1
|
Dasetty S, Bidone TC, Ferguson AL. Data-driven prediction of α IIbβ 3 integrin activation paths using manifold learning and deep generative modeling. Biophys J 2024; 123:2716-2729. [PMID: 38098231 PMCID: PMC11393677 DOI: 10.1016/j.bpj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
The integrin heterodimer is a transmembrane protein critical for driving cellular process and is a therapeutic target in the treatment of multiple diseases linked to its malfunction. Activation of integrin involves conformational transitions between bent and extended states. Some of the conformations that are intermediate between bent and extended states of the heterodimer have been experimentally characterized, but the full activation pathways remain unresolved both experimentally due to their transient nature and computationally due to the challenges in simulating rare barrier crossing events in these large molecular systems. An understanding of the activation pathways can provide new fundamental understanding of the biophysical processes associated with the dynamic interconversions between bent and extended states and can unveil new putative therapeutic targets. In this work, we apply nonlinear manifold learning to coarse-grained molecular dynamics simulations of bent, extended, and two intermediate states of αIIbβ3 integrin to learn a low-dimensional embedding of the configurational phase space. We then train deep generative models to learn an inverse mapping between the low-dimensional embedding and high-dimensional molecular space and use these models to interpolate the molecular configurations constituting the activation pathways between the experimentally characterized states. This work furnishes plausible predictions of integrin activation pathways and reports a generic and transferable multiscale technique to predict transition pathways for biomolecular systems.
Collapse
Affiliation(s)
- Siva Dasetty
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Adair BD, Xiong JP, Yeager M, Arnaout MA. Cryo-EM structures of full-length integrin αIIbβ3 in native lipids. Nat Commun 2023; 14:4168. [PMID: 37443315 PMCID: PMC10345127 DOI: 10.1038/s41467-023-39763-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Platelet integrin αIIbβ3 is maintained in a bent inactive state (low affinity to physiologic ligand), but can rapidly switch to a ligand-competent (high-affinity) state in response to intracellular signals ("inside-out" activation). Once bound, ligands drive proadhesive "outside-in" signaling. Anti-αIIbβ3 drugs like eptifibatide can engage the inactive integrin directly, inhibiting thrombosis but inadvertently impairing αIIbβ3 hemostatic functions. Bidirectional αIIbβ3 signaling is mediated by reorganization of the associated αIIb and β3 transmembrane α-helices, but the underlying changes remain poorly defined absent the structure of the full-length receptor. We now report the cryo-EM structures of full-length αIIbβ3 in its apo and eptifibatide-bound states in native cell-membrane nanoparticles at near-atomic resolution. The apo form adopts the bent inactive state but with separated transmembrane α-helices, and a fully accessible ligand-binding site that challenges the model that this site is occluded by the plasma membrane. Bound eptifibatide triggers dramatic conformational changes that may account for impaired hemostasis. These results advance our understanding of integrin structure and function and may guide development of safer inhibitors.
Collapse
Affiliation(s)
- Brian D Adair
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Ping Xiong
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA
- Department of Chemistry, School of Arts and Sciences, University of Miami, Coral Gables, FL 33146, University of Miami, Miami, FL, 33146, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Amin Arnaout
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Tong D, Soley N, Kolasangiani R, Schwartz MA, Bidone TC. Integrin α IIbβ 3 intermediates: From molecular dynamics to adhesion assembly. Biophys J 2023; 122:533-543. [PMID: 36566352 PMCID: PMC9941721 DOI: 10.1016/j.bpj.2022.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The platelet integrin αIIbβ3 undergoes long-range conformational transitions associated with its functional conversion from inactive (low-affinity) to active (high-affinity) during hemostasis. Although new conformations that are intermediate between the well-characterized bent and extended states have been identified, their molecular dynamic properties and functions in the assembly of adhesions remain largely unexplored. In this study, we evaluated the properties of intermediate conformations of integrin αIIbβ3 and characterized their effects on the assembly of adhesions by combining all-atom simulations, principal component analysis, and mesoscale modeling. Our results show that in the low-affinity, bent conformation, the integrin ectodomain tends to pivot around the legs; in intermediate conformations, the headpiece becomes partially extended, away from the lower legs. In the fully open, active state, αIIbβ3 is flexible, and the motions between headpiece and lower legs are accompanied by fluctuations of the transmembrane helices. At the mesoscale, bent integrins form only unstable adhesions, but intermediate or open conformations stabilize the adhesions. These studies reveal a mechanism by which small variations in ligand binding affinity and enhancement of the ligand-bound lifetime in the presence of actin retrograde flow stabilize αIIbβ3 integrin adhesions.
Collapse
Affiliation(s)
- Dudu Tong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Nidhi Soley
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Reza Kolasangiani
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biochemistry, University of Utah, Salt Lake City, Utah; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
4
|
Bhattacharjya S. The structural basis of β2 integrin intra-cellular multi-protein complexes. Biophys Rev 2022; 14:1183-1195. [PMID: 36345283 PMCID: PMC9636337 DOI: 10.1007/s12551-022-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell adhesion is a pivotal physiological process which is essential for cell-cell communications, cell migration, and interactions with extracellular matrix. Integrins, a family of large hetero-dimeric type I membrane proteins, are known for driving cell adhesion functions. Among 24 different integrins, four β2 integrins, αL β2, αM β2, αX β2 and αD β2, are specific for cell adhesion and migration of leukocytes. Many cytosolic proteins interact with short cytosolic tails (CTs) of β2 and other integrins which are essential in bi-directional signaling processes. Further, phosphorylation of CTs of integrins regulates binding of intra-cellular proteins and signaling systems. In this review, recent advances in structures and interactions of multi-protein complexes of integrin tails, with a focus on β2 integrin, and cytosolic proteins are discussed along with a proposed future direction.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
5
|
Integrin Regulators in Neutrophils. Cells 2022; 11:cells11132025. [PMID: 35805108 PMCID: PMC9266208 DOI: 10.3390/cells11132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are critical for innate immunity and inflammation. Integrins are critical for neutrophil functions, especially for their recruitment to sites of inflammation or infections. Integrin conformational changes during activation have been heavily investigated but are still not fully understood. Many regulators, such as talin, Rap1-interacting adaptor molecule (RIAM), Rap1, and kindlin, are critical for integrin activation and might be potential targets for integrin-regulating drugs in treating inflammatory diseases. In this review, we outline integrin activation regulators in neutrophils with a focus on the above critical regulators, as well as newly discovered modulators that are involved in integrin activation.
Collapse
|
6
|
Li Q, Lan T, Xie J, Lu Y, Zheng D, Su B. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications. Front Oncol 2022; 12:812480. [PMID: 35223494 PMCID: PMC8873568 DOI: 10.3389/fonc.2022.812480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins, a family of adhesion molecules generally exist on the cell surface, are essential for regulating cell growth and its function. As a bi-directional signaling molecule, they mediate cell-cell and cell-extracellular matrix interaction. The recognitions of their key roles in many human pathologies, including autoimmunity, thrombosis and neoplasia, have revealed their great potential as a therapeutic target. This paper focuses on the activation of integrins, the role of integrins in tumorigenesis and progression, and advances of integrin-dependent tumor therapeutics in recent years. It is expected that understanding function and signaling transmission will fully exploit potentialities of integrin as a novel target for tumors.
