1
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
2
|
Yudintceva NM, Kolesnichenko YV, Shatrova AN, Aksenov ND, Yartseva NM, Shevtsov MA, Fedorov VS, Khotin MG, Ziganshin RH, Mikhailova NA. Characterization and Physiological Differences of Two Primary Cultures of Human Normal and Hypertrophic Scar Dermal Fibroblasts: A Pilot Study. Biomedicines 2024; 12:2295. [PMID: 39457608 PMCID: PMC11504723 DOI: 10.3390/biomedicines12102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Dermal fibroblasts (DFs) are key participants in skin hypertrophic scarring, and their properties are being studied to identify the molecular and cellular mechanisms underlying the pathogenesis of skin scarring. Methods: In the present work, we performed a comparative analysis of DFs isolated from normal skin (normal dermal fibroblasts, NDFs), and hypertrophic scar skin (hypertrophic scar fibroblasts, HTSFs). The fibroblasts were karyotyped and phenotyped, and experiments on growth rate, wound healing, and single-cell motility were conducted. Results: Comparative analysis revealed a minor karyotype difference between cells. However, HTSFs are characterized by higher proliferation level and motility compared to NDFs. These significant differences may be associated with quantitative and qualitative differences in the cell secretome. A proteomic comparison of NDF and HTSF found that differences were associated with metabolic proteins reflecting physiological differences between the two cells lines. Numerous unique proteins were found only in the vesicular phase of vHTSFs. Some proteins involved in cell proliferation (protein-glutamine gamma-glutamyltransferase K) and cell motility (catenin delta-1), which regulate gene transcription and the activity of Rho family GTPases and downstream cytoskeletal dynamics, were identified. A number of proteins which potentially play a role in fibrosis and inflammation (mucin-5B, CD97, adhesion G protein-coupled receptor E2, antileukoproteinase, protein S100-A8 and S100-A9, protein caspase recruitment domain-containing protein 14) were detected in vHTSFs. Conclusions: A comparative analysis of primary cell cultures revealed their various properties, especially in the cell secretome. These proteins may be considered promising target molecules for developing treatment or prevention strategies for pathological skin scarring.
Collapse
Affiliation(s)
- Natalia M. Yudintceva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Yulia V. Kolesnichenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Alla N. Shatrova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Nikolay D. Aksenov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Natalia M. Yartseva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Maxim A. Shevtsov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
- School of Medicine and Life Sciences, Far Eastern Federal University, Campus 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Viacheslav S. Fedorov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia;
| | - Natalia A. Mikhailova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia; (Y.V.K.); (A.N.S.); (N.D.A.); (N.M.Y.); (M.A.S.); (V.S.F.); (M.G.K.); (N.A.M.)
| |
Collapse
|
3
|
Savransky S, White AD, Vilardaga JP. Deciphering the role of glycosaminoglycans in GPCR signaling. Cell Signal 2024; 118:111149. [PMID: 38522808 PMCID: PMC10999332 DOI: 10.1016/j.cellsig.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
G protein-coupled receptors (GPCR) and glycosaminoglycans (GAGs) are two essential components of the cell surface that regulate physiological processes in the body. GPCRs are the most extensive family of transmembrane receptors that control cellular responses to extracellular stimuli, while GAGs are polysaccharides that contribute to the function of the extracellular matrix (ECM). Due to their proximity to the plasma membrane, GAGs participate in signal transduction by interacting with various extracellular molecules and cell surface receptors. GAGs can directly interact with certain GPCRs or their ligands (chemokines, peptide hormones and neuropeptides, structural proteins, and enzymes) from the glutamate receptor family, the rhodopsin receptor family, the adhesion receptor family, and the secretin receptor family. These interactions have recently become an emerging topic, providing a new avenue for understanding how GPCR signaling is regulated. This review discusses our current state of knowledge about the role of GAGs in GPCR signaling and function.
Collapse
Affiliation(s)
- Sofya Savransky
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Alex D White
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Schön JL, Groß VE, Post WB, Daum A, Matúš D, Pilz J, Schnorr R, Horn S, Bäumers M, Weidtkamp-Peters S, Hughes S, Schöneberg T, Prömel S. The adhesion GPCR and PCP component flamingo (FMI-1) alters body size and regulates the composition of the extracellular matrix. Matrix Biol 2024; 128:1-10. [PMID: 38378098 DOI: 10.1016/j.matbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.
Collapse
Affiliation(s)
- Johanna Lena Schön
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig University, Leipzig, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Willem Berend Post
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Daum
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Matúš
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Johanna Pilz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Samantha Hughes
- A-LIFE, Section Environmental Health and Toxicology, Free University Amsterdam, Amsterdam, the Netherlands
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Sun L, Li C, Zhao N, Wang B, Li H, Wang H, Zhang X, Zhao X. Host protein EPCAM interacting with EtMIC8-EGF is essential for attachment and invasion of Eimeria tenella in chickens. Microb Pathog 2024; 188:106549. [PMID: 38281605 DOI: 10.1016/j.micpath.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Chao Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding City, 071000, Hebei Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Bingxiang Wang
- Shandong Vocational Animal Science and Veterinary College, Weifang City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Hairong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
6
|
Zheng L, Rang M, Fuchs C, Keß A, Wunsch M, Hentschel J, Hsiao CC, Kleber C, Osterhoff G, Aust G. The Posttraumatic Increase of the Adhesion GPCR EMR2/ ADGRE2 on Circulating Neutrophils Is Not Related to Injury Severity. Cells 2023; 12:2657. [PMID: 37998392 PMCID: PMC10670733 DOI: 10.3390/cells12222657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Trauma triggers a rapid innate immune response to aid the clearance of damaged/necrotic cells and their released damage-associated molecular pattern (DAMP). Here, we monitored the expression of EMR2/ADGRE2, involved in the functional regulation of innate immune cells, on circulating neutrophils in very severely and moderately/severely injured patients up to 240 h after trauma. Notably, neutrophilic EMR2 showed a uniform, injury severity- and type of injury-independent posttraumatic course in all patients. The percentage of EMR2+ neutrophils and their EMR2 level increased and peaked 48 h after trauma. Afterwards, they declined and normalized in some, but not all, patients. Circulating EMR2+ compared to EMR2- neutrophils express less CD62L and more CD11c, a sign of activation. Neutrophilic EMR2 regulation was verified in vitro. Remarkably, it increased, depending on extracellular calcium, in controls as well. Cytokines, enhanced in patients immediately after trauma, and sera of patients did not further affect this neutrophilic EMR2 increase, whereas apoptosis induction disrupted it. Likely the damaged/necrotic cells/DAMPs, unavoidable during neutrophil culture, stimulate the neutrophilic EMR2 increase. In summary, the rapidly increased absolute number of neutrophils, especially present in very severely injured patients, together with upregulated neutrophilic EMR2, may expand our in vivo capacity to react to and finally clear damaged/necrotic cells/DAMPs after trauma.
Collapse
Affiliation(s)
- Leyu Zheng
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Moujie Rang
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Carolin Fuchs
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Annette Keß
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Mandy Wunsch
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Julia Hentschel
- Institute of Human Genetics, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
| | - Christian Kleber
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Georg Osterhoff
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
| | - Gabriela Aust
- Research Laboratories and Department of Orthopaedics, Trauma and Plastic Surgery (OUP), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany; (L.Z.); (M.R.); (C.F.); (A.K.); (M.W.); (C.K.); (G.O.)
