1
|
Newton LM, Fowler VM, Humbert PO. Erythroblast enucleation at a glance. J Cell Sci 2024; 137:jcs261673. [PMID: 39397781 PMCID: PMC11529606 DOI: 10.1242/jcs.261673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Erythroid enucleation, the penultimate step in mammalian erythroid terminal differentiation, is a unique cellular process by which red blood cells (erythrocytes) remove their nucleus and accompanying nuclear material. This complex, multi-stage event begins with chromatin compaction and cell cycle arrest and ends with generation of two daughter cells: a pyrenocyte, which contains the expelled nucleus, and an anucleate reticulocyte, which matures into an erythrocyte. Although enucleation has been compared to asymmetric cell division (ACD), many mechanistic hallmarks of ACD appear to be absent. Instead, enucleation appears to rely on mechanisms borrowed from cell migration, endosomal trafficking and apoptosis, as well as unique cellular interactions within the microenvironment. In this Cell Science at a Glance article and the accompanying poster, we summarise current insights into the morphological features and genetic drivers regulating the key intracellular events that culminate in erythroid enucleation and engulfment of pyrenocytes by macrophages within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Lucas M. Newton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3073, Australia
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3073, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Hsia CCW. Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen. Semin Respir Crit Care Med 2023; 44:594-611. [PMID: 37541315 DOI: 10.1055/s-0043-1770061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.
Collapse
Affiliation(s)
- Connie C W Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
4
|
Delgadillo LF, Huang YS, Leon S, Palis J, Waugh RE. Development of Mechanical Stability in Late-Stage Embryonic Erythroid Cells: Insights From Fluorescence Imaged Micro-Deformation Studies. Front Physiol 2022; 12:761936. [PMID: 35082687 PMCID: PMC8784407 DOI: 10.3389/fphys.2021.761936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The combined use of fluorescence labeling and micro-manipulation of red blood cells has proven to be a powerful tool for understanding and characterizing fundamental mechanisms underlying the mechanical behavior of cells. Here we used this approach to study the development of the membrane-associated cytoskeleton (MAS) in primary embryonic erythroid cells. Erythropoiesis comes in two forms in the mammalian embryo, primitive and definitive, characterized by intra- and extra-vascular maturation, respectively. Primitive erythroid precursors in the murine embryo first begin to circulate at embryonic day (E) 8.25 and mature as a semi-synchronous cohort before enucleating between E12.5 and E16.5. Previously, we determined that the major components of the MAS become localized to the membrane between E10.5 and E12.5, and that this localization is associated with an increase in membrane mechanical stability over this same period. The change in mechanical stability was reflected in the creation of MAS-free regions of the membrane at the tips of the projections formed when cells were aspirated into micropipettes. The tendency to form MAS-free regions decreases as primitive erythroid cells continue to mature through E14.5, at least 2 days after all detectable cytoskeletal components are localized to the membrane, indicating continued strengthening of membrane cohesion after membrane localization of cytoskeletal components. Here we demonstrate that the formation of MAS-free regions is the result of a mechanical failure within the MAS, and not the detachment of membrane bilayer from the MAS. Once a "hole" is formed in the MAS, the skeletal network contracts laterally along the aspirated projection to form the MAS-free region. In protein 4.1-null primitive erythroid cells, the tendency to form MAS-free regions is markedly enhanced. Of note, similar MAS-free regions were observed in maturing erythroid cells from human marrow, indicating that similar processes occur in definitive erythroid cells. We conclude that localization of cytoskeletal components to the cell membrane of mammalian erythroid cells during maturation is insufficient by itself to produce a mature MAS, but that subsequent processes are additionally required to strengthen intraskeletal interactions.
Collapse
Affiliation(s)
- Luis F. Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Yu Shan Huang
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Sami Leon
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - James Palis
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States,*Correspondence: Richard E. Waugh,
| |
Collapse
|
5
|
Javed R, Flores L, Bhave SJ, Jawed A, Mishra DK. The Future of Red Cell Transfusion Lies in Cultured Red Cells. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1740068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBlood is a very important resource for healthcare-based services and there has been a consistently increasing demand for it in most parts of the world. Poor volunteer-based collection system, high-risk of transfusion-transmitted infections, and emergence of new pathogens as evident from the ongoing Coronavirus Disease 2019 (COVID-19) pandemic are potential challenges to the global healthcare systems. It is imperative to explore safe and reliable alternatives to red cell transfusions. Ex vivo culture of red cells (cRBCs) from different sources such as hematopoietic stem cells (HSCs), pluripotent stem cells, and immortalized progenitors (e.g., BELA-2 cells) could revolutionize transfusion medicine. cRBC could be of great diagnostic and therapeutic utility. It may provide a backup in times of acute shortages in patients with rare blood groups, and in cases with multiple antibodies or sickle cell anemia. The CRISP-Cas9 system has been used to develop personalized, multi-compatible RBCs for diagnostic reagents and patients with multiple allo-antibodies. cRBC could be practically feasible for pediatric patients, who require small quantities of red cell transfusions. cRBC produced under good manufacturing practice (GMP) conditions has been reported to survive in human blood circulation for more than 26 days. Recently, a phase I randomized controlled clinical trial called RESTORE was initiated to assess the survival and recovery of cRBCs. However, feasible technological advancement is required to produce enough cRBCs for clinical use. It is crucial to identify sustainable sources for large-scale production of clinically useful cRBCs. Although the potential cost of one unit of cRBC is extrapolated to be around US$ 8000, it is a life-saving product for patients having rare blood groups and is a “ready to use” source of phenotype-matched, homogenous young red cells in emergency situations.
