1
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
2
|
Wang Y, Wang Y, Deng D. Multifaceted plant G protein: interaction network, agronomic potential, and beyond. PLANTA 2019; 249:1259-1266. [PMID: 30790051 DOI: 10.1007/s00425-019-03112-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Heterotrimeric G protein and interacting effectors are relevant for agronomic significance. We can manipulate G protein and effectors, individually or in combination, to develop plant ideotypes by intelligent design breeding. Heterotrimeric guanine nucleotide-binding protein (G protein) is involved in a wide range of biological events, many of which with agronomic significance. In this review, we summarize recent advances of plant G protein research. We first retrieve maize G protein core subunits Gα, Gβ, and Gγ based on information of Arabidopsis and rice G proteins using integrated BLAST and domain confirmation. Then, we briefly introduce the distribution and function of G protein. We also describe the interaction between G protein and CLAVATA receptor, brassinosteroid signaling kinase complex, and MADS-domain transcription factor. Finally, we discuss the application of G protein knowledge in intelligent plant breeding with focus on the improvement of agronomically important traits.
Collapse
Affiliation(s)
- Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
3
|
Varney ME, Boehm DT, DeRoos K, Nowak ES, Wong TY, Sen-Kilic E, Bradford SD, Elkins C, Epperly MS, Witt WT, Barbier M, Damron FH. Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice. Front Immunol 2018; 9:2376. [PMID: 30405604 PMCID: PMC6200895 DOI: 10.3389/fimmu.2018.02376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response.
Collapse
Affiliation(s)
- Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Katherine DeRoos
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Evan S Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Shebly D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Cody Elkins
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S Epperly
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
4
|
Guan SP, Lam ATL, Newman JP, Chua KLM, Kok CYL, Chong ST, Chua MLK, Lam PYP. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex. FEBS Open Bio 2017; 8:15-26. [PMID: 29321953 PMCID: PMC5757182 DOI: 10.1002/2211-5463.12330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)‐1. Furthermore, highly tumor‐tropic MSCs expressed higher levels of MMP‐1 and insulin‐like growth factor (IGF)‐2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF‐2 and MMP‐1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF‐2 or MMP‐1 could stimulate MSC migration. The correlation between IGF‐2, MMP‐1 expression, and MSC migration suggests that MMP‐1 may play a role in regulating MSC migration via the IGF‐2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF‐stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP‐1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF‐2/IGFBP2 complex and extracellular release of free IGF‐2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP‐1, cleaved the IGF‐2/IGFBP2 complex. Taken together, these results showed that the MMP‐1 secreted by highly tumor‐tropic MSCs cleaved IGF‐2/IGFBP2 complex. Free IGF‐2 released from the complex may facilitate MSC migration toward tumor.
Collapse
Affiliation(s)
- Shou P Guan
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Alan T L Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Present address: BTIASTAR Centros Singapore
| | - Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Present address: Lonza Biologics Tuas Pte Ltd Singapore
| | - Kevin L M Chua
- Division of Radiation Oncology National Cancer Center Singapore Singapore
| | - Catherine Y L Kok
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Siao T Chong
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Melvin L K Chua
- Division of Radiation Oncology National Cancer Center Singapore Singapore.,Oncology Academic Program Duke-NUS Graduate Medical School Singapore Singapore
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Cancer and Stem Cells Biology Program Duke-NUS Graduate Medical School Singapore Singapore.,Department of Physiology Yong Loo Lin School of Medicine National University of Singapore Singapore
| |
Collapse
|
5
|
Abstract
This review is restricted to neutrophilic granulocytes (granulocytes), monocytes (macrophages), and eosinophils, with only passing reference to cells that are also usually included in the "myeloid" category-megakaryocytes, mast cells, and erythroid cells. Although some dendritic cells are of myeloid origin, they are discussed elsewhere. The validity of the information to be described depends on two assumptions: (a) that in vitro data are applicable to events in vivo and (b) that mouse data reflect events in man. Both assumptions are likely to be broadly correct.
Collapse
|
6
|
Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterr J Hematol Infect Dis 2017; 9:e2017032. [PMID: 28512561 PMCID: PMC5419183 DOI: 10.4084/mjhid.2017.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022] Open
Abstract
Homing of hematopoietic stem cells (HSC) to their microenvironment niches in the bone marrow is a complex process with a critical role in repopulation of the bone marrow after transplantation. This active process allows for migration of HSC from peripheral blood and their successful anchoring in bone marrow before proliferation. The process of engraftment starts with the onset of proliferation and must, therefore, be functionally dissociated from the former process. In this overview, we analyze the characteristics of stem cells (SCs) with particular emphasis on their plasticity and ability to find their way home to the bone marrow. We also address the problem of graft failure which remains a significant contributor to morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Within this context, we discuss non-malignant and malignant hematological disorders treated with reduced-intensity conditioning regimens or grafts from human leukocyte antigen (HLA)-mismatched donors.
Collapse
|
7
|
Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol 2016; 105:118-128. [PMID: 27826715 DOI: 10.1007/s12185-016-2123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells are a remarkable resource currently used for the life saving treatment, hematopoietic stem cell transplantation. Today, hematopoietic stem cells are primarily obtained from mobilized peripheral blood following treatment of the donor with the cytokine G-CSF, and in some settings, chemotherapy and/or the CXCR4 antagonist plerixafor. The collection of hematopoietic stem cells is contingent on adequate and timely mobilization of these cells into the peripheral blood. The use of healthy donors, particularly when unrelated to the patient, requires mobilization strategies be safe for the donor. While current mobilization strategies are largely successful, adequate mobilization fails to occur in a significant portion of donors. Understanding the mechanisms involved in the egress of stem cells from the bone marrow provides opportunities to further improve the process of collecting hematopoietic stem cells. Here, the role extracellular components of the blood and bone marrow in the mobilization process are discussed.
Collapse
Affiliation(s)
- Linda Bendall
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|
8
|
Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int J Mol Sci 2016; 17:ijms17050707. [PMID: 27187360 PMCID: PMC4881529 DOI: 10.3390/ijms17050707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Jennifer R Lynch
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jenny Yingzi Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
- Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Moghaddam F, Oodi A, Nikougoftar Zarif M, Amani M, Amirizadeh N. Expression of CXCR4 in cord blood-derived CD133+ cells treated with platelet micro-particles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1702-7. [PMID: 26466742 DOI: 10.3109/21691401.2015.1089251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Platelet micro-particles (MPs) contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, effect of platelet MPs (PMPs) on the expression levels of CXCR4 and CD34 markers in these cells was examined. Isolated CD 133+ cells cultivated for 5 d in the stem span medium and PMPs. Fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. BACKGROUND Cord blood CD133+ cells are able to maintain long-term hematopoiesis and to differentiate to hematopoietic lineages. CXCR4 over expression is involved in homing and successful transplantation of hematopoietic stem cells (HSCs) in the bone marrow. PMPs contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, considering the importance of CD133+ cells as primitive HSCs, the effect of PMPs on the expression levels of CXCR4 and CD34 markers in these cells was examined. MATERIALS AND METHODS Cord blood CD133+ cells were isolated by MACS. Isolated cells were divided into three groups: (i) control cells, (ii) cells treated with 5 μg/ml PMPs, (iii) cells treated with 10 μg/ml PMPs. Cells were cultivated for 5 d in the stem span medium. Expression of CD 133, CD34, and CXCR4 surface marker was analyzed by flow cytometry. Total cell numbers were counted by hemocytometer and clonogenicity were measured by colony assay. RESULTS PMPs were no effect on CD133+ cells proliferation, but fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. CONCLUSIONS Exposure of CD133+ cells isolated from cord blood to PMPs with 10 μg/ml concentration increased the expression of CXCR4 surface marker significantly.