Collapse
Affiliation(s)
- Qingling Li
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jian Xie
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| |
Collapse
|
7
|
Sun G, Guillon E, Holley SA. Integrin intra-heterodimer affinity inversely correlates with integrin activatability. Cell Rep 2021; 35:109230. [PMID: 34107244 PMCID: PMC8227800 DOI: 10.1016/j.celrep.2021.109230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of an α and β subunit that mediate cell adhesion to extracellular matrix proteins such as fibronectin. We previously studied integrin α5β1 activation during zebrafish somitogenesis, and in the present study, we characterize the integrin αV fibronectin receptors. Integrins are activated via a conformational change, and we perform single-molecule biophysical measurements of both integrin activation via fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) and integrin intra-heterodimer stability via fluorescence cross-correlation spectroscopy (FCCS) in living embryos. We find that integrin heterodimers that exhibit robust cell surface expression, including αVβ3, αVβ5, and αVβ6, are never activated in this in vivo context, even in the presence of fibronectin matrix. In contrast, activatable integrins, such as integrin αVβ1, and alleles of αVβ3, αVβ5, αVβ6 that are biased to the active conformation exhibit poor cell surface expression and have a higher intra-heterodimer dissociation constant (KD). These observations suggest that a weak integrin intra-heterodimer affinity decreases integrin cell surface stability and increases integrin activatability.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Schumacher S, Dedden D, Nunez RV, Matoba K, Takagi J, Biertümpfel C, Mizuno N. Structural insights into integrin α 5β 1 opening by fibronectin ligand. SCIENCE ADVANCES 2021; 7:7/19/eabe9716. [PMID: 33962943 PMCID: PMC8104898 DOI: 10.1126/sciadv.abe9716] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Integrin α5β1 is a major fibronectin receptor critical for cell migration. Upon complex formation, fibronectin and α5β1 undergo conformational changes. While this is key for cell-tissue connections, its mechanism is unknown. Here, we report cryo-electron microscopy structures of native human α5β1 with fibronectin to 3.1-angstrom resolution, and in its resting state to 4.6-angstrom resolution. The α5β1-fibronectin complex revealed simultaneous interactions at the arginine-glycine-aspartate loop, the synergy site, and a newly identified binding site proximal to adjacent to metal ion-dependent adhesion site, inducing the translocation of helix α1 to secure integrin opening. Resting α5β1 adopts an incompletely bent conformation, challenging the model of integrin sharp bending inhibiting ligand binding. Our biochemical and structural analyses showed that affinity of α5β1 for fibronectin is increased with manganese ions (Mn2+) while adopting the half-bent conformation, indicating that ligand-binding affinity does not depend on conformation, and α5β1 opening is induced by ligand-binding.
Collapse
Affiliation(s)
- Stephanie Schumacher
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Dirk Dedden
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Roberto Vazquez Nunez
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| | - Kyoko Matoba
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA.
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr., Bethesda, MD 20892, USA
| |
Collapse
|
9
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
10
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Haydari Z, Shams H, Jahed Z, Mofrad MRK. Kindlin Assists Talin to Promote Integrin Activation. Biophys J 2020; 118:1977-1991. [PMID: 32191864 DOI: 10.1016/j.bpj.2020.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Integrin αIIbβ3 is a predominant type of integrin abundantly expressed on the surface of platelets and its activation regulates the process of thrombosis. Talin and kindlin are cytoplasmic proteins that bind to integrin and modulate its affinity for extracellular ligands. Although the molecular details of talin-mediated integrin activation are known, the mechanism of kindlin involvement in this process remains elusive. Here, we demonstrate that the interplay between talin and kindlin promotes integrin activation. Our all-atomic molecular dynamics simulations on complete transmembrane and cytoplasmic domains of integrin αIIbβ3, talin1 F2/F3 subdomains, and the kindlin2 FERM domain in an explicit lipid-water environment over a microsecond timescale unraveled the role of kindlin as an enhancer of the talin interaction with the membrane proximal region of β-integrin. The cooperation of kindlin with talin results in a complete disruption of salt bridges between R995 on αIIb and D723/E726 on β3. Furthermore, kindlin modifies the molecular mechanisms of inside-out activation by decreasing the crossing angle between transmembrane helices of integrin αIIbβ3, which eventually results in parallelization of integrin dimer. In addition, our control simulation featuring integrin in complex with kindlin reveals that kindlin binding is not sufficient for unclasping the inner-membrane and outer-membrane interactions of integrin dimer, thus ruling out the possibility of solitary action of kindlin in integrin activation.
Collapse
Affiliation(s)
- Zainab Haydari
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
12
|
Kulke M, Langel W. Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin α V β 3. Proteins 2019; 88:679-688. [PMID: 31693219 DOI: 10.1002/prot.25849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/10/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.
Collapse
Affiliation(s)
- Martin Kulke
- Institut für Biochemie, Universität Greifswald, Greifswald, Germany
| | - Walter Langel
- Institut für Biochemie, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, Chen Y, Zhang M. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep 2019; 9:12642. [PMID: 31477767 PMCID: PMC6718418 DOI: 10.1038/s41598-019-49100-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
Anthrax toxin protein receptor (ANTXR) 1 has many similarities to integrin and is regarded in some respects as a single-stranded integrin protein. However, it is not clear whether ANTXR1 responds to mechanical signals secondary to the activation of integrins or whether it is a completely new, independent and previously undiscovered mechanosensor that responds to an undefined subset of mechanical signaling molecules. Our study demonstrates that ANTXR1 is a novel mechanosensor on the cell membrane, acting independently from the classical mechanoreceptor molecule integrinβ1. We show that bone marrow stromal cells (BMSCs) respond to the hydrostatic pressure towards chondrogenic differentiation partly through the glycogen synthase kinase (GSK) 3β/β-Catenin signaling pathway, which can be partly regulated by ANTXR1 and might be related to the direct binding between ANTXR1 and low-density lipoprotein receptor-related protein (LRP) 5/6. In addition, ANTXR1 specifically activates Smad2 and upregulates Smad4 expression to facilitate the transport of activated Smad2 to the nucleus to regulate chondrogenesis, which might be related to the direct binding between ANTXR1 and Actin/Fascin1. We also demonstrate that ANTXR1 binds to some extent with integrinβ1, but this interaction does not affect the expression and function of either protein under pressure. Thus, we conclude that ANTXR1 plays a crucial role in BMSC mechanotransduction and controls specific signaling pathways that are distinct from those of integrin to influence the chondrogenic responses of BMSCs under hydrostatic pressure.
Collapse
Affiliation(s)
- Baixiang Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yanzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yanli Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Junjun Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China
| | - Yongjin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China.
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No.145 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
14
|
Tan SK, Fong KP, Polizzi NF, Sternisha A, Slusky JSG, Yoon K, DeGrado WF, Bennett JS. Modulating Integrin αIIbβ3 Activity through Mutagenesis of Allosterically Regulated Intersubunit Contacts. Biochemistry 2019; 58:3251-3259. [PMID: 31264850 DOI: 10.1021/acs.biochem.9b00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Integrin αIIbβ3, a transmembrane heterodimer, mediates platelet aggregation when it switches from an inactive to an active ligand-binding conformation following platelet stimulation. Central to regulating αIIbβ3 activity is the interaction between the αIIb and β3 extracellular stalks, which form a tight heterodimer in the inactive state and dissociate in the active state. Here, we demonstrate that alanine replacements of sensitive positions in the heterodimer stalk interface destabilize the inactive conformation sufficiently to cause constitutive αIIbβ3 activation. To determine the structural basis for this effect, we performed a structural bioinformatics analysis and found that perturbing intersubunit contacts with favorable interaction geometry through substitutions to alanine quantitatively accounted for the degree of constitutive αIIbβ3 activation. This mutational study directly assesses the relationship between favorable interaction geometry at mutation-sensitive positions and the functional activity of those mutants, giving rise to a simple model that highlights the importance of interaction geometry in contributing to the stability between protein-protein interactions.
