1
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J, Zheng M, Zhang S. Clinicopathological Significances of Cancer Stem Cell-Associated HHEX Expression in Breast Cancer. Front Cell Dev Biol 2020; 8:605744. [PMID: 33425911 PMCID: PMC7785851 DOI: 10.3389/fcell.2020.605744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the transcription factor hematopoietic ally expressed homeobox/proline-rich homeodomain (HHEX/PRH) is implicated in numerous cancers. However, the association of HHEX with breast cancer (BC) remains unclear. In this study, HHEX mRNA and protein expression were analyzed using the Oncomine, UALCAN, GEPIA, TCGAportal, and HPA databases. We evaluated the effect of HHEX on clinicopathological parameters using Kaplan–Meier plotter, OncoLnc, TCGAportal, PROGgeneV2, and BC-GenExMiner. Western blotting was performed to compare the level of HHEX in breast samples of Tientsin Albino 2 mice, human breast precancerous lesions, benign breast tumors, and BC. The correlation between HHEX and cancer stem cells was investigated using the GEO (GSE52327 and GSE94865) and GEPIA datasets. Networks between HHEX and survival-related gene marker sets and microRNAs were analyzed using GEPIA, StarBase, and Cytoscape. Results of this study showed that HHEX expression in BC was significantly lower than those in breast precancerous lesions and benign breast tumors at both mRNA and protein levels. BC patients with lower HHEX expression had significantly worse overall survival and disease-free survival. Moreover, HHEX significantly affected the clinicopathology of BC. Specifically, low HHEX expression was correlated with the following groups of patients: age ≤51 years, ER-negative or PR-negative patients, HER-2 positive, triple-negative breast cancer, and basal-like BC. Immunohistochemical analysis of the breast samples showed significant differences of HHEX staining index (P < 0.001) among the three groups. To further investigate the mechanism, we determined the intersection of differentially expressed genes related to BC stem cells and those genes after HHEX expression was altered. This led to the identification of four potentially regulated genes-CXL12, BLNK, PAG1, and LPXN. Using StarBase and km-plotter, the negative regulation of HHEX expression and survival trends, including miR-130b, miR-30e, and miR-301b were joined into miRNA-HHEX-mRNA potential regulatory network. The abilities of proliferation, migration and invasion increased in MDA-MB-231 and BT-549 breast cancer cell lines after HHEX down expression and decreased after HHEX overexpression compared them in the control cells. In conclusion, these data suggest that HHEX expression is downregulated in BC and HHEX may regulate the development of BC through the stem cell-related genes.
Collapse
Affiliation(s)
- Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
3
|
Goh W, Scheer S, Jackson JT, Hediyeh-Zadeh S, Delconte RB, Schuster IS, Andoniou CE, Rautela J, Degli-Esposti MA, Davis MJ, McCormack MP, Nutt SL, Huntington ND. Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance. Cell Rep 2020; 33:108285. [PMID: 33086067 DOI: 10.1016/j.celrep.2020.108285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Hhex encodes a homeobox transcriptional regulator important for embryonic development and hematopoiesis. Hhex is highly expressed in NK cells, and its germline deletion results in significant defects in lymphoid development, including NK cells. To determine if Hhex is intrinsically required throughout NK cell development or for NK cell function, we generate mice that specifically lack Hhex in NK cells. NK cell frequency is dramatically reduced, while NK cell differentiation, IL-15 responsiveness, and function at the cellular level remain largely normal in the absence of Hhex. Increased IL-15 availability fails to fully reverse NK lymphopenia following conditional Hhex deletion, suggesting that Hhex regulates developmental pathways extrinsic to those dependent on IL-15. Gene expression and functional genetic approaches reveal that Hhex regulates NK cell survival by directly binding Bcl2l11 (Bim) and repressing expression of this key apoptotic mediator. These data implicate Hhex as a transcriptional regulator of NK cell homeostasis and immunity.
Collapse
Affiliation(s)
- Wilford Goh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacob T Jackson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Iona S Schuster
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher E Andoniou
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jai Rautela
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; oNKo-Innate Pty Ltd., 27 Norwood Cres, Moonee Ponds, Victoria, 3039, Australia
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew P McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, 3004, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; oNKo-Innate Pty Ltd., 27 Norwood Cres, Moonee Ponds, Victoria, 3039, Australia.
| |
Collapse
|
4
|
Abstract
The application of immunohistochemistry to the diagnosis of thyroid lesions has increased as new biomarkers have emerged. In this review, we discuss the biomarkers that are critical for accurate diagnosis, prognosis, and management. Immunohistochemical markers are used to confirm that an unusual tumor in the thyroid is indeed of thyroid origin, either of follicular epithelial or C-cell differentiation; the various mimics include nonthyroidal lesions such as parathyroid tumors, paragangliomas, thymic neoplasms, and metastatic malignancies. Tumors of thyroid follicular epithelial cells can be further subclassified using a number of immunohistochemical biomarkers that can distinguish follicular-derived from C-cell lesions and others that support malignancy in borderline cases. The use of mutation-specific antibodies can distinguish papillary carcinomas harboring a BRAFV600E mutation from RAS-like neoplasms. Immunostains have been developed to further identify molecular alterations underlying tumor development, including some rearrangements. Altered expression of several biomarkers that are known to be epigenetically modified in thyroid cancer can be used to assist in predicting more aggressive behavior such as a propensity to develop locoregional lymphatic spread. Immunohistochemistry can assist in identifying lymphatic and vascular invasion. Biomarkers can be applied to determine dedifferentiation and to further classify poorly differentiated and anaplastic carcinomas. The rare tumors associated with genetic predisposition to endocrine neoplasia can also be identified using some immunohistochemical stains. The application of these ancillary tools allows more accurate diagnosis and better understanding of pathogenesis while improving prediction and prognosis for patients with thyroid neoplasms.
Collapse
Affiliation(s)
- Zubair Baloch
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ozgur Mete
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Sylvia L Asa
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Jackson JT, Shields BJ, Shi W, Di Rago L, Metcalf D, Nicola NA, McCormack MP. Hhex Regulates Hematopoietic Stem Cell Self-Renewal and Stress Hematopoiesis via Repression of Cdkn2a. Stem Cells 2017; 35:1948-1957. [PMID: 28577303 DOI: 10.1002/stem.2648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
The hematopoietically expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of common lymphoid progenitors (CLPs) to lymphoid lineages. Here, we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal. Moreover, Hhex-deleted mice show markedly impaired hematopoietic recovery following myeloablation, due to a failure of progenitor expansion. In vitro, Hhex-null blast colonies were incapable of replating, implying a specific requirement for Hhex in immature progenitors. Transcriptome analysis of Hhex-null Lin- Sca+ Kit+ cells showed that Hhex deletion leads to derepression of polycomb repressive complex 2 (PRC2) and PRC1 target genes, including the Cdkn2a locus encoding the tumor suppressors p16Ink 4a and p19Arf . Indeed, loss of Cdkn2a restored the capacity of Hhex-null blast colonies to generate myeloid progenitors in vitro, as well as hematopoietic reconstitution following myeloablation in vivo. Thus, HSCs require Hhex to promote PRC2-mediated Cdkn2a repression to enable continued self-renewal and response to hematopoietic stress. Stem Cells 2017;35:1948-1957.