Collapse
Affiliation(s)
- Farzaneh Moghaddam
- a Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine , Tehran , The Islamic Republic of Iran
| | - Arezoo Oodi
- a Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine , Tehran , The Islamic Republic of Iran
| | - Mahin Nikougoftar Zarif
- a Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine , Tehran , The Islamic Republic of Iran
| | - Maryam Amani
- a Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine , Tehran , The Islamic Republic of Iran
| | - Naser Amirizadeh
- a Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine , Tehran , The Islamic Republic of Iran
| |
Collapse
|
10
|
Karpova D, Bonig H. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis--Lessons From Pharmacological and Genetic Models. Stem Cells 2015; 33:2391-9. [PMID: 25966814 DOI: 10.1002/stem.2054] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Abstract
Dominant, although nonexclusive roles of CXCR4 and its chief ligand CXCL12 in bone marrow (BM) retention and preservation of the relative quiescence of hematopoietic stem/progenitor cells (HSPCs), along with their involvement in human immunodeficiency virus infection, in trafficking of mature hematopoietic cells to sites of inflammation and in orderly migration of nonhematopoietic cells during embryogenesis, explain the significant interest of the scientific community in the mode of action of this receptor-ligand pair. In this focused review, we seek to distil from the large body of information that has become available over the years some of the key findings about the role of CXCR4/CXCL12 in normal immature hematopoiesis. It is hoped that understanding the mechanistic insights gained there from will help generate hypotheses about potential avenues in which cancer/leukemia cell behavior can be modified by interference with this pathway.
Collapse
Affiliation(s)
- Darja Karpova
- Department of Internal Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University Medical School, St. Louis, Missouri, USA
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany.,German Red Cross Blood Service BaWüHe, Institute Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Beck TC, Gomes AC, Cyster JG, Pereira JP. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. ACTA ACUST UNITED AC 2014; 211:2567-81. [PMID: 25403444 PMCID: PMC4267240 DOI: 10.1084/jem.20140457] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Joao Pereira and colleagues at Yale University show that B cell egress from bone marrow is a passive process, similar to that of red blood cells. Immature B cells that approached bone marrow sinusoids decreased their expression of CXCR4 and rounded up, allowing them to be passively swept away. Leukocyte residence in lymphoid organs is controlled by a balance between retention and egress-promoting chemoattractants sensed by pertussis toxin (PTX)–sensitive Gαi protein–coupled receptors (GPCRs). Here, we use two-photon intravital microscopy to show that immature B cell retention within bone marrow (BM) was strictly dependent on amoeboid motility mediated by CXCR4 and CXCL12 and by α4β1 integrin–mediated adhesion to VCAM-1. However, B lineage cell egress from BM is independent of PTX-sensitive GPCR signaling. B lineage cells expressing PTX rapidly exited BM even though their motility within BM parenchyma was significantly reduced. Our experiments reveal that when immature B cells are near BM sinusoids their motility is reduced, their morphology is predominantly rounded, and cells reverse transmigrate across sinusoidal endothelium in a largely nonamoeboid manner. Immature B cell egress from BM was dependent on a twofold CXCR4 down-regulation that was antagonized by antigen-induced BCR signaling. This passive mode of cell egress from BM also contributes significantly to the export of other hematopoietic cells, including granulocytes, monocytes, and NK cells, and is reminiscent of erythrocyte egress.
Collapse
Affiliation(s)
- Thomas C Beck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ana Cordeiro Gomes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143 Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
12
|
Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. SPRINGERPLUS 2014; 3:414. [PMID: 25133093 PMCID: PMC4132458 DOI: 10.1186/2193-1801-3-414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Purpose These comments suggest a division of radiation protective agents on the grounds of their mechanism of action that increase the radio resistance of an organism. Conclusion Given below is the division of radiation protective agents on the basis of their mechanism of action into 3 groups: 1) Radiation protective agents, with the implementation of radiation protective action taking place at the cellular level in the course of rapidly proceeding radiation-chemical reactions. At the same time, when the ionizing radiation energy is absorbed, these agents partially neutralize the “oxygen effect” as a radiobiological phenomenon, especially in the radiolysis of DNA; 2) Radiation protective agents that exert their effect at the system level by accelerating the post-radiation recovery of radiosensitive tissues through activation of a number of pro-inflammatory signaling pathways and an increase in the secretion of hematopoietic growth factors, including their use as mitigators in the early period after irradiation prior to the clinical development of acute radiation syndrome (ARS). 3) Radiomodulators including drugs and nutritional supplements that can elevate the resistance of the organism to adverse environmental factors, including exposure to ionization by means of modulating the gene expression through a hormetic effect of small doses of stressors and a “substrate” maintenance of adaptive changes, resulting in an increased antioxidant protection of the organism. Radiation protective agents having polyvalence in implementation of their action may simultaneously induce radioprotective effect by various routes with a prevalence of basis mechanisms of the action.
Collapse
Affiliation(s)
- Mikhail V Vasin
- Department of Medicine of Catastrophe, Russian Medical Academy of Post-Graduate Education, St. Polikarpova 10, 125284 Moscow, Russia
| |
Collapse
|
13
|
Won YW, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 2014; 35:5627-35. [PMID: 24731711 DOI: 10.1016/j.biomaterials.2014.03.070] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/24/2014] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) therapy for the treatment of myocardial infarction (MI) has shown considerable promise in clinical trials. A billion MSCs need to be administered for therapeutic efficacy, however, because only ∼1% of the cells reach the ischemic myocardium after systemic infusion. This is due to the loss of the homing signal on the surface of the MSCs during their expansion in culture. Stromal-derived factor-1 (SDF-1) is up-regulated immediately after infarction and is released into the peripheral blood. This SDF-1 reaches the bone marrow and recruits CXC chemokine receptor 4 (CXCR4)-positive stem cells. The CXCR4/SDF-1 axis plays an important role in MSC homing to the ischemic myocardium. Since SDF-1 is highly expressed for only 48 h after infarction, the current approaches requiring long-term culture of MSCs to induce CXCR4 expression are not clinically useful. To provide a clinically viable means to improve the homing of MSCs, we have developed a surface modification method to incorporate recombinant CXCR4 protein on the membrane of MSCs within 10 min. Using this method, we have confirmed the improved migration of MSCs toward an SDF-1 gradient.