Collapse
Affiliation(s)
- Rizwan Javed
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Lorraine Flores
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| | - Saurabh Jayant Bhave
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Asheer Jawed
- Department of Respiratory Medicine at William Harvey Hospital, Ashford, United Kingdom
| | | |
Collapse
|
6
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
7
|
A new role of glutathione peroxidase 4 during human erythroblast enucleation. Blood Adv 2021; 4:5666-5680. [PMID: 33211827 DOI: 10.1182/bloodadvances.2020003100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The selenoprotein glutathione peroxidase 4 (GPX4), the only member of the glutathione peroxidase family able to directly reduce cell membrane-oxidized fatty acids and cholesterol, was recently identified as the central regulator of ferroptosis. GPX4 knockdown in mouse hematopoietic cells leads to hemolytic anemia and to increased spleen erythroid progenitor death. The role of GPX4 during human erythropoiesis is unknown. Using in vitro erythroid differentiation, we show here that GPX4-irreversible inhibition by 1S,3R-RSL3 (RSL3) and its short hairpin RNA-mediated knockdown strongly impaired enucleation in a ferroptosis-independent manner not restored by tocopherol or iron chelators. During enucleation, GPX4 localized with lipid rafts at the cleavage furrows between reticulocytes and pyrenocytes. Its inhibition impacted enucleation after nuclear condensation and polarization and was associated with a defect in lipid raft clustering (cholera toxin staining) and myosin-regulatory light-chain phosphorylation. Because selenoprotein translation and cholesterol synthesis share a common precursor, we investigated whether the enucleation defect could represent a compensatory mechanism favoring GPX4 synthesis at the expense of cholesterol, known to be abundant in lipid rafts. Lipidomics and filipin staining failed to show any quantitative difference in cholesterol content after RSL3 exposure. However, addition of cholesterol increased cholera toxin staining and myosin-regulatory light-chain phosphorylation, and improved enucleation despite GPX4 knockdown. In summary, we identified GPX4 as a new actor of human erythroid enucleation, independent of its function in ferroptosis control. We described its involvement in lipid raft organization required for contractile ring assembly and cytokinesis, leading in fine to nucleus extrusion.
Collapse
|
8
|
Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, Xu J, Xu C, Boulais PE, Zhang D, Maryanovich M, Cuervo AM, Frenette PS. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat Commun 2021; 12:2522. [PMID: 33947846 PMCID: PMC8097058 DOI: 10.1038/s41467-021-22749-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Haematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island, is a membrane-associated E3 ubiquitin ligase subunit essential for HSC maintenance and lymphoid potential. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and leads to a lethal myeloproliferative syndrome. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in the absence of Maea, thereby prolonging their intracellular signalling. This is associated with impaired autophagy flux in HSCs but not in mature haematopoietic cells. Administration of receptor kinase inhibitor or autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. Our results suggest that MAEA provides E3 ubiquitin ligase activity, guarding HSC function by restricting cytokine receptor signalling via autophagy.
Collapse
Affiliation(s)
- Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shuxian Dong
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philip E Boulais
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 2021; 46:100740. [PMID: 32798012 DOI: 10.1016/j.blre.2020.100740] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
A characteristic feature of terminal erythropoiesis in mammals is extrusion of the highly condensed nucleus out of the cytoplasm. Other vertebrates, including fish, reptiles, amphibians, and birds, undergo nuclear condensation but do not enucleate. Enucleation provides mammals evolutionary advantages by gaining extra space for hemoglobin and being more flexible to migrate through capillaries. Nascent reticulocytes further mature into red blood cells through membrane and proteome remodeling and organelle clearance. Over the past decade, novel molecular mechanisms and signaling pathways have been uncovered that play important roles in chromatin condensation, enucleation, and reticulocyte maturation. These advances not only increase understanding of the physiology of erythropoiesis, but also facilitate efforts in generating in vitro red blood cells for various translational application. In the present review, recent studies in epigenetic modification and release of histones during chromatin condensation are highlighted. New insights in enucleation, including protein sorting, vesicle trafficking, transcriptional regulation, noncoding RNA, cytoskeleton remodeling, erythroblastic islands, and cytokinesis, are summarized. Moreover, organelle clearance and proteolysis mediated by ubiquitin-proteasome degradation during reticulocytes maturation is also examined. Perspectives for future directions in this rapidly evolving research area are also provided.