Collapse
Affiliation(s)
- Jacob T Jackson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Benjamin J Shields
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.,Departments of Medical Biology
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Computing and Information Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Donald Metcalf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medical Biology
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medical Biology
| | - Matthew P McCormack
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.,Departments of Medical Biology
| |
Collapse
|
6
|
Migueles RP, Shaw L, Rodrigues NP, May G, Henseleit K, Anderson KGV, Goker H, Jones CM, de Bruijn MFTR, Brickman JM, Enver T. Transcriptional regulation of Hhex in hematopoiesis and hematopoietic stem cell ontogeny. Dev Biol 2017; 424:236-245. [PMID: 28189604 DOI: 10.1016/j.ydbio.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/25/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Hematopoietic stem cells (HSCs) emerge during development via an endothelial-to-hematopoietic transition from hemogenic endothelium of the dorsal aorta (DA). Using in situ hybridization and analysis of a knock-in RedStar reporter, we show that the transcriptional regulator Hhex is expressed in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene expression in the emerging HSC. We identify an evolutionarily conserved non-coding region (ECR) in the Hhex locus with the capacity to bind the hematopoietic-affiliated transcriptional regulators Gata2, SCL, Fli1, Pu.1 and Ets1/2. This region is sufficient to drive the expression of a transgenic GFP reporter in the DA endothelium and intra-aortic hematopoietic clusters. GFP-positive AGM cells co-expressed HSC-associated markers c-Kit, CD34, VE-Cadherin, and CD45, and were capable of multipotential differentiation and long term engraftment when transplanted into myelo-ablated recipients. The Hhex ECR was also sufficient to drive expression at additional blood sites including the yolk sac blood islands, fetal liver, vitelline and umbilical arteries and the adult bone marrow, suggesting a common mechanism for Hhex regulation throughout ontogenesis of the blood system. To explore the physiological requirement for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate a requirement for this region in the adult HSC compartment. Taken together, our results identified the ECR region as an enhancer both necessary and sufficient for gene expression in HSC development and homeostasis. The Hhex ECR thus appears to be a core node for the convergence of the transcription factor network that governs the emergence of HSCs.
Collapse
Affiliation(s)
- Rosa Portero Migueles
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Louise Shaw
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Neil P Rodrigues
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; The European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Gillian May
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Stem Cell Laboratory, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Korinna Henseleit
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Kathryn G V Anderson
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK; The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen, Denmark
| | - Hakan Goker
- Institute for Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - C Michael Jones
- Institute for Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Joshua M Brickman
- MRC Centre for Regenerative Medicine - Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK; The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen, Denmark.
| | - Tariq Enver
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Stem Cell Laboratory, UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
7
|
Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 2016; 590:4016-4033. [PMID: 27616157 DOI: 10.1002/1873-3468.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders and discuss their application for investigating stem cell dysfunction in disease and for the development of new therapeutics.
Collapse
Affiliation(s)
- Anne L Robertson
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Serine Avagyan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Yamakawa T, Sato Y, Matsumura Y, Kobayashi Y, Kawamura Y, Goshima N, Yamanaka S, Okita K. Screening of Human cDNA Library Reveals Two differentiation-Related Genes, HHEX and HLX, as Promoters of Early Phase Reprogramming toward Pluripotency. Stem Cells 2016; 34:2661-2669. [PMID: 27335261 DOI: 10.1002/stem.2436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 11/09/2022]
Abstract
Gene screenings have identified a number of reprogramming factors that induce pluripotency from somatic cells. However, the screening methods have mostly considered only factors that maintain pluripotency in embryonic stem cells, ignoring a potentially long list of other contributing factors involved. To expand the search, we developed a new screening method that examined 2,008 human genes in the generation of human induced pluripotent stem cells (iPSCs), including not only pluripotent genes but also differentiation-related genes that suppress pluripotency. We found the top 100 genes that increased reprogramming efficiency and discovered they contained many differentiation-related genes and homeobox genes. We selected two, HHEX and HLX, for further analysis. These genes enhanced the appearance of premature reprograming cells in the early phase of human iPSC induction, but had inhibitory effect on the late phase. In addition, when expressed in human iPSCs, HHEX and HLX interfered with the pluripotent state, indicating inverse effects on somatic reprograming and pluripotent maintenance. These results demonstrate that our screening is useful for identifying differentiation-related genes in somatic reprograming. Stem Cells 2016;34:2661-2669.
Collapse
Affiliation(s)
- Tatsuya Yamakawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoshiko Sato
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuko Matsumura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yukiko Kobayashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Shields BJ, Jackson JT, Metcalf D, Shi W, Huang Q, Garnham AL, Glaser SP, Beck D, Pimanda JE, Bogue CW, Smyth GK, Alexander WS, McCormack MP. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a. Genes Dev 2016; 30:78-91. [PMID: 26728554 PMCID: PMC4701980 DOI: 10.1101/gad.268425.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, Shields et al. demonstrate that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. The findings in this study describe for the first time a nonclustered homeobox transcription factor that is essential for AML initiation and maintenance and provide mechanistic insight into these processes. Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal.
Collapse
Affiliation(s)
- Benjamin J Shields
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Jacob T Jackson
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Donald Metcalf
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Wei Shi
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia; Computing and Information Systems, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Qiutong Huang
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Alexandra L Garnham
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Stefan P Glaser
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Clifford W Bogue
- Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Gordon K Smyth
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia; Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Matthew P McCormack
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
10
|
Saulle E, Petronelli A, Pelosi E, Coppotelli E, Pasquini L, Ilari R, Lo-Coco F, Testa U. PML-RAR alpha induces the downmodulation of HHEX: a key event responsible for the induction of an angiogenetic response. J Hematol Oncol 2016; 9:33. [PMID: 27052408 PMCID: PMC4823896 DOI: 10.1186/s13045-016-0262-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Background Recent studies indicate that angiogenesis is important in the pathogenesis of acute myeloid leukemias (AMLs). Among the various AMLs, the bone marrow angiogenetic response is particularly pronounced in acute promyelocytic leukemia (APL). However, the molecular mechanisms responsible for this angiogenetic response are largely unknown. In the present study, we have explored the role of HHEX, a homeodomain transcription factor, as a possible mediator of the pro-angiogenetic response observed in APL. This transcription factor seems to represent an ideal candidate for this biologic function because it is targeted by PML-RARα, is capable of interaction with PML and PML-RARα, and acts as a regulator of the angiogenetic response. Methods We used various cellular systems of APL, including primary APL cells and leukemic cells engineered to express PML-RARα, to explore the role of the PML-RARα fusion protein on HHEX expression. Molecular and biochemical techniques have been used to investigate the mechanisms through which PML-RARα downmodulates HHEX and the functional consequences of this downmodulation at the level of the expression of various angiogenetic genes, cell proliferation and differentiation. Results Our results show that HHEX expression is clearly downmodulated in APL and that this effect is directly mediated by a repressive targeting of the HHEX gene promoter by PML-RARα. Studies carried out in primary APL cells and in a cell line model of APL with inducible PML-RARα expression directly support the view that this fusion protein through HHEX downmodulation stimulates the expression of various genes involved in angiogenesis and inhibits cell differentiation. Conclusions Our data suggest that HHEX downmodulation by PML-RARα is a key event during APL pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0262-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ernestina Saulle
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Petronelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Coppotelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pasquini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata" and Fondazione Santa Lucia, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
11
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
12
|
Hhex Is Necessary for the Hepatic Differentiation of Mouse ES Cells and Acts via Vegf Signaling. PLoS One 2016; 11:e0146806. [PMID: 26784346 PMCID: PMC4718667 DOI: 10.1371/journal.pone.0146806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Elucidating the molecular mechanisms involved in the differentiation of stem cells to hepatic cells is critical for both understanding normal developmental processes as well as for optimizing the generation of functional hepatic cells for therapy. We performed in vitro differentiation of mouse embryonic stem cells (mESCs) with a null mutation in the homeobox gene Hhex and show that Hhex-/- mESCs fail to differentiate from definitive endoderm (Sox17+/Foxa2+) to hepatic endoderm (Alb+/Dlk+). In addition, hepatic culture elicited a >7-fold increase in Vegfa mRNA expression in Hhex-/- cells compared to Hhex+/+ cells. Furthermore, we identified VEGFR2+/ALB+/CD34- in early Hhex+/+ hepatic cultures. These cells were absent in Hhex-/- cultures. Finally, through manipulation of Hhex and Vegfa expression, gain and loss of expression experiments revealed that Hhex shares an inverse relationship with the activity of the Vegf signaling pathway in supporting hepatic differentiation. In summary, our results suggest that Hhex represses Vegf signaling during hepatic differentiation of mouse ESCs allowing for cell-type autonomous regulation of Vegfr2 activity independent of endothelial cells.