- Research Laboratories and Department of Visceral, Transplantation, Vascular and Thoracic Surgery (VTTG), Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Frenster JD, Erdjument-Bromage H, Stephan G, Ravn-Boess N, Wang S, Liu W, Bready D, Wilcox J, Kieslich B, Jankovic M, Wilde C, Horn S, Sträter N, Liebscher I, Schöneberg T, Fenyo D, Neubert TA, Placantonakis DG. PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma. Cell Rep 2023; 42:112679. [PMID: 37354459 PMCID: PMC10445595 DOI: 10.1016/j.celrep.2023.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
Collapse
Affiliation(s)
- Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Björn Kieslich
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany; Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Manuel Jankovic
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
8
|
Lin YC, Sahoo BK, Gau SS, Yang RB. The biology of SCUBE. J Biomed Sci 2023; 30:33. [PMID: 37237303 PMCID: PMC10214685 DOI: 10.1186/s12929-023-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The SCUBE [Signal peptide-Complement C1r/C1s, Uegf, Bmp1 (CUB)-Epithelial growth factor domain-containing protein] family consists of three proteins in vertebrates, SCUBE1, 2 and 3, which are highly conserved in zebrafish, mice and humans. Each SCUBE gene encodes a polypeptide of approximately 1000 amino acids that is organized into five modular domains: (1) an N-terminal signal peptide sequence, (2) nine tandem epidermal growth factor (EGF)-like repeats, (3) a large spacer region, (4) three cysteine-rich (CR) motifs, and (5) a CUB domain at the C-terminus. Murine Scube genes are expressed individually or in combination during the development of various tissues, including those in the central nervous system and the axial skeleton. The cDNAs of human SCUBE orthologs were originally cloned from vascular endothelial cells, but SCUBE expression has also been found in platelets, mammary ductal epithelium and osteoblasts. Both soluble and membrane-associated SCUBEs have been shown to play important roles in physiology and pathology. For instance, upregulation of SCUBEs has been reported in acute myeloid leukemia, breast cancer and lung cancer. In addition, soluble SCUBE1 is released from activated platelets and can be used as a clinical biomarker for acute coronary syndrome and ischemic stroke. Soluble SCUBE2 enhances distal signaling by facilitating the secretion of dual-lipidated hedgehog from nearby ligand-producing cells in a paracrine manner. Interestingly, the spacer regions and CR motifs can increase or enable SCUBE binding to cell surfaces via electrostatic or glycan-lectin interactions. As such, membrane-associated SCUBEs can function as coreceptors that enhance the signaling activity of various serine/threonine kinase or tyrosine kinase receptors. For example, membrane-associated SCUBE3 functions as a coreceptor that promotes signaling in bone morphogenesis. In humans, SCUBE3 mutations are linked to abnormalities in growth and differentiation of both bones and teeth. In addition to studies on human SCUBE function, experimental results from genetically modified mouse models have yielded important insights in the field of systems biology. In this review, we highlight novel molecular discoveries and critical directions for future research on SCUBE proteins in the context of cancer, skeletal disease and cardiovascular disease.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Binay K Sahoo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan.
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Tseng WY, Stacey M, Lin HH. Role of Adhesion G Protein-Coupled Receptors in Immune Dysfunction and Disorder. Int J Mol Sci 2023; 24:ijms24065499. [PMID: 36982575 PMCID: PMC10055975 DOI: 10.3390/ijms24065499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders of the immune system, including immunodeficiency, immuno-malignancy, and (auto)inflammatory, autoimmune, and allergic diseases, have a great impact on a host’s health. Cellular communication mediated through cell surface receptors, among different cell types and between cell and microenvironment, plays a critical role in immune responses. Selective members of the adhesion G protein-coupled receptor (aGPCR) family are expressed differentially in diverse immune cell types and have been implicated recently in unique immune dysfunctions and disorders in part due to their dual cell adhesion and signaling roles. Here, we discuss the molecular and functional characteristics of distinctive immune aGPCRs and their physiopathological roles in the immune system.
Collapse
Affiliation(s)
- Wen-Yi Tseng
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hsi-Hsien Lin
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Krasnova OA, Kulakova KA, Sopova JV, Smirnov EY, Silonov SA, Lomert EV, Bystrova OA, Martynova MG, Neganova IE. Essential Role of Adhesion GPCR, GPR123, for Human Pluripotent Stem Cells and Reprogramming towards Pluripotency. Cells 2023; 12:cells12020304. [PMID: 36672239 PMCID: PMC9856511 DOI: 10.3390/cells12020304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. They modulate key physiological functions and are required in diverse developmental processes including embryogenesis, but their role in pluripotency maintenance and acquisition during the reprogramming towards hiPSCs draws little attention. Meanwhile, it is known that more than 106 GPCRs are overexpressed in human pluripotent stem cells (hPSCs). Previously, to identify novel effectors of reprogramming, we performed a high-throughput RNA interference (RNAi) screening assay and identified adhesion GPCR, GPR123, as a potential reprogramming effector. Its role has not been explored before. Herein, by employing GPR123 RNAi we addressed the role of GPR123 for hPSCs. The suppression of GPR123 in hPSCs leads to the loss of pluripotency and differentiation, impacted colony morphology, accumulation of cells at the G2 phase of the cell cycle, and absence of the scratch closure. Application of the GPR123 RNAi at the initiation stage of reprogramming leads to a decrease in the percentage of the "true" hiPSC colonies, a drop in E-cadherin expression, a decrease in the percentage of NANOG+ nuclei, and the absence of actin cytoskeleton remodeling. Together this leads to the absence of the alkaline-phosphatase-positive hiPSCs colonies on the 18th day of the reprogramming process. Overall, these data indicate for the first time the essential role of GPR123 in the maintenance and acquisition of pluripotency.
Collapse
Affiliation(s)
- Olga A. Krasnova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Karina A. Kulakova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St-Petersburg, Russia
| | - Evgenyi Y. Smirnov
- Laboratory of Regulation of Genes Function, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Ekaterina V. Lomert
- Laboratory of Molecular Genetics of Tumor Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Olga A. Bystrova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Marina G. Martynova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Irina E. Neganova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Atigan A, Tan S, Cetin H, Guler OT, Ozdamar S, Karakaya YA. CD97 expression level and its effect on cell adhesion in Preeclampsia. BMC Pregnancy Childbirth 2022; 22:967. [PMID: 36572878 PMCID: PMC9791749 DOI: 10.1186/s12884-022-05280-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Cellular interactions and cell adhesion underlie preeclampsia (PE). The aim of the current study is to investigate the role of cell adhesion molecules such as CD97, neural (N)-cadherin, epithelial (E) -cadherin and integrin beta-4 in PE. METHODS This prospective study included 20 pregnant women with PE and a control group of 16 healthy pregnant women who were matched for age, gestational age, gravida and parity. Standard blood tests and placental cell adhesion molecule immunohistochemical staining were examined. RESULTS The creatinine, uric acid and lactate dehydrogenase (LDH) levels from standard blood tests were found to be statistically higher in the PE group (p = 0.002, p = 0.000, p = 0.001; respectively). In the PE group, the CD97 maternal serum level was statistically significantly lower, as was its immunohistochemical expression in placental sections (p = 0.028, p = 0.000; respectively). The E-cadherin expression score was statistically higher in the PE group compared to the control group (3,65 ± 1,84 vs 2,06 ± 1,76 respectively; p = 0.003). The N-cadherin expression score was statistically lower in the PE group compared to the control group (1,50 ± 0,82 vs 2,43 ± 1,59 respectively; p = 0.049). Integrin beta-4 was not statistically different between groups. CONCLUSIONS Cellular interaction may be responsible for PE as in cancer. A balance in intercellular communication, as researched in cancer therapy, may offer the solution in PE.