Collapse
Affiliation(s)
- Yang Mei
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Yijie Liu
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Li W, Guo R, Song Y, Jiang Z. Erythroblastic Island Macrophages Shape Normal Erythropoiesis and Drive Associated Disorders in Erythroid Hematopoietic Diseases. Front Cell Dev Biol 2021; 8:613885. [PMID: 33644032 PMCID: PMC7907436 DOI: 10.3389/fcell.2020.613885] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023] Open
Abstract
Erythroblastic islands (EBIs), discovered more than 60 years ago, are specialized microenvironments for erythropoiesis. This island consists of a central macrophage with surrounding developing erythroid cells. EBI macrophages have received intense interest in the verifications of the supporting erythropoiesis hypothesis. Most of these investigations have focused on the identification and functional analyses of EBI macrophages, yielding significant progresses in identifying and isolating EBI macrophages, as well as verifying the potential roles of EBI macrophages in erythropoiesis. EBI macrophages express erythropoietin receptor (Epor) both in mouse and human, and Epo acts on both erythroid cells and EBI macrophages simultaneously in the niche, thereby promoting erythropoiesis. Impaired Epor signaling in splenic niche macrophages significantly inhibit the differentiation of stress erythroid progenitors. Moreover, accumulating evidence suggests that EBI macrophage dysfunction may lead to certain erythroid hematological disorders. In this review, the heterogeneity, identification, and functions of EBI macrophages during erythropoiesis under both steady-state and stress conditions are outlined. By reviewing the historical data, we discuss the influence of EBI macrophages on erythroid hematopoietic disorders and propose a new hypothesis that erythroid hematopoietic disorders are driven by EBI macrophages.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxin Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci 2020; 77:1681-1694. [PMID: 31654099 PMCID: PMC11105037 DOI: 10.1007/s00018-019-03346-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
12
|
Flatt JF, Stevens-Hernandez CJ, Cogan NM, Eggleston DJ, Haines NM, Heesom KJ, Picard V, Thomas C, Bruce LJ. Expression of South East Asian Ovalocytic Band 3 Disrupts Erythroblast Cytokinesis and Reticulocyte Maturation. Front Physiol 2020; 11:357. [PMID: 32411010 PMCID: PMC7199003 DOI: 10.3389/fphys.2020.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Southeast Asian Ovalocytosis results from a heterozygous deletion of 9 amino acids in the erythrocyte anion exchange protein AE1 (band 3). The report of the first successful birth of an individual homozygous for this mutation showed an association with severe dyserythropoietic anemia. Imaging of the proband’s erythrocytes revealed the presence of band 3 at their surface, a reduction in Wr(b) antigen expression, and increases in glycophorin C, CD44, and CD147 immunoreactivity. Immunoblotting of membranes from heterozygous Southeast Asian Ovalocytosis red cells showed a quantitative increase in CD44, CD147, and calreticulin suggesting a defect in reticulocyte maturation, as well as an increase in phosphorylation at residue Tyr359 of band 3, and peroxiredoxin-2 at the membrane, suggesting altered band 3 trafficking and oxidative stress, respectively. In vitro culture of homozygous and heterozygous Southeast Asian Ovalocytosis erythroid progenitor cells produced bi- and multi-nucleated cells. Enucleation was severely impaired in the homozygous cells and reduced in the heterozygous cells. Large internal vesicular accumulations of band 3 formed, which co-localized with other plasma membrane proteins and with the autophagosome marker, LC3, but not with ER, Golgi or recycling endosome markers. Immunoprecipitation of band 3 from erythroblast cell lysates at the orthochromatic stage showed increased interaction of the mutant band 3 with heat shock proteins, ubiquitin and cytoskeleton proteins, ankyrin, spectrin and actin. We also found that the mutant band 3 forms a strong interaction with non-muscle myosins IIA and IIB, while this interaction could not be detected in wild type erythroblasts. Consistent with this, the localization of non-muscle myosin IIA and actin was perturbed in some Southeast Asian Ovalocytosis erythroblasts. These findings provide new insights toward understanding in vivo dyserythropoiesis caused by the expression of mutant membrane proteins.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Nicola M Cogan
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Daniel J Eggleston
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Nicole M Haines
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Veronique Picard
- Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpital Bicêtre, Paris, France.,Faculté de Pharmacie, Université Paris-Saclay, Chatenay Malabry, France
| | - Caroline Thomas
- Hématologie et Immunologie Pédiatrique, Hôpital Mère Enfants, Nantes, France
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
13
|
Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 2019; 11:873-894. [PMID: 31418139 PMCID: PMC6874942 DOI: 10.1007/s12551-019-00579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- School of Chemistry, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia.
- University of Sydney Nano Institute, Sydney, Australia.
| |
Collapse
|
14
|
Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood 2019; 133:1222-1232. [PMID: 30674470 DOI: 10.1182/blood-2018-11-888180] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
The erythroblastic island (EI), formed by a central macrophage and developing erythroblasts (EBs), was first described decades ago and was recently shown to play an in vivo role in homeostatic and pathological erythropoiesis. The exact molecular mechanisms, however, mediating the interactions between macrophages and EBs remain unclear. Macrophage-EB attacher (Maea) has previously been suggested to mediate homophilic adhesion bounds bridging macrophages and EBs. Maea-deficient mice die perinatally with anemia and defective erythrocyte enucleation, suggesting a critical role in fetal erythropoiesis. Here, we generated conditional knockout mouse models of Maea to assess its cellular and postnatal contributions. Deletion of Maea in macrophages using Csf1r-Cre or CD169-Cre caused severe reductions of bone marrow (BM) macrophages, EBs, and in vivo island formation, whereas its deletion in the erythroid lineage using Epor-Cre had no such phenotype, suggesting a dominant role of Maea in the macrophage for BM erythropoiesis. Interestingly, Maea deletion in spleen macrophages did not alter their numbers or functions. Postnatal Maea deletion using Mx1-Cre or function inhibition using a novel monoclonal antibody also impaired BM erythropoiesis. These results indicate that Maea contributes to adult BM erythropoiesis by regulating the maintenance of macrophages and their interaction with EBs via an as-yet-unidentified EB receptor.