Collapse
|
13
|
Ferreira MJ, McKenna LB, Zhang J, Reichert M, Bakir B, Buza EL, Furth EE, Bogue CW, Rustgi AK, Kaestner KH. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice. Cell Mol Gastroenterol Hepatol 2015; 1:550-569. [PMID: 26740970 PMCID: PMC4698881 DOI: 10.1016/j.jcmgh.2015.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Perturbations in pancreatic ductal bicarbonate secretion cause chronic pancreatitis. The physiologic mechanism of ductal secretion is known, but its transcriptional control is not. We determine the role of the transcription factor hematopoietically expressed homeobox protein (Hhex) in ductal secretion and pancreatitis. METHODS We derived mice with pancreas-specific, Cremediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histologic and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells were isolated to discover differentially expressed transcripts upon acute Hhex ablation on a cell autonomous level. RESULTS Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia in young mice did not result from perturbation of expression of Hnf6, Hnf1β, or the primary cilia genes. RNA-seq analysis of Hhex-ablated pancreatic primary ductal cells showed mRNA levels of the G-protein coupled receptor natriuretic peptide receptor 3 (Npr3), implicated in paracrine signaling, up-regulated by 4.70-fold. CONCLUSIONS Although Hhex is dispensable for ductal cell function in the adult, ablation of Hhex in pancreatic progenitors results in pancreatitis. Our data highlight the critical role of Hhex in maintaining ductal homeostasis in early life and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis.
Collapse
Affiliation(s)
- Mark J. Ferreira
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsay B. McKenna
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jia Zhang
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Basil Bakir
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth L. Buza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clifford W. Bogue
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Klaus H. Kaestner, PhD, Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 12–126 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104. fax: 215-573-5892.
| |
Collapse
|
14
|
Goodings C, Smith E, Mathias E, Elliott N, Cleveland SM, Tripathi RM, Layer JH, Chen X, Guo Y, Shyr Y, Hamid R, Du Y, Davé UP. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation. Stem Cells 2015; 33:2628-41. [PMID: 25968920 DOI: 10.1002/stem.2049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/03/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023]
Abstract
Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Natalina Elliott
- MRC Molecular Hematology Unit, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Xi Chen
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yan Guo
- Department of Biostatistics, Center for Quantitative Sciences
| | - Yu Shyr
- Department of Biostatistics, Center for Quantitative Sciences
| | - Rizwan Hamid
- Division of Medical Genetics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Utpal P Davé
- Department of Cancer Biology.,Division of Hematology/Oncology.,Tennessee Valley Healthcare System, Nashville VA, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Abstract
The hematopoietically expressed homeobox gene, Hhex, is a transcription factor that is important for development of definitive hematopoietic stem cells (HSCs) and B cells, and that causes T-cell leukemia when overexpressed. Here, we have used an Hhex inducible knockout mouse model to study the role of Hhex in adult hematopoiesis. We found that loss of Hhex was tolerated in HSCs and myeloid lineages, but resulted in a progressive loss of B lymphocytes in the circulation. This was accompanied by a complete loss of B-cell progenitors in the bone marrow and of transitional B-cell subsets in the spleen. In addition, transplantation and in vitro culture experiments demonstrated an almost complete failure of Hhex-null HSCs to contribute to lymphoid lineages beyond the common lymphoid precursor stage, including T cells, B cells, NK cells, and dendritic cells. Gene expression analysis of Hhex-deleted progenitors demonstrated deregulated expression of a number of cell cycle regulators. Overexpression of one of these, cyclin D1, could rescue the B-cell developmental potential of Hhex-null lymphoid precursors. Thus, Hhex is a key regulator of early lymphoid development, functioning, at least in part, via regulation of the cell cycle.
Collapse
|
16
|
Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex. Oncogene 2014; 34:3011-22. [PMID: 25220416 DOI: 10.1038/onc.2014.240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022]
Abstract
c-Myc transcription factor is a key protein involved in cellular growth, proliferation and metabolism. c-Myc is one of the most frequently activated oncogenes, highlighting the need to identify intracellular molecules that interact directly with c-Myc to suppress its function. Here we show that Hhex is able to interact with the basic region/helix-loop-helix/leucine zipper of c-Myc. Knockdown of Hhex increases proliferation rate in hepatocellular carcinoma cells, whereas Hhex expression cell-autonomously reduces cell proliferation rate in multiple cell lines by increasing G1 phase length through a c-Myc-dependent mechanism. Global transcriptomic analysis shows that Hhex counter-regulates multiple c-Myc targets involved in cell proliferation and metabolism. Concomitantly, Hhex expression leads to reduced cell size, lower levels of cellular RNA, downregulation of metabolism-related genes, decreased sensitivity to methotrexate and severe reduction in the ability to form tumours in nude mouse xenografts, all indicative of decreased c-Myc activity. Our data suggest that Hhex is a novel regulator of c-Myc function that limits c-Myc activity in transformed cells.
Collapse
|
17
|
Nichol JN, Garnier N, Miller WH. Triple A therapy: the molecular underpinnings of the unique sensitivity of leukemic promyelocytes to anthracyclines, all-trans-retinoic acid and arsenic trioxide. Best Pract Res Clin Haematol 2014; 27:19-31. [PMID: 24907014 DOI: 10.1016/j.beha.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
If looking for a mnemonic to remember the relevant facts about acute promyelocytic leukemia (APL), one just has to remember that APL is a disease of A's. It is acute and it is highly sensitive to treatment with anthracyclines, all-trans-retinoic acid (RA) and arsenic trioxide (ATO). The presence of fusions involving the retinoic acid receptor alpha (RARA) is without question the central player driving APL and dictating the response of this disease to these therapeutic agents. However, beyond this knowledge, the molecular mechanisms that contribute to the complicated pathogenesis and the response to treatment of APL are not completely defined. As more is understood about this hematological malignancy, there are more opportunities to refine and improve treatment based on this knowledge. In this review article, we discuss the response of APL to these "A" therapies.
Collapse
Affiliation(s)
- Jessica N Nichol
- Division of Experimental Medicine, Department of Oncology, Segal Cancer Comprehensive Centre, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Nicolas Garnier
- Division of Experimental Medicine, Department of Oncology, Segal Cancer Comprehensive Centre, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Department of Oncology, Segal Cancer Comprehensive Centre, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada.
| |
Collapse
|
18
|
Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene 2013; 33:5592-600. [PMID: 24240683 DOI: 10.1038/onc.2013.496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022]
Abstract
PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-β co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.