Collapse
Affiliation(s)
- Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amit N Patel
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Thaker H, Sharma AK. Regenerative medicine based applications to combat stress urinary incontinence. World J Stem Cells 2013; 5:112-123. [PMID: 24179600 PMCID: PMC3812516 DOI: 10.4252/wjsc.v5.i4.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Stress urinary incontinence (SUI), as an isolated symptom, is not a life threatening condition. However, the fear of unexpected urine leakage contributes to a significant decline in quality of life parameters for afflicted patients. Compared to other forms of incontinence, SUI cannot be easily treated with pharmacotherapy since it is inherently an anatomic problem. Treatment options include the use of bio-injectable materials to enhance closing pressures, and the placement of slings to bolster fascial support to the urethra. However, histologic findings of degeneration in the incontinent urethral sphincter invite the use of tissues engineering strategies to regenerate structures that aid in promoting continence. In this review, we will assess the role of stem cells in restoring multiple anatomic and physiological aspects of the sphincter. In particular, mesenchymal stem cells and CD34+ cells have shown great promise to differentiate into muscular and vascular components, respectively. Evidence supporting the use of cytokines and growth factors such as hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and insulin-like growth factor further enhance the viability and direction of differentiation. Bridging the benefits of stem cells and growth factors involves the use of synthetic scaffolds like poly (1,8-octanediol-co-citrate) (POC) thin films. POC scaffolds are synthetic, elastomeric polymers that serve as substrates for cell growth, and upon degradation, release growth factors to the microenvironment in a controlled, predictable fashion. The combination of cellular, cytokine and scaffold elements aims to address the pathologic deficits to urinary incontinence, with a goal to improve patient symptoms and overall quality of life.
Collapse
|
15
|
Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. Curr Opin Hematol 2013; 20:281-8. [DOI: 10.1097/moh.0b013e3283606090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2012; 27:24-31. [PMID: 22951944 DOI: 10.1038/leu.2012.254] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite its specific clinical relevance, the field of hematopoietic stem cell mobilization has received broad attention, owing mainly to the belief that pharmacologic stem cell mobilization might provide clues as to how stem cells are retained in their natural environment, the bone marrow 'niche'. Inherent to this knowledge is also the desire to optimally engineer stem cells to interact with their target niche (such as after transplantation), or to lure malignant stem cells out of their protective niches (in order to kill them), and in general to decipher the niche's structural components and its organization. Whereas, with the exception of the recent addition of CXCR4 antagonists to the armamentarium for mobilization of patients refractory to granulocyte colony-stimulating factor alone, clinical stem cell mobilization has not changed significantly over the last decade or so, much effort has been made trying to explain the complex mechanism(s) by which hematopoietic stem and progenitor cells leave the marrow. This brief review will report some of the more recent advances about mobilization, with an attempt to reconcile some of the seemingly inconsistent data in mobilization and to interject some commonalities among different mobilization regimes.
Collapse
Affiliation(s)
- H Bonig
- Department of Medicine/Division of Hematology, University of Washington, Seattle, WA 98198-7720, USA
| | | |
Collapse
|
17
|
Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P, Simaan M, Weigert R, Molinolo AA, Bouvier M, Gutkind JS. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal 2012. [PMID: 21934106 DOI: 10.1126/scisignal.20022214/191/ra60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor cells can co-opt the promigratory activity of chemokines and their cognate G protein-coupled receptors (GPCRs) to metastasize to regional lymph nodes or distant organs. Indeed, the migration toward SDF-1 (stromal cell-derived factor 1) of tumor cells bearing CXCR4 [chemokine (C-X-C motif) receptor 4] has been implicated in the lymphatic and organ-specific metastasis of various human malignancies. Here, we used chimeric G proteins and GPCRs activated solely by artificial ligands to selectively activate the signaling pathways downstream of specific G proteins and showed that CXCR4-mediated chemotaxis and transendothelial migration of metastatic basal-like breast cancer cells required activation of Gα(13), a member of the Gα(12/13) G protein family, and of the small guanosine triphosphatase Rho. Multiple complementary experimental strategies, including synthetic biology approaches, indicated that signaling-selective inhibition of the CXCR4-Gα(13)-Rho axis prevents the metastatic spread of basal-like breast cancer cells.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P, Simaan M, Weigert R, Molinolo AA, Bouvier M, Gutkind JS. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal 2012; 4:ra60. [PMID: 21934106 DOI: 10.1126/scisignal.2002221] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor cells can co-opt the promigratory activity of chemokines and their cognate G protein-coupled receptors (GPCRs) to metastasize to regional lymph nodes or distant organs. Indeed, the migration toward SDF-1 (stromal cell-derived factor 1) of tumor cells bearing CXCR4 [chemokine (C-X-C motif) receptor 4] has been implicated in the lymphatic and organ-specific metastasis of various human malignancies. Here, we used chimeric G proteins and GPCRs activated solely by artificial ligands to selectively activate the signaling pathways downstream of specific G proteins and showed that CXCR4-mediated chemotaxis and transendothelial migration of metastatic basal-like breast cancer cells required activation of Gα(13), a member of the Gα(12/13) G protein family, and of the small guanosine triphosphatase Rho. Multiple complementary experimental strategies, including synthetic biology approaches, indicated that signaling-selective inhibition of the CXCR4-Gα(13)-Rho axis prevents the metastatic spread of basal-like breast cancer cells.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This review evaluates the latest information on the mobilisation of haemopoietic stem cells for transplantation, with the focus on what is the current best practice and how new understanding of the bone marrow stem cell niche provides new insights into optimising mobilisation regimens. The review then looks at the mobilisation of mesenchymal stromal cells, immune cells as well as malignant cells and what clinical implications there are.
Collapse
|
20
|
Bonig H, Papayannopoulou T. Mobilization of hematopoietic stem/progenitor cells: general principles and molecular mechanisms. Methods Mol Biol 2012; 904:1-14. [PMID: 22890918 PMCID: PMC3676430 DOI: 10.1007/978-1-61779-943-3_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem/progenitor cell mobilization can be achieved by a variety of bone marrow niche modifications, although efficient mobilization requires simultaneous expansion of the stem/progenitor cell pool and niche modification. Many of the mechanisms involved in G-CSF-induced mobilization have been described. With regard to mobilization of hematopoietic stem/progenitor cells, challenges for the future include the analysis of genetic factors responsible for the great variability in mobilization responses, and the identification of predictors of mobilization efficiency, as well as the development of mobilizing schemes for poor mobilizers. Moreover, improved regimens for enhanced or even preferential mobilization of nonhematopoietic stem/progenitor cell types, and their therapeutic potential for endogenous tissue repair will be questions to be vigorously pursued in the near future.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine/Hematology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
21
|
Abstract
Hematopoietic stem and progenitor mobilization has revolutionized the field of hematopoietic transplantation. Currently, hematopoietic grafts acquired from the peripheral blood of patients or donors treated with granulocyte-colony stimulating factor (G-CSF) are the preferred source for transplantation. G-CSF mobilization regimens, however, are associated with known morbidities and a significant number of normal donors and patient populations fail to mobilize sufficient numbers of hematopoietic stem and progenitor cells for transplantation, necessitating the need for non-G-CSF mobilization strategies. Mechanistic studies evaluating hematopoietic bone marrow niche interactions have uncovered novel agents with the capacity for hematopoietic mobilization. This chapter provides a comprehensive overview of mobilizing agents, other than G-CSF, and experimental procedures and technical aspects important to evaluate and define their hematopoietic mobilizing activities alone and in combination.