Collapse
|
15
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Abstract
Enucleation is the final step in mammalian erythropoiesis. In this process, the nucleus is extruded by budding off from the erythroblast, forming the reticulocyte. Herein, we describe the flow cytometry-based assays for enucleation assessment. The separation of nucleated erythroblasts, reticulocytes, and extruded nuclei by flow cytometry is based on DNA staining, surface expression of erythrocyte specific markers, or forward scatter (FSC). The enucleation of murine erythroblasts is assessed by the surface expression of murine erythrocyte marker Ter119 and DNA staining. Three discrete populations that represent nucleated erythroblasts, reticulocytes, and extruded nuclei are defined as HoechstmedTER119high, HoechstlowTER119high, and HoechsthighTER119med, respectively. Another nuclei acid staining dye, SYTO16, is used for the assessment of human enucleation in combination with FSC. For human cells, the three populations that represent nucleated erythroblasts, reticulocyte, and extruded nuclei are identified as FSChigh SYTO16+, FSChigh SYTO16-, FSClowSYTO16+, respectively.
Collapse
|
17
|
Minetti G, Achilli C, Perotti C, Ciana A. Continuous Change in Membrane and Membrane-Skeleton Organization During Development From Proerythroblast to Senescent Red Blood Cell. Front Physiol 2018; 9:286. [PMID: 29632498 PMCID: PMC5879444 DOI: 10.3389/fphys.2018.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cesare Achilli
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cesare Perotti
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annarita Ciana
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
18
|
|
19
|
Moras M, Lefevre SD, Ostuni MA. From Erythroblasts to Mature Red Blood Cells: Organelle Clearance in Mammals. Front Physiol 2017; 8:1076. [PMID: 29311991 PMCID: PMC5742207 DOI: 10.3389/fphys.2017.01076] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Erythropoiesis occurs mostly in bone marrow and ends in blood stream. Mature red blood cells are generated from multipotent hematopoietic stem cells, through a complex maturation process involving several morphological changes to produce a highly functional specialized cells. In mammals, terminal steps involved expulsion of the nucleus from erythroblasts that leads to the formation of reticulocytes. In order to produce mature biconcave red blood cells, organelles and ribosomes are selectively eliminated from reticulocytes as well as the plasma membrane undergoes remodeling. The mechanisms involved in these last maturation steps are still under investigation. Enucleation involves dramatic chromatin condensation and establishment of the nuclear polarity, which is driven by a rearrangement of actin cytoskeleton and the clathrin-dependent generation of vacuoles at the nuclear-cytoplasmic junction. This process is favored by interaction between the erythroblasts and macrophages at the erythroblastic island. Mitochondria are eliminated by mitophagy. This is a macroautophagy pathway consisting in the engulfment of mitochondria into a double-membrane structure called autophagosome before degradation. Several mice knock-out models were developed to identify mitophagy-involved proteins during erythropoiesis, but whole mechanisms are not completely determined. Less is known concerning the clearance of other organelles, such as smooth and rough ER, Golgi apparatus and ribosomes. Understanding the modulators of organelles clearance in erythropoiesis may elucidate the pathogenesis of different dyserythropoietic diseases such as myelodysplastic syndrome, leukemia and anemia.
Collapse
Affiliation(s)
| | | | - Mariano A. Ostuni
- UMR-S1134 Integrated Biology of Red Blood Cell, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
20
|
High-Resolution Fluorescence Microscope Imaging of Erythroblast Structure. Methods Mol Biol 2017. [PMID: 29076092 DOI: 10.1007/978-1-4939-7428-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.
Collapse
|
21
|
Zhou S, Huang YS, Kingsley PD, Cyr KH, Palis J, Wan J. Microfluidic assay of the deformability of primitive erythroblasts. BIOMICROFLUIDICS 2017; 11:054112. [PMID: 29085523 PMCID: PMC5653377 DOI: 10.1063/1.4999949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
Collapse
Affiliation(s)
- Sitong Zhou
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Yu-Shan Huang
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, USA
| | - Paul D Kingsley
- Department of Pediatric and Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | - Kathryn H Cyr
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | | |
Collapse
|
22
|
Bayley R, Ahmed F, Glen K, McCall M, Stacey A, Thomas R. The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors. J Tissue Eng Regen Med 2017; 12:e368-e378. [PMID: 27696710 PMCID: PMC5811890 DOI: 10.1002/term.2337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Manufacture of red blood cells (RBCs) from progenitors has been proposed as a method to reduce reliance on donors. Such a process would need to be extremely efficient for economic viability given a relatively low value product and high (2 × 1012) cell dose. Therefore, the aim of these studies was to define the productivity of an industry standard stirred‐tank bioreactor and determine engineering limitations of commercial red blood cells production. Cord blood derived CD34+ cells were cultured under erythroid differentiation conditions in a stirred micro‐bioreactor (Ambr™). Enucleated cells of 80% purity could be created under optimal physical conditions: pH 7.5, 50% oxygen, without gas‐sparging (which damaged cells) and with mechanical agitation (which directly increased enucleation). O2 consumption was low (~5 × 10–8 μg/cell.h) theoretically enabling erythroblast densities in excess of 5 × 108/ml in commercial bioreactors and sub‐10 l/unit production volumes. The bioreactor process achieved a 24% and 42% reduction in media volume and culture time, respectively, relative to unoptimized flask processing. However, media exchange limited productivity to 1 unit of erythroblasts per 500 l of media. Systematic replacement of media constituents, as well as screening for inhibitory levels of ammonia, lactate and key cytokines did not identify a reason for this limitation. We conclude that the properties of erythroblasts are such that the conventional constraints on cell manufacturing efficiency, such as mass transfer and metabolic demand, should not prevent high intensity production; furthermore, this could be achieved in industry standard equipment. However, identification and removal of an inhibitory mediator is required to enable these economies to be realized. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Rachel Bayley
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Forhad Ahmed
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Katie Glen
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Mark McCall
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Adrian Stacey
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Robert Thomas
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
23
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
24
|
Wölwer CB, Gödde N, Pase LB, Elsum IA, Lim KYB, Sacirbegovic F, Walkley CR, Ellis S, Ohno S, Matsuzaki F, Russell SM, Humbert PO. The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation. PLoS One 2017; 12:e0170295. [PMID: 28095473 PMCID: PMC5240992 DOI: 10.1371/journal.pone.0170295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022] Open
Abstract
Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation.