Collapse
Affiliation(s)
- Ayhan Atigan
- grid.440448.80000 0004 0384 3505Department of Obstetrics and Gynecology, Faculty of Medicine, Karabuk University, School of Medicine, Karabuk, Turkey
| | - Semih Tan
- grid.411742.50000 0001 1498 3798Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hulya Cetin
- grid.411742.50000 0001 1498 3798Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Omer Tolga Guler
- grid.411742.50000 0001 1498 3798Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Saim Ozdamar
- grid.411742.50000 0001 1498 3798Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yeliz Arman Karakaya
- grid.411742.50000 0001 1498 3798Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
12
|
Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, Soave M, Spiess K, Trajković K, Kosloff M, Prömel S. A guide to adhesion GPCR research. FEBS J 2022; 289:7610-7630. [PMID: 34729908 DOI: 10.1111/febs.16258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.
Collapse
Affiliation(s)
- Ines Liebscher
- Division of Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | | | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IBMC - Instituto Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Hannes Schihada
- C3 Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, UK
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katarina Trajković
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, The University of Haifa, Israel
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Wilde C, Mitgau J, Suchý T, Schoeneberg T, Liebscher I. Translating the Force - mechano-sensing GPCRs. Am J Physiol Cell Physiol 2022; 322:C1047-C1060. [PMID: 35417266 DOI: 10.1152/ajpcell.00465.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Incorporating mechanical cues into cellular responses allows us to experience our direct environment. Specialized cells can perceive and discriminate between different physical properties such as level of vibration, temperature, or pressure. Mechanical forces are abundant signals that also shape general cellular responses such as cytoskeletal rearrangement, differentiation, or migration and contribute to tissue development and function. The molecular structures that perceive and transduce mechanical forces are specialized cytoskeletal proteins, cell junction molecules, and membrane proteins such as ion channels and metabotropic receptors. G protein-coupled receptors (GPCRs) have attracted attention as metabotropic force receptors as they are among the most important drug targets. This review summarizes the function of mechano-sensitive GPCRs, specifically, the angiotensin II type 1 receptor and adrenergic, apelin, histamine, parathyroid hormone 1, and orphan receptors, focusing particularly on the advanced knowledge gained from adhesion-type GPCRs. We distinguish between shear stress and cell swelling/stretch as the two major types of mechano-activation of these receptors and contemplate the potential contribution of the force-from-lipid and force-from-tether models that have previously been suggested for ion channels.
Collapse
Affiliation(s)
- Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Jakob Mitgau
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Tomás Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Torsten Schoeneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Germany
| |
Collapse
|
15
|
Resolving the genetics of human tryptases: implications for health, disease, and clinical use as a biomarker. Curr Opin Allergy Clin Immunol 2022; 22:143-152. [PMID: 35197435 DOI: 10.1097/aci.0000000000000813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW To discuss our evolving understanding of the genetic variation in human tryptases and recent advances in associated clinical phenotypes. RECENT FINDINGS Serum tryptase levels have long been used as biomarkers in clinical practice to diagnose mast cell-associated disorders and mast cell-mediated reactions but the contribution of specific secreted isoforms of human tryptases and their role(s) in health and disease has only recently begun to be illuminated. It is now recognized that hereditary alpha-tryptasemia (HαT) is a common genetic trait and the commonest cause for elevated basal serum tryptase (BST), where it can both contribute to mast cell-associated phenotypes, and potentially confound their correct diagnosis. Expression of different tryptase isoforms is now recognized to be associated with specific clinical phenotypes including clonal and nonclonal mast cell-associated disorders as well as certain asthma endotypes. These disparate impacts on clinical disorders may result from differences in enzymatic activities of mature α-tryptases and β-tryptases, and the unique substrate profile and stability of heterotetrameric mature α/β-tryptases recently described to naturally occur. SUMMARY Variable copy number and isoform expression of tryptases differentially impact diseases and reactions associated with mast cells in humans. Recent advances in understanding of genetics governing BST levels have refined our understanding and the clinical use of this biomarker. In the future, incorporation of tryptase genotyping will likely be integral to the work-up and trial design of patients with phenotypes impacted by mast cells ranging from asthma to mastocytosis.
Collapse
|
16
|
Lin HH, Ng KF, Chen TC, Tseng WY. Ligands and Beyond: Mechanosensitive Adhesion GPCRs. Pharmaceuticals (Basel) 2022; 15:ph15020219. [PMID: 35215331 PMCID: PMC8878244 DOI: 10.3390/ph15020219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Cells respond to diverse types of mechanical stimuli using a wide range of plasma membrane-associated mechanosensitive receptors to convert extracellular mechanical cues into intracellular signaling. G protein-coupled receptors (GPCRs) represent the largest cell surface protein superfamily that function as versatile sensors for a broad spectrum of bio/chemical messages. In recent years, accumulating evidence has shown that GPCRs can also engage in mechano-transduction. According to the GRAFS classification system of GPCRs, adhesion GPCRs (aGPCRs) constitute the second largest GPCR subfamily with a unique modular protein architecture and post-translational modification that are well adapted for mechanosensory functions. Here, we present a critical review of current evidence on mechanosensitive aGPCRs.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Correspondence: (H.-H.L.); (W.-Y.T.)
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (H.-H.L.); (W.-Y.T.)
| |
Collapse
|
17
|
Rosa M, Noel T, Harris M, Ladds G. Emerging roles of adhesion G protein-coupled receptors. Biochem Soc Trans 2021; 49:1695-1709. [PMID: 34282836 PMCID: PMC8421042 DOI: 10.1042/bst20201144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.
Collapse
Affiliation(s)
- Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Timothy Noel
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
18
|
Mast cell tryptases in allergic inflammation and immediate hypersensitivity. Curr Opin Immunol 2021; 72:94-106. [PMID: 33932709 DOI: 10.1016/j.coi.2021.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Dysregulated mast cell-mediated inflammation and/or activation have been linked to a number of human diseases, including asthma, anaphylaxis, chronic spontaneous urticaria, and mast cell activation syndromes. As a major mast cell granule protein, tryptase is a biomarker commonly used in clinical practice to diagnose mast cell-associated disorders and -mediated reactions, but its mechanistic roles in disease pathogenesis remains incompletely understood. Here, we summarize recent advances in the understanding of human tryptase genetics and the effects that different genetic composition may have on the quaternary structure of tetrameric mature tryptases. We also discuss how these differences may impact clinical phenotypes including allergic inflammation, immediate hypersensitivity, and others seen in patients with mast cell-associated disorders. With the increased application of next-generation sequencing, we foresee that human genetic approaches will be a major focus of understanding human tryptase functions in various human mast cell disorders and in new therapeutic development.
Collapse
|
19
|
Abstract
Background Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Methods Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA.,Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA.,Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
20
|
I KY, Tseng WY, Wang WC, Gordon S, Ng KF, Lin HH. Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3 Inflammasome Activation Signal in Human Monocytes. Front Immunol 2021; 11:602016. [PMID: 33488598 PMCID: PMC7820815 DOI: 10.3389/fimmu.2020.602016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
EMR2/ADGRE2 is an adhesion G protein-coupled receptor differentially expressed by human myeloid cells. It modulates diverse cellular functions of innate immune cells and a missense EMR2 variant is directly responsible for vibratory urticaria. Recently, EMR2 was found to activate NLRP3 inflammasome in monocytes via interaction with FHR1, a regulatory protein of complement Factor H. However, the functional involvement of EMR2 activation and its signaling mechanisms in eliciting NLRP3 inflammasome activation remain elusive. In this study, we show that EMR2-mediated signaling plays a critical role in triggering the activation (2nd) signal for the NLRP3 inflammasome in both THP-1 monocytic cell line and primary monocytes. Stimulation of EMR2 by its agonistic 2A1 monoclonal antibody elicits a Gα16-dependent PLC-β activation pathway, inducing the activity of downstream Akt, MAPK, NF-κB, and Ca2+ mobilization, eventually leading to K+ efflux. These results identify EMR2 and its associated signaling intermediates as potential intervention targets of NLRP3 inflammasome activation in inflammatory disorders.