Collapse
Affiliation(s)
- R M Kershaw
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - Y H Siddiqui
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - D Roberts
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - P-S Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - K Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Bai C, Hou L, Zhang M, Wang L, Guan W, Ma Y. Identification and biological characterization of chicken embryonic cardiac progenitor cells. Cell Prolif 2013; 46:232-42. [PMID: 23510478 DOI: 10.1111/cpr.12024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/05/2012] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Many kinds of cardiac progenitor cell populations have been identified, including c-kit(+) , Nkx2.5(+) s and GATA4(+) cells. However, these progenitors have limited ability to differentiate into different cardiac cell types. Recently, a new kind of cardiac progenitor cell named the multipotent Isl1(+) cardiovascular progenitor (MICPs) has been identified, which also expresses Nkx2.5, GATA4, CD34 and Flk1. MATERIALS AND METHODS In this study, we have isolated and characterized MICPs from chicken embryonic heart tissues using immunofluorescence and PCR. RESULTS Results shown that they express markers of cardiac progenitor cells, with high clonality. They have the ability to self-renew and can give rise to three types of heart cell in vitro. CONCLUSIONS Myocytes, smooth muscle cells and endothelial cells. Our work provides evidence for a developmental paradigm of the heart, that endothelial and muscle lineage diversification arises from multipotent cardiac progenitor cells. Existence of these cells provides a new opportunity for myocardial injury repair.
Collapse
Affiliation(s)
- C Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
20
|
Jalili S, Karami L, Schofield J. Study of base pair mutations in proline-rich homeodomain (PRH)-DNA complexes using molecular dynamics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:427-40. [PMID: 23385423 DOI: 10.1007/s00249-013-0892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/11/2012] [Accepted: 01/21/2013] [Indexed: 11/26/2022]
Abstract
Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.
Collapse
Affiliation(s)
- Seifollah Jalili
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | | | | |
Collapse
|
21
|
Abstract
To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.
Collapse
|
22
|
Jalili S, Karami L. Study of intermolecular contacts in the proline-rich homeodomain (PRH)–DNA complex using molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:329-40. [DOI: 10.1007/s00249-012-0790-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/03/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|
23
|
Morimoto R, Obinata A. Overexpression of hematopoietically expressed homeoprotein induces nonapoptotic cell death in mouse prechondrogenic ATDC5 cells. Biol Pharm Bull 2011; 34:1589-95. [PMID: 21963500 DOI: 10.1248/bpb.34.1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological cell death is an essential event in normal development and maintenance of homeostasis. Recently, the morphological and pharmacological characteristics of programmed cell death, which are distinct from those of apoptosis under physiological and pathological conditions, have been reported. However, the molecular mechanism and executioner of this type of cell death are unknown. We show that overexpression of hematopoietically expressed homeoprotein (Hex), a homeoprotein of divergent type, and enhanced green fluorescent protein (EGFP) fusion protein (Hex-EGFP) induces cell death in mouse chondrogenic cell line ATDC5. The expression rate of Hex-EGFP decreased more rapidly than that of EGFP 96 h after transfection. The time-lapse image of living cells revealed the Hex-EGFP-positive cells rapidly died in a necrosis-like fashion. The nuclei of Hex-EGFP-expressing cells were rarely fragmented; however, these cells were negative for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. The expression rate of Hex-EGFP clearly increased by treatment with radical scavengers, propyl gallate and butylated hydroxyanisole, slightly increased with a caspase inhibitor, zVAD-fmk, and was not affected by N-acetyl cysteine in ATDC5 cells. A fluorescent probe indicated that reactive oxygen species (ROS) were localized near the nuclei in Hex-EGFP-positive cells. In differentiated ATDC5 cells, as hypertrophic chondrocyte-like cells, the expression rate of Hex-EGFP increased above that in uninduced ATDC5 cells. These results suggest that Hex induces nonapoptotic cell death through local accumulation of reactive oxygen species, and mature chondrocytes, which express Hex, might be able to escape cell death induced by Hex in cartilage.
Collapse
Affiliation(s)
- Riyo Morimoto
- Laboratory of Pharmaceutical Science, Faculty of Physiological Chemistry II, Teikyo University, Sagamihara 252–5195, Japan.
| | | |
Collapse
|
24
|
A potential role for the homeoprotein Hhex in hepatocellular carcinoma progression. Med Oncol 2011; 29:1059-67. [PMID: 21656028 DOI: 10.1007/s12032-011-9989-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 01/15/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common primary malignant tumor of the liver, often associated with the dysregulation of transcriptional pathways involved in cell growth and differentiation. The hematopoietically expressed homeobox protein (Hhex) is an important transcription factor throughout liver development and is essential to liver bud formation and hepatoblast differentiation. Here, we report a relationship between Hhex expression and HCC. First, adenovirus-mediated Hhex delivery into the hepatoma cell line, Hepa1-6, resulted in decreased expression of several proto-oncogenes (c-Jun and Bcl2), increased expression of some tumor suppressor genes (P53 and Rb), and enhanced expression of a cluster of hepatocytic and bile ductular markers. Second, Hhex expression significantly attenuated Hepa1-6 tumorigenicity in nude mice. Third, we report a correlation between Hhex expression and the differentiation state of human HCC. In 24 cases of clinical specimens, there was a significant difference in Hhex expression between poorly differentiated HCC and well-differentiated HCC (P < 0.001). Taken together, these results indicate that Hhex is a potential candidate molecular marker for HCC pathological evaluation, suggesting a need to evaluate Hhex as a potential target for therapeutic intervention.
Collapse
|
25
|
Wang Y, Nathanson L, McNiece IK. Differential Hematopoietic Supportive Potential and Gene Expression of Stroma Cell Lines from Midgestation Mouse Placenta and Adult Bone Marrow. Cell Transplant 2011; 20:707-26. [DOI: 10.3727/096368910x536590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During mouse embryogenesis, hematopoietic development takes place in several distinct anatomic locations. The microenvironment of different hematopoietic organs plays an important role in the proliferation and maturation of the hematopoietic cells. We hypothesized that fetal stromal cells would be distinct to adult bone marrow (BM)-derived stromal cells because the BM contributes mainly to the homeostasis of hematopoietic stem cells (HSCs), while extensive expansion of HSCs occurs during fetal development. Here we report the establishment of stromal cell lines from fetal hematopoietic organs, namely aorta-gonad-mesonephros (AGM), midgestation placenta (PL), and fetal liver (FL) together with adult bone marrow (BM). The growth patterns and hematopoietic supportive potential were studied. Their phenotypic and molecular gene expression profiles were also determined. Stromal cell lines from each tissue were able to support cobblestone area formation of BM c-Kit+Sca-1+ hematopoietic cells: 22 (22/47) from AGM, three (3/4) from PL, three (3/4) from FL, and three (3/3) from BM. There were similar levels of expansion of total mononuclear cells (TMNs) when HSCs were cocultured with fetal stroma and adult BM stroma. However, PL-derived stromal cells supported higher levels of generation of colony-forming progenitor cell (CFU-C), indicated by more colonies and colonies with significantly larger size. Flow cytometric analysis of the PL1 cells demonstrated a phenotype of CD45-, CD105+, Sca-1+, CD34+, and CD49d+, compared to adult BM1 cells, which were CD45-, CD105+, Sca-1+, CD34-, and CD49d-. Using Affymetrix microarray analysis, we identified that genes specifically express in endothelial cells, such as Tie1, Tek, Kdr, Flt4, Emcn, Pecam1, Icam2, Cdh5, Esam1, Prom1, Cd34, and Sele were highly expressed in stroma PL1, consistent with an endothelial phenotype, while BM1 expressed a mesenchymal stromal phenotype. In summary, these data demonstrate distinct characteristics of stromal cells that provide insights into the microenvironmental control of HSCs.