Collapse
|
22
|
Abstract
This article discusses the multiple roles of CXCL12 and its receptor, CXCR4, in bone marrow (BM) hematopoietic stem cell (HSC) development and regulation. CXCL12 interaction with CXCR4 results in effects as varied as cell migration, proliferation and survival or apoptosis. The selective signaling pathways that mediate these varied outcomes are summarized briefly. The CXCL12/CXCR4 pair is crucially involved in homing and repopulation of HSCs in the specific BM niches. Mechanisms of HSC mobilization to the peripheral circulation in response to physiological requests and therapeutic stimulations, as well as recent data on the novel receptor for CXCL12, CXCR7, are reviewed.
Collapse
Affiliation(s)
- Natalia M Moll
- CRICM / INSERM-UPMC, UMRS 975/CNRS UMR 7225, Faculté de Médecine Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, 105 bd. de l'Hôpital, 75634 Paris, France.
| | | |
Collapse
|
23
|
SDF-1α as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther 2011; 129:97-108. [DOI: 10.1016/j.pharmthera.2010.09.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 12/20/2022]
|
24
|
Paganessi LA, Walker AL, Tan LL, Holmes I, Rich E, Fung HC, Christopherson KW. Effective mobilization of hematopoietic progenitor cells in G-CSF mobilization defective CD26-/- mice through AMD3100-induced disruption of the CXCL12-CXCR4 axis. Exp Hematol 2010; 39:384-90. [PMID: 21168468 DOI: 10.1016/j.exphem.2010.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We previously reported that inhibition or loss of CD26 (DPPIV/dipeptidylpeptidase IV) results in a defect in normal mobilization of hematopoietic stem and progenitor cells induced by granulocyte-colony stimulating factor (G-CSF). This suggests that CD26 is a necessary component of the mobilization pathway. Our goal in this study was to determine whether mobilization can be induced by the CXCR4 antagonist AMD3100 in mice lacking CD26 (CD26(-/-)). MATERIALS AND METHODS Ten week old CD26(-/-) and C57BL/6 mice received a subcutaneous injection of AMD3100. One hour post-injection the mice were euthanized and peripheral blood and bone marrow were collected and evaluated. RESULTS AMD3100 mobilizes hematopoietic progenitors into the peripheral blood of CD26(-/-) and mice. CONCLUSIONS Our finding that AMD3100 rapidly mobilizes hematopoietic progenitor cells from the bone marrow into the periphery in CD26-deficient transgenic mice that otherwise exhibit a mobilization defect in response to G-CSF suggests that: (1) CD26 is downstream of G-CSF but upstream of the CXCL12-CXCR4 axis and (2) AMD3100 can be used as a single agent to mobilize hematopoietic stem and progenitor cells in normal donors or patients that have an intrinsic defect in their response to G-CSF treatment. Stem cell transplants are often the only curative treatment in some cancer patients. The ability to perform the transplantation and its success is dependent on the ability to mobilize adequate numbers of hematopoietic progenitor cells. The use of AMD3100 as a single agent would give patients or donors an additional option for a successful stem cell transplant.
Collapse
Affiliation(s)
- Laura A Paganessi
- Sections of Hematology and Stem Cell Transplantation, Division of Hematology/Oncology, Rush University Medical Center, 1725 W. Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kobayashi NR, Hawes SM, Crook JM, Pébay A. G-protein coupled receptors in stem cell self-renewal and differentiation. Stem Cell Rev Rep 2010; 6:351-66. [PMID: 20625855 DOI: 10.1007/s12015-010-9167-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have great potential for understanding early development, treating human disease, tissue trauma and early phase drug discovery. The factors that control the regulation of stem cell survival, proliferation, migration and differentiation are still emerging. Some evidence now exists demonstrating the potent effects of various G-protein coupled receptor (GPCR) ligands on the biology of stem cells. This review aims to give an overview of the current knowledge of the regulation of embryonic and somatic stem cell maintenance and differentiation by GPCR ligands.
Collapse
|
26
|
Abstract
Under normal conditions, the great majority of hematopoietic stem/progenitors cells (HSPCs) reside in the bone marrow. The number of HSPCs in the circulation can be markedly increased in response to a number of stimuli, including hematopoietic growth factors, myeloablative agents and environmental stresses such as infection. The ability to 'mobilize' HSPCs from the bone marrow to the blood has been exploited clinically to obtain HSPCs for stem cell transplantation and, more recently, to stimulate therapeutic angiogenesis at sites of tissue ischemia. Moreover, there is recent interest in the use of mobilizing agents to sensitize leukemia and other hematopoietic malignancies to cytotoxic agents. Key to optimizing clinical mobilizing regimens is an understanding of the fundamental mechanisms of HSPC mobilization. In this review, we discuss recent advances in our understanding of the mechanisms by which granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing agent, induces HSPC mobilization.
Collapse
|
27
|
Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization. Blood 2010; 117:827-38. [PMID: 21063029 DOI: 10.1182/blood-2010-01-265082] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endocannabinoids are arachidonic acid derivatives and part of a novel bioactive lipid signaling system, along with their G-coupled cannabinoid receptors (CB₁ and CB₂) and the enzymes involved in their biosynthesis and degradation. However, their roles in hematopoiesis and hematopoietic stem and progenitor cell (HSPC) functions are not well characterized. Here, we show that bone marrow stromal cells express endocannabinoids (anandamide and 2-arachidonylglycerol), whereas CB₂ receptors are expressed in human and murine HSPCs. On ligand stimulation with CB₂ agonists, CB₂ receptors induced chemotaxis, migration, and enhanced colony formation of bone marrow cells, which were mediated via ERK, PI3-kinase, and Gαi-Rac1 pathways. In vivo, the CB₂ agonist AM1241 induced mobilization of murine HSPCs with short- and long-term repopulating abilities. In addition, granulocyte colony-stimulating factor -induced mobilization of HSPCs was significantly decreased by specific CB₂ antagonists and was impaired in Cnr2(-/-) cannabinoid type 2 receptor knockout mice. Taken together, these results demonstrate that the endocannabinoid system is involved in hematopoiesis and that CB₂/CB₂ agonist axis mediates repopulation of hematopoiesis and mobilization of HSPCs. Thus, CB₂ agonists may be therapeutically applied in clinical conditions, such as bone marrow transplantation.
Collapse
|
28
|
Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J. Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24:1667-75. [PMID: 20703253 DOI: 10.1038/leu.2010.162] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs), as well as other types of stem cells, circulate under steady-state conditions at detectable levels in peripheral blood (PB), with their numbers increasing in response to stress, inflammation and tissue/organ injury. This mobilization process may be envisioned as a danger-sensing response mechanism triggered by hypoxia or mechanical or infection-induced tissue damage that recruits into PB different types of stem cells that have a role in immune surveillance and organ/tissue regeneration. Mobilization is also significantly enhanced by the administration of pharmacological agents, which has been exploited in hematological transplantology as a means to obtain HSPCs for hematopoietic reconstitution. In this review we will present mounting evidence that innate immunity orchestrates this evolutionarily conserved mechanism of HSPC mobilization.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Lévesque JP, Helwani FM, Winkler IG. The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24:1979-92. [PMID: 20861913 DOI: 10.1038/leu.2010.214] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The concept of hematopoietic stem cell (HSC) niche was formulated in 1978, but HSC niches remained unidentified for the following two decades largely owing to technical limitations. Sophisticated live microscopy techniques and genetic manipulations have identified the endosteal region of the bone marrow (BM) as a preferential site of residence for the most potent HSC - able to reconstitute in serial transplants - with osteoblasts and their progenitors as critical cellular elements of these endosteal niches. This article reviews the path to the discovery of these endosteal niches (often called 'osteoblastic' niches) for HSC, what cell types contribute to these niches with their known physical and biochemical features. In the past decade, a first wave of research uncovered many mechanisms responsible for HSC homing to, and mobilization from, the whole BM tissue. However, the recent discovery of endosteal HSC niches has initiated a second wave of research focusing on the mechanisms by which most primitive HSC lodge into and migrate out of their endosteal niches. The second part of this article reviews the current knowledge of the mechanisms of HSC lodgment into, retention in and mobilization from osteoblastic niches.