Collapse
Affiliation(s)
- Christina B. Wölwer
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Nathan Gödde
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Luke B. Pase
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Imogen A. Elsum
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Krystle Y. B. Lim
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Faruk Sacirbegovic
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria
| | - Sarah Ellis
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Sarah M. Russell
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, East Melbourne, Australia
- La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:137-148. [PMID: 28344999 PMCID: PMC5363298 DOI: 10.1016/j.omtm.2016.12.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022]
Abstract
To develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34+ hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34+ cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34+ cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34+ HSPCs as an autologous stem cell therapy in SCD patients.
Collapse
|
26
|
Abstract
Terminal erythroid differentiation occurs in the bone marrow, within specialized niches termed erythroblastic islands. These functional units consist of a macrophage surrounded by differentiating erythroblasts and have been described more than five decades ago, but their function in the pathophysiology of erythropoiesis has remained unclear until recently. Here we propose that the central macrophage in the erythroblastic island contributes to the pathophysiology of anemia of inflammation. After introducing erythropoiesis and the interactions between the erythroblasts and the central macrophage within the erythroblastic islands, we will discuss the immunophenotypic characterization of this specific subpopulation of macrophages. We will then integrate these concepts into the currently known pathophysiological drivers of anemia of inflammation and address the role of the central macrophage in this disorder. Finally, as a means of furthering our understanding of the various concepts, we will discuss the differences between murine and rat models with regard to developmental and stress erythropoiesis in an attempt to define a model system representative of human pathophysiology.
Collapse
|
27
|
Mishra R, Sarkar D, Bhattacharya S, Mallick S, Chakraborty M, Mukherjee D, Kar M, Mishra R. Quantifying morphological alteration of RBC population from light scattering data. Clin Hemorheol Microcirc 2016; 59:287-300. [PMID: 23603328 DOI: 10.3233/ch-131726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Studies of RBC morphological alterations, despite their potential clinical and experimental application, are compromised due to lack of simple and rapid techniques. As a complementary approach toward quantitative microscopy, we have reconstituted morphological information from light scattering data obtained from flow cytometer. Normal and poikilocytic agent treated samples were analyzed by microscopy and respective morphological index (MI) was calculated from the morphology based scores assigned to RBC. The samples were simultaneously analyzed by flowcytometer and the scatter data were obtained. Accordingly, the best correlated parameters of both forward scatter and side scatter were chosen to formulate a suitable regression model with MI as response. Flow cytometry data was also verified with another instrument (BD FACS Verse) and the equation obtained was validated with separate set of samples. The multivariate regression analysis yields a quadratic model with MI as response (R2 = 0.96, p < 0.001). The flow cytometric data from both instruments were in good agreement (Intra class correlation ∼0.9, p < 0.001). The model was found to simulate the sample MI with high accuracy (R2 = 0.97, p < 0.001). This proposed method was verified to be simple, rapid, quantitative and cost effective for the measurement of morphological alteration of RBC.
Collapse
Affiliation(s)
- Raghwendra Mishra
- Department of Physiology, University of Calcutta, Kolkata, India.,Department of Biochemistry, NRS Medical College, Kolkata, India
| | - Debasish Sarkar
- Department of Chemical Engineering, University of Calcutta, Kolkata, India
| | | | - Sanjaya Mallick
- CU BD Centre of Excellence for Nanobiotechnology, University of Calcutta, Kolkata, India.,BD Biosciences, Salt Lake, Sector V, Kolkata, India
| | | | - Debarati Mukherjee
- Department of Physiology, University of Calcutta, Kolkata, India.,Department of Biochemistry, NRS Medical College, Kolkata, India
| | - Manoj Kar
- Department of Biochemistry, NRS Medical College, Kolkata, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
28
|
Phylogenetic and Ontogenetic View of Erythroblastic Islands. BIOMED RESEARCH INTERNATIONAL 2015; 2015:873628. [PMID: 26557707 PMCID: PMC4628717 DOI: 10.1155/2015/873628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022]
Abstract
Erythroblastic islands are a hallmark of mammalian erythropoiesis consisting of a central macrophage surrounded by and interacting closely with the maturing erythroblasts. The macrophages are thought to serve many functions such as supporting erythroblast proliferation, supplying iron for hemoglobin, promoting enucleation, and clearing the nuclear debris; moreover, inhibition of erythroblastic island formation is often detrimental to erythropoiesis. There is still much not understood about the role that macrophages and microenvironment play in erythropoiesis and insights may be gleaned from a comparative analysis with erythropoietic niches in nonmammalian vertebrates which, unlike mammals, have erythrocytes that retain their nucleus. The phylogenetic development of erythroblastic islands in mammals in which the erythrocytes are anucleate underlines the importance of the macrophage in erythroblast enucleation.