Collapse
Affiliation(s)
- Yingchun Wang
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Lubov Nathanson
- Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ian K. McNiece
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
26
|
Abstract
T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
27
|
Morimoto R, Yamamoto A, Akimoto Y, Obinata A. Homeoprotein Hex is expressed in mouse developing chondrocytes. J Biochem 2011; 150:61-71. [PMID: 21454303 DOI: 10.1093/jb/mvr039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endochondral ossification is a complex process involving the formation of cartilage and the subsequent replacement by mineralized bone. Although the proliferation and differentiation of chondrocytes are strictly regulated, the molecular mechanisms involved are not completely understood. Here, we show that a divergent-type homeobox gene, hematopoietically expressed homeobox gene (HEX), is expressed in mouse chondrogenic cell line ATDC5. The expression of Hex protein drastically increased during differentiation. The chondrogenic differentiation-enhanced expression of Hex protein was also observed in chondrocytes in the tibia of embryonic day 15.5 (E15.5) mouse embryos. The localization of Hex protein in the chondrocytes of the tibia changed in association with maturation; namely, there was Hex protein in the cytoplasm near the endoplasmic reticulum (ER) in resting chondrocytes, which moved to the nucleus in prehypertrophic chondrocytes, and thereafter entered the ER in hypertrophic chondrocytes. These results suggest Hex expression and subcellular localization are associated with chondrocyte maturation.
Collapse
Affiliation(s)
- Riyo Morimoto
- Department of Physiological Chemistry II, Faculty of Pharmaceutical Science, Teikyo University, Kanagawa, Japan.
| | | | | | | |
Collapse
|
28
|
Gene expression programs of mouse endothelial cells in kidney development and disease. PLoS One 2010; 5:e12034. [PMID: 20706631 PMCID: PMC2919381 DOI: 10.1371/journal.pone.0012034] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/11/2010] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease.
Collapse
|
29
|
Abstract
The development and emergence of the hematopoietic stem cell involves a series of tightly regulated molecular events that are not well characterized. The hematopoietically expressed homeobox (Hhex) gene, a member of the homeobox gene family, is an essential regulator of embryogenesis and hematopoietic progenitor development. To investigate the role of Hhex in hematopoiesis we adapted a murine embryonic stem (ES) cell coculture system, in which ES cells can differentiate into CD41(+) and CD45(+) hematopoietic progenitors in vitro. Our results show that in addition to delayed hemangioblast development, Hhex(-/-) ES-derived progeny accumulate as CD41(+) and CD41(+)c-kit(+) cells, or the earliest definitive hematopoietic progenitors. In addition, Hhex(-/-) ES-derived progeny display a significantly reduced ability to develop into mature CD45(+) hematopoietic cells. The observed reduction in hematopoietic maturation was accompanied by reduced proliferation, because Hhex(-/-) CD41(+)CD45(-)c-kit(+) hematopoietic progenitors accumulated in the G(2) phase of the cell cycle. Thus, Hhex is a critical regulator of hematopoietic development and is necessary for the maturation and proliferation of the earliest definitive hematopoietic progenitors.
Collapse
|
30
|
Koyanagi M, Iwasaki M, Rupp S, Tedesco FS, Yoon CH, Boeckel JN, Trauth J, Schütz C, Ohtani K, Goetz R, Iekushi K, Bushoven P, Momma S, Mummery C, Passier R, Henschler R, Akintuerk H, Schranz D, Urbich C, Galvez BG, Cossu G, Zeiher AM, Dimmeler S. Sox2 transduction enhances cardiovascular repair capacity of blood-derived mesoangioblasts. Circ Res 2010; 106:1290-302. [PMID: 20185800 DOI: 10.1161/circresaha.109.206045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RATIONALE Complementation of pluripotency genes may improve adult stem cell functions. OBJECTIVES Here we show that clonally expandable, telomerase expressing progenitor cells can be isolated from peripheral blood of children. The surface marker profile of the clonally expanded cells is distinct from hematopoietic or mesenchymal stromal cells, and resembles that of embryonic multipotent mesoangioblasts. Cell numbers and proliferative capacity correlated with donor age. Isolated circulating mesoangioblasts (cMABs) express the pluripotency markers Klf4, c-Myc, as well as low levels of Oct3/4, but lack Sox2. Therefore, we tested whether overexpression of Sox2 enhances pluripotency and facilitates differentiation of cMABs in cardiovascular lineages. METHODS AND RESULTS Lentiviral transduction of Sox2 (Sox-MABs) enhanced the capacity of cMABs to differentiate into endothelial cells and cardiomyocytes in vitro. Furthermore, the number of smooth muscle actin positive cells was higher in Sox-MABs. In addition, pluripotency of Sox-MABs was shown by demonstrating the generation of endodermal and ectodermal progenies. To test whether Sox-MABs may exhibit improved therapeutic potential, we injected Sox-MABs into nude mice after acute myocardial infarction. Four weeks after cell therapy with Sox-MABs, cardiac function was significantly improved compared to mice treated with control cMABs. Furthermore, cell therapy with Sox-MABs resulted in increased number of differentiated cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. CONCLUSIONS The complementation of Sox2 in Oct3/4-, Klf4-, and c-Myc-expressing cMABs enhanced the differentiation into all 3 cardiovascular lineages and improved the functional recovery after acute myocardial infarction.
Collapse
Affiliation(s)
- Masamichi Koyanagi
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
PRH/Hhex controls cell survival through coordinate transcriptional regulation of vascular endothelial growth factor signaling. Mol Cell Biol 2010; 30:2120-34. [PMID: 20176809 DOI: 10.1128/mcb.01511-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proline-rich homeodomain protein (PRH) plays multiple roles in the control of gene expression during embryonic development and in the adult. Vascular endothelial growth factor (VEGF) is a mitogen that stimulates cell proliferation and survival via cell surface receptors including VEGFR-1 and VEGFR-2. VEGF signaling is of critical importance in angiogenesis and hematopoiesis and is elevated in many tumors. Here we show that PRH binds directly to the promoter regions of the Vegf, Vegfr-1, and Vegfr-2 genes and that in each case PRH represses transcription. We demonstrate that overexpression or knockdown of PRH directly impinges on the survival of both leukemic and tumor cells and that the modulation of VEGF and VEGF receptor signaling by PRH mediates these effects. Our findings demonstrate that PRH is a key regulator of the VEGF signaling pathway and describe a mechanism whereby PRH plays an important role in tumorigenesis and leukemogenesis.
Collapse
|
32
|
Lancrin C, Sroczynska P, Serrano AG, Gandillet A, Ferreras C, Kouskoff V, Lacaud G. Blood cell generation from the hemangioblast. J Mol Med (Berl) 2010; 88:167-72. [PMID: 19856139 DOI: 10.1007/s00109-009-0554-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/21/2009] [Accepted: 10/13/2009] [Indexed: 01/24/2023]
Abstract
Understanding how blood cells are generated is important from a biological perspective but also has potential implications in the treatment of blood diseases. Such knowledge could potentially lead to defining new conditions to amplify hematopoietic stem cells (HSCs) or could translate into new methods to produce HSCs, or other types of blood cells, from human embryonic stem cells or induced pluripotent stem cells. Additionally, as most key transcription factors regulating early hematopoietic development have also been implicated in various types of leukemia, understanding their function during normal development could result in a better comprehension of their roles during abnormal hematopoiesis in leukemia. In this review, we discuss our current understanding of the molecular and cellular mechanisms of blood development from the earliest hematopoietic precursor, the hemangioblast, a precursor for both endothelial and hematopoietic cell lineages.
