Cancer has been described as a genetic disease that clonally evolves in the face of selective pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-cell profiling of cancers has described unprecedented heterogeneity in tumors providing support for alternative models of branched and neutral evolution through both genetic and non-genetic mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, and extrinsic environmental factors in shaping the evolution of tumors. In this perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-malignant states associated with hematological malignancies and esophageal cancer, we discuss recent paradigms of tumor evolution and prospective approaches to further enhance our understanding of this spatiotemporally regulated process.
Collapse
Affiliation(s)
- Emanuelle I. Grody
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
15
|
Falini B, Martelli MP. Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia. Am J Hematol 2023; 98:481-492. [PMID: 36606297 DOI: 10.1002/ajh.26812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
Several editions of the World Health Organization (WHO) classifications of lympho-hemopoietic neoplasms in 2001, 2008, and 2016 served as the international standard for diagnosis. Since the 4th WHO edition, here referred as WHO-HAEM4, significant clinico-pathological, immunophenotypic, and molecular advances have been made in the field of myeloid neoplasms, which have contributed to refine diagnostic criteria, to upgrade entities previously defined as provisional and to identify new entities. This process has resulted in two recent classification proposals of myeloid neoplasms: the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, with a focus on adult myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukemia (AML). The goal is to provide a tool to facilitate the work of pathologists, hematologists and researchers involved in the diagnosis and treatment of these hematological malignancies.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
16
|
Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, Loo CE, Torabifard H, Nicolet D, Wang J, Corrigan K, Paraskevopoulou V, Starczynowski DT, Wang E, Abdel-Wahab O, Viny AD, Stone RM, Byrd JC, Guryanova OA, Kohli RM, Cisneros GA, Tsirigos A, Eisfeld AK, Aifantis I, Guillamot M. The Impact of Inflammation-Induced Tumor Plasticity during Myeloid Transformation. Cancer Discov 2022; 12:2392-2413. [PMID: 35924979 PMCID: PMC9547930 DOI: 10.1158/2159-8290.cd-21-1146] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of mutated preleukemic cells. Individuals with CH are at an increased risk of developing hematopoietic malignancies. Here, we describe a novel animal model carrying a recurrent TET2 missense mutation frequently found in patients with CH and leukemia. In a fashion similar to CH, animals show signs of disease late in life when they develop a wide range of myeloid neoplasms, including acute myeloid leukemia (AML). Using single-cell transcriptomic profiling of the bone marrow, we show that disease progression in aged animals correlates with an enhanced inflammatory response and the emergence of an aberrant inflammatory monocytic cell population. The gene signature characteristic of this inflammatory population is associated with poor prognosis in patients with AML. Our study illustrates an example of collaboration between a genetic lesion found in CH and inflammation, leading to transformation and the establishment of blood neoplasms. SIGNIFICANCE Progression from a preleukemic state to transformation, in the presence of TET2 mutations, is coupled with the emergence of inflammation and a novel population of inflammatory monocytes. Genes characteristic of this inflammatory population are associated with the worst prognosis in patients with AML. These studies connect inflammation to progression to leukemia. See related commentary by Pietras and DeGregori, p. 2234 . This article is highlighted in the In This Issue feature, p. 2221.
Collapse
Affiliation(s)
- Anna Yeaton
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Geraldine Cayanan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU School of Medicine, New York, NY, USA
| | - Emmett M. Leddin
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Christian E. Loo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hedieh Torabifard
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Deedra Nicolet
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingjing Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kate Corrigan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Varvara Paraskevopoulou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel T Starczynowski
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Eric Wang
- MSK Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- MSK Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aaron D Viny
- Department of Genetics & Development, Columbia University, New York, NY, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY, USA; Cancer Genomics and Epigenomics Program, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G. Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU School of Medicine, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Comprehensive Cancer Center, Columbus/OH, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Guillamot
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Cell-free DNA 5-hydroxymethylcytosine is an emerging marker of acute myeloid leukemia. Sci Rep 2022; 12:12410. [PMID: 35859008 PMCID: PMC9300744 DOI: 10.1038/s41598-022-16685-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls. We developed a 5hmC diagnostic model that precisely differentiates AML patients from controls with high sensitivity and specificity. We also developed a 5hmC prognostic model that accurately predicts prognosis in AML patients. High weighted prognostic scores (wp-scores) in AML patients were significantly associated with adverse overall survival (OS) in both training (P = 3.31e-05) and validation (P = 0.000464) sets. The wp-score was also significantly associated with genetic risk stratification and displayed dynamic changes with varied disease burden. Moreover, we found that high wp-scores in a single gene, BMS1 and GEMIN5 predicted OS in AML patients in both the training set (P = 0.023 and 0.031, respectively) and validation set (P = 9.66e-05 and 0.011, respectively). Lastly, our study demonstrated the genome-wide landscape of DNA hydroxymethylation in AML and revealed critical genes and pathways related to AML diagnosis and prognosis. Our data reveal plasma cfDNA 5hmC signatures as sensitive and accurate markers for AML diagnosis and prognosis. Plasma cfDNA 5hmC analysis will be an effective and minimally invasive tool for AML management.