Collapse
Affiliation(s)
- Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| | - Wen-Chih Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
21
|
Naranjo AN, Bandara G, Bai Y, Smelkinson MG, Tobío A, Komarow HD, Boyden SE, Kastner DL, Metcalfe DD, Olivera A. Critical Signaling Events in the Mechanoactivation of Human Mast Cells through p.C492Y-ADGRE2. J Invest Dermatol 2020; 140:2210-2220.e5. [PMID: 32222457 PMCID: PMC7529699 DOI: 10.1016/j.jid.2020.03.936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
A role for the adhesion G-protein coupled receptor ADGRE2 or EMR2 in mechanosensing was revealed by the finding of a missense substitution (p.C492Y) associated with familial vibratory urticaria. In these patients, friction of the skin induces mast cell hyper-degranulation through p.C492Y-ADGRE2, causing localized hives, flushing, and hypotension. We have now characterized the responses and intracellular signals elicited by mechanical activation in human mast cells expressing p.C492Y-ADGRE2 and attached to dermatan sulfate, a ligand for ADGRE2. The presence of p.C492Y-ADGRE2 reduced the threshold to activation and increased the extent of degranulation along with the percentage of mast cells responding. Vibration caused phospholipase C activation, transient increases in cytosolic calcium, and downstream activation of phosphoinositide 3-kinase and extracellular signal-regulated kinases 1 and 2 by Gβγ, Gαq/11, and Gαi/o-independent mechanisms. Degranulation induced by vibration was dependent on phospholipase C pathways, including calcium, protein kinase C, and phosphoinositide 3-kinase but not extracellular signal-regulated kinases 1/2 pathways, along with pertussis toxin-sensitive signals. In addition, mechanoactivation of mast cells stimulated the synthesis and release of prostaglandin D2, to our knowledge a previously unreported mediator in vibratory urticaria, and extracellular signal-regulated kinases 1/2 activation was required for this response together with calcium, protein kinase C, and to some extent, phosphoinositide 3-kinase. Our studies thus identified critical molecular events initiated by mechanical forces and potential therapeutic targets for patients with vibratory urticaria.
Collapse
Affiliation(s)
- Andrea N Naranjo
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Margery G Smelkinson
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Araceli Tobío
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven E Boyden
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
22
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Vizurraga A, Adhikari R, Yeung J, Yu M, Tall GG. Mechanisms of adhesion G protein-coupled receptor activation. J Biol Chem 2020; 295:14065-14083. [PMID: 32763969 DOI: 10.1074/jbc.rev120.007423] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.
Collapse
Affiliation(s)
- Alexander Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jennifer Yeung
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin Drug Discov 2020; 15:1291-1307. [DOI: 10.1080/17460441.2020.1791075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrey D. Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
25
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
26
|
Suchý T, Zieschang C, Popkova Y, Kaczmarek I, Weiner J, Liebing AD, Çakir MV, Landgraf K, Gericke M, Pospisilik JA, Körner A, Heiker JT, Dannenberger D, Schiller J, Schöneberg T, Liebscher I, Thor D. The repertoire of Adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int J Obes (Lond) 2020; 44:2124-2136. [PMID: 32203115 PMCID: PMC7508673 DOI: 10.1038/s41366-020-0570-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCR) are well-characterized regulators of a plethora of physiological functions among them the modulation of adipogenesis and adipocyte function. The class of Adhesion GPCR (aGPCR) and their role in adipose tissue, however, is poorly studied. With respect to the demand for novel targets in obesity treatment, we present a comprehensive study on the expression and function of this enigmatic GPCR class during adipogenesis and in mature adipocytes. METHODS The expression of all aGPCR representatives was determined by reanalyzing RNA-Seq data and by performing qPCR in different mouse and human adipose tissues under low- and high-fat conditions. The impact of aGPCR expression on adipocyte differentiation and lipid accumulation was studied by siRNA-mediated knockdown of all expressed members of this receptor class. The biological characteristics and function of mature adipocytes lacking selected aGPCR were analyzed by mass spectrometry and biochemical methods (lipolysis, glucose uptake, adiponectin secretion). RESULTS More than ten aGPCR are significantly expressed in visceral and subcutaneous adipose tissues and several aGPCR are differentially regulated under high-caloric conditions in human and mouse. Receptor knockdown of six receptors resulted in an impaired adipogenesis indicating their expression is essential for proper adipogenesis. The altered lipid composition was studied in more detail for two representatives, ADGRG2/GPR64 and ADGRG6/GPR126. While GPR126 is mainly involved in adipocyte differentiation, GPR64 has an additional role in mature adipocytes by regulating metabolic processes. CONCLUSIONS Adhesion GPCR are significantly involved in qualitative and quantitative adipocyte lipid accumulation and can control lipolysis. Factors driving adipocyte formation and function are governed by signaling pathways induced by aGPCR yielding these receptors potential targets for treating obesity.
Collapse
Affiliation(s)
- Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Christian Zieschang
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Juliane Weiner
- Department of Endocrinology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mehmet Volkan Çakir
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute for Anatomy and Cell biology, Medical Faculty, Halle University, Halle (Saale), Germany
| | | | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - John T Heiker
- IFB Adiposity Diseases, Leipzig University, Leipzig, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Dummerstorf, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
27
|
G Protein-Coupling of Adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and Activation of G Protein Signalling by an Anti-EMR2 Antibody. Sci Rep 2020; 10:1004. [PMID: 31969668 PMCID: PMC6976652 DOI: 10.1038/s41598-020-57989-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022] Open
Abstract
The experimental evidence that Adhesion G Protein-Coupled Receptors (aGPCRs) functionally couple to heterotrimeric G proteins has been emerging in incremental steps, but attributing biological significance to their G protein signalling function still presents a major challenge. Here, utilising activated truncated forms of the receptors, we show that ADGRE2/EMR2 and ADGRE5/CD97 are G protein-coupled in a variety of recombinant systems. In a yeast-based assay, where heterologous GPCRs are coupled to chimeric G proteins, EMR2 showed broad G protein-coupling, whereas CD97 coupled more specifically to Gα12, Gα13, Gα14 and Gαz chimeras. Both receptors induced pertussis-toxin (PTX) insensitive inhibition of cyclic AMP (cAMP) levels in mammalian cells, suggesting coupling to Gαz. EMR2 was shown to signal via Gα16, and via a Gα16/Gαz chimera, to stimulate IP1 accumulation. Finally, using an NFAT reporter assay, we identified a polyclonal antibody that activates EMR2 G protein signalling in vitro. Our results highlight the potential for the development of soluble agonists to understand further the biological effects and therapeutic opportunities for ADGRE receptor-mediated G protein signalling.
Collapse
|
28
|
Gad AA, Balenga N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol Transl Sci 2020; 3:29-42. [PMID: 32259086 DOI: 10.1021/acsptsci.9b00093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aberrant expression, function, and mutation of G protein-coupled receptors (GPCRs) and their signaling partners, G proteins, have been well documented in many forms of cancer. These cell surface receptors and their endogenous ligands are implicated in all aspects of cancer including proliferation, angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the second largest family of GPCRs, most of which are orphan receptors with unknown physiological functions. This is mainly due to our limited insight into their structure, natural ligands, signaling pathways, and tissue expression profiles. Nevertheless, recent studies show that aGPCRs play important roles in cell adhesion to the extracellular matrix and cell-cell communication, processes that are dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in migration, proliferation, and survival of tumor cells. We here review the role of aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate, and gastric) and emphasize the importance of further translational studies in this field.