Collapse
Affiliation(s)
- Sophia K Tan
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Karen P Fong
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Alex Sternisha
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Joanna S G Slusky
- Department of Molecular Biosciences and Center for Computational Biology , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Kyungchul Yoon
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Joel S Bennett
- Hematology-Oncology Division , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
15
|
Margraf A, Ley K, Zarbock A. Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns. Trends Immunol 2019; 40:613-634. [PMID: 31175062 PMCID: PMC6745447 DOI: 10.1016/j.it.2019.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Neutrophil recruitment is not only vital for host defense, but also relevant in pathological inflammatory reactions, such as sepsis. Model systems have been established to examine different steps of the leukocyte recruitment cascade in vivo and in vitro under inflammatory conditions. Recently, tissue-specific recruitment patterns have come into focus, requiring modification of formerly generalized assumptions. Here, we summarize existing models of neutrophil recruitment and highlight recent discoveries in organ-specific recruitment patterns. New techniques show that previously stated assumptions of integrin activation and tissue invasion may need revision. Similarly, neutrophil recruitment to specific organs can rely on different organ properties, adhesion molecules, and chemokines. To advance our understanding of neutrophil recruitment, organ-specific intravital microscopy methods are needed.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care Therapy and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care Therapy and Pain Medicine, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
16
|
Bidone TC, Polley A, Jin J, Driscoll T, Iwamoto DV, Calderwood DA, Schwartz MA, Voth GA. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophys J 2019; 116:1000-1010. [PMID: 30851876 DOI: 10.1016/j.bpj.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/25/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
Integrin conformational dynamics are critical to their receptor and signaling functions in many cellular processes, including spreading, adhesion, and migration. However, assessing integrin conformations is both experimentally and computationally challenging because of limitations in resolution and dynamic sampling. Thus, structural changes that underlie transitions between conformations are largely unknown. Here, focusing on integrin αvβ3, we developed a modified form of the coarse-grained heterogeneous elastic network model (hENM), which allows sampling conformations at the onset of activation by formally separating local fluctuations from global motions. Both local fluctuations and global motions are extracted from all-atom molecular dynamics simulations of the full-length αvβ3 bent integrin conformer, but whereas the former are incorporated in the hENM as effective harmonic interactions between groups of residues, the latter emerge by systematically identifying and treating weak interactions between long-distance domains with flexible and anharmonic connections. The new hENM model allows integrins and single-point mutant integrins to explore various conformational states, including the initiation of separation between α- and β-subunit cytoplasmic regions, headpiece extension, and legs opening.
Collapse
Affiliation(s)
- Tamara C Bidone
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Anirban Polley
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Jaehyeok Jin
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Tristan Driscoll
- Yale Cardiovascular Research Center and Department of Internal Medicine (Section of Cardiovascular Medicine), Yale School of Medicine, New Haven, Connecticut
| | | | - David A Calderwood
- Department of Pharmacology, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut
| | - Martin A Schwartz
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, Connecticut; Yale Cardiovascular Research Center and Department of Internal Medicine (Section of Cardiovascular Medicine), Yale School of Medicine, New Haven, Connecticut
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
17
|
Jahed Z, Haydari Z, Rathish A, Mofrad MRK. Kindlin Is Mechanosensitive: Force-Induced Conformational Switch Mediates Cross-Talk among Integrins. Biophys J 2019; 116:1011-1024. [PMID: 30819565 DOI: 10.1016/j.bpj.2019.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Mechanical stresses directly regulate the function of several proteins of the integrin-mediated focal adhesion complex as they experience intra- and extracellular forces. Kindlin is a largely overlooked member of the focal adhesion complex whose roles in cellular mechanotransduction are only recently being identified. Recent crystallographic experiments have revealed that kindlins can form dimers that bind simultaneously to two integrins, providing a mechanistic explanation of how kindlins may promote integrin activation and clustering. In this study, using the newly identified molecular structure, we modeled the response of the kindlin2 dimer in complex with integrin β1 to mechanical cytoskeletal forces on integrins. Using molecular dynamics simulations, we show that forces on integrins are directly transmitted to the kindlin2 dimerization site, resulting in a shift in an R577-S550/E553 interaction network at this site. Under force, R577 on one protomer switches from interacting with S550 to forming new hydrogen bonds with E553 on the neighboring protomer, resulting in the strengthening of the kindlin2 dimer in complex with integrin β1. This force-induced strengthening is similar to the catch-bond mechanisms that have previously been observed in other adhesion molecules. Based on our results, we propose that the kindlin2 dimer is mechanosensitive and can strengthen integrin-mediated focal adhesions under force by shifting the interactions at its dimerization sites.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zainab Haydari
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Akshay Rathish
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
18
|
Pina-Cabral LB, Carneiro M, Criado B, Esteves PJ. Maximum likelihood approach suggests positive selection in platelet integrin αIIbβ3 in mammalian species. Platelets 2018; 30:460-466. [PMID: 29617175 DOI: 10.1080/09537104.2018.1457783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Platelet integrin αIIbβ3 is crucial for platelet aggregation. Although structural and functional characteristics of this protein have been extensively studied, the evolutionary pattern studies of this protein complex in mammals are scarce. Here, we addressed this question using maximum likelihood approaches to identify codons that are evolving under positive selection. Likelihood of positive selection was estimated using CODEML implemented in PAML software applied to integrin αIIbβ3 derived from nucleotide sequences of 10 different mammalian species. Four codons in mature αIIb-subunit (corresponding to residues 150, 184, 193, and 370) and three codons in mature β3-subunit (corresponding to residues 129, 440, and 444) showed signs of positive selection with posterior probabilities over 95%. The different amino acids observed for each of the positively selected residues detected showed different physicochemical properties. These results open new research avenues to understand the physiological importance of specific residues and should allow for a better understanding of the function and the different interactions of each residue within the mature protein.
Collapse
Affiliation(s)
- Luís Bernardo Pina-Cabral
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra , Gandra PRD , Portugal
| | - Miguel Carneiro
- b CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos , Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas , Vairão , Portugal
| | - Begoña Criado
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra , Gandra PRD , Portugal
| | - Pedro José Esteves
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra , Gandra PRD , Portugal.,b CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos , Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas , Vairão , Portugal.,c Departamento de Biologia , Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre , Porto , Portugal
| |
Collapse
|
19
|
Pagani G, Pereira JPV, Stoldt VR, Beck A, Scharf RE, Gohlke H. The human platelet antigen-1b (Pro 33) variant of α IIbβ 3 allosterically shifts the dynamic conformational equilibrium of this integrin toward the active state. J Biol Chem 2018; 293:4830-4844. [PMID: 29462793 DOI: 10.1074/jbc.ra118.002149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
Integrins are heterodimeric cell-adhesion receptors comprising α and β subunits that transmit signals allosterically in both directions across the membrane by binding to intra- and extracellular components. The human platelet antigen-1 (HPA-1) polymorphism in αIIbβ3 arises from a Leu → Pro exchange at residue 33 in the genu of the β3 subunit, resulting in Leu33 (HPA-1a) or Pro33 (HPA-1b) isoforms. Although clinical investigations have provided conflicting results, some studies have suggested that Pro33 platelets exhibit increased thrombogenicity. Under flow-dynamic conditions, the Pro33 variant displays prothrombotic properties, characterized by increased platelet adhesion, aggregate/thrombus formation, and outside-in signaling. However, the molecular events underlying this prothrombotic phenotype have remained elusive. As residue 33 is located >80 Å away from extracellular binding sites or transmembrane domains, we hypothesized that the Leu → Pro exchange allosterically shifts the dynamic conformational equilibrium of αIIbβ3 toward an active state. Multiple microsecond-long, all-atom molecular dynamics simulations of the ectodomain of the Leu33 and Pro33 isoforms provided evidence that the Leu → Pro exchange weakens interdomain interactions at the genu and alters the structural dynamics of the integrin to a more unbent and splayed state. Using FRET analysis of fluorescent proteins fused with αIIbβ3 in transfected HEK293 cells, we found that the Pro33 variant in its resting state displays a lower energy transfer than the Leu33 isoform. This finding indicated a larger spatial separation of the cytoplasmic tails in the Pro33 variant. Together, our results indicate that the Leu → Pro exchange allosterically shifts the dynamic conformational equilibrium of αIIbβ3 to a structural state closer to the active one, promoting the fully active state and fostering the prothrombotic phenotype of Pro33 platelets.