Collapse
|
18
|
Montgomery B, Wang S, Rettig M, Lee B, Bates J, Pritchard C. Ordering and Interpreting Precision Oncology Studies for Adults With Advanced Solid Tumors: A Primer. Fed Pract 2022; 39:S16-S24. [PMID: 35929009 PMCID: PMC9346578 DOI: 10.12788/fp.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND The promise of precision oncology can only be realized when genetic alterations are identified that can be leveraged to improve response and minimize toxicity. Identifying those alterations requires the knowledge to order the right test and to interpret the results correctly. This primer is designed to help clinicians order the appropriate testing for patients with specific malignancies and to give them an informed approach to interpretation. OBSERVATIONS Germline DNA is usually acquired from peripheral blood, buccal swab, or saliva collection in patients with a metastatic malignancy and can provide treatment options otherwise not available. However, germline testing does not indicate alterations that arise solely in tumor tissue. Somatic testing may be performed on primary tumor, metastatic biopsy, or circulating tumor DNA when the alteration is present at the time that the tumor developed and expected to be carried through the evolution of the tumor. CONCLUSIONS The rapid growth in technology and ability to enhance understanding of relevant tumor biology continues to improve the therapeutic landscape for individuals dealing with malignancy as does our ability to find targetable genetic alterations with the potential for meaningful clinical benefit.
Collapse
Affiliation(s)
- Bruce Montgomery
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- University of Washington, Seattle
| | - Sunny Wang
- San Francisco Veterans Affairs Health Care System, California
- University of California San Francisco
| | - Matthew Rettig
- Greater Los Angeles Health Care System, California
- University of California, Los Angeles
| | - Benson Lee
- Greater Los Angeles Health Care System, California
| | - Jill Bates
- Durham Veterans Affairs Medical Center, North Carolina
- University of North Carolina, Chapel Hill
| | | |
Collapse
|
19
|
Roloff GW, Drazer MW, Godley LA. Inherited Susceptibility to Hematopoietic Malignancies in the Era of Precision Oncology. JCO Precis Oncol 2022; 5:107-122. [PMID: 34994594 DOI: 10.1200/po.20.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As germline predisposition to hematopoietic malignancies has gained increased recognition and attention in the field of oncology, it is important for clinicians to use a systematic framework for the identification, management, and surveillance of patients with hereditary hematopoietic malignancies (HHMs). In this article, we discuss strategies for identifying individuals who warrant diagnostic evaluation and describe considerations pertaining to molecular testing. Although a paucity of prospective data is available to guide clinical monitoring of individuals harboring pathogenic variants, we provide recommendations for clinical surveillance based on consensus opinion and highlight current advances regarding the risk of progression to overt malignancy in HHM variant carriers. We also discuss the prognosis of HHMs and considerations surrounding the utility of allogeneic stem-cell transplantation in these individuals. We close with an overview of contemporary issues at the intersection of HHMs and precision oncology.
Collapse
Affiliation(s)
- Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Michael W Drazer
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| |
Collapse
|
20
|
Kwan TT, Oza AM, Tinker AV, Ray-Coquard I, Oaknin A, Aghajanian C, Lorusso D, Colombo N, Dean A, Weberpals J, Severson E, Vo LT, Goble S, Maloney L, Harding T, Kaufmann SH, Ledermann JA, Coleman RL, McNeish IA, Lin KK, Swisher EM. Preexisting TP53-Variant Clonal Hematopoiesis and Risk of Secondary Myeloid Neoplasms in Patients With High-grade Ovarian Cancer Treated With Rucaparib. JAMA Oncol 2021; 7:1772-1781. [PMID: 34647981 PMCID: PMC8517887 DOI: 10.1001/jamaoncol.2021.4664] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE A total of 1% to 3% of patients treated with a poly(adenosine diphosphate-ribose) polymerase inhibitor for high-grade ovarian cancer (HGOC) develop therapy-related myeloid neoplasms (t-MNs), which are rare but often fatal conditions. Although the cause of these t-MNs is unknown, clonal hematopoiesis of indeterminate potential (CHIP) variants can increase the risk of primary myeloid malignant neoplasms and are more frequent among patients with solid tumors. OBJECTIVES To examine whether preexisting CHIP variants are associated with the development of t-MNs after rucaparib treatment and how these CHIP variants are affected by treatment. DESIGN, SETTING, AND PARTICIPANTS This retrospective genetic association study used peripheral blood cell (PBC) samples collected before rucaparib treatment from patients in the multicenter, single-arm ARIEL2 (Study of Rucaparib in Patients With Platinum-Sensitive, Relapsed, High-Grade Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer) (n = 491; between October 30, 2013, and August 9, 2016) and the multicenter, placebo-controlled, double-blind ARIEL3 (Study of Rucaparib as Switch Maintenance Following Platinum-Based Chemotherapy in Patients With Platinum-Sensitive, High-Grade Serous or Endometrioid Epithelial Ovarian, Primary Peritoneal or Fallopian Tube Cancer) (n = 561; between April 7, 2014, and July 19, 2016), which tested rucaparib as HGOC therapy in the treatment and maintenance settings, respectively. The follow-up data cutoff