Collapse
|
29
|
Dasgupta S, Auth T, Gov NS, Satchwell TJ, Hanssen E, Zuccala ES, Riglar DT, Toye AM, Betz T, Baum J, Gompper G. Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J 2015; 107:43-54. [PMID: 24988340 PMCID: PMC4184798 DOI: 10.1016/j.bpj.2014.05.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/25/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022] Open
Abstract
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.
Collapse
Affiliation(s)
- Sabyasachi Dasgupta
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Thorsten Auth
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel; Centre de Recherche, Institut Curie, Paris, France
| | | | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth S Zuccala
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David T Riglar
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Timo Betz
- Centre de Recherche, Institut Curie, Paris, France
| | - Jake Baum
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom.
| | - Gerhard Gompper
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
30
|
Satchwell TJ, Bell AJ, Toye AM. The sorting of blood group active proteins during enucleation. ISBT SCIENCE SERIES 2015; 10:163-168. [PMID: 26640516 PMCID: PMC4668593 DOI: 10.1111/voxs.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enucleation represents the critical stage during red blood cell development when the nucleus is extruded from an orthochromatic erythroblast in order to generate a nascent immature reticulocyte. Extrusion of the nucleus results in loss of a proportion of the erythroblast plasma membrane, which surrounds the nucleus, the bulk of the endoplasmic reticulum and a small region of cytoplasm. For this reason enucleation provides an important point in erythroblast differentiation at which proteins not required for the function of the erythrocyte can be lost, whilst those that are important for the structure-function properties of the mature erythrocyte must be efficiently retained in the reticulocyte plasma membrane. Disturbances in protein distribution during enucleation are envisaged to occur during human diseases such as Hereditary Spherocytosis. This article will discuss the current knowledge of erythroblast enucleation in the context of retention and loss of proteins that display antigenic blood group sites and that exist within multiprotein complexes within the erythrocyte membrane.
Collapse
Affiliation(s)
- Timothy J. Satchwell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| | - Amanda J. Bell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
| | - Ashley M. Toye
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| |
Collapse
|
31
|
Abstract
In this issue of Blood, Toda et al present a shift in the paradigm of erythroid enucleation and provide novel tools to further study and optimize terminal erythroid maturation in vitro.
Collapse
|
32
|
MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 2014; 123:3963-71. [DOI: 10.1182/blood-2014-01-547976] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Key Points
An in vitro system for the engulfment of pyrenocytes was established using erythroblastic islands. MerTK, a receptor kinase, was essential for the engulfment of pyrenocytes by the central macrophages at erythroblastic islands.
Collapse
|
33
|
Baron MH. Concise Review: early embryonic erythropoiesis: not so primitive after all. Stem Cells 2014; 31:849-56. [PMID: 23361843 DOI: 10.1002/stem.1342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/27/2012] [Indexed: 12/28/2022]
Abstract
In the developing embryo, hematopoiesis begins with the formation of primitive erythroid cells (EryP), a distinct and transient red blood cell lineage. EryP play a vital role in oxygen delivery and in generating shear forces necessary for normal vascular development. Progenitors for EryP arise as a cohort within the blood islands of the mammalian yolk sac at the end of gastrulation. As a strong heartbeat is established, nucleated erythroblasts begin to circulate and to mature in a stepwise, nearly synchronous manner. Until relatively recently, these cells were thought to be "primitive" in that they seemed to more closely resemble the nucleated erythroid cells of lower vertebrates than the enucleated erythrocytes of mammals. It is now known that mammalian EryP do enucleate, but not until several days after entering the bloodstream. I will summarize the common and distinguishing characteristics of primitive versus definitive (adult-type) erythroid cells, review the development of EryP from the emergence of their progenitors through maturation and enucleation, and discuss pluripotent stem cells as models for erythropoiesis. Erythroid differentiation of both mouse and human pluripotent stem cells in vitro has thus far reproduced early but not late red blood cell ontogeny. Therefore, a deeper understanding of cellular and molecular mechanisms underlying the differences and similarities between the embryonic and adult erythroid lineages will be critical to improving methods for production of red blood cells for use in the clinic.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
34
|
Sui Z, Nowak RB, Bacconi A, Kim NE, Liu H, Li J, Wickrema A, An XL, Fowler VM. Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 2014; 123:758-67. [PMID: 24159174 PMCID: PMC3907761 DOI: 10.1182/blood-2013-03-492710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022] Open
Abstract
Tropomodulin (Tmod) is a protein that binds and caps the pointed ends of actin filaments in erythroid and nonerythoid cell types. Targeted deletion of mouse tropomodulin3 (Tmod3) leads to embryonic lethality at E14.5-E18.5, with anemia due to defects in definitive erythropoiesis in the fetal liver. Erythroid burst-forming unit and colony-forming unit numbers are greatly reduced, indicating defects in progenitor populations. Flow cytometry of fetal liver erythroblasts shows that late-stage populations are also decreased, including reduced percentages of enucleated cells. Annexin V staining indicates increased apoptosis of Tmod3(-/-) erythroblasts, and cell-cycle analysis reveals that there are more Ter119(hi) cells in S-phase in Tmod3(-/-) embryos. Notably, enucleating Tmod3(-/-) erythroblasts are still in the process of proliferation, suggesting impaired cell-cycle exit during terminal differentiation. Tmod3(-/-) late erythroblasts often exhibit multilobular nuclear morphologies and aberrant F-actin assembly during enucleation. Furthermore, native erythroblastic island formation was impaired in Tmod3(-/-) fetal livers, with Tmod3 required in both erythroblasts and macrophages. In conclusion, disruption of Tmod3 leads to impaired definitive erythropoiesis due to reduced progenitors, impaired erythroblastic island formation, and defective erythroblast cell-cycle progression and enucleation. Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion, coordination of cell cycle with differentiation, and F-actin assembly and remodeling during erythroblast enucleation.