Collapse
Affiliation(s)
- Abanoub A Gad
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland 20201, United States.,Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States
| | - Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States.,Molecular and Structural Biology program at University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 20201, United States
| |
Collapse
|
29
|
Xu X, Wang Y, Mojumdar K, Zhou Z, Jeong KJ, Mangala LS, Yu S, Tsang YH, Rodriguez-Aguayo C, Lu Y, Lopez-Berestein G, Sood AK, Mills GB, Liang H. A-to-I-edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced apoptosis. J Clin Invest 2019; 129:5343-5356. [PMID: 31682236 PMCID: PMC6877318 DOI: 10.1172/jci123396] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
Both miRNAs and A-to-I RNA editing, a widespread nucleotide modification mechanism, have recently emerged as key players in cancer pathophysiology. However, the functional impact of RNA editing of miRNAs in cancer remains largely unexplored. Here, we focused on an ADAR2-catalyzed RNA editing site within the miR-379-5p seed region. This site was under-edited in tumors relative to normal tissues, with a high editing level being correlated with better patient survival times across cancer types. We demonstrated that in contrast to wild-type miRNA, edited miR-379-5p inhibited cell proliferation and promoted apoptosis in diverse tumor contexts in vitro, which was due to the ability of edited but not wild-type miR-379-5p to target CD97. Importantly, through nanoliposomal delivery, edited miR-379-5p mimics significantly inhibited tumor growth and extended survival of mice. Our study indicates a role of RNA editing in diversifying miRNA function during cancer progression and highlights the translational potential of edited miRNAs as a new class of cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Systems Biology
| | | | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, and
- Center for RNA Interference and Non–Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non–Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, and
- Center for RNA Interference and Non–Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Systems Biology
| |
Collapse
|
30
|
Ward Y, Lake R, Faraji F, Sperger J, Martin P, Gilliard C, Ku KP, Rodems T, Niles D, Tillman H, Yin J, Hunter K, Sowalsky AG, Lang J, Kelly K. Platelets Promote Metastasis via Binding Tumor CD97 Leading to Bidirectional Signaling that Coordinates Transendothelial Migration. Cell Rep 2019; 23:808-822. [PMID: 29669286 DOI: 10.1016/j.celrep.2018.03.092] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
Tumor cells initiate platelet activation leading to the secretion of bioactive molecules, which promote metastasis. Platelet receptors on tumors have not been well-characterized, resulting in a critical gap in knowledge concerning platelet-promoted metastasis. We identify a direct interaction between platelets and tumor CD97 that stimulates rapid bidirectional signaling. CD97, an adhesion G protein-coupled receptor (GPCR), is an overexpressed tumor antigen in several cancer types. Purified CD97 extracellular domain or tumor cell-associated CD97 stimulated platelet activation. CD97-initiated platelet activation led to granule secretion, including the release of ATP, a mediator of endothelial junction disruption. Lysophosphatidic acid (LPA) derived from platelets induced tumor invasiveness via proximal CD97-LPAR heterodimer signaling, coupling coincident tumor cell migration and vascular permeability to promote transendothelial migration. Consistent with this, CD97 was necessary for tumor cell-induced vascular permeability in vivo and metastasis formation in preclinical models. These findings support targeted blockade of tumor CD97 as an approach to ameliorate metastatic spread.
Collapse
Affiliation(s)
- Yvona Ward
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD 20892, USA
| | - Farhoud Faraji
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, MD 20892, USA
| | - Jamie Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Philip Martin
- Center for Advanced Preclinical Research, NCI, Frederick, MD 21702, USA
| | - Cameron Gilliard
- Molecular Biology and Genetics Section, NIDDK, Bethesda, MD 20892, USA
| | - Kimberly P Ku
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tamara Rodems
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David Niles
- Depatment of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Heather Tillman
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD 20892, USA
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD 20892, USA
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, MD 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD 20892, USA
| | - Joshua Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 2019; 18:869-884. [PMID: 31462748 DOI: 10.1038/s41573-019-0039-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) - one of the five main families in the GPCR superfamily - have several atypical characteristics, including large, multi-domain N termini and a highly conserved region that can be autoproteolytically cleaved. Although GPCRs overall have well-established pharmacological tractability, currently no therapies that target any of the 33 members of the aGPCR family are either approved or in clinical trials. However, human genetics and preclinical research have strengthened the links between aGPCRs and disease in recent years. This, together with a greater understanding of their functional complexity, has led to growing interest in aGPCRs as drug targets. A framework for prioritizing aGPCR targets and supporting approaches to develop aGPCR modulators could therefore be valuable in harnessing the untapped therapeutic potential of this family. With this in mind, here we discuss the unique opportunities and challenges for drug discovery in modulating aGPCR functions, including target identification, target validation, assay development and safety considerations, using ADGRG1 as an illustrative example.
Collapse
|
32
|
Wang X, Iyer A, Lyons AB, Körner H, Wei W. Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Front Immunol 2019; 10:2031. [PMID: 31507616 PMCID: PMC6718513 DOI: 10.3389/fimmu.2019.02031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages have emerged as a key component of the innate immune system that emigrates to peripheral tissues during gestation and in the adult organism. Their complex pathway to maturity, their unique plasticity and their various roles as effector and regulatory cells during an immune response have been the focus of intense research. A class of surface molecules, the G-Protein coupled receptors (GPCRs) play important roles in many immune processes. They have drawn attention in regard to these functions and the potential for therapeutic targets that can modulate the response of immune cells in pathologies such as diabetes, atherosclerosis, and chronic inflammatory diseases. Of the more than 800 GPCRs identified, ~100 are currently targeted with drugs which have had their activity investigated in vivo. Macrophages express a number of GPCRs which have central roles during cell differentiation and in the regulation of their functions. While some macrophage GPCRs such as chemokine receptors have been studied in great detail, the roles of other receptors of this large family are still not well understood. This review summarizes new insights into macrophage biology, differences of human, and mouse macrophages and gives details of some of the GPCRs expressed by this cell type.
Collapse
Affiliation(s)
- Xinming Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China.,Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Abishek Iyer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Martin GH, Roy N, Chakraborty S, Desrichard A, Chung SS, Woolthuis CM, Hu W, Berezniuk I, Garrett-Bakelman FE, Hamann J, Devlin SM, Chan TA, Park CY. CD97 is a critical regulator of acute myeloid leukemia stem cell function. J Exp Med 2019; 216:2362-2377. [PMID: 31371381 PMCID: PMC6781010 DOI: 10.1084/jem.20190598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant efforts to improve therapies for acute myeloid leukemia (AML), clinical outcomes remain poor. Understanding the mechanisms that regulate the development and maintenance of leukemic stem cells (LSCs) is important to reveal new therapeutic opportunities. We have identified CD97, a member of the adhesion class of G protein-coupled receptors (GPCRs), as a frequently up-regulated antigen on AML blasts that is a critical regulator of blast function. High levels of CD97 correlate with poor prognosis, and silencing of CD97 reduces disease aggressiveness in vivo. These phenotypes are due to CD97's ability to promote proliferation, survival, and the maintenance of the undifferentiated state in leukemic blasts. Collectively, our data credential CD97 as a promising therapeutic target on LSCs in AML.