date was September 1, 2019. Of 1052 patients in ARIEL2 and ARIEL3, PBC samples from 20 patients who developed t-MNs (cases) and 44 randomly selected patients who did not (controls) were analyzed for the presence of CHIP variants using targeted next-generation sequencing. Additional longitudinal analysis was performed on available ARIEL2 samples collected during treatment and at the end of treatment. MAIN OUTCOMES AND MEASURES Enrichment analysis of preexisting variants in 10 predefined CHIP-associated genes in cases relative to controls; association with clinical correlates. RESULTS Among 1052 patients (mean [SE] age, 61.7 [0.3] years) enrolled and dosed in ARIEL2 and ARIEL3, 22 (2.1%) developed t-MNs. The t-MNs were associated with longer overall exposure to prior platinum therapies (13.2 vs 9.0 months in ARIEL2, P = .04; 12.4 vs 9.6 months in ARIEL3, P = .003). The presence of homologous recombination repair gene variants in the tumor, either germline or somatic, was associated with increased prevalence of t-MNs (15 [4.1%] of 369 patients with HGOC associated with an HRR gene variant vs 7 [1.0%] of 683 patients with wild-type HGOC, P = .002). The prevalence of preexisting CHIP variants in TP53 but not other CHIP-associated genes at a variant allele frequency of 1% or greater was significantly higher in PBCs from cases vs controls (9 [45.0%] of 20 cases vs 6 [13.6%] of 44 controls, P = .009). TP53 CHIP was associated with longer prior exposure to platinum (mean 14.0 months of 15 TP53 CHIP cases vs 11.1 months of 49 non-TP53 CHIP cases; P = .02). Longitudinal analysis showed that preexisting TP53 CHIP variants expanded in patients who developed t-MNs. CONCLUSIONS AND RELEVANCE The findings of this genetic association study suggest that preexisting TP53 CHIP variants may be associated with t-MNs after rucaparib treatment.
Collapse
Affiliation(s)
| | - Amit M. Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna V. Tinker
- BC Cancer–Vancouver, Vancouver, British Columbia, Canada
| | - Isabelle Ray-Coquard
- Groupe d’Investigateurs Nationaux pour les Etudes des Cancers de l’Ovaire, Lyon, France,Medical Oncology Department, Centre Léon Bérard, Lyon, France,Centre Léon Bérard, University Claude Bernard, Lyon, France
| | - Ana Oaknin
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Domenica Lorusso
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy,Now with Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS and Scientific Directorate, Rome, Italy
| | - Nicoletta Colombo
- Gynecologic Cancer Medical Treatments, European Institute of Oncology IRCCS, Milan, Italy,Obstetrics and Gynaecology, University of Milan-Bicocca, Milan, Italy
| | - Andrew Dean
- Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Johanne Weberpals
- Division of Gynecologic Oncology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Eric Severson
- Pathology and Diagnostic Medicine, Foundation Medicine, Cambridge, Massachusetts
| | | | | | | | | | | | | | - Robert L. Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, The University of Texas, Houston,Now with US Oncology Research, The Woodlands, Texas
| | - Iain A. McNeish
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle
| |
Collapse
|
21
|
Liquid Biopsy Analysis in Clinical Practice: Focus on Lung Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2030021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite the emergence of highly effective targeted therapies, up to 30% of advanced stage non-small cell lung cancer (NSCLC) patients do not undergo tissue molecular testing because of scarce tissue availability. Liquid biopsy, on the other hand, offers these patients a valuable opportunity to receive the best treatment options in a timely manner. Indeed, besides being much faster and less invasive than conventional tissue-based analysis, it can also yield specific information about the genetic make-up and evolution of patients’ tumors. However, several issues, including lack of standardized protocols for sample collection, processing, and interpretation, still need to be addressed before liquid biopsy can be fully incorporated into routine oncology practice. Here, we reviewed the most important challenges hindering the implementation of liquid biopsy in oncology practice, as well as the great advantages of this approach for the treatment of NSCLC patients.
Collapse
|
22
|
Shide K. Calreticulin mutations in myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:179-226. [PMID: 34756244 DOI: 10.1016/bs.ircmb.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin (CALR) is a chaperone present in the endoplasmic reticulum, which is involved in the quality control of N-glycosylated proteins and storage of calcium ions. In 2013, the C-terminal mutation in CALR was identified in half of the patients with essential thrombocythemia and primary myelofibrosis who did not have a JAK2 or MPL mutation. The results of 8 years of intensive research are changing the clinical practice associated with treating myeloproliferative neoplasms (MPNs). The presence or absence of CALR mutations and their mutation types already provide important information for diagnosis and treatment decision making. In addition, the interaction with the thrombopoietin receptor MPL, which is the main mechanism of transformation by CALR mutation, and the expression of the mutant protein on the cell surface have a great potential as targets for molecular-targeted drugs and immunotherapy. This chapter presents recent findings on the clinical significance of the CALR mutation and the molecular basis by which this mutation drives MPNs.