Collapse
Affiliation(s)
- Giulia Pagani
- Institute for Pharmaceutical and Medicinal Chemistry, 40225 Düsseldorf, Germany
| | - Joana P V Pereira
- Division of Experimental and Clinical Hemostasis, Hemotherapy and Transfusion Medicine, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany
| | - Volker R Stoldt
- Division of Experimental and Clinical Hemostasis, Hemotherapy and Transfusion Medicine, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany
| | - Andreas Beck
- Institute of Informatics, 40225 Düsseldorf, Germany
| | - Rüdiger E Scharf
- Division of Experimental and Clinical Hemostasis, Hemotherapy and Transfusion Medicine, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany; Biological Medical Research Center, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, 40225 Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems-Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
20
|
Hanein D, Volkmann N. Conformational Equilibrium of Human Platelet Integrin Investigated by Three-Dimensional Electron Cryo-Microscopy. Subcell Biochem 2018; 87:353-363. [PMID: 29464566 DOI: 10.1007/978-981-10-7757-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Integrins are bidirectional transmembrane receptors that play central roles in hemostasis and arterial thrombosis. They have been subject to structural studies for many years, in particular using X-ray crystallography, nuclear magnetic resonance spectroscopy, and two-dimensional negative stain electron microscopy. Despite considerable progress, a full consensus on the molecular mechanism of integrin activation is still lacking. Three-dimensional reconstructions of full-length human platelet integrin αIIbβ3 in lipid-bilayer nanodiscs obtained by electron cryo-microscopy and single-particle reconstruction have shed new light on the activation process. These studies show that integrin αIIbβ3 exists in a continuous conformational equilibrium ranging from a compact nodular conformation similar to that obtained in crystal structures to a fully extended state with the leg domains separated. This equilibrium is shifted towards the extended conformation when extracellular ligands, cytosolic activators and lipid-bilayer nanodiscs are added. Addition of cytosolic activators and extracellular ligands in the absense of nanodiscs produces significantly less dramatic shifts, emphasizing the importance of the membrane bilayer in the activation process.
Collapse
Affiliation(s)
- Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
21
|
Kastantin M, Faulón Marruecos D, Grover N, Yu McLoughlin S, Schwartz DK, Kaar JL. Connecting Protein Conformation and Dynamics with Ligand-Receptor Binding Using Three-Color Förster Resonance Energy Transfer Tracking. J Am Chem Soc 2017; 139:9937-9948. [PMID: 28658579 DOI: 10.1021/jacs.7b03978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Specific binding between biomolecules, i.e., molecular recognition, controls virtually all biological processes including the interactions between cells and biointerfaces, both natural and synthetic. Such binding often relies on the conformation of biomacromolecules, which can be highly heterogeneous and sensitive to environmental perturbations, and therefore difficult to characterize and control. An approach is demonstrated here that directly connects the binding kinetics and stability of the protein receptor integrin αvβ3 to the conformation of the ligand fibronectin (FN), which are believed to control cellular mechanosensing. Specifically, we investigated the influence of surface-adsorbed FN structure and dynamics on αvβ3 binding using high-throughput single-molecule three-color Förster resonance energy transfer (FRET) tracking methods. By controlling FN structure and dynamics through tuning surface chemistry, we found that as the conformational and translational dynamics of FN increased, the rate of binding, particularly to folded FN, and stability of the bound FN-αvβ3 complex decreased significantly. These findings highlight the importance of the conformational plasticity and accessibility of the arginine-glycine-aspartic acid (RGD) binding site in FN, which, in turn, mediates cell signaling in physiological and synthetic environments.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - David Faulón Marruecos
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Navdeep Grover
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Sean Yu McLoughlin
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Abstract
Living cells and tissues experience physical forces and chemical stimuli in a human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.
Collapse
Affiliation(s)
- Ning Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Mor-Cohen R. Disulfide Bonds as Regulators of Integrin Function in Thrombosis and Hemostasis. Antioxid Redox Signal 2016; 24:16-31. [PMID: 25314675 DOI: 10.1089/ars.2014.6149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Disulfide bonds are generally viewed as structure-stabilizing elements in proteins, but some display an alternative functional role as redox switches. Functional disulfide bonds have recently emerged as important regulators of integrin function in thrombosis and hemostasis. RECENT ADVANCES Functional disulfide bonds were identified in the β subunit of the major platelet integrin αIIbβ3 and in other integrins involved in thrombus formation that is, αvβ3 and α2β1. Most of these functional bonds are located in the four epidermal growth factor-like domains of the integrins. Redox agents such as glutathione and nitric oxide and enzymatic thiol isomerase activity were shown to regulate the function of these integrins by disulfide bond reduction and thiol/disulfide exchange. CRITICAL ISSUES Increasing evidence suggests that thiol isomerases such as protein disulfide isomerase (PDI) and Erp57 directly bind to the β3 subunit of αIIbβ3 and αvβ3 and regulate their function during thrombus formation. αIIbβ3 also exhibits an endogenous thiol isomerase activity. The specific functional disulfide bonds identified in the β3 subunit might be the targets for both exogenous and endogenous thiol isomerase activity. FUTURE DIRECTIONS Targeting redox sites of integrins or redox agents and enzymes that regulate their function can provide a useful tool for development of anti-thrombotic therapy. Hence, inhibitors of PDI are currently studied for this purpose.
Collapse
Affiliation(s)
- Ronit Mor-Cohen
- 1 The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center , Tel Hashomer, Israel .,2 Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
25
|
Frohnmayer JP, Brüggemann D, Eberhard C, Neubauer S, Mollenhauer C, Boehm H, Kessler H, Geiger B, Spatz JP. Minimal synthetic cells to study integrin-mediated adhesion. Angew Chem Int Ed Engl 2015; 54:12472-8. [PMID: 26257266 PMCID: PMC4675076 DOI: 10.1002/anie.201503184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Indexed: 11/12/2022]
Abstract
To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIb β3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIb β3 .
Collapse
Affiliation(s)
- Johannes P Frohnmayer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Dorothea Brüggemann
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Christian Eberhard
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| | - Stefanie Neubauer
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität MünchenLichtenbergstrasse 4, 85747 Garching (Germany)
| | - Christine Mollenhauer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center of Integrated Protein Science (CIPSM), Department Chemie, Technische Universität MünchenLichtenbergstrasse 4, 85747 Garching (Germany)
| | - Benjamin Geiger
- The Weizmann Institute of Science, Department of Molecular Cell BiologyRehovot (Israel)
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent SystemsHeisenbergstrasse 3, 70569 Stuttgart (Germany)Department of Biophysical Chemistry, University of HeidelbergINF 253, 69120 Heidelberg (Germany) E-mail:
| |
Collapse
|
26
|
Dai A, Ye F, Taylor DW, Hu G, Ginsberg MH, Taylor KA. The Structure of a Full-length Membrane-embedded Integrin Bound to a Physiological Ligand. J Biol Chem 2015; 290:27168-27175. [PMID: 26391523 DOI: 10.1074/jbc.m115.682377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/06/2022] Open
Abstract
Increased ligand binding to integrin ("activation") underpins many biological processes, such as leukocyte trafficking, cell migration, host-pathogen interaction, and hemostasis. Integrins exist in several conformations, ranging from compact and bent to extended and open. However, the exact conformation of membrane-embedded, full-length integrin bound to its physiological macromolecular ligand is still unclear. Integrin αIIbβ3, the most abundant integrin in platelets, has been a prototype for integrin activation studies. Using negative stain electron microscopy and nanodisc-embedding to provide a membrane-like environment, we visualized the conformation of full-length αIIbβ3 in both a Mn(2+)-activated, ligand-free state and a Mn(2+)-activated, fibrin-bound state. Activated but ligand-free integrins exist mainly in the compact conformation, whereas fibrin-bound αIIbβ3 predominantly exists in a fully extended, headpiece open conformation. Our results show that membrane-embedded, full-length integrin adopts an extended and open conformation when bound to its physiological macromolecular ligand.