Collapse
Affiliation(s)
- Gaëlle H Martin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Pathology, New York University School of Medicine, New York, NY
| | - Nainita Roy
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Sohini Chakraborty
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Chung
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carolien M Woolthuis
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Iryna Berezniuk
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Francine E Garrett-Bakelman
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA.,Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sean M Devlin
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christopher Y Park
- Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
34
|
Leyton L, Díaz J, Martínez S, Palacios E, Pérez LA, Pérez RD. Thy-1/CD90 a Bidirectional and Lateral Signaling Scaffold. Front Cell Dev Biol 2019; 7:132. [PMID: 31428610 PMCID: PMC6689999 DOI: 10.3389/fcell.2019.00132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/04/2019] [Indexed: 01/18/2023] Open
Abstract
Thy-1/CD90 is a glycoprotein attached to the outer face of the plasma membrane with various functions, which depend on the context of specific physiological or pathological conditions. Many of these reported functions for Thy-1/CD90 arose from studies by our group, which identified the first ligand/receptor for Thy-1/CD90 as an integrin. This finding initiated studies directed toward unveiling the molecular mechanisms that operate downstream of Thy-1/CD90 activation, and its possible interaction with proteins in the membrane plane to regulate their function. The association of Thy-1/CD90 with a number of cell surface molecules allows the formation of extra/intracellular multiprotein complexes composed of various ligands and receptors, extracellular matrix proteins, intracellular signaling proteins, and the cytoskeleton. The complexes sense changes that occur inside and outside the cells, with Thy-1/CD90 at the core of this extracellular molecular platform. Molecular platforms are scaffold-containing microdomains where key proteins associate to prominently influence cellular processes and behavior. Each component, by itself, is less effective, but when together with various scaffold proteins to form a platform, the components become more specific and efficient to convey the messages. This review article discusses the experimental evidence that supports the role of Thy-1/CD90 as a membrane-associated platform (ThyMAP).
Collapse
Affiliation(s)
- Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samuel Martínez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Esteban Palacios
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Laboratorio de Microbiología Celular, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Leonardo A Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramón D Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Favara DM, Banham AH, Harris AL. ADGRL4/ELTD1 is a highly conserved angiogenesis-associated orphan adhesion GPCR that emerged with the first vertebrates and comprises 3 evolutionary variants. BMC Evol Biol 2019; 19:143. [PMID: 31299890 PMCID: PMC6626334 DOI: 10.1186/s12862-019-1445-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Our laboratory identified ADGRL4/ELTD1, an orphan GPCR belonging to the adhesion GPCR (aGPCR) family, as a novel regulator of angiogenesis and a potential anti-cancer therapeutic target. Little is known about how ADGRL4/ELTD1 (and aGPCRs in general) function, a problem compounded by a lack of known ligands or means of activation. With this in mind, we turned to computational evolutionary biology with the aim of better understanding ADGRL4/ELTD1. RESULTS We identified ADGRL4/ELTD1 as a highly conserved early angiogenic gene which emerged in the first true vertebrates (bony fish) approximately 435 million years ago (mya), evolving alongside key angiogenic genes VEGFR2 and DLL4. We identified 3 evolutionary ADGRL4/ELTD1 variants based on EGF domain deletions with variant 2 first emerging 101 mya (95% CI 96-105) in Afrotheria and 82 mya (95% CI 76-89) in Primates. Additionally, conservation mapping across all orthologues reveals highest level conservation in EGF Ca binding domain 1, suggesting that this motif plays an essential role, as well as specific regions of the GAIN domain, GPS motif and 7TM domain, suggesting possible activation mechanisms and ligand binding positions. Additionally, we found that ADGRL4/ELTD1 (a member aGPCR family 1) is possibly ancestral to members of aGPCR family 2. CONCLUSION This work establishes ADGRL4/ELTD1's evolution, sheds light on its possible activation and ligand binding zones, and establishes the first temporal references for the emergence of ADGRL4/ELTD1 variants during vertebrate evolution. Our approach is applicable to the greater aGPCR family and opens up new avenues for future experimental work.
Collapse
Affiliation(s)
- David M. Favara
- Balliol College, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
36
|
Kleo K, Dimitrova L, Oker E, Tomaszewski N, Berg E, Taruttis F, Engelmann JC, Schwarzfischer P, Reinders J, Spang R, Gronwald W, Oefner PJ, Hummel M. Identification of ADGRE5 as discriminating MYC target between Burkitt lymphoma and diffuse large B-cell lymphoma. BMC Cancer 2019; 19:322. [PMID: 30953469 PMCID: PMC6451309 DOI: 10.1186/s12885-019-5537-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background MYC is a heterogeneously expressed transcription factor that plays a multifunctional role in many biological processes such as cell proliferation and differentiation. It is also associated with many types of cancer including the malignant lymphomas. There are two types of aggressive B-cell lymphoma, namely Burkitt lymphoma (BL) and a subgroup of diffuse large cell lymphoma (DLBCL), which both carry MYC translocations and overexpress MYC but both differ significantly in their clinical outcome. In DLBCL, MYC translocations are associated with an aggressive behavior and poor outcome, whereas MYC-positive BL show a superior outcome. Methods To shed light on this phenomenon, we investigated the different modes of actions of MYC in aggressive B-cell lymphoma cell lines subdivided into three groups: (i) MYC-positive BL, (ii) DLBCL with MYC translocation (DLBCLpos) and (iii) DLBCL without MYC translocation (DLBCLneg) for control. In order to identify genome-wide MYC-DNA binding sites a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) was performed. In addition, ChIP-Seq for H3K4me3 was used for determination of genomic regions accessible for transcriptional activity. These data were supplemented with gene expression data derived from RNA-Seq. Results Bioinformatics integration of all data sets revealed different MYC-binding patterns and transcriptional profiles in MYC-positive BL and DLBCL cell lines indicating different functional roles of MYC for gene regulation in aggressive B-cell lymphomas. Based on this multi-omics analysis we identified ADGRE5 (alias CD97) - a member of the EGF-TM7 subfamily of adhesion G protein-coupled receptors - as a MYC target gene, which is specifically expressed in BL but not in DLBCL regardless of MYC translocation. Conclusion Our study describes a diverse genome-wide MYC-DNA binding pattern in BL and DLBCL cell lines with and without MYC translocations. Furthermore, we identified ADREG5 as a MYC target gene able to discriminate between BL and DLBCL irrespectively of the presence of MYC breaks in DLBCL. Since ADGRE5 plays an important role in tumor cell formation, metastasis and invasion, it might also be instrumental to better understand the different pathobiology of BL and DLBCL and help to explain discrepant clinical characteristics of BL and DLBCL. Electronic supplementary material The online version of this article (10.1186/s12885-019-5537-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karsten Kleo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany.
| | - Lora Dimitrova
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Elisabeth Oker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Nancy Tomaszewski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Erika Berg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Franziska Taruttis
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Julia C Engelmann
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany.,Present address: Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1790, AB, Den Burg, The Netherlands
| | - Philipp Schwarzfischer
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Jörg Reinders
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Rainer Spang
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Wolfram Gronwald
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Peter J Oefner
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| |
Collapse
|
37
|
Langenhan T. Adhesion G protein–coupled receptors—Candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:5-16. [DOI: 10.1111/bcpt.13223] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty Leipzig University Leipzig Germany
| |
Collapse
|
38
|
He Y, Xu L, Feng M, Wang W. Role of CD97 small isoform in human cervical carcinoma. Int J Exp Pathol 2019; 100:19-24. [PMID: 30883974 DOI: 10.1111/iep.12303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Various studies revealed that elevated expression of CD97 in carcinomas is associated with the dedifferentiation, aggressiveness and metastasis of tumour. CD97 is a protein member of the epidermal growth factor seven-transmembrane (EGF-TM7) family of class II TM7 receptors. Our previous study suggested that the overexpression of CD97 in cervical cancer was correlated with the aggressiveness of the tumour and that CD97 might be an independent poor prognostic factor for cervical cancer patients. Based on these data, we have investigated the role of CD97 small isoform in cervical cancer proliferation, migration and invasion in vitro. Three cervical cancer cell lines were tested and the CD97 small isoform was found to be expressed predominantly in the SiHa cells. The mobile and invasive ability of different cervical cancer cell lines was not correlated positively with total CD97 protein expression but was with the level of the CD97 small isoform. Functional significance was assessed 48 hours after transient knockdown using siRNA targeting CD97 small isoform (CD97/EGF1,2,5) or a scrambled control sequence in cervical cancer cell lines. As a result, decreased ability of migration and invasion was found in CD97 small isoform RNAi cells, which showed, however, no change in cell proliferation. This study shed light on the role of the CD97 small isoform in tumour progression and provides a basis for further studies to determine its function in vivo.