Collapse
Affiliation(s)
- Kotaro Shide
- Division of Haematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
23
|
Abstract
This article has a companion Counterpoint by Gibson and Lindsley.
Collapse
|
24
|
Li J, Wang C, Liu J, Yu Y, Liu Y, Peng Q, Liu H, Guan X. A feedback loop: Interactions between Inflammatory Signals and Clonal Hematopoiesis in Cardiovascular Disease. Mol Biol Rep 2021; 48:3785-3798. [PMID: 33987748 PMCID: PMC8117808 DOI: 10.1007/s11033-021-06370-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
Age and inflammation are powerful drivers of cardiovascular disease. With the growing recognition that traditional cardiovascular risk factors are not fully accurate predictors of cardiovascular disease, recent studies have revealed the prevalence of positive selection of somatic cell mutations in hematopoietic stem cells in the elderly population, which can cause clonal hematopoiesis. Interestingly, clonal hematopoiesis is not only associated with cancer and death, but also closely related to the risk of increased cardiovascular disease due to mutations in TET2, DNMT3A, ASXL1, and JAK2. However, the mechanism of the interaction of clonal hematopoiesis and cardiovascular disease is only partially understood. In mice, somatic mutations have led to significantly increased expression of inflammatory genes in innate immune cells, which may explain the relationship between mutations and cardiovascular disease. Here, we further discuss the association between inflammatory signaling, clonal hematopoiesis, and cardiovascular disease,and using two hypotheses to propose a feedback loop between inflammatory signaling and clonal hematopoiesis for getting insight into the pathogenesis of cardiovascular diseases in depth. Therapies targeting mutant clones or increased inflammatory mediators may be useful for ameliorating the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Jiashan Li
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chao Wang
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiaru Liu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Yu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yuee Liu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Qi Peng
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Huihui Liu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiuru Guan
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
25
|
Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13092095. [PMID: 33926021 PMCID: PMC8123716 DOI: 10.3390/cancers13092095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.
Collapse
|
26
|
Mooney L, Goodyear CS, Chandra T, Kirschner K, Copland M, Petrie MC, Lang NN. Clonal haematopoiesis of indeterminate potential: intersections between inflammation, vascular disease and heart failure. Clin Sci (Lond) 2021; 135:991-1007. [PMID: 33861346 PMCID: PMC8055963 DOI: 10.1042/cs20200306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Ageing is a major risk factor for the development of cardiovascular disease (CVD) and cancer. Whilst the cumulative effect of exposure to conventional cardiovascular risk factors is important, recent evidence highlights clonal haematopoiesis of indeterminant potential (CHIP) as a further key risk factor. CHIP reflects the accumulation of somatic, potentially pro-leukaemic gene mutations within haematopoietic stem cells over time. The most common mutations associated with CHIP and CVD occur in genes that also play central roles in the regulation of inflammation. While CHIP carriers have a low risk of haematological malignant transformation (<1% per year), their relative risk of mortality is increased by 40% and this reflects an excess of cardiovascular events. Evidence linking CHIP, inflammation and atherosclerotic disease has recently become better defined. However, there is a paucity of information about the role of CHIP in the development and progression of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). While systemic inflammation plays a role in the pathophysiology of both heart failure with reduced and preserved ejection fraction (EF), it may be of greater relevance in the pathophysiology of HFpEF, which is also strongly associated with ageing. This review describes CHIP and its pathogenetic links with ageing, inflammation and CVD, while providing insight into its putative role in HFpEF.