Collapse
Affiliation(s)
- Aguang Dai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and
| | - Feng Ye
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, California 92093-0726
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and
| | - Guiqing Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and
| | - Mark H Ginsberg
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, California 92093-0726
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380 and.
| |
Collapse
|
27
|
|
28
|
Qu T, Zhang SM, Yu LL, Zhang S, Yuan DZ, Xu Q, Zhang JH, He YP, Yue LM. Relocalisation and activation of integrins induced rapidly by oestrogen via G-protein-coupled receptor 30 in mouse blastocysts. Reprod Fertil Dev 2015; 28:RD14227. [PMID: 25950704 DOI: 10.1071/rd14227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/21/2015] [Indexed: 12/20/2022] Open
Abstract
Integrins are the dominant and final adhesion molecules in the attachment process between the blastocysts and endometrium. It is necessary for oestrogen to rapidly activate mouse blastocysts so that they attach to the endometrial epithelium. Our previous study suggested that oestrogen can rapidly induce an increase in intracellular calcium in mouse blastocysts via G-protein-coupled receptor 30 (GPR30). Thus, we deduced that integrins may be involved in GPR30 mediation of the fast effect of oestrogen on mouse blastocysts in implantation. To prove our hypothesis, we used immunofluorescence staining and in vitro coculture of mouse blastocysts and endometrial epithelial cell line (EECs), Ishikawa cells, in the present study. We found that αv and β1 integrin clustered in mouse blastocysts, and that β3 integrin was relocalised to the apical membrane of blastocyst cells when embryos were treated with 1 μM 17β-estradiol (E2), 1 μM E2 conjugated to bovine serum albumin (E2-BSA) and 1 μM G-1, a specific GPR30 agonist, for 30 min respectively, whereas pretreatment with 1 μM G15, a specific GPR30 antagonist, and 5 μM 1,2-Bis(2-aminophenoxy)ethane-N,N,N'',N''-tetraacetic acid tetrakis (acetoxymethyl ester)(BAPTA/AM), a cellular Ca2+ chelator, blocked the localisation of integrins induced by oestrogen via GPR30 in mouse blastocyst cells. E2, E2-BSA and G-1 increased the fibronectin (FN)-binding activity of integrins in blastocysts, whereas G15 and BAPTA/AM blocked the activation of integrins induced by oestrogen via GPR30 in mouse blastocysts. Inhibition of integrins by Arg-Gly-Asp peptide in blastocysts resulted in their failure to adhere to EECs in vitro, even if oestrogen or G-1 was provided. Together, the results indicate the fast effect of oestrogen via the GPR30 membrane receptor further induces relocalisation and activation of integrins in mouse blastocysts, which play important roles in the adhesion of blastocysts to EECs.
Collapse
|
29
|
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev 2014; 6:203-213. [PMID: 28510180 PMCID: PMC5418412 DOI: 10.1007/s12551-013-0124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
30
|
Mehrbod M, Trisno S, Mofrad MRK. On the activation of integrin αIIbβ3: outside-in and inside-out pathways. Biophys J 2014; 105:1304-15. [PMID: 24047981 DOI: 10.1016/j.bpj.2013.07.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/06/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Integrin αIIbβ3 is a member of the integrin family of transmembrane proteins present on the plasma membrane of platelets. Integrin αIIbβ3 is widely known to regulate the process of thrombosis via activation at its cytoplasmic side by talin and interaction with the soluble fibrinogen. It is also reported that three groups of interactions restrain integrin family members in the inactive state, including a set of salt bridges on the cytoplasmic side of the transmembrane domain of the integrin α- and β-subunits known as the inner membrane clasp, hydrophobic packing of a few transmembrane residues on the extracellular side between the α- and β-subunits that is known as the outer membrane clasp, and the key interaction group of the βA domain (located on the β-subunit head domain) with the βTD (proximal to the plasma membrane on the β-subunit). However, molecular details of this key interaction group as well as events that lead to detachment of the βTD and βA domains have remained ambiguous. In this study, we use molecular dynamics models to take a comprehensive outside-in and inside-out approach at exploring how integrin αIIbβ3 is activated. First, we show that talin's interaction with the membrane-proximal and membrane-distal regions of integrin cytoplasmic-transmembrane domains significantly loosens the inner membrane clasp. Talin also interacts with an additional salt bridge (R734-E1006), which facilitates integrin activation through the separation of the integrin's α- and β-subunits. The second part of our study classifies three types of interactions between RGD peptides and the extracellular domains of integrin αIIbβ3. Finally, we show that the interaction of the Arg of the RGD sequence may activate integrin via disrupting the key interaction group between K350 on the βA domain and S673/S674 on the βTD.
Collapse
Affiliation(s)
- Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | |
Collapse
|
31
|
Layani-Bazar A, Skornick I, Berrebi A, Pauker MH, Noy E, Silberman A, Albeck M, Longo DL, Kalechman Y, Sredni B. Redox Modulation of Adjacent Thiols in VLA-4 by AS101 Converts Myeloid Leukemia Cells from a Drug-Resistant to Drug-Sensitive State. Cancer Res 2014; 74:3092-103. [DOI: 10.1158/0008-5472.can-13-2159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Spontaneous thrombosis of the abdominal aorta in two neonates. J Perinatol 2014; 34:241-3. [PMID: 24573210 DOI: 10.1038/jp.2013.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/22/2013] [Accepted: 11/12/2013] [Indexed: 11/08/2022]
Abstract
Although relatively rare, thromboembolic events are a major complication of invasive procedures, mainly vascular catheterization, required for the survival of neonates admitted to the neonatal intensive care unit. Sometimes symptoms may be ambiguous and the diagnosis may not be immediate. The clinical relevance of polymorphism of methilene tetrahydrofolate reductase (MTHFR) gene heterozigosity and of omocystein level in the genesis of these thromboembolic events are poorly understood. We report two cases of thrombosis of the abdominal aorta, mimicking aortic coarctation, in two neonates, successfully treated at diagnosis with 170 UI/Kg of low molecular weight heparin (LMWH) twice daily, without side effects. Screening for prothrombotic defects revealed the heterozygosity for MTHFR C677T in both neonates and low omocystein level in one of them. We suggest that in newborns vascular thrombosis should be considered in the differential diagnosis of acute disorders of blood circulation at birth and familial thrombophilia should be investigated. LMWH therapy with a dose of 170 UI/Kg twice daily usually allows vascular recanalization, without side effects.
Collapse
|
33
|
Abstract
In humans, an ~200-residue "inserted" I domain, a von Willebrand factor A domain (vWFA), buds out from the β-propeller domain in 9 of 18 integrin α subunits. The vWFA domain is not unique to the α subunit as it is an integral part of all integrin β subunits and many other proteins. The βI domain has always been a component of integrins but the αI domain makes its appearance relatively late, in early chordates, since it is found in tunicates and later diverging species. The tunicate αI domains are distinct from the human collagen and leukocyte recognizing integrin α subunits, but fragments of integrins from agnathastomes suggest that the human-type αI domains arose in an ancestor of the very first vertebrate species. The rise of integrins with αI domains parallels the enormous changes in body plan and systemic development of the chordate line that began some 550 million or more years ago.