Collapse
Affiliation(s)
- J-P Lévesque
- Biotherapies Program, Haematopoietic Stem Cell Laboratory, Mater Medical Research Institute, South Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
30
|
Basu S, Broxmeyer HE. CCR5 ligands modulate CXCL12-induced chemotaxis, adhesion, and Akt phosphorylation of human cord blood CD34+ cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:7478-88. [PMID: 19917679 DOI: 10.4049/jimmunol.0900542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CXCL12 and its receptor CXCR4 play an important role in hematopoietic stem/progenitor cell (HSPC) migration from and retention within the bone marrow. HSPCs are very selective in their chemotactic response and undergo chemotaxis only in response to CXCL12. In addition to CXCR4, HSPCs express receptors for various other chemokines; however, the role of these receptors is not well understood. Freshly isolated CD34(+) cells (highly enriched for HSPCs) from cord blood (CB) express low levels of CCR5; however, if the cells were washed with acidic buffer before Ab staining to remove any ligand bound to CCR5, then nearly 80% of CD34(+) CB cells were found to express CCR5 on the cell surface. Although none of the CCR5 ligands investigated in this study (CCL3, CCL4, and CCL5) induced chemotaxis, at relatively high concentrations they transiently enhanced CXCL12-mediated chemotaxis of CD34(+) CB cells. In contrast, CXCL12-mediated adhesion of cells to VCAM-1-coated surfaces was reduced if CD34(+) CB cells were pretreated with these CCR5 ligands for 15 min. The effect of these chemokines on CXCL12-mediated responses was not at the level of CXCR4 expression, but on downstream signaling pathways elicited by CXCL12. Pretreatment with CCR5 chemokines enhanced CXCL12-mediated Akt phosphorylation, but down-modulated calcium flux in CD34(+) CB cells. Modulation of CXCL12-mediated responses of CD34(+) cells by CCR5 chemokines provides a possible mechanism that underlies movement of HSPCs during inflammation.
Collapse
Affiliation(s)
- Sunanda Basu
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Research Institute No. 2 Building, Room 302, 950 West Walnut Street, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
31
|
|
32
|
Insights into the biology of mobilized hematopoietic stem/progenitor cells through innovative treatment schedules of the CXCR4 antagonist AMD3100. Exp Hematol 2009; 37:402-15.e1. [PMID: 19157683 DOI: 10.1016/j.exphem.2008.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 10/24/2008] [Accepted: 10/29/2008] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The CXCR4 antagonist AMD3100 mobilizes hematopoietic stem/progenitor cells (HSPC) in several species. Few data are available on the biology of HSPC mobilized with AMD3100 as single agent. To further study the kinetics and properties of AMD3100-mobilized HSPC, and to explore the size of mobilizable pools of HSPC targeted by AMD3100, we studied the effect of a continuous infusion scheme with saturating doses of AMD3100 [AMDi]. MATERIALS AND METHODS Using established procedures, we evaluated mice mobilized with AMD3100, or those transplanted with AMD3100-mobilized HSPC. RESULTS Relative to single-bolus AMD3100 [AMDb], the number of circulating CFU-C or CRU was dramatically higher after [AMDi]. During [AMDi], circulating CFU-C accumulated slowly, but after its discontinuation, CFU-C disappeared rapidly. Compared to bone marrow (BM)-c-kit(+) cells, AMD3100-mobilized (AMDb or AMDi) c-kit(+) cells showed reduced expression of several cytoadhesion molecules, similar to granulocyte colony-stimulating factor-mobilized c-kit(+) cells. In contrast to the latter, expression of CXCR4 and CD26 were not reduced on AMD3100-mobilized c-kit(+) cells. BM homing of [AMDi]-mobilized CFU-C was >50% increased over normal BM-CFU-C. Hematopoietic recovery after transplantation of [AMDi]-mobilized peripheral blood was comparable to that of continuous infusion granulocyte colony-stimulating factor-mobilized peripheral blood. AMD3100-mobilized HSPC were predominantly in G(0), and partial bromodeoxyuridine-labeling experiments documented underrepresentation of labeled cells (<5%) among [AMDb]-mobilized c-kit(+) cells, suggesting that cycling cells in BM, or those that recently completed cell cycle, are not targeted for mobilization by AMD3100. CONCLUSIONS Our data demonstrate that [AMDi] is an efficacious mobilization scheme fully supporting transplantation demands and expands previous knowledge about properties and size of AMD3100-sensitive BM-HSPC pools.
Collapse
|
33
|
Effects of gram-positive microorganisms and their products on in vivo survival of hemopoietic clonogenic cells. Bull Exp Biol Med 2008; 145:460-3. [PMID: 19110594 DOI: 10.1007/s10517-008-0118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of gram-positive bacterial strains (Lactobacillus acidophilus and Lactobacillus rhamnosus) and their subcellular components on the survival of hemopoietic clonogenic cells were evaluated by the formation of endogenous splenic colonies. The effects of these preparations on NO production were studied by the spin-trap paramagnetic resonance spectroscopy. Bacterial preparations from gram-positive bacteria stimulated survival of hemopoietic clonogenic cells, but did not induce NO production in contrast to E. coli LPS.
Collapse
|
34
|
Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood 2008; 113:233-43. [PMID: 18832656 DOI: 10.1182/blood-2008-06-162891] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Homing of endothelial progenitor cells (EPCs) to the neovascular zone is now considered to be an essential step in the formation of vascular networks during embryonic development and also for neovascularization in postnatal life. We report here the prominent role of the insulin-like growth factor 2 (IGF2)/IGF2 receptor (IGF2R) system in promoting EPC homing. With high-level expression of IGF2R in EPCs, IGF2-induced hypoxic conditions stimulated multiple steps of EPC homing in vitro and promoted both EPC recruitment and incorporation into the neovascular area, resulting in enhanced angiogenesis in vivo. Remarkably, all IGF2 actions were exerted predominantly through IGF2R-linked G(i) protein signaling and required intracellular Ca(2+) mobilization induced by the beta2 isoform of phospholipase C. Together, these findings indicate that locally generated IGF2 at either ischemic or tumor sites may contribute to postnatal vasculogenesis by augmenting the recruitment of EPCs. The utilization of the IGF2/IGF2R system may therefore be useful for the development of novel means to treat angiogenesis-dependent diseases.