Collapse
Affiliation(s)
- Leanne Mooney
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Carl S. Goodyear
- Institute of Immunity, Infection and Inflammation, University of Glasgow, Glasgow, U.K
| | - Tamir Chandra
- The Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, U.K
| | - Kristina Kirschner
- Paul O’Gorman Leukaemia Research Centre, Institute for Cancer Science, University of Glasgow, Glasgow, U.K
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, Institute for Cancer Science, University of Glasgow, Glasgow, U.K
| | - Mark C. Petrie
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| |
Collapse
|
27
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Pisapia P, Costa JL, Pepe F, Russo G, Gragnano G, Russo A, Iaccarino A, de Miguel-Perez D, Serrano MJ, Denninghoff V, Quagliata L, Rolfo C, Malapelle U. Next generation sequencing for liquid biopsy based testing in non-small cell lung cancer in 2021. Crit Rev Oncol Hematol 2021; 161:103311. [PMID: 33781866 DOI: 10.1016/j.critrevonc.2021.103311] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, with non-small cell lung cancer (NSCLC) representing its most commonly diagnosed sub-type. Despite the significant improvements in lung cancer biomarkers knowledge, accompanied by substantial technological advances in molecular tumor profiling, a considerable fraction (up to 30 %) of advanced NSCLC patient presents with major testing challenges or tissue unavailability for molecular analysis. In this context, liquid biopsy is on the rise, currently gaining considerable interest within the molecular pathology and oncology community. Molecular profiling of liquid biopsy specimens using next generation molecular biology methodologies is a rapidly evolving field with promising applications not exclusively limited to advanced stages but also more recently expanding to early stages cancer patients. Here, we offer an overview of some of the most consolidated and emerging applications of next generation sequencing technologies for liquid biopsy testing in NSCLC.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - José Luis Costa
- Medical Affairs Clinical NGS and Oncology Division Life Sciences Solutions, Thermo Fisher Scientific, Zug, Switzerland
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Diego de Miguel-Perez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Spain; Thoracic Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Maria Josè Serrano
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Spain
| | - Valeria Denninghoff
- University of Buenos Aires - National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Luca Quagliata
- Medical Affairs Clinical NGS and Oncology Division Life Sciences Solutions, Thermo Fisher Scientific, Zug, Switzerland
| | - Christian Rolfo
- Thoracic Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
29
|
Abstract
Human lifespan is now longer than ever and, as a result, modern society is getting older. Despite that, the detailed mechanisms behind the ageing process and its impact on various tissues and organs remain obscure. In general, changes in DNA, RNA and protein structure throughout life impair their function. Haematopoietic ageing refers to the age-related changes affecting a haematopoietic system. Aged blood cells display different functional aberrations depending on their cell type, which might lead to the development of haematologic disorders, including leukaemias, anaemia or declining immunity. In contrast to traditional bulk assays, which are not suitable to dissect cell-to-cell variation, single-cell-level analysis provides unprecedented insight into the dynamics of age-associated changes in blood. In this Review, we summarise recent studies that dissect haematopoietic ageing at the single-cell level. We discuss what cellular changes occur during haematopoietic ageing at the genomic, transcriptomic, epigenomic and metabolomic level, and provide an overview of the benefits of investigating those changes with single-cell precision. We conclude by considering the potential clinical applications of single-cell techniques in geriatric haematology, focusing on the impact on haematopoietic stem cell transplantation in the elderly and infection studies, including recent COVID-19 research.
Collapse
Affiliation(s)
- Paulina M Strzelecka
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
30
|
Gao T, Ptashkin R, Bolton KL, Sirenko M, Fong C, Spitzer B, Menghrajani K, Ossa JEA, Zhou Y, Bernard E, Levine M, Martinez JSM, Zhang Y, Franch-Expósito S, Patel M, Braunstein LZ, Kelly D, Yabe M, Benayed R, Caltabellotta NM, Philip J, Paraiso E, Mantha S, Solit DB, Diaz LA, Berger MF, Klimek V, Levine RL, Zehir A, Devlin SM, Papaemmanuil E. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nat Commun 2021; 12:338. [PMID: 33436578 PMCID: PMC7804935 DOI: 10.1038/s41467-020-20565-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023] Open
Abstract
Stably acquired mutations in hematopoietic cells represent substrates of selection that may lead to clonal hematopoiesis (CH), a common state in cancer patients that is associated with a heightened risk of leukemia development. Owing to technical and sample size limitations, most CH studies have characterized gene mutations or mosaic chromosomal alterations (mCAs) individually. Here we leverage peripheral blood sequencing data from 32,442 cancer patients to jointly characterize gene mutations (n = 14,789) and mCAs (n = 383) in CH. Recurrent composite genotypes resembling known genetic interactions in leukemia genomes underlie 23% of all detected autosomal alterations, indicating that these selection mechanisms are operative early in clonal evolution. CH with composite genotypes defines a patient group at high risk of leukemia progression (3-year cumulative incidence 14.6%, CI: 7-22%). Multivariable analysis identifies mCA as an independent risk factor for leukemia development (HR = 14, 95% CI: 6-33, P < 0.001). Our results suggest that mCA should be considered in conjunction with gene mutations in the surveillance of patients at risk of hematologic neoplasms.
Collapse
Affiliation(s)
- Teng Gao
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Kelly L Bolton
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Maria Sirenko
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Christopher Fong
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Kamal Menghrajani
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Juan E Arango Ossa
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Yangyu Zhou
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Max Levine
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Juan S Medina Martinez
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Yanming Zhang
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sebastià Franch-Expósito
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Lior Z Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Daniel Kelly
- Department of Information Systems, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Mariko Yabe
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Nicole M Caltabellotta
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - John Philip
- Department of Health Informatics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ederlinda Paraiso
- Center for Strategy & Innovation, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Simon Mantha
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Medicine, Solid Tumor Division, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Program in Precision Interception and Prevention, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Virginia Klimek
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Weill Cornell Medical College, 407 E 61st St, New York, NY, 10065, USA
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Program in Precision Interception and Prevention, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sean M Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Kotrova M, Darzentas N, Pott C, Brüggemann M. Next-Generation Sequencing Technology to Identify Minimal Residual Disease in Lymphoid Malignancies. Methods Mol Biol 2021; 2185:95-111. [PMID: 33165845 DOI: 10.1007/978-1-0716-0810-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Next-generation sequencing (NGS) of immunoglobulin (IG) and T cell receptor (TR) rearrangements represents a modern alternative to classical RQ-PCR-based minimal residual disease (MRD) detection. The same primer sets and conditions can be used for all patients, which is undoubtedly one of the most important benefits of NGS, not only reducing the labor required to perform the analysis but also enabling the assay to comply with the upcoming EU IVD regulation. So far, only one standardized academic protocol for this task has been published, developed, and validated within the EuroClonality-NGS working group. In this chapter we describe the materials and methods for amplicon library preparation for sequencing on Illumina MiSeq, and the bioinformatic pipeline for this protocol.