Collapse
|
34
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
35
|
Alternatively spliced tissue factor promotes breast cancer growth in a β1 integrin-dependent manner. Proc Natl Acad Sci U S A 2013; 110:11517-22. [PMID: 23801760 DOI: 10.1073/pnas.1307100110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Full-length tissue factor (flTF), the coagulation initiator, is overexpressed in breast cancer (BrCa), but associations between flTF expression and clinical outcome remain controversial. It is currently not known whether the soluble alternatively spliced TF form (asTF) is expressed in BrCa or impacts BrCa progression. We are unique in reporting that asTF, but not flTF, strongly associates with both tumor size and grade, and induces BrCa cell proliferation by binding to β1 integrins. asTF promotes oncogenic gene expression, anchorage-independent growth, and strongly up-regulates tumor expansion in a luminal BrCa model. In basal BrCa cells that constitutively express both TF isoforms, asTF blockade reduces tumor growth and proliferation in vivo. We propose that asTF plays a major role in BrCa progression acting as an autocrine factor that promotes tumor progression. Targeting asTF may comprise a previously unexplored therapeutic strategy in BrCa that stems tumor growth, yet does not impair normal hemostasis.
Collapse
|
36
|
Levin L, Zelzion E, Nachliel E, Gutman M, Tsfadia Y, Einav Y. A single disulfide bond disruption in the β3 integrin subunit promotes thiol/disulfide exchange, a molecular dynamics study. PLoS One 2013; 8:e59175. [PMID: 23527123 PMCID: PMC3601072 DOI: 10.1371/journal.pone.0059175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys567–Cys581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process.
Collapse
Affiliation(s)
- Lihie Levin
- Biochemistry and Molecular Biology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Zelzion
- Biochemistry and Molecular Biology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Mathematical Biology Unit, Faculty of Sciences, Holon Institute of Technology, Holon, Israel
| | - Esther Nachliel
- Biochemistry and Molecular Biology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Menachem Gutman
- Biochemistry and Molecular Biology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Tsfadia
- Biochemistry and Molecular Biology Department, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (YT); (YE)
| | - Yulia Einav
- Mathematical Biology Unit, Faculty of Sciences, Holon Institute of Technology, Holon, Israel
- * E-mail: (YT); (YE)
| |
Collapse
|
37
|
Adair BD, Xiong JP, Alonso JL, Hyman BT, Arnaout MA. EM structure of the ectodomain of integrin CD11b/CD18 and localization of its ligand-binding site relative to the plasma membrane. PLoS One 2013; 8:e57951. [PMID: 23469114 PMCID: PMC3585415 DOI: 10.1371/journal.pone.0057951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022] Open
Abstract
One-half of the integrin α-subunit Propeller domains contain and extra vWFA domain (αA domain), which mediates integrin binding to extracellular physiologic ligands via its metal-ion-dependent adhesion site (MIDAS). We used electron microscopy to determine the 3D structure of the αA-containing ectodomain of the leukocyte integrin CD11b/CD18 (αMβ2) in its inactive state. A well defined density for αA was observed within a bent ectodomain conformation, while the structure of the ectodomain in complex with the Fab fragment of mAb107, which binds at the MIDAS face of CD11b and stabilizes the inactive state, further revealed that αA is restricted to a relatively small range of orientations relative to the Propeller domain. Using Fab 107 as probe in fluorescent lifetime imaging microscopy (FLIM) revealed that αA is positioned relatively far from the membrane surface in the inactive state, and a systematic orientation search revealed that the MIDAS face would be accessible to extracellular ligand in the inactive state of the full-length cellular integrin. These studies are the first to define the 3D EM structure of an αA-containing integrin ectodomain and to position the ligand-binding face of αA domain in relation to the plasma membrane, providing new insights into current models of integrin activation.
Collapse
Affiliation(s)
- Brian D. Adair
- Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Jian-Ping Xiong
- Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - José Luis Alonso
- Leukocyte Biology and Inflammation Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Bradley T. Hyman
- Division of Nephrology, and Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - M. Amin Arnaout
- Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- Leukocyte Biology and Inflammation Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Faridi MH, Altintas MM, Gomez C, Duque JC, Vazquez-Padron RI, Gupta V. Small molecule agonists of integrin CD11b/CD18 do not induce global conformational changes and are significantly better than activating antibodies in reducing vascular injury. Biochim Biophys Acta Gen Subj 2013; 1830:3696-710. [PMID: 23454649 DOI: 10.1016/j.bbagen.2013.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND CD11b/CD18 is a key adhesion receptor that mediates leukocyte adhesion, migration and immune functions. We recently identified novel compounds, leukadherins, that allosterically enhance CD11b/CD18-dependent cell adhesion and reduce inflammation in vivo, suggesting integrin activation to be a novel mechanism of action for the development of anti-inflammatory therapeutics. Since a number of well-characterized anti-CD11b/CD18 activating antibodies are currently available, we wondered if such biological agonists could also become therapeutic leads following this mechanism of action. METHODS We compared the two types of agonists using in vitro cell adhesion and wound-healing assays and using animal model systems. We also studied effects of the two types of agonists on outside-in signaling in treated cells. RESULTS Both types of agonists similarly enhanced integrin-mediated cell adhesion and decreased cell migration. However, unlike leukadherins, the activating antibodies produced significant CD11b/CD18 macro clustering and induced phosphorylation of key proteins involved in outside-in signaling. Studies using conformation reporter antibodies showed that leukadherins did not induce global conformational changes in CD11b/CD18 explaining the reason behind their lack of ligand-mimetic outside-in signaling. In vivo, leukadherins reduced vascular injury in a dose-dependent fashion, but, surprisingly, the anti-CD11b activating antibody ED7 was ineffective. CONCLUSIONS Our results suggest that small molecule allosteric agonists of CD11b/CD18 have clear advantages over the biologic activating antibodies and provide a mechanistic basis for the difference. GENERAL SIGNIFICANCE CD11b/CD18 activation represents a novel strategy for reducing inflammatory injury. Our study establishes small molecule leukadherins as preferred agonists over activating antibodies for future development as novel anti-inflammatory therapeutics.
Collapse
|
39
|
Zhang K, Pan Y, Qi J, Yue J, Zhang M, Xu C, Li G, Chen J. Disruption of disulfide-restriction at integrin knees induces activation and ligand-independent signaling of α4β7. J Cell Sci 2013; 126:5030-41. [DOI: 10.1242/jcs.134528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of integrin activation and signaling plays critical roles in cell adhesion, spreading, and migration. Here, we report that selective breakage of two conserved disulfide bonds located at the knees of integrin, α4C589–C594 and β7C494–C526, induced α4β7 activation. This activated α4β7 had a unique structure different from the typical extended conformation of active integrin. In addition, these activated α4β7 integrins spontaneously clustered on the cell membrane and triggered integrin downstream signaling independent of ligand binding. Although these disulfide bonds were not broken during α4β7 activation by inside-out signaling or Mn2+, they could be specifically reduced by 0.1 mM dithiothreitol, a reducing strength that could be produced in vivo under certain conditions. Our findings reveal a novel mechanism of integrin activation under specific reducing conditions by which integrin can signal and promote cell spreading in the absence of ligand.