Collapse
|
35
|
Liu DQ, Li LM, Guo YL, Bai R, Wang C, Bian Z, Zhang CY, Zen K. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis. PLoS One 2008; 3:e3291. [PMID: 18820737 PMCID: PMC2553263 DOI: 10.1371/journal.pone.0003291] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/07/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Signal regulate protein alpha (SIRPalpha) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2) integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPalpha expression but an increase of beta(2) integrin cell surface expression and beta(2) integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha)-stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)-triggered cell surface expression of beta(2) integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2) integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2) integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE SIRPalpha negatively regulates beta(2) integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.
Collapse
Affiliation(s)
- Dan-Qing Liu
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Li-Min Li
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu CDC-Nanjing University Joint Institute for Virology, Nanjing, Jiangsu, China
| | - Ya-Lan Guo
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Bai
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen Wang
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Bian
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Zen
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu CDC-Nanjing University Joint Institute for Virology, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
36
|
Degradation of BM SDF-1 by MMP-9: the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant 2008; 42:581-8. [PMID: 18679363 DOI: 10.1038/bmt.2008.222] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The major involvement of chemokines and proteolytic enzymes has recently been discovered in the mobilization process. Here, we report that the degradation of BM stromal cell-derived factor (SDF-1) by matrix metalloproteinase (MMP)-9 is important in G-CSF-mediated hematopoietic stem/progenitor cells (HSPCs) mobilization. In this study, the SDF-1 concentration in healthy donors BM plasma decreased significantly after 5 days of G-CSF administration, with no obvious change of SDF-1 in the peripheral blood. We also observed a similar result by immunohistochemical staining on the BM biopsy slides. In vitro, mobilized BM plasma exhibited decreased chemotactic effect on CD34(+) cells, compared with steady-state BM plasma. MMP-9 protein and mRNA increased dramatically in the BM plasma in accordance with SDF-1 decrease. MMP-9 enriched supernatant from HT1080 cell-conditioned medium upregulated CXCR4 expression and the migration of BM CD34(+) cells toward SDF-1. SDF-1 was a substrate for MMP-9, furthermore, SDF-1 also stimulated MMP-9 proteolytic enzyme activity of BM CD34(+) cells, which facilitate HSPCs migration. In BALB/c mice, HSPCs mobilization was significantly inhibited by anti-SDF-1 antibodies or MMP inhibitor, o-phenanthroline. In conclusion, the degradation of BM SDF-1 by MMP-9 is a vital step in mobilization.
Collapse
|
37
|
Abstract
This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones.
Collapse
|
38
|
Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2008; 131:994-1008. [PMID: 18045540 DOI: 10.1016/j.cell.2007.09.047] [Citation(s) in RCA: 566] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 08/26/2007] [Accepted: 09/25/2007] [Indexed: 12/30/2022]
Abstract
Constitutive egress of bone marrow (BM)-resident hematopoietic stem and progenitor cells (HSPCs) into the blood is a well-established phenomenon, but the ultimate fate and functional relevance of circulating HSPCs is largely unknown. We show that mouse thoracic duct (TD) lymph contains HSPCs that possess short- and long-term multilineage reconstitution capacity. TD-derived HSPCs originate in the BM, enter the blood, and traffic to multiple peripheral organs, where they reside for at least 36 hr before entering draining lymphatics to return to the blood and, eventually, the BM. HSPC egress from extramedullary tissues into lymph depends on sphingosine-1-phosphate receptors. Migratory HSPCs proliferate within extramedullary tissues and give rise to tissue-resident myeloid cells, preferentially dendritic cells. HSPC differentiation is amplified upon exposure to Toll-like receptor agonists. Thus, HSPCs can survey peripheral organs and can foster the local production of tissue-resident innate immune cells under both steady-state conditions and in response to inflammatory signals.
Collapse
Affiliation(s)
- Steffen Massberg
- Immune Disease Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Čokić VP, Schechter AN. Chapter 7 Effects of Nitric Oxide on Red Blood Cell Development and Phenotype. Curr Top Dev Biol 2008; 82:169-215. [DOI: 10.1016/s0070-2153(07)00007-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Williams DA, Zheng Y, Cancelas JA. Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol 2008; 439:365-93. [PMID: 18374178 DOI: 10.1016/s0076-6879(07)00427-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow engraftment in the context of hematopoietic stem cell and progenitor (HSC/P) transplantation is based on the ability of intravenously administered cells to lodge in the medullary cavity and be retained in the appropriate marrow space, a process referred to as homing. It is likely that homing is a multistep process, encompassing a sequence of highly regulated events that mimic the migration of leukocytes to inflammatory sites. In leukocyte biology, this process includes an initial phase of tethering and rolling of cells to the endothelium via E- and P-selectins, firm adhesion to the vessel wall via integrins that appear to be activated in an "inside-out" fashion, transendothelial migration, and chemotaxis through the extracellular matrix (ECM) to the inflammatory nidus. For HSC/P, the cells appear to migrate to the endosteal space of the bone marrow. A second phase of engraftment involves the subsequent interaction of specific HSC/P surface receptors, such as alpha(4)beta(1) integrin receptors with vascular cell-cell adhesion molecule-1 and fibronectin in the ECM, and interactions with growth factors that are soluble, membrane, or matrix bound. We have utilized knockout and conditional knockout mouse lines generated by gene targeting to study the role of Rac1 and Rac2 in blood cell development and function. We have determined that Rac is activated via stimulation of CXCR4 by SDF-1, by adhesion via beta(1) integrins, and via stimulation of c-kit by the stem cell factor-all of which involved in stem cell engraftment. Thus Rac proteins are key molecular switches of HSC/P engraftment and marrow retention. We have defined Rac proteins as key regulators of HSC/P cell function and delineated key unique and overlapping functions of these two highly related GTPases in a variety of primary hematopoietic cell lineages in vitro and in vivo. Further, we have begun to define the mechanisms by which each GTPase leads to specific functions in these cells. These studies have led to important new understanding of stem cell bone marrow retention and trafficking in the peripheral circulation and to the development of a novel small molecule inhibitor that can modulate stem cell functions, including adhesion, mobilization, and proliferation. This chapter describes the biochemical footprint of stem cell engraftment and marrow retention related to Rho GTPases. In addition, it reviews abnormalities of Rho GTPases implicated in human immunohematopoietic diseases and in leukemia/lymphoma.
Collapse
Affiliation(s)
- David A Williams
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
41
|
Rafii DC, Psaila B, Butler J, Jin DK, Lyden D. Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2007; 28:217-22. [PMID: 18096826 DOI: 10.1161/atvbaha.107.151159] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone marrow-derived cells contribute to physiological and pathological vascular remodeling throughout ontogenesis and adult life. During tissue regeneration and tumor growth, the release of cytokines and chemokines mediates the recruitment of hematopoietic and endothelial progenitor cells that contribute to the assembly of neovessels. Current evidence implies that platelets contribute structurally and instructively to vascular remodeling. Platelets adhere almost immediately to exposed or activated endothelium, and they are major storage and delivery vehicles for pro- and antiangiogenic growth factors including VEGF-A and thrombospondin (TSP), and cytokines and chemokines, such as stromal-derived factor 1 (SDF-1). By site-specific deployment of these factors, platelets orchestrate the local angiogenic stimulus within a tissue and direct the recruitment and differentiation of circulating bone marrow-derived cells. These insights have profound clinical implications; inhibition of platelet-deployed growth factors or their receptors may be an effective strategy to block tumor growth, whereas activation of these pathways may be used to accelerate revascularization and tissue regeneration.