Collapse
Affiliation(s)
- Michaela Kotrova
- Unit for Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikos Darzentas
- Unit for Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christiane Pott
- Unit for Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Monika Brüggemann
- Unit for Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
32
|
Cohen JD, Diergaarde B, Papadopoulos N, Kinzler KW, Schoen RE. Tumor DNA as a Cancer Biomarker through the Lens of Colorectal Neoplasia. Cancer Epidemiol Biomarkers Prev 2020; 29:2441-2453. [PMID: 33033144 PMCID: PMC7710619 DOI: 10.1158/1055-9965.epi-20-0549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Biomarkers have a wide range of applications in the clinical management of cancer, including screening and therapeutic management. Tumor DNA released from neoplastic cells has become a particularly active area of cancer biomarker development due to the critical role somatic alterations play in the pathophysiology of cancer and the ability to assess released tumor DNA in accessible clinical samples, in particular blood (i.e., liquid biopsy). Many of the early applications of tumor DNA as a biomarker were pioneered in colorectal cancer due to its well-defined genetics and common occurrence, the effectiveness of early detection, and the availability of effective therapeutic options. Herein, in the context of colorectal cancer, we describe how the intended clinical application dictates desired biomarker test performance, how features of tumor DNA provide unique challenges and opportunities for biomarker development, and conclude with specific examples of clinical application of tumor DNA as a biomarker with particular emphasis on early detection.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert E Schoen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin Oncol 2020; 47:94-101. [PMID: 32327154 DOI: 10.1053/j.seminoncol.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Management of hematologic malignancies in older patients is complex and, with recent and anticipated trends in demographics, increasingly common. As a large, nationally integrated medical system the Veterans Affairs has the potential to lead in research to benefit these patients. In this review we describe the evolving treatment paradigms of hematologic malignancies and how they are best fit with older patients through comprehensive evaluation of key vulnerabilities. We also discuss optimization of supportive care and navigation services to target identified risks and challenges aimed at ameliorating the patient's burden of cancer and treatment. Lastly, we discuss opportunities in design of prospective clinical trials to better align with real-world cases, thereby expanding enrollment of and applicability to older patients with hematologic malignancies.
Collapse
Affiliation(s)
- Solomon A Graf
- Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA; Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
| | - Laura S Samples
- Division of Internal Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | | | - Jose M Garcia
- Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA; VAPSHCS Geriatric Research and Education Clinical Center (GRECC), Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
34
|
Ravindran A, He R, Ketterling RP, Jawad MD, Chen D, Oliveira JL, Nguyen PL, Viswanatha DS, Reichard KK, Hoyer JD, Go RS, Shi M. The significance of genetic mutations and their prognostic impact on patients with incidental finding of isolated del(20q) in bone marrow without morphologic evidence of a myeloid neoplasm. Blood Cancer J 2020; 10:7. [PMID: 31974359 PMCID: PMC6978416 DOI: 10.1038/s41408-020-0275-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with a sole del(20q) chromosomal abnormality and without morphologic features of a myeloid neoplasm (MN) have shown variable clinical outcomes. To explore the potential risk stratification markers in this group of patients, we evaluated their genetic mutational landscape by a 35-gene MN-focused next-generation sequencing (NGS) panel and examined the association of mutations to progression of MNs. Our study included 56 patients over a 10-year period with isolated del(20q), of whom 23 (41.1%) harbored at least one mutation. With a median follow-up of 32.6 months (range: 0.1−159.1), 9 of 23 patients with mutation(s) progressed to MNs, while all 33 patients without mutations did not progress to MN. Kaplan−Meier survival analysis demonstrated the presence of mutation(s) as a significant risk factor for progression to MN (P < 0.0001). MN progression was strongly associated with the presence of non-DNMT3A/TET2/ASXL1 epigenetic modifiers and nonspliceosome mutations (P = 0.003). There was no significant difference among patients with and without MN progression with respect to the number of mutations, variant allele frequency, percentage of del(20q), and other clinical/laboratory variables. This study illustrates the underlying genetic heterogeneity and complexity of isolated del(20q), and underscores the prognostic value of NGS mutational analysis in these cases.