Collapse
Affiliation(s)
- Christophe Lancrin
- Cancer Research UK, Stem Cell Biology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Distler JHW, Beyer C, Schett G, Lüscher TF, Gay S, Distler O. Endothelial progenitor cells: novel players in the pathogenesis of rheumatic diseases. ACTA ACUST UNITED AC 2010; 60:3168-79. [PMID: 19877034 DOI: 10.1002/art.24921] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Marfil V, Moya M, Pierreux CE, Castell JV, Lemaigre FP, Real FX, Bort R. Interaction between Hhex and SOX13 modulates Wnt/TCF activity. J Biol Chem 2009; 285:5726-37. [PMID: 20028982 DOI: 10.1074/jbc.m109.046649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fine-tuning of the Wnt/TCF pathway is crucial for multiple embryological processes, including liver development. Here we describe how the interaction between Hhex (hematopoietically expressed homeobox) and SOX13 (SRY-related high mobility group box transcription factor 13), modulates Wnt/TCF pathway activity. Hhex is a homeodomain factor expressed in multiple endoderm-derived tissues, like the liver, where it is essential for proper development. The pleiotropic expression of Hhex during embryonic development and its dual role as a transcriptional repressor and activator suggest the presence of different tissue-specific partners capable of modulating its activity and function. While searching for developmentally regulated Hhex partners, we set up a yeast two-hybrid screening using an E9.5-10.5 mouse embryo library and the N-terminal domain of Hhex as bait. Among the putative protein interactors, we selected SOX13 for further characterization. We found that SOX13 interacts directly with full-length Hhex, and we delineated the interaction domains within the two proteins. SOX13 is known to repress Wnt/TCF signaling by interacting with TCF1. We show that Hhex is able to block the SOX13-dependent repression of Wnt/TCF activity by displacing SOX13 from the SOX13 x TCF1 complex. Moreover, Hhex de-repressed the Wnt/TCF pathway in the ventral foregut endoderm of cultured mouse embryos electroporated with a SOX13-expressing plasmid. We conclude that the interaction between Hhex and SOX13 may contribute to control Wnt/TCF signaling in the early embryo.
Collapse
Affiliation(s)
- Vanessa Marfil
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming. Blood 2009; 114:2299-306. [PMID: 19597182 DOI: 10.1182/blood-2009-05-219386] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Therapeutic regulation of globin genes is a primary goal of translational research aimed toward hemoglobinopathies. Signal transduction was used to identify chromatin modifications and transcription factor expression patterns that are associated with globin gene regulation. Histone modification and transcriptome profiling were performed using adult primary CD34(+) cells cultured with cytokine combinations that produced low versus high levels of gamma-globin mRNA and fetal hemoglobin (HbF). Embryonic, fetal, and adult globin transcript and protein expression patterns were determined for comparison. Chromatin immunoprecipitation assays revealed RNA polymerase II occupancy and histone tail modifications consistent with transcriptional activation only in the high-HbF culture condition. Transcriptome profiling studies demonstrated reproducible changes in expression of nuclear transcription factors associated with high HbF. Among the 13 genes that demonstrated differential transcript levels, 8 demonstrated nuclear protein expression levels that were significantly changed by cytokine signal transduction. Five of the 8 genes are recognized regulators of erythropoiesis or globin genes (MAFF, ID2, HHEX, SOX6, and EGR1). Thus, cytokine-mediated signal transduction in adult erythroid cells causes significant changes in the pattern of globin gene and protein expression that are associated with distinct histone modifications as well as nuclear reprogramming of erythroid transcription factors.
Collapse
|
36
|
Soufi A, Noy P, Buckle M, Sawasdichai A, Gaston K, Jayaraman PS. CK2 phosphorylation of the PRH/Hex homeodomain functions as a reversible switch for DNA binding. Nucleic Acids Res 2009; 37:3288-300. [PMID: 19324893 PMCID: PMC2691835 DOI: 10.1093/nar/gkp197] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proline-rich homeodomain protein (PRH/Hex) regulates transcription by binding to specific DNA sequences and regulates mRNA transport by binding to translation initiation factor eIF4E. Protein kinase CK2 plays multiple roles in the regulation of gene expression and cell proliferation. Here, we show that PRH interacts with the β subunit of CK2 in vitro and in cells and that CK2 phosphorylates PRH. Phosphorylation of PRH by CK2 inhibits the DNA binding activity of this protein and dephosphorylation restores DNA binding indicating that this modification acts as a reversible switch. We show that phosphorylation of the homeodomain is sufficient to block DNA binding and we identify two amino acids within this the domain that are phosphorylated by CK2: S163 and S177. Site-directed mutagenesis demonstrates that mutation of either of these residues to glutamic acid partially mimics phosphorylation but is insufficient to completely block DNA binding whereas an S163E/S177E double mutation severely inhibits DNA binding. Significantly, the S163E and S177E mutations and the S163E/S177E double mutation all inhibit the ability of PRH to regulate transcription in cells. Since these amino acids are conserved between many homeodomain proteins, our results suggest that CK2 may regulate the activity of several homeodomain proteins in this manner.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a transcription factor that functions as an important regulator of vertebrate development and many other processes in the adult including haematopoiesis. The Groucho/TLE (transducin-like enhancer) family of co-repressor proteins also regulate development and modulate the activity of many DNA-binding transcription factors during a range of diverse cellular processes including haematopoiesis. We have shown previously that PRH is a repressor of transcription in haematopoietic cells and that an Eh-1 (Engrailed homology) motif present within the N-terminal transcription repression domain of PRH mediates binding to Groucho/TLE proteins and enables co-repression. In the present study we demonstrate that PRH regulates the nuclear retention of TLE proteins during cellular fractionation. We show that transcriptional repression and the nuclear retention of TLE proteins requires PRH to bind to both TLE and DNA. In addition, we characterize a trans-dominant-negative PRH protein that inhibits wild-type PRH activity by sequestering TLE proteins to specific subnuclear domains. These results demonstrate that transcriptional repression by PRH is dependent on TLE availability and suggest that subnuclear localization of TLE plays an important role in transcriptional repression by PRH.
Collapse
|
38
|
Abstract
The hemangioblast hypothesis was proposed a century ago. The existence of hemangioblasts is now demonstrated in mouse and human embryonic stem cell (ESC)-derived embryoid bodies (EBs), in the mouse and zebrafish gastrula, and in adults. The hemangioblast is believed to derive from mesodermal cells, and is enriched in the Bry+Flk1+ and Flk1+Scl+ cell populations in EBs and in the posterior primitive streak of the mouse gastrula and in the ventral mesoderm of the zebrafish gastrula. However, recent studies suggest that the hemangioblast does not give rise to all endothelial and hematopoietic lineages in mouse and zebrafish embryos. Although several signaling pathways are known to involve the generation of hemangioblasts, it remains largely unknown how the hemangioblast is formed and what are the master genes controlling hemangioblast development. This review will summarize our current knowledge, challenges, and future directions on molecular and developmental aspects of the hemangioblast.
Collapse
Affiliation(s)
- Jing-Wei Xiong
- The Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 01219, USA.
| |
Collapse
|
39
|
Abstract
The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNA-binding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein.
Collapse
|
40
|
Abstract
We have studied a patient with acute myeloid leukemia (AML) and t(10;11)(q23;p15) as the sole cytogenetic abnormality. Molecular analysis revealed a translocation involving nucleoporin 98 (NUP98) fused to the DNA-binding domain of the hematopoietically expressed homeobox gene (HHEX). Expression of NUP98/HHEX in murine bone marrow cells leads to aberrant self-renewal and a block in normal differentiation that depends on the integrity of the NUP98 GFLG repeats and the HHEX homeodomain. Transplantation of bone marrow cells expressing NUP98/HHEX leads to transplantable acute leukemia characterized by extensive infiltration of leukemic blasts expressing myeloid markers (Gr1(+)) as well as markers of the B-cell lineage (B220(+)). A latency period of 9 months and its clonal character suggest that NUP98/HHEX is necessary but not sufficient for disease induction. Expression of EGFP-NUP98/HHEX fusions showed a highly similar nuclear localization pattern as for other NUP98/homeodomain fusions, such as NUP98/HOXA9. Comparative gene expression profiling in primary bone marrow cells provided evidence for the presence of common targets in cells expressing NUP98/HOXA9 or NUP98/HHEX. Some of these genes (Hoxa5, Hoxa9, Flt3) are deregulated in NUP98/HHEX-induced murine leukemia as well as in human blasts carrying this fusion and might represent bona fide therapeutic targets.