Collapse
|
40
|
Dong X, Mi LZ, Zhu J, Wang W, Hu P, Luo BH, Springer TA. α(V)β(3) integrin crystal structures and their functional implications. Biochemistry 2012; 51:8814-28. [PMID: 23106217 PMCID: PMC3495331 DOI: 10.1021/bi300734n] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many questions about the significance of structural features of integrin α(V)β(3) with respect to its mechanism of activation remain. We have determined and re-refined crystal structures of the α(V)β(3) ectodomain linked to C-terminal coiled coils (α(V)β(3)-AB) and four transmembrane (TM) residues in each subunit (α(V)β(3)-1TM), respectively. The α(V) and β(3) subunits with four and eight extracellular domains, respectively, are bent at knees between the integrin headpiece and lower legs, and the headpiece has the closed, low-affinity conformation. The structures differ in the occupancy of three metal-binding sites in the βI domain. Occupancy appears to be related to the pH of crystallization, rather than to the physiologic regulation of ligand binding at the central, metal ion-dependent adhesion site. No electron density was observed for TM residues and much of the α(V) linker. α(V)β(3)-AB and α(V)β(3)-1TM demonstrate flexibility in the linker between their extracellular and TM domains, rather than the previously proposed rigid linkage. A previously postulated interface between the α(V) and β(3) subunits at their knees was also not supported, because it lacks high-quality density, required rebuilding in α(V)β(3)-1TM, and differed markedly between α(V)β(3)-1TM and α(V)β(3)-AB. Together with the variation in domain-domain orientation within their bent ectodomains between α(V)β(3)-AB and α(V)β(3)-1TM, these findings are compatible with the requirement for large structural changes, such as extension at the knees and headpiece opening, in conveying activation signals between the extracellular ligand-binding site and the cytoplasm.
Collapse
Affiliation(s)
- Xianchi Dong
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - Li-Zhi Mi
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - Jianghai Zhu
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - Wei Wang
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803
| | - Ping Hu
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803
| | - Bing-Hao Luo
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803
| | - Timothy A. Springer
- Immune Disease Institute, Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| |
Collapse
|
41
|
Hicks JK, Shelton CM, Sahni JK, Christensen ML. Retrospective evaluation of enoxaparin dosing in patients 48 weeks' postmenstrual age or younger in a neonatal intensive care unit. Ann Pharmacother 2012; 46:943-51. [PMID: 22828970 DOI: 10.1345/aph.1r116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Enoxaparin is the anticoagulant of choice in neonates because of the ease of administration, predictable pharmacokinetics, and reduced adverse effects when compared to heparin. The Chest guidelines recommend that therapy in patients younger than 2 months should be initiated with enoxaparin 1.5 mg/kg administered subcutaneously twice daily. This starting dosage may be inadequate, leading to a delay in achieving therapeutic anti-factor Xa plasma concentrations. OBJECTIVE To determine an enoxaparin dose for neonatal patients that achieves a therapeutic anti-factor Xa plasma concentration and compare that dose to the recommended enoxaparin dose per published guidelines for this patient population. METHODS The study was designed as a single-center chart review. Eligible patients were identified by pharmacy anticoagulation records or a search of the electronic medical record for enoxaparin orders. Patients must have received enoxaparin subcutaneously twice daily and have had a postmenstrual age of 48 weeks or younger. Patients diagnosed with renal failure and those receiving prophylactic doses of enoxaparin were excluded. RESULTS The mean (SD) initial dose of enoxaparin was 1.4 (0.3) mg/kg subcutaneously twice daily, resulting in 27 of 33 patients (81.8%) having a subtherapeutic anti-factor Xa concentration. A mean enoxaparin dose of 2.0 (0.5) mg/kg was required to achieve a therapeutic anti-factor Xa plasma concentration (p < 0.001). Patients born prematurely required a higher enoxaparin dose (2.2 [0.5] mg/kg) than did those born at full-term gestation (1.8 [0.4] mg/kg; p < 0.05). CONCLUSIONS For patients 48 weeks' postmenstrual age or younger who are treated in a neonatal intensive care unit, a higher initial dose of enoxaparin than that suggested by the Chest guidelines is required to attain a therapeutic antifactor Xa plasma concentration. Premature neonates require a larger starting dose of enoxaparin than do infants born at full-term gestation.
Collapse
Affiliation(s)
- J Kevin Hicks
- Department of Pharmacy, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimeric integrin consisting of αL (gene name, Itgal) and β2 (gene name, Itgb2) subunits expressed in all leukocytes. LFA-1 is essential for neutrophil recruitment to inflamed tissue. Activation of LFA-1 by chemokines allows neutrophils and other leukocytes to undergo arrest, resulting in firm adhesion on endothelia expressing intercellular adhesion molecules (ICAMs). In mice, CXCR2 is the primary chemokine receptor involved in triggering neutrophil arrest, and it does so through “inside-out” activation of LFA-1. CXCR2 signaling induces changes in LFA-1 conformation that are coupled to affinity upregulation of the ligand-binding headpiece (extended with open I domain). Unlike naïve lymphocytes, engagement of P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils stimulates a slow rolling behavior that is mediated by LFA-1 in a distinct activation state (extended with closed I domain). How inside-out signaling cascades regulate the structure and function of LFA-1 is being studied using flow chambers, intravital microscopy, and flow cytometry for ligand and reporter antibody binding. Here, we review how LFA-1 activation is regulated by cellular signaling and ligand binding. Two FERM domain-containing proteins, talin-1 and Kindlin-3, are critical integrin co-activators and have distinct roles in the induction of LFA-1 conformational rearrangements. This review integrates these new results into existing models of LFA-1 activation.
Collapse
Affiliation(s)
- Craig T Lefort
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
43
|
Mor-Cohen R, Rosenberg N, Einav Y, Zelzion E, Landau M, Mansour W, Averbukh Y, Seligsohn U. Unique disulfide bonds in epidermal growth factor (EGF) domains of β3 affect structure and function of αIIbβ3 and αvβ3 integrins in different manner. J Biol Chem 2012; 287:8879-91. [PMID: 22308022 DOI: 10.1074/jbc.m111.311043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β3 subunit of αIIbβ3 and αvβ3 integrins contains four epidermal growth factor (EGF)-like domains. Each domain harbors four disulfide bonds of which one is unique for integrins. We previously discerned a regulatory role of the EGF-4 Cys-560-Cys-583 unique bond for αIIbβ3 activation. In this study we further investigated the role of all four integrin unique bonds in both αIIbβ3 and αvβ3. We created β3 mutants harboring serine substitutions of each or both cysteines that disrupt the four unique bonds (Cys-437-Cys-457 in EGF-1, Cys-473-Cys-503 in EGF-2, Cys-523-Cys-544 in EGF-3, and Cys-560-Cys-583 in EGF-4) and transfected them into baby hamster kidney cells together with normal αv or αIIb. Flow cytometry was used to measure surface expression of αIIbβ3 and αvβ3 and their activity state by soluble fibrinogen binding. Most cysteine substitutions caused similarly reduced surface expression of both receptors. Disrupting all four unique disulfide bonds by single cysteine substitutions resulted in variable constitutive activation of αIIbβ3 and αvβ3. In contrast, whereas double C437S/C457S and C473S/C503S mutations yielded constitutively active αIIbβ3 and αvβ3, the C560S/C583S mutation did not, and the C523S/C544S mutation only yielded constitutively active αIIbβ3. Activation of C523S/C544S αvβ3 mutant by activating antibody and dithiothreitol was also impaired. Molecular dynamics of C523S/C544S β3 in αIIbβ3 but not in αvβ3 displayed an altered stable conformation. Our findings indicate that unique disulfide bonds in β3 differently affect the function of αIIbβ3 and αvβ3 and suggest a free sulfhydryl-dependent regulatory role for Cys-560-Cys-583 in both αIIbβ3 and αvβ3 and for Cys-523-Cys-544 only in αvβ3.