Collapse
Affiliation(s)
- Daniel C Rafii
- Weill Cornell Medical College, Department of Pediatrics, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
42
|
Bonig H, Priestley GV, Oehler V, Papayannopoulou T. Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35:326-34. [PMID: 17258081 PMCID: PMC1847625 DOI: 10.1016/j.exphem.2006.09.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/21/2006] [Accepted: 09/25/2006] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Faster engraftment of G-CSF-mobilized peripheral blood (MPB) transplants compared to steady-state bone marrow (ssBM) is well documented and clinically relevant. A number of different factors likely contribute to this outcome. In the present study we explored whether independent of cell number there are intrinsic differences in the efficiency of progenitor cell homing to marrow between MPB and ssBM. METHODS Mobilization was achieved by continuous infusion of G-CSF alone or in combination with other mobilizing agents. In vivo homing assays, in vitro migration assays, gene expression analysis, and flow cytometry were utilized to compare homing-related in vivo and in vitro properties of MPB and ssBM HPC. RESULTS Marrow homing of murine MPB HPC, generated by different mobilizing schemes, was reproducibly significantly superior to that of ssBM, in lethally irradiated as well as in nonirradiated hosts. This phenotype was independent of MMP9, selectins, and beta2- and alpha4-integrins. Superior homing was also observed for human MPB HPC transplanted into NOD/SCIDbeta2microglobulin(-/-) recipients. Inhibition of HPC migration abrogated the homing advantage of MPB but did not affect homing of ssBM HPC, whereas enhancement of motility by CD26 inhibition improved marrow homing only of ssBM HPC. Enhanced SDF-1-dependent chemotaxis and low CD26 expression on MPB HPC were identified as potential contributing factors. Significant contributions of the putative alternative SDF-1 receptor, RDC1, were unlikely based on gene expression data. CONCLUSION The data suggest increased motility as a converging endpoint of complex changes seen in MPB HPC which is likely responsible for their favorable homing.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine/Hematology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
43
|
Watt SM, Forde SP. The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang 2007; 94:18-32. [PMID: 18042197 DOI: 10.1111/j.1423-0410.2007.00995.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent clinical trials have used CXCR4 antagonists for the rapid mobilization of CD34(+) haemopoietic stem/progenitor cells (HSC/HPC) from the bone marrow to the blood in patients refractory to granulocyte-colony-stimulating factor (G-CSF). These antagonists not only mobilize non-cycling cells with a higher proportion of repopulating cells, but also enhance CD34(+) cell mobilization when used in combination with G-CSF. Here, we review the importance of CXCR4 and its ligand CXCL12 in haemopoiesis, and the potential roles of CXCR4 antagonists in the clinical HSC transplant setting.
Collapse
Affiliation(s)
- S M Watt
- Stem Cells and Immunotherapies, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, UK and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Zhang W, Navenot JM, Frilot NM, Fujii N, Peiper SC. Association of nucleophosmin negatively regulates CXCR4-mediated G protein activation and chemotaxis. Mol Pharmacol 2007; 72:1310-21. [PMID: 17715399 DOI: 10.1124/mol.107.037119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CXCR4, the primary receptor for CXCL12, plays a critical role in the development of hematopoietic, vascular, central nervous, and immune systems by mediating directional migration of precursor cells. This mechanism promotes homing of tumor cells to metastatic sites that secrete CXCL12, and CXCR4 expression is a negative prognostic factor in acute myelogenous leukemia (AML). To elucidate mechanisms that regulate CXCR4 signaling, we used a proteomic approach to identify proteins physically associated with CXCR4. Analysis of CXCR4 immune complexes identified nucleophosmin (NPM), which was confirmed by reciprocal coimmunoprecipitation for NPM. Constitutively active CXCR4 variants bound higher levels of NPM than the wild-type receptor, which was reversed by T140, an inverse agonist. NPM binding to CXCR4 localized interactions to the C terminus and cytoplasmic loop (CL)-3, but not CL-1 or CL-2. Alanine scanning mutagenesis demonstrated that positively charged amino acids in CL-3 were critical for NPM binding. Recombinant NPM decreased GTP binding in membrane fractions after activation of CXCR4 by CXCL12. Suppression of NPM expression enhanced chemotactic responses to CXCL12, and, conversely, overexpression of a cytosolic NPM mutant reduced chemotaxis induced by CXCL12. This study provides evidence for a novel role for NPM as a negative regulator of CXCR4 signaling induced by CXCL12 that may be relevant to the biology of AML.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
45
|
Jensen GS, Hart AN, Zaske LAM, Drapeau C, Gupta N, Schaeffer DJ, Cruickshank JA. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae--related to modulation of CXCR4 expression by an L-selectin ligand? CARDIOVASCULAR REVASCULARIZATION MEDICINE 2007; 8:189-202. [PMID: 17765649 DOI: 10.1016/j.carrev.2007.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The goal of this study was to evaluate effects on human stem cells in vitro and in vivo of an extract from the edible cyanobacterium Aphanizomenon flos-aquae (AFA) enriched for a novel ligand for human CD62L (L-selectin). EXPERIMENTAL APPROACH Ligands for CD62L provide a mechanism for stem cell mobilization in conjunction with down-regulation of the CXCR4 chemokine receptor for stromal derived factor 1. Affinity immunoprecipitation was used to identify a novel ligand for CD62L from a water extract from AFA. The effects of AFA water extract on CD62L binding and CXCR4 expression was tested in vitro using human bone marrow CD34+ cells and the two progenitor cell lines, KG1a and K562. A double-blind randomized crossover study involving 12 healthy subjects evaluated the effects of consumption on stem cell mobilization in vivo. RESULTS An AFA extract rich in the CD62L ligand reduced the fucoidan-mediated externalization of the CXCR4 chemokine receptor on bone marrow CD34+ cells by 30% and the CD62L+ CD34+ cell line KG1A by 50% but did not alter the CXCR4 expression levels on the CD34(-) cell line K562. A transient, 18% increase in numbers of circulating CD34+ stem cells maximized 1 hour after consumption (P<.0003). When 3 noncompliant volunteers were removed from analysis, the increase in CD34+ cells was 25% (P<.0001). CONCLUSION AFA water extract contains a novel ligand for CD62L. It modulates CXCR4 expression on CD34+ bone marrow cells in vitro and triggers the mobilization of CD34+ CD133+ and CD34+ CD133(-) cells in vivo.