Collapse
|
41
|
Pearson S, Sroczynska P, Lacaud G, Kouskoff V. The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development 2008; 135:1525-35. [PMID: 18339678 DOI: 10.1242/dev.011767] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The differentiation of embryonic stem (ES) cells offers a powerful approach to study mechanisms implicated in cell fate decision. A major hurdle, however, is to promote the directed and efficient differentiation of ES cells toward a specific lineage. Here, we define in serum-free media the minimal factor requirement controlling each step of the differentiation process, resulting in the production of highly enriched hematopoietic progenitors. Four factors - Bmp4, activin A, bFGF (Fgf2) and VEGF (VegfA) - are sufficient to drive the selective and efficient differentiation of mouse ES cells to hematopoiesis. Each of these factors appears to regulate a step of the process: Bmp4 promotes the very efficient formation of mesoderm; bFGF and activin A induce the differentiation of these mesodermal precursors to the hemangioblast fate; and VEGF is required for the production of fully committed hematopoietic progenitors. The stimulation of mesodermal precursors by bFGF and activin A switches on very rapidly the hematopoietic program, allowing us to dissect the molecular events leading to the formation of the hemangioblast. Runx1, Scl (Tal1) and Hhex expression is upregulated within 3 hours of stimulation, whereas upregulation of Lmo2 and Fli1 is observed later. Interestingly, increased expression levels of genes such as cMyb, Pu.1 (Sfpi1), Gata1 and Gata2 are not observed at the onset of hemangioblast commitment. This stepwise control of differentiation is extremely efficient, giving rise to a very high frequency of hematopoietic precursors, and provides an optimal system for understanding the molecular machineries involved in blood progenitor commitment.
Collapse
Affiliation(s)
- Stella Pearson
- Cancer Research UK, Paterson Institute for Cancer Research, Manchester University, Wilmslow Road, M20 4BX, Manchester, UK
| | | | | | | |
Collapse
|
42
|
Golledge J, Van Campenhout A, Pal S, Rush C. Bone marrow-derived cells and arterial disease. J Vasc Surg 2007; 46:590-600. [PMID: 17826253 DOI: 10.1016/j.jvs.2007.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/07/2007] [Indexed: 12/11/2022]
Abstract
This article reviews the association between bone and artery disease, with particular relevance to progenitor cells. The review was based on insight gained by analysis of previous publications and on-going work by the authors. A large number of studies have demonstrated a correlation between bone pathology, particularly osteoporosis, and atherosclerosis. In this review we highlight the particular aspect of bone marrow progenitor cells in the bone-artery link. Progenitor cells, primarily those believed to give rise to endothelial cells, have been inversely correlated with atherosclerosis severity and risk factors. Therapeutic approaches aimed at manipulating progenitor cells in revascularization and vascular repair have demonstrated some promising results. Subtypes of progenitor cells have also been linked with vascular pathology, however, and further studies are required to assess relative beneficial and pathologic effects of bone marrow-derived progenitors. Further understanding of the link between bone and artery pathophysiology is likely to be of significant value in developing new therapies for vascular disease.
Collapse
Affiliation(s)
- Jonathan Golledge
- Vascular Biology Unit, School of Medicine, James Cook University, Townsville, Queensland, Australia.
| | | | | | | |
Collapse
|
43
|
Dixon DN, Izon DJ, Dagger S, Callow MJ, Taplin RH, Kees UR, Greene WK. TLX1/HOX11 transcription factor inhibits differentiation and promotes a non-haemopoietic phenotype in murine bone marrow cells. Br J Haematol 2007; 138:54-67. [PMID: 17555447 DOI: 10.1111/j.1365-2141.2007.06626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The TLX/HOX11 subfamily of divergent homeobox genes are involved in various aspects of embryogenesis and, in the case of TLX1/HOX11 and TLX3/HOX11L2, feature prominently as oncogenes in human T-cell acute lymphoblastic leukaemia. TLX1 possesses immortalising activity in a wide variety of blood cell lineages, however, the effect of this oncogene on haemopoietic cell differentiation has not been fully investigated. We therefore constitutively expressed TLX1 in murine bone marrow or fetal liver cells using retroviral transfer followed by transplantation and/or in vitro culture. TLX1 was found to dramatically alter haemopoiesis, promoting the emergence of a non-haemopoietic CD45(-) CD31(+) cell population while markedly inhibiting erythroid and granulocytic cell differentiation. To identify genetic programs perturbed by TLX1, a comparison of transcript profiles from J2E erythroid cells with and without enforced TLX1 expression was undertaken. This revealed a pattern of gene expression indicative of enhanced proliferation coupled to differentiation arrest. Of the genes identified, two, KIT and VEGFC, were found to be potential TLX1 targets based on transcriptional assays. These results demonstrate that TLX1 can act broadly to impair haemopoiesis and divert differentiation to an alternative fate. This may account for its ability to promote the pre-leukaemic state via perturbation of specific gene expression programs.
Collapse
Affiliation(s)
- Darcelle N Dixon
- School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Endoglin (ENG), an ancillary receptor for several members of the transforming growth factor (TGF)-beta superfamily, has a well-studied role in endothelial function. Here, we report that endoglin also plays an important role early in development at the level of the hemangioblast, an embryonic progenitor of the hematopoietic and endothelial lineages. Eng(-/-), Eng(+/-) and Eng(+/+) mouse embryonic stem (ES) cells were differentiated as embryoid bodies (EBs) and assayed for blast colony-forming cells (BL-CFCs). Our results showed a profound reduction in hemangioblast frequency in the absence of endoglin. Furthermore, cell-sorting experiments revealed that endoglin marks the hemangioblast on day 3 of EB differentiation. When analyzed for hematopoietic and endothelial activity, replated Eng(-/-) BL-CFCs presented limited hematopoietic potential, whereas endothelial differentiation was unaltered. Analysis of hematopoietic colony formation of EBs, at different time points, further supports a function for endoglin in early hematopoiesis. Taken together, these findings point to a role for endoglin in both hemangioblast specification and hematopoietic commitment.
Collapse
Affiliation(s)
- Rita C R Perlingeiro
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9133, USA.
| |
Collapse
|
45
|
Douville JM, Wigle JT. Regulation and function of homeodomain proteins in the embryonic and adult vascular systems. Can J Physiol Pharmacol 2007; 85:55-65. [PMID: 17487245 DOI: 10.1139/y06-091] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During embryonic development, the cardiovascular system first forms and then gives rise to the lymphatic vascular system. Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. These genes all encode proteins that are transcription factors that contain a well conserved DNA binding motif, the homeodomain. It is through the homeodomain that these transcription factors bind to the promoters of target genes and regulate their expression. Although many homeodomain proteins have been found to be expressed within the vascular systems, little is known about their downstream target genes. This review highlights recent advances made in the identification of novel genes downstream of the homeodomain proteins that are necessary for regulating vascular cellular processes such as proliferation, migration, and endothelial tube formation. Factors known to regulate the functions of vascular cells via modulating the expression of homeobox genes will be discussed. We will also review current methods used to identify and characterize downstream target genes of homeodomain proteins.