Collapse
Affiliation(s)
- Ronit Mor-Cohen
- the Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
45
|
Maiguel D, Faridi MH, Wei C, Kuwano Y, Balla KM, Hernandez D, Barth CJ, Lugo G, Donnelly M, Nayer A, Moita LF, Schürer S, Traver D, Ruiz P, Vazquez-Padron RI, Ley K, Reiser J, Gupta V. Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. Sci Signal 2011; 4:ra57. [PMID: 21900205 DOI: 10.1126/scisignal.2001811] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integrin CD11b/CD18 (also known as Mac-1), which is a heterodimer of the α(M) (CD11b) and β(2) (CD18) subunits, is critical for leukocyte adhesion and migration and for immune functions. Blocking integrin-mediated leukocyte adhesion, although beneficial in experimental models, has had limited success in treating inflammatory diseases in humans. Here, we used an alternative strategy of inhibiting leukocyte recruitment by activating CD11b/CD18 with small-molecule agonists, which we term leukadherins. These compounds increased the extent of CD11b/CD18-dependent cell adhesion of transfected cells and of primary human and mouse neutrophils, which resulted in decreased chemotaxis and transendothelial migration. Leukadherins also decreased leukocyte recruitment and reduced arterial narrowing after injury in rats. Moreover, compared to a known integrin antagonist, leukadherins better preserved kidney function in a mouse model of experimental nephritis. Leukadherins inhibited leukocyte recruitment by increasing leukocyte adhesion to the inflamed endothelium, which was reversed with a blocking antibody. Thus, we propose that pharmacological activation of CD11b/CD18 offers an alternative therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Dony Maiguel
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Houimel M, Mazzucchelli L. Random phage-epitope library based identification of a peptide antagonist of Mac-1 β2 integrin ligand binding. Matrix Biol 2011; 31:66-77. [PMID: 22100634 DOI: 10.1016/j.matbio.2011.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/30/2022]
Abstract
The leukocyte β2 integrin Mac-1 (CD11b/CD18) plays a pivotal role in inflammation and host defense. To develop peptide antagonists selectively inhibiting the function of Mac-1, we used a random constrained 6-mer (cys-6aa-cys) peptide library to map the structural features of CD11b, by determining the epitope of neutralizing monoclonal antibody mAb 44a (anti-CD11b). We have used a stringent phage display strategy, which resulted in the identification of one disulfide C-RLKEKH-C constrained peptide by direct biopanning of library on decreasing amounts of purified mAb 44a. The selected peptide mimics a discontinuous epitope, a peculiar shape on the CD11b-I-domain surface. Competitive ELISA experiments with different Mac-1 ligands showed that C-RLKEKH-C is able to bind to fibrinogen, iC3b, and C1q. Furthermore, the monomeric circular peptide C-RLKEKH-C, was effective in blocking the interaction between (125)I-fibrinogen and Mac-1 (IC(50)=3.35±0.1×10(-6)M), and inhibited the adhesion of human neutrophils to fibrinogen and iC3b. These data provide information about the relative location of amino acids on the I-domain surface using mAb 44a imprint of the CD11b protein. The derived mimotope may help in the design of future anti-inflammatory therapeutic agents that can act as specific therapeutic agents targeting PMNs mediated inflammation.
Collapse
Affiliation(s)
- Mehdi Houimel
- Laboratoire d'Immunopathologie Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, Tunisia.
| | | |
Collapse
|
47
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
48
|
Hyduk SJ, Rullo J, Cano AP, Xiao H, Chen M, Moser M, Cybulsky MI. Talin-1 and kindlin-3 regulate alpha4beta1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4360-8. [PMID: 21911599 DOI: 10.4049/jimmunol.1003725] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine/chemoattractant G protein-coupled receptors trigger an inside-out signaling network that rapidly activates integrins, a key step in inflammatory leukocyte recruitment. Integrins mediate leukocyte arrest and adhesion to endothelium through multivalent binding, and they transmit outside-in signals to stabilize adhesion and coordinate cell spreading and migration. In the present study, we used RNA interference in the U937 monocytic cell line to investigate the role of talin-1, kindlin-3, and α-actinin-1 in the fMLF- and SDF-1α-induced upregulation of α(4)β(1) integrin affinity and consequent adhesive events. Affinity upregulation of α(4)β(1) integrin was not impaired by small interfering RNA knockdown of talin-1, kindlin-3, or α-actinin-1. Only kindlin-3 knockdown increased flow-induced detachment from VCAM-1-coated surfaces in response to fluid flow, whereas knockdown of either talin-1 or kindlin-3 increased detachment from ICAM-1-coated surfaces. Biochemical analyses revealed that α(4)β(1) expression was highly enriched in U937 cell microridges and murine lymphocyte microvilli. Kindlin-3 was present throughout the cell, whereas talin-1 was largely excluded from microridges/microvilli. The subcellular colocalization of α(4)β(1) and kindlin-3 in microridges may explain why kindlin-3 rapidly associates with α(4)β(1) after G protein-coupled receptor signaling and contributes to adhesion strengthening. Talin-1 contributed to α(4)β(1)-dependent chemotaxis, suggesting that it participates in a later stage of the leukocyte adhesion cascade when the leukocyte cytoskeleton undergoes dramatic rearrangement.
Collapse
Affiliation(s)
- Sharon J Hyduk
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Integrin-mediated cell adhesion is involved in many essential normal cellular and pathological functions including cell survival, growth, differentiation, migration, inflammatory responses, platelet aggregation, tissue repair and tumor invasion. 24 different heterodimerized transmembrane integrin receptors are combined from 18 different α and 8 different β subunits. Each integrin subunit contains a large extracellular domain, a single transmembrane domain and a usually short cytoplasmic domain. Integrins bind extracellular matrix (ECM) proteins through their large extracellular domain, and engage the cytoskeleton via their short cytoplasmic tails. These integrin-mediated linkages on either side of the plasma membrane are dynamically linked. Thus, integrins communicate over the plasma membrane in both directions, i.e., outside-in and inside-out signaling. In outside-in signaling through integrins, conformational changes of integrin induced by ligand binding on the extracellular domain altered the cytoplasmic domain structures to elicit various intracellular signaling pathways. Inside-out signaling originates from non-integrin cell surface receptors or cytoplasmic molecules and it activates signaling pathways inside the cells, ultimately resulting in the activation/deactivation of integrins. Integrins are one of key family proteins for cell adhesion regulation through binding to a large number of ECM molecules and cell membrane proteins. Lack of expression of integrins may result in a wide variety of effects ranging from blockage in pre-implantation to embryonic or perinatal lethality and developmental defects. Based on both the key role they played in angiogenesis, leukocytes function and tumor development and easy accessibility as cell surface receptors interacting with extracellular ligands, the integrin superfamily represents the best opportunity of targeting both antibodies and small-molecule antagonists for both therapeutic and diagnostic utility in various key diseases so far.
Collapse
|
50
|
Vinculin activation is necessary for complete talin binding. Biophys J 2011; 100:332-40. [PMID: 21244829 DOI: 10.1016/j.bpj.2010.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/22/2010] [Accepted: 11/15/2010] [Indexed: 01/23/2023] Open
Abstract
Focal adhesions are critical to a number of cellular processes that involve mechanotransduction and mechanical interaction with the cellular environment. The growth and strengthening of these focal adhesions is dependent on the interaction between talin and vinculin. This study investigates said interaction and how vinculin activation influences it. Using molecular dynamics, the interaction between talin's vinculin binding site (VBS) and vinculin's domain 1 (D1) is simulated both before and after vinculin activation. The simulations of VBS binding to vinculin before activation suggest the proximity of the vinculin tail to D1 prevents helical movement in D1 and thus prevents binding of VBS. In contrast, interaction of VBS with activated vinculin shows the possibility of complete VBS insertion into D1. In the simulations of both activated and autoinhibited vinculin where VBS fails to fully bind, VBS demonstrates significant hydrophobic interaction with surface residues in D1. These interactions link VBS to D1 even without its proper insertion into the hydrophobic core. Together these simulations suggest VBS binds to vinculin with the following mechanism: 1), VBS links to D1 via surface hydrophobic interactions; 2), vinculin undergoes activation and D1 is moved away from the vinculin tail; 3), helices in D1 undergo conformational change to allow VBS binding; and 4), VBS inserts itself into the hydrophobic core of D1.
Collapse
|