Collapse
Affiliation(s)
- Zhenhua Sui
- The Scripps Research Institute, La Jolla, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5:9. [PMID: 24523696 PMCID: PMC3906564 DOI: 10.3389/fphys.2014.00009] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
Collapse
Affiliation(s)
- Djuna Z de Back
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Elena B Kostova
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Marian van Kraaij
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Timo K van den Berg
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Robin van Bruggen
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
36
|
Abstract
Red blood cells (RBCs), which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO) is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
37
|
Szade K, Bukowska-Strakova K, Nowak WN, Szade A, Kachamakova-Trojanowska N, Zukowska M, Jozkowicz A, Dulak J. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 2013; 8:e63329. [PMID: 23696815 PMCID: PMC3656957 DOI: 10.1371/journal.pone.0063329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/30/2013] [Indexed: 02/06/2023] Open
Abstract
Murine very small embryonic-like (VSEL) cells, defined by the Lin(-)Sca-1(+)CD45(-) phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-)Sca(+)CD45(-) population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs) or endothelial progenitor cells (EPCs). The study evidenced that murine Lin(-)Sca-1(+)CD45(-) population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+)KDR(-), c-Kit(-)KDR(+), and c-Kit(-)KDR(-) subpopulations could be distinguished, while c-Kit(+)KDR(+) events were very rare. The c-Kit(+)KDR(-) subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-)KDR(+) cells. The c-Kit(-)KDR(-)FSC(low) subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-)Sca-1(+)CD45(-)FSC(low) population, even by single-cell qRT-PCR. We also found that the Lin(-)Sca-1(+)CD45(-)c-Kit(+) subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+)c-Kit(+)Lin(-) (SKL) CD34(-)CD45(-)CD105(+) cells, expressing particular HSC markers. Co-culture of Lin(-)Sca-1(+)CD45(-)FSC(low) with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-)CD105(+) subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-)Sca-1(+)CD45(-)FSC(low) cells are heterogeneous population, which do not express the pluripotency marker Oct-4A. Despite expression of some hematopoietic markers by a Lin(-)Sca-1(+)CD45(-)c-Kit(+)KDR(-) subset of VSELs, they do not display hematopoietic potential in a clonogenic assay and are enriched in early apoptotic cells.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| |
Collapse
|
38
|
Bell AJ, Satchwell TJ, Heesom KJ, Hawley BR, Kupzig S, Hazell M, Mushens R, Herman A, Toye AM. Protein distribution during human erythroblast enucleation in vitro. PLoS One 2013; 8:e60300. [PMID: 23565219 PMCID: PMC3614867 DOI: 10.1371/journal.pone.0060300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
Enucleation is the step in erythroid terminal differentiation when the nucleus is expelled from developing erythroblasts creating reticulocytes and free nuclei surrounded by plasma membrane. We have studied protein sorting during human erythroblast enucleation using fluorescence activated cell sorting (FACS) to obtain pure populations of reticulocytes and nuclei produced by in vitro culture. Nano LC mass spectrometry was first used to determine the protein distribution profile obtained from the purified reticulocyte and extruded nuclei populations. In general cytoskeletal proteins and erythroid membrane proteins were preferentially restricted to the reticulocyte alongside key endocytic machinery and cytosolic proteins. The bulk of nuclear and ER proteins were lost with the nucleus. In contrast to the localization reported in mice, several key erythroid membrane proteins were detected in the membrane surrounding extruded nuclei, including band 3 and GPC. This distribution of key erythroid membrane and cytoskeletal proteins was confirmed using western blotting. Protein partitioning during enucleation was investigated by confocal microscopy with partitioning of cytoskeletal and membrane proteins to the reticulocyte observed to occur at a late stage of this process when the nucleus is under greatest constriction and almost completely extruded. Importantly, band 3 and CD44 were shown not to restrict specifically to the reticulocyte plasma membrane. This highlights enucleation as a stage at which excess erythroid membrane proteins are discarded in human erythroblast differentiation. Given the striking restriction of cytoskeleton proteins and the fact that membrane proteins located in macromolecular membrane complexes (e.g. GPA, Rh and RhAG) are segregated to the reticulocyte, we propose that the membrane proteins lost with the nucleus represent an excess mobile population of either individual proteins or protein complexes.