Collapse
Affiliation(s)
- Ying He
- Department of Pathology, West China Second Hospital of Sichuan University, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital of Sichuan University, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Min Feng
- Department of Pathology, West China Second Hospital of Sichuan University, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital of Sichuan University, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
39
|
Olaniru OE, Persaud SJ. Adhesion G-protein coupled receptors: Implications for metabolic function. Pharmacol Ther 2019; 198:123-134. [PMID: 30825474 DOI: 10.1016/j.pharmthera.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adhesion G-protein coupled receptors (aGPCRs) are emerging as important actors in energy homeostasis. Recent biochemical and functional studies using transgenic mice indicate that aGPCRs play important roles in endocrine and metabolic functions including β-cell differentiation, insulin secretion, adipogenesis and whole body fuel homeostasis. Most aGPCRs are orphans, for which endogenous ligands have not yet been identified, and many of the endogenous ligands of the already de-orphanised aGPCRs are components of the extracellular matrix (ECM). In this review we focus on aGPCR expression in metabolically active tissues, their activation by ECM proteins, and current knowledge of their potential roles in islet development, insulin secretion, adipogenesis and muscle function.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
40
|
The RGD motif is involved in CD97/ADGRE5-promoted cell adhesion and viability of HT1080 cells. Sci Rep 2019; 9:1517. [PMID: 30728423 PMCID: PMC6365523 DOI: 10.1038/s41598-018-38045-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
CD97/ADGRE5 is an adhesion G protein-coupled receptor (aGPCR) involved in tumor cell adhesion, migration, angiogenesis, and apoptosis. CD97 has been shown previously to stimulate angiogenesis by interacting with integrins on endothelial cells via an Arginine-Glycine-Aspartic acid (RGD) motif. In this report, the role of the RGD motif in tumor cell adhesion and apoptosis was investigated using a previously-established HT1080 cell-based system. We found that the RGD motif is critical in CD97-promoted cell adhesion, in part due to the up-regulation of αvβ5 and α2β1 integrins, and that CD97 mediates its anti-apoptotic effect in extrinsic apoptosis via RGD-dependent cell adhesion. In contrast, CD97-modulated anti-apoptotic effect in intrinsic apoptosis is mediated by RGD-independent, N-cadherin-induced homotypic cell aggregation. Hence, CD97 promotes tumorigenesis via RGD-dependent and -independent mechanisms.
Collapse
|
41
|
Hsiao CC, Chu TY, Wu CJ, van den Biggelaar M, Pabst C, Hébert J, Kuijpers TW, Scicluna BP, I KY, Chen TC, Liebscher I, Hamann J, Lin HH. The Adhesion G Protein-Coupled Receptor GPR97/ ADGRG3 Is Expressed in Human Granulocytes and Triggers Antimicrobial Effector Functions. Front Immunol 2018; 9:2830. [PMID: 30559745 PMCID: PMC6287011 DOI: 10.3389/fimmu.2018.02830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in human, several of which are distinctly expressed and functionally involved in polymorphonuclear cells (PMNs). As former work indicated the possible presence of the aGPCR GPR97 in granulocytes, we studied its cellular distribution, molecular structure, signal transduction, and biological function in PMNs. RNA sequencing and mass-spectrometry revealed abundant RNA and protein expression of ADGRG3/GPR97 in granulocyte precursors and terminally differentiated neutrophilic, eosinophilic, and basophilic granulocytes. Using a newly generated GPR97-specific monoclonal antibody, we confirmed that endogenous GPR97 is a proteolytically processed, dichotomous, N-glycosylated receptor. GPR97 was detected in tissue-infiltrating PMNs and upregulated during systemic inflammation. Antibody ligation of GPR97 increased neutrophil reactive oxygen species production and proteolytic enzyme activity, which is accompanied by an increase in mitogen-activated protein kinases and IκBα phosphorylation. In-depth analysis of the GPR97 signaling cascade revealed a possible switch from basal Gαs/cAMP-mediated signal transduction to a Gαi-induced reduction in cAMP levels upon mutation-induced activation of the receptor, in combination with an increase in downstream effectors of Gβγ, such as SRE and NF-κB. Finally, ligation of GPR97 increased the bacteria uptake and killing activity of neutrophils. We conclude that the specific presence of GPR97 regulates antimicrobial activity in human granulocytes.
Collapse
Affiliation(s)
- Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tai-Ying Chu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Wu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Maartje van den Biggelaar
- Sanquin Research and Landsteiner Laboratory, Department of Plasma Proteins, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Caroline Pabst
- Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Josée Hébert
- Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Department of Clinical Epidemiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
42
|
Huang KY, Lin HH. The Activation and Signaling Mechanisms of GPR56/ADGRG1 in Melanoma Cell. Front Oncol 2018; 8:304. [PMID: 30135857 PMCID: PMC6092491 DOI: 10.3389/fonc.2018.00304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest GPCR subfamily. GPR56/ADGRG1 is a member of the ADGRG subgroup of aGPCRs. Although GPR56 is best known for its pivotal role in the cerebral cortical development, it is also important for tumor progression. Numerous studies have revealed that GPR56 is expressed in various cancer types with a role in cancer cell adhesion, migration and metastasis. In a recent study, we found that the immobilized GPR56-specific CG4 antibody enhanced IL-6 production and migration ability of melanoma cells. In this review, we will summarize the current understanding of GPR56 function and discuss the activation and signaling mechanisms of GPR56 in melanoma cells.
Collapse
Affiliation(s)
- Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
43
|
Mechano-Dependent Phosphorylation of the PDZ-Binding Motif of CD97/ADGRE5 Modulates Cellular Detachment. Cell Rep 2018; 24:1986-1995. [DOI: 10.1016/j.celrep.2018.07.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 06/05/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
|
44
|
Hilbig D, Dietrich N, Wandel E, Gonsior S, Sittig D, Hamann J, Aust G. The Interaction of CD97/ADGRE5 With β-Catenin in Adherens Junctions Is Lost During Colorectal Carcinogenesis. Front Oncol 2018; 8:182. [PMID: 29888202 PMCID: PMC5980956 DOI: 10.3389/fonc.2018.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/09/2018] [Indexed: 12/26/2022] Open
Abstract
The adhesion G-protein-coupled receptor CD97/ADGRE5 is present in adherens junctions of human normal intestinal cells and upregulated in colorectal carcinomas. Here, we examined whether CD97 directly interacts with junctional proteins in normal and malignant colorectal tissue. We identified an association of CD97 with β-catenin using a proximity ligation assay and confirmed the interaction between both endogenous proteins at the biochemical level by co-immunoprecipitation in human and mouse tissues and cell lines. Glutathione S-transferase-pulldown revealed that CD97 binds β-catenin through its seven-span transmembrane/intracellular domain(s). To study tumor-associated changes in the interaction of CD97 and β-catenin in situ, we quantified and correlated both proteins at the membrane, and in the cytoplasm and nuclei of colorectal carcinomas and their corresponding normal tissues (n = 111). In normal colon, membranous levels of CD97 and β-catenin correlated strongly (p < 0.0001). To some degree both molecules disappeared in carcinomas simultaneously from the membrane of tumor cells (p = 0.017). CD97 accumulated in the cytoplasm, whereas β-catenin emerged in the cytoplasm and nuclei. CD97 and β-catenin levels in the cytoplasm correlated well (p < 0.0001). Irrespective of their subcellular localization, interaction of CD97 with β-catenin in tumor cells was also restricted to the cell contacts. Accordingly, CD97 did not regulate β-catenin-dependent TCF-mediated transcriptional activity. In summary, while CD97 and β-catenin interact in adherens junctions, their interaction is lost and both molecules follow different functional paths inside tumor cells.