Collapse
Affiliation(s)
- Josette M Douville
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | | |
Collapse
|
46
|
Bhattacherjee V, Mukhopadhyay P, Singh S, Johnson C, Philipose JT, Warner CP, Greene RM, Pisano MM. Neural crest and mesoderm lineage-dependent gene expression in orofacial development. Differentiation 2007; 75:463-77. [PMID: 17286603 DOI: 10.1111/j.1432-0436.2006.00145.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study utilizes a combination of genetic labeling/selective isolation of pluripotent embryonic progenitor cells, and oligonucleotide-based microarray technology, to delineate and compare the "molecular fingerprint" of two mesenchymal cell populations from distinct lineages in the developing embryonic orofacial region. The first branchial arches-bi-lateral tissue primordia that flank the primitive oral cavity-are populated by pluripotent mesenchymal cells from two different lineages: neural crest (neuroectoderm)- and mesoderm-derived mesenchymal cells. These cells give rise to all of the connective tissue elements (bone, cartilage, smooth and skeletal muscle, dentin) of the orofacial region (maxillary and mandibular portion), as well as neurons and glia associated with the cranial ganglia, among other tissues. In the present study, neural crest- and mesoderm-derived mesenchymal cells were selectively isolated from the first branchial arch of gestational day 9.5 mouse embryos using laser capture microdissection (LCM). The two different embryonic cell lineages were distinguished through utilization of a novel two component transgenic mouse model (Wnt1Cre/ZEG) in which the neural crest cells and their derivatives are indelibly marked (i.e., expressing enhanced green fluorescent protein, EGFP) throughout the pre- and post-natal lifespan of the organism. EGFP-labeled neural crest-derived, and non-fluorescent mesoderm-derived mesenchymal cells from the first branchial arch were visualized in frozen tissue sections from gestational day 9.5 mouse embryos and independently isolated by LCM under epifluorescence optics. RNA was extracted from the two populations of LCM-procured cells, and amplified by double-stranded cDNA synthesis and in vitro transcription. Gene expression profiles of the two progenitor cell populations were generated via hybridization of the cell-type specific cRNA samples to oligo-based GeneChip microarrays. Comparison of gene expression profiles of neural crest- and mesoderm-derived mesenchymal cells from the first branchial arch revealed over 140 genes that exhibited statistically significant differential levels of expression. The gene products of many of these differentially expressed genes have previously been linked to the development of mesoderm- or neural crest-derived tissues in the embryo. Interestingly, however, hitherto uncharacterized coding sequences with highly significant differences in expression between the two embryonic progenitor cell types were also identified. These lineage-dependent mesenchymal cell molecular fingerprints offer the opportunity to elucidate additional mechanisms governing cellular growth, differentiation, and morphogenesis of the embryonic orofacial region. The chemokine stromal cell-derived factor 1, (SDF-1), was found to exhibit greater expression in mesoderm-derived mesenchyme in the branchial arch when compared with neurectoderm, suggesting a possible chemotactic role for SDF-1 in guiding the migratory neural crest cells to their destination. The novel combination of genetic labeling of the neural crest cell population by EGFP coupled with isolation of cells by LCM for gene expression analysis has enabled, for the first time, the generation of gene expression profiles of distinct embryonic cell lineages.
Collapse
Affiliation(s)
- Vasker Bhattacherjee
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, ULSD, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Prindull G. Hemangioblasts representing a functional endothelio-hematopoietic entity in ontogeny, postnatal life, and CML neovasculogenesis. ACTA ACUST UNITED AC 2007; 1:277-84. [PMID: 17142866 DOI: 10.1385/scr:1:3:277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life-long interdependencies/interactions between hemato- and endotheliopoiesis suggest that they form a supplementary functional entity. This view is compatible with the concept of stem cell plasticity as a reversible continuum and is substantiated by the common hematopoietic-endothelial stem cell, i.e., hemangioblasts, with bidirectional, reversible gene transcription and persistence in postnatal life. Indeed, embryonal stem cells/hemangioblasts appear to form a reservior in the adult with the possibility of dedifferentiation of more differentiated progenitor cells back to hemangioblasts. The recent detection of BCR/ABL fusion proteins in endothelial cells during vascular neoangiogenesis in CML suggests that endothelial cells are part of the neoplastic clone, and extends the concept of a functional entity to include CML angiogenesis. Thus, hemangioblasts rather than committed hematopoietic stem cells appear to be target cells for the first oncogenic hit in CML, which could occur as early as during the first steps of embryonal stem cell differentiation towards hemato-endotheliopoiesis and/or in hemangioblasts persisting in adults. The relation of the other leukemias to hemangioblasts is not known.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Fusion Proteins, bcr-abl
- Gene Expression Regulation, Leukemic
- Hematopoiesis
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
Collapse
Affiliation(s)
- Gregor Prindull
- Pediatric Hematology/Oncology, University of Göttingen, Germany.
| |
Collapse
|
48
|
Abstract
Our understanding of the regulation of vascular development has exploded over the past decade. Prior to this time, our knowledge of vascular development was primarily based on classic descriptive studies. The identification of stem cells, lineage markers, specific growth factors and their receptors, and signalling pathways has facilitated a rapid expansion in information regarding details of the mechanisms that govern development of the vascular system.
Collapse
Affiliation(s)
- A M Suburo
- Facultad de Ciencias Biomédicas, Universidad Austral, B1629AHJ Buenos Aires, Argentina
| | | |
Collapse
|
49
|
Zou GM, Luo MH, Reed A, Kelley MR, Yoder MC. Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood 2006; 109:1917-22. [PMID: 17053053 DOI: 10.1182/blood-2006-08-044172] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ape1 is a molecule with dual functions in DNA repair and redox regulation of transcription factors. In Ape1-deficient mice, embryos do not survive beyond embryonic day 9, indicating that this molecule is required for normal embryo development. Currently, direct evidence of the role of Ape1 in regulating hematopoiesis is lacking. We used the embryonic stem (ES) cell differentiation system and an siRNA approach to knockdown Ape1 gene expression to test the role of Ape1 in hematopoiesis. Hemangioblast development from ES cells was reduced 2- to 3-fold when Ape1 gene expression was knocked down by Ape1-specific siRNA, as was primitive and definitive hematopoiesis. Impaired hematopoiesis was not associated with increased apoptosis in siRNA-treated cells. To begin to explore the mechanism whereby Ape1 regulates hematopoiesis, we found that inhibition of the redox activity of Ape1 with E3330, a specific Ape1 redox inhibitor, but not Ape1 DNA repair activity, which was blocked using the small molecule methoxyamine, affected cytokine-mediated hemangioblast development in vitro. In summary, these data indicate Ape1 is required in normal embryonic hematopoiesis and that the redox function, but not the repair endonuclease activity, of Ape1 is critical in normal embryonic hematopoietic development.
Collapse
Affiliation(s)
- Gang-Ming Zou
- Department of Pediatrics (Section of Hematology/Oncology), Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
50
|
Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 2006; 300:74-89. [PMID: 17055477 DOI: 10.1016/j.ydbio.2006.08.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
A set of 96 homeobox transcription factors was identified in the Strongylocentrotus purpuratus genome using permissive blast searches with a large collection of authentic homeodomain sequences from mouse, human and fly. A phylogenetic tree was constructed to compare the sea urchin homeobox gene family to those of vertebrates, with the result that with the only a few exceptions, orthologs of all vertebrate homeodomain genes were uncovered by our search. QPCR time course measurements revealed that 65% of these genes are expressed within the first 48 h of development (late gastrula). For genes displaying sufficiently high levels of transcript during the first 24 h of development (late blastula), whole mount in situ hybridization was carried out up to 48 h to determine spatial patterns of expression. The results demonstrate that homeodomain transcription factors participate in multiple and diverse developmental functions, in that they are used at a range of time points and in every territory of the developing embryo.
Collapse
|