Collapse
Affiliation(s)
- Aishwarya Ravindran
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Majd D Jawad
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Oliveira
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Phuong L Nguyen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - James D Hoyer
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Bacon JVW, Annala M, Soleimani M, Lavoie JM, So A, Gleave ME, Fazli L, Wang G, Chi KN, Kollmannsberger CK, Wyatt AW, Nappi L. Plasma Circulating Tumor DNA and Clonal Hematopoiesis in Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer 2020; 18:322-331.e2. [PMID: 32046920 DOI: 10.1016/j.clgc.2019.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is a lack of molecularly-informed biomarkers for patients with metastatic renal cell carcinoma (RCC). Plasma cell-free DNA (cfDNA) sequencing is a minimally-invasive alternative to tissue for profiling the genome in other cancers but relevance in metastatic RCC remains unclear. MATERIALS AND METHODS Whole blood was collected from 55 patients with metastatic RCC. Plasma cfDNA and leukocyte DNA were subjected to targeted sequencing across 981 cancer genes. Matched tumor tissue from 14 patients was analyzed. RESULTS Thirty-three percent of patients had evidence for RCC-derived circulating tumor DNA (ctDNA), significantly lower than patients with metastatic prostate or bladder cancer analyzed using the same approach. Among ctDNA-positive patients, ctDNA fraction averaged only 3.9% and showed no strong association with clinical variables. In these patients, the most commonly mutated genes were VHL, BAP1, and PBRM1, and matched tissue concordance was 77%. Evidence of somatic expansions unrelated to RCC, such as clonal hematopoiesis of indeterminate potential, were detected in 43% of patients. Pathogenic germline mutations in DNA repair genes were detected in 11% of patients. CtDNA-positive patients had shorter overall survival and progression-free survival on first-line therapy. Patients with evidence of clonal hematopoiesis of indeterminate potential had an intermediate prognosis compared with ctDNA-positive and -negative patients. CONCLUSIONS CfDNA sequencing enables straightforward characterization of the somatic RCC genome in a minority of patients with metastatic RCC. Owing to low ctDNA abundance, and the presence of non-RCC derived somatic clones in circulation, cfDNA sequencing may not be a simple pan-patient alternative to tissue biopsy in metastatic RCC.
Collapse
Affiliation(s)
- Jack V W Bacon
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | | | - Alan So
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gang Wang
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | - Kim N Chi
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | | | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada.
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada; Department of Medical Oncology, BC Cancer, British Columbia, Canada
| |
Collapse
|
36
|
Abstract
Modern management of acute myeloid leukaemia (AML) relies on the integration of phenotypic and genetic data to assign classification, establish prognosis, enhance monitoring and guide treatment. The prism through which we can now disperse a patient's leukaemia, interpret and apply our understanding has fundamentally changed since the completion of the first whole-genome sequencing (WGS) of an AML patient in 2008 and where possible, many clinicians would now prefer to delay treatment decisions until the karyotype and genetic status of a new patient is known. The success of global sequencing initiatives such as The Cancer Genome Atlas (TCGA) have brought us significantly closer to cataloguing the full spectrum of coding mutations involved in human malignancy. Indeed, genetic capability has raced ahead of our capacity to apply much of this knowledge into clinical practice and we are in the peculiar position of having routine access to genetic information on an individual patient's leukaemia that cannot be reliably interpreted or utilised. This is a measure of how rapid the progress has been, and this rate of change is likely to continue into the foreseeable future as research intensifies on the non-coding genome and the epigenome, as we scrutinise disease at a single cell level, and as initiatives like Beat AML and the Harmony Alliance progress. In this review, we will examine how interrogation of the coding genome is revolutionising our understanding of AML and improving our ability to underscore differences between paediatric and adult onset, sporadic and inherited forms of disease. We will look at how this knowledge is informing improvements in outcome prediction and the development of novel treatments, bringing us a step closer to personalised therapy for myeloid malignancy.
Collapse
Affiliation(s)
- Sarah Charrot
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Hannah Armes
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| | - Jude Fitzgibbon
- Centre for Haemato-oncology, Barts Cancer Institute, QMUL, London, UK
| |
Collapse
|
37
|
Gondek LP, DeZern AE. Assessing clonal haematopoiesis: clinical burdens and benefits of diagnosing myelodysplastic syndrome precursor states. LANCET HAEMATOLOGY 2019; 7:e73-e81. [PMID: 31810765 DOI: 10.1016/s2352-3026(19)30211-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Diagnosing, surveilling, and understanding the biological consequences of clonal haematopoiesis poses a clinical challenge for both patients and clinicians. The relationship between peripheral blood cytopenias and myeloid neoplasms-such as myelodysplastic syndrome-is an area of active research, and understanding of clonal haematopoiesis has developed markedly on the basis of findings concerning somatic mutations in genes known to be associated with myelodysplastic syndrome. These findings have raised the conundrum of how to appropriately define and follow myelodysplastic syndrome precursor states, such as clonal haematopoiesis of indeterminate potential (CHIP) and clonal cytopenias of undetermined significance (CCUS). Identifying these conditions could allow earlier diagnosis of myelodysplastic syndrome, modify surveillance for myelodysplastic syndrome, and possibly guide therapies, but this information also comes at a cost to patients that might or might not be justified by our present understanding of clonal haematopoiesis. When faced with a diagnosis of clonal haematopoiesis, some patients and providers might be content to let the events unfold naturally, whereas others may insist on intense follow-up and early interventions. This Viewpoint assesses recent developments in clonal haematopoiesis and the related implications for affected patients and their providers.