Collapse
Affiliation(s)
- Doris Hilbig
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Norman Dietrich
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Elke Wandel
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Susann Gonsior
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Doreen Sittig
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| |
Collapse
|
45
|
Stoveken HM, Larsen SD, Smrcka AV, Tall GG. Gedunin- and Khivorin-Derivatives Are Small-Molecule Partial Agonists for Adhesion G Protein-Coupled Receptors GPR56/ADGRG1 and GPR114/ADGRG5. Mol Pharmacol 2018; 93:477-488. [PMID: 29476042 PMCID: PMC5878671 DOI: 10.1124/mol.117.111476] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have emerged as potential therapeutic targets in multiple cancers and in neurologic diseases. However, there are few modulatory compounds that act on these receptors. The majority of aGPCRs are orphans and a general activation mechanism has only recently been defined: aGPCRs are activated by a tethered agonist. aGPCRs constitutively cleave themselves during biosynthesis to generated two-part receptors comprising an extracellular domain (ECD) and a 7-transmembrane spanning domain (7TM). ECD dissociation reveals the tethered agonist initiating G protein signaling. Synthetic peptides that mimic the tethered agonist region can activate aGPCRs. We hypothesized that small molecules could act in the same way as peptide agonists. High throughput screening of the 2000-compound Spectrum Collection library using the serum response element luciferase gene reporter assay revealed two related classes of small molecules that could activate the aGPCR GPR56/ADGRG1. The most potent compound identified was 3-α-acetoxydihydrodeoxygedunin, or 3-α-DOG. 3-α-DOG activated engineered, low-activity GPR56 7TM in independent biochemical and cell-based assays with an EC50 of ∼5 μM. The compound also activated a subset of aGPCRs but not two class A GPCRs tested. The mode of 3-α-DOG-mediated receptor activation is that of partial agonist. 3-α-DOG activated GPR56 less efficaciously than peptide agonist and could antagonize both the peptide agonist and the endogenous tethered agonist, which are pharmacological hallmarks of partial agonists. Taken together, we have uncovered a novel group of aGPCR partial agonists that will serve as invaluable resources for understanding this unique class receptors.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| | - Scott D Larsen
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| | - Alan V Smrcka
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| | - Gregory G Tall
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
46
|
Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Semin Cell Dev Biol 2018; 86:3-14. [PMID: 29499385 DOI: 10.1016/j.semcdb.2018.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct immune responses. Membrane molecules on the DC surface form a landscape that defines them as leucocytes and part of the mononuclear phagocytic system, interacts with their environment and directs interactions with other cells. This review describes the DC surface landscape, reflects on the different molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the clinic.
Collapse
Affiliation(s)
- Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - P Mark Hogarth
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Inflammation, Cancer and Infection, Burnet Institute, Melbourne, VIC, Australia
| | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.
Collapse
Affiliation(s)
- Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| |
Collapse
|
48
|
Abstract
As the largest receptor gene family in the human genome, with >800 members, the signal-transducing G protein-coupled receptors (GPCRs) play critical roles in nearly all conceivable physiological processes, ranging from the sensing of photons and odorants to metabolic homeostasis and migration of leukocytes. Unfortunately, an exhaustive review of the several hundred GPCRs expressed by myeloid cells/macrophages (P.J. Groot-Kormelink, L .Fawcett, P.D. Wright, M. Gosling, and T.C. Kent, BMC Immunol 12:57, 2012, doi:10.1186/1471-2172-13-57) is beyond the scope of this chapter; however, we will endeavor to cover the GPCRs that contribute to the major facets of macrophage biology, i.e., those whose expression is restricted to macrophages and the GPCRs involved in macrophage differentiation/polarization, microbial elimination, inflammation and resolution, and macrophage-mediated pathology. The chemokine receptors, a major group of myeloid GPCRs, will not be extensively covered as they are comprehensively reviewed elsewhere.
Collapse
|
49
|
Dahal S, Huang P, Murray BT, Mahler GJ. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells. J Biomed Mater Res A 2017; 105:2729-2741. [PMID: 28589644 DOI: 10.1002/jbm.a.36133] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022]
Abstract
Alterations in shear stress, mechanical deformation, extracellular matrix (ECM) composition and exposure to inflammatory conditions are known to cause endothelial to mesenchymal transformation (EndMT). This change in endothelial phenotype has only recently been linked to adult pathologies such as cancer progression, organ fibrosis, and calcific aortic valve disease; and its function in adult physiology, especially in response to tissue mechanics, has not been rigorously investigated. EndMT is a response to mechanical and biochemical signals that results in the remodeling of underlying tissues. In diseased aortic valves, glycosaminoglycans (GAGs) are present in the collagen-rich valve fibrosa, and are deposited near calcified nodules. In this study, in vitro models of early and late-stage valve disease were developed by incorporating the GAGs chondroitin sulfate (CS), hyaluronic acid, and dermatan sulfate into 3D collagen hydrogels with or without exposure to TGF-β1 to simulate EndMT in response to microenvironmental changes. High levels of CS induced the highest rate of EndMT and led to the most collagen I and GAG production by mesenchymally transformed cells, which indicates a cell phenotype most likely to promote fibrotic disease. Mesenchymal transformation due to altered ECM was found to depend on cell-ECM bond strength and extracellular signal-regulated protein kinases 1/2 signaling. Determining the environmental conditions that induce and promote EndMT, and the subsequent behavior of mesenchymally transformed cells, will advance understanding on the role of endothelial cells in tissue regeneration or disease progression. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2729-2741, 2017.
Collapse
Affiliation(s)
- Sudip Dahal
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York, USA
| | - Bruce T Murray
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
50
|
Homann A, Schramm G, Jappe U. Glycans and glycan-specific IgE in clinical and molecular allergology: Sensitization, diagnostics, and clinical symptoms. J Allergy Clin Immunol 2017; 140:356-368. [PMID: 28479330 DOI: 10.1016/j.jaci.2017.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Glycan-specific IgE antibodies cross-react with highly similar or even identical carbohydrate structures on a variety of different natural allergens, the so-called cross-reactive carbohydrate determinants (CCDs). In clinical practice CCDs often interfere with the specificity of in vitro allergy diagnostics, thus impairing allergy therapy decisions for individual patients. Strikingly, these IgE antibodies directed against CCDs often do not cause clinically relevant allergy symptoms. On the other hand, the IgE-binding glycan allergen galactose-α-(1,3)-galactose (α-Gal) is associated with IgE-mediated delayed anaphylaxis in meat allergy. The reason for this discrepancy is not known. The discovery of α-Gal stimulated new discussions and investigations regarding the relevance of anti-glycan IgE for allergic diseases. In this review the effect of glycans and glycan-specific IgE on sensitization to allergens and allergy diagnosis is described. Because parasite infections elicit a similar immunologic environment as allergic diseases, the association of glycan-specific antibodies against parasite glycoproteins with glycan structures on allergens is discussed.
Collapse
Affiliation(s)
- Arne Homann
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
| | - Gabriele Schramm
- Division of Experimental Pneumology, Priority Research Area Asthma & Allergy, Research Center Borstel, Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma & Allergy, Airway Research Center North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, University of Lübeck, Lübeck, Germany.
| |
Collapse
|