Collapse
Affiliation(s)
- Gitte S Jensen
- Holger NIS, 601 13 Avenue NE, Calgary, Alberta, Canada T2E 1C7.
| | | | | | | | | | | | | |
Collapse
|
46
|
Glodek AM, Le Y, Dykxhoorn DM, Park SY, Mostoslavsky G, Mulligan R, Lieberman J, Beggs HE, Honczarenko M, Silberstein LE. Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells. Leukemia 2007; 21:1723-32. [PMID: 17568820 DOI: 10.1038/sj.leu.2404769] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hematopoietic stem/progenitor cells (HSC/P) reside in the bone marrow in distinct anatomic locations (niches) to receive growth, survival and differentiation signals. HSC/P localization and migration between niches depend on cell-cell and cell-matrix interactions, which result from the cooperation of cytokines, chemokines and adhesion molecules. The CXCL12-CXCR4 pathway, in particular, is essential for myelopoiesis and B lymphopoiesis but the molecular mechanisms of CXCL12 action remain unclear. We previously noted a strong correlation between prolonged CXCL12-mediated focal adhesion kinase (FAK) phosphorylation and sustained pro-adhesive responses in progenitor B cells, but not in mature B cells. Although FAK has been well studied in adherent fibroblasts, its function in hematopoietic cells is not defined. We used two independent approaches to reduce FAK expression in (human and mouse) progenitor cells. RNA interference (RNAi)-mediated FAK silencing abolished CXCL12-induced responses in human pro-B leukemia, REH cells. FAK-deficient REH cells also demonstrated reduced CXCL12-induced activation of the GTPase Rap1, suggesting the importance of FAK in CXCL12-mediated integrin activation. Moreover, in FAK(flox/flox) hematopoietic precursor cells, Cre-mediated FAK deletion resulted in impaired CXCL12-induced chemotaxis. These studies suggest that FAK may function as a key intermediary in signaling pathways controlling hematopoietic cell lodgment and lineage development.
Collapse
Affiliation(s)
- A M Glodek
- Department of Pathology, Joint Program in Transfusion Medicine, Children's Hospital Boston, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Hematopoietic stem cell transplantation (HSCT) has become the standard of care for the treatment of many hematologic malignancies, chemotherapy sensitive relapsed acute leukemias or lymphomas, multiple myeloma; and for some non-malignant diseases such as aplastic anemia and immunodeficient states. The hematopoietic stem cell (HSC) resides in the bone marrow (BM). A number of chemokines and cytokines have been shown in vivo and in clinical trials to enhance trafficking of HSC into the peripheral blood. This process, termed stem cell mobilization, results in the collection of HSC via apheresis for both autologous and allogeneic transplantation. Enhanced understanding of HSC biology, processes involved in HSC microenvironmental interactions and the critical ligands, receptors and cellular proteases involved in HSC homing and mobilization, with an emphasis on G-CSF induced HSC mobilization, form the basis of this review. We will describe the key features and dynamic processes involved in HSC mobilization and focus on the key ligand-receptor pairs including CXCR4/SDF1, VLA4/VCAM1, CD62L/PSGL, CD44/HA, and Kit/KL. In addition we will describe food and drug administration (FDA) approved and agents currently in clinical development for enhancing HSC mobilization and transplantation outcomes.
Collapse
Affiliation(s)
- Bruno Nervi
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
48
|
Ulyanova T, Priestley GV, Banerjee ER, Papayannopoulou T. Unique and redundant roles of alpha4 and beta2 integrins in kinetics of recruitment of lymphoid vs myeloid cell subsets to the inflamed peritoneum revealed by studies of genetically deficient mice. Exp Hematol 2007; 35:1256-65. [PMID: 17553614 PMCID: PMC2023970 DOI: 10.1016/j.exphem.2007.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 03/23/2007] [Accepted: 04/24/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Leukocyte recruitment to inflammatory sites is a prominent feature of acute and chronic inflammation. Instrumental in this process is the coordinated upregulation of leukocyte integrins (among which alpha4beta1 and beta2 integrins are major players) and their cognate receptors in inflamed tissues. To avoid the ambiguity of previous short-term antibody-based studies and to allow for long-term observation, we used genetically deficient mice to compare roles of alpha4 and beta2 integrins in leukocyte trafficking. MATERIALS AND METHODS Aseptic peritonitis was induced in alpha4 or beta2 integrin-deficient (conditional and conventional knockouts, respectively) and control mice, and recruitment of major leukocyte subsets to the inflamed peritoneum was followed for up to 4 days. RESULTS Despite normal chemokine levels in the peritoneum and adequate numbers, optimal recruitment of myeloid cells was impaired in both alpha4- and beta2-deficient mice. Furthermore, clearance of recruited neutrophils and macrophages was delayed in these mice. Lymphocyte migration to the peritoneum in the absence of alpha4 integrins was drastically decreased, both at steady state and during inflammation, a finding consistent with impaired lymphocyte in vitro adhesion and signaling. By contrast, in the absence of beta2 integrins, defects in lymphocyte recruitment were only evident when peritonitis was established. CONCLUSIONS Our data with concurrent use of genetic models of integrin deficiency reveal nonredundant functions of alpha4 integrins in lymphocyte migration to the peritoneum and further refine specific roles of alpha4 and beta2 integrins concerning trafficking and clearance of other leukocyte subsets at homeostasis and during inflammation.
Collapse
Affiliation(s)
- Tatiana Ulyanova
- Department of Medicine/Hematology University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
49
|
Urbano-Ispizua A. Risk assessment in haematopoietic stem cell transplantation: Stem cell source. Best Pract Res Clin Haematol 2007; 20:265-80. [PMID: 17448961 DOI: 10.1016/j.beha.2006.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone marrow (BM) has been used for many years as the unique source of progenitor cells for allogeneic transplantation. However, two other sources of progenitor cells, peripheral blood (PB) and umbilical cord (UC), are being increasingly used. The type of graft is one of the most important factors in determining the speed and robustness of the reconstitution after the transplant of monocytes, T lymphocytes, B lymphocytes, NK cells, and dendritic cells. This fact is of especial relevance since the most important reactions after allogeneic transplants - e.g. graft-versus-host disease (GVHD), graft-versus-leukaemia effect (GvL), achievement of full donor chimerism, and fight against infections - are strongly influenced by a rapid and robust reconstitution of these cells. For this reason, the choice of the type of graft for allogeneic transplantation will influence the clinical outcome.
Collapse
|
50
|
Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 2007; 282:18676-85. [PMID: 17439946 DOI: 10.1074/jbc.m610232200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stromal-derived factor 1 (SDF-1) is a chemokine with important functions in development and postnatal tissue homeostasis. SDF-1 signaling via the G-protein-coupled receptor CXCR4 regulates the recruitment of stem and precursor cells to support tissue-specific repair or regeneration. In this study we examined the contribution of SDF-1 signaling to osteogenic differentiation of mesenchymal C2C12 cells induced by bone morphogenic protein 2 (BMP2). Blocking SDF-1 signaling before BMP2 stimulation by treatment with siRNA, antibodies against SDF-1 or CXCR4, or the G-protein-coupled receptor inhibitor pertussis toxin strongly suppressed BMP2 induction of osteogenic differentiation in C2C12 cells, as evidenced by an early decrease in the expression of the myogenesis inhibitor Id1, the osteogenic master regulators Runx2 and Osx, the osteoblast-associated transcription factors JunB, Plzf, Msx2, and Dlx5, and later of the bone marker proteins osteocalcin and alkaline phosphatase. Similarly, blocking SDF-1/CXCR4 signaling strongly inhibited BMP2-induced osteogenic differentiation of ST2 bone marrow stromal cells. Moreover, we found that the interaction between SDF-1 and BMP2 signaling was mediated via intracellular Smads and MAPK activation. Our data provide the first evidence for a co-requirement of the SDF-1/CXCR4 signaling axis in BMP2-induced osteogenic differentiation of C2C12 and ST2 cells and, thus, uncover a new potential target for modulation of osteogenesis.
Collapse
Affiliation(s)
- Wei Zhu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|