Collapse
Affiliation(s)
- Lukasz P Gondek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Low prevalence of the BCR-ABL1 fusion gene in a normal population in southern Sarawak. Int J Hematol 2019; 111:217-224. [PMID: 31707540 DOI: 10.1007/s12185-019-02768-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
The BCR-ABL1 fusion gene is the driver mutation of Philadelphia chromosome-positive chronic myeloid leukemia (CML). Its expression level in CML patients is monitored by a real-time quantitative polymerase chain reaction defined by the International Scale (qPCRIS). BCR-ABL1 has also been found in asymptomatic normal individuals using a non-qPCRIS method. In the present study, we examined the prevalence of BCR-ABL1 in a normal population in southern Sarawak by performing qPCRIS for BCR-ABL1 with ABL1 as an internal control on total white blood cells, using an unbiased sampling method. While 146 of 190 (76.8%) or 102 of 190 (53.7%) samples showed sufficient amplification of the ABL1 gene at > 20,000 or > 100,000 copy numbers, respectively, in qPCRIS, one of the 190 samples showed amplification of BCR-ABL1 with positive qPCRIS of 0.0023% and 0.0032% in two independent experiments, the sequence of which was the BCR-ABL1 e13a2 transcript. Thus, we herein demonstrated that the BCR-ABL1 fusion gene is expected to be present in approximately 0.5-1% of normal individuals in southern Sarawak.
Collapse
|
39
|
Steensma DP. The Clinical Challenge of Idiopathic Cytopenias of Undetermined Significance (ICUS) and Clonal Cytopenias of Undetermined Significance (CCUS). Curr Hematol Malig Rep 2019; 14:536-542. [DOI: 10.1007/s11899-019-00547-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Graf SA, Samples LS, Keating TM, Garcia JM. Clinical research in older adults with hematologic malignancies: Opportunities for alignment in the Veterans Affairs. Semin Oncol 2019; 46:341-345. [PMID: 31606147 DOI: 10.1053/j.seminoncol.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 11/11/2022]
Abstract
Management of hematologic malignancies in older patients is complex and, with recent and anticipated trends in demographics, increasingly common. As a large, nationally integrated medical system the Veterans Affairs has the potential to lead in research to benefit these patients. In this review we describe the evolving treatment paradigms of hematologic malignancies and how they are best fit with older patients through comprehensive evaluation of key vulnerabilities. We also discuss optimization of supportive care and navigation services to target identified risks and challenges aimed at ameliorating the patient's burden of cancer and treatment. Lastly, we discuss opportunities in design of prospective clinical trials to better align with real-world cases, thereby expanding enrollment of and applicability to older patients with hematologic malignancies.
Collapse
Affiliation(s)
- Solomon A Graf
- Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA; Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
| | - Laura S Samples
- Division of Internal Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | | | - Jose M Garcia
- Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA; VAPSHCS Geriatric Research and Education Clinical Center (GRECC), Department of Medicine, Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
41
|
Buisman SC, de Haan G. Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies. Cells 2019; 8:E868. [PMID: 31405121 PMCID: PMC6721661 DOI: 10.3390/cells8080868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with multiple molecular and functional changes in haematopoietic cells. Most notably, the self-renewal and differentiation potential of hematopoietic stem cells (HSCs) are compromised, resulting in myeloid skewing, reduced output of red blood cells and decreased generation of immune cells. These changes result in anaemia, increased susceptibility for infections and higher prevalence of haematopoietic malignancies. In HSCs, age-associated global epigenetic changes have been identified. These epigenetic alterations in aged HSCs can occur randomly (epigenetic drift) or are the result of somatic mutations in genes encoding for epigenetic proteins. Mutations in loci that encode epigenetic modifiers occur frequently in patients with haematological malignancies, but also in healthy elderly individuals at risk to develop these. It may be possible to pharmacologically intervene in the aberrant epigenetic program of derailed HSCs to enforce normal haematopoiesis or treat age-related haematopoietic diseases. Over the past decade our molecular understanding of epigenetic regulation has rapidly increased and drugs targeting epigenetic modifications are increasingly part of treatment protocols. The reversibility of epigenetic modifications renders these targets for novel therapeutics. In this review we provide an overview of epigenetic changes that occur in aging HSCs and age-related malignancies and discuss related epigenetic drugs.
Collapse
Affiliation(s)
- Sonja C Buisman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands.
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| |
Collapse
|
42
|
Busti F, Marchi G, Lira Zidanes A, Castagna A, Girelli D. Treatment options for anemia in the elderly. Transfus Apher Sci 2019; 58:416-421. [DOI: 10.1016/j.transci.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|