Collapse
Affiliation(s)
- Amanda J. Bell
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Kate J. Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Bethan R. Hawley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Sabine Kupzig
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
| | - Matthew Hazell
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
| | - Rosey Mushens
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
| | - Andrew Herman
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Characteristics of myeloid differentiation and maturation pathway derived from human hematopoietic stem cells exposed to different linear energy transfer radiation types. PLoS One 2013; 8:e59385. [PMID: 23555027 PMCID: PMC3595281 DOI: 10.1371/journal.pone.0059385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34+ cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34+ cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D0 = 0.65) than to X-rays (D0 = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a+ erythroid-related fraction, whereas carbon-ion beams increased the CD34+CD38− primitive cell fraction and the CD13+CD14+/−CD15− fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface antigen expression by mature myeloid cells derived from HSPCs exposed to each type of radiation was similar to that by controls.
Collapse
|
40
|
Baron MH, Isern J, Fraser ST. The embryonic origins of erythropoiesis in mammals. Blood 2012; 119:4828-37. [PMID: 22337720 PMCID: PMC3367890 DOI: 10.1182/blood-2012-01-153486] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
Erythroid (red blood) cells are the first cell type to be specified in the postimplantation mammalian embryo and serve highly specialized, essential functions throughout gestation and postnatal life. The existence of 2 developmentally and morphologically distinct erythroid lineages, primitive (embryonic) and definitive (adult), was described for the mammalian embryo more than a century ago. Cells of the primitive erythroid lineage support the transition from rapidly growing embryo to fetus, whereas definitive erythrocytes function during the transition from fetal life to birth and continue to be crucial for a variety of normal physiologic processes. Over the past few years, it has become apparent that the ontogeny and maturation of these lineages are more complex than previously appreciated. In this review, we highlight some common and distinguishing features of the red blood cell lineages and summarize advances in our understanding of how these cells develop and differentiate throughout mammalian ontogeny.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | |
Collapse
|
41
|
Topological analysis of small leucine-rich repeat proteoglycan nyctalopin. PLoS One 2012; 7:e33137. [PMID: 22485138 PMCID: PMC3317652 DOI: 10.1371/journal.pone.0033137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/10/2012] [Indexed: 11/24/2022] Open
Abstract
Nyctalopin is a small leucine rich repeat proteoglycan (SLRP) whose function is
critical for normal vision. The absence of nyctalopin results in the complete
form of congenital stationary night blindness. Normally, glutamate released by
photoreceptors binds to the metabotropic glutamate receptor type 6 (GRM6), which
through a G-protein cascade closes the non-specific cation channel, TRPM1, on
the dendritic tips of depolarizing bipolar cells (DBCs) in the retina.
Nyctalopin has been shown to interact with TRPM1 and expression of TRPM1 on the
dendritic tips of the DBCs is dependent on nyctalopin expression. In the current
study, we used yeast two hybrid and biochemical approaches to investigate
whether murine nyctalopin was membrane bound, and if so by what mechanism, and
also whether the functional form was as a homodimer. Our results show that
murine nyctalopin is anchored to the plasma membrane by a single transmembrane
domain, such that the LRR domain is located in the extracellular space.
Collapse
|
42
|
Afrin R, Nakaji M, Sekiguchi H, Lee D, Kishimoto K, Ikai A. Forced extension of delipidated red blood cell cytoskeleton with little indication of spectrin unfolding. Cytoskeleton (Hoboken) 2012; 69:101-12. [DOI: 10.1002/cm.21001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 11/07/2022]
|
43
|
Abstract
PURPOSE OF REVIEW Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunity, cancer, infection). We discuss here how galectins contribute to the development of specialized microenvironmental niches during hematopoiesis. RECENT FINDINGS An expanding set of data strengthens a role of galectins in hematopoietic differentiation, particularly by setting specific interactions between hematopoietic and stromal cells: galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development. Moreover, expression of galectins-1 and 10 are differentially expressed during T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be regulated during myelopoiesis and traffic into intracellular compartments, dictating the cellular distribution of specific glycoproteins and glycosphingolipids. SUMMARY The abundance of galectins in both extracellular and intracellular compartments, their multifunctional properties and ability to form supramolecular signaling complexes with specific glycoconjugates, make these glycan-binding proteins excellent candidates to mediate interactions between hematopoietic cells and the stromal microenvironment. Their secretion by one of the cellular partners can modulate adhesive properties by cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by favoring the formation of synapses or by creating glycoprotein lattices on the surface of different cell types. Their divergent specificities and affinities for various glycoproteins contribute to the multiplicity of their cellular interactions.
Collapse
|
44
|
Miharada K, Nakamura Y. In vitro production of enucleated red blood cells from hematopoietic stem and progenitor cells. Methods Mol Biol 2012; 879:505-12. [PMID: 22610580 DOI: 10.1007/978-1-61779-815-3_31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The hematopoietic stem cells that are present in bone marrow and umbilical cord blood are promising materials for in vitro production of red blood cells (RBCs). In particular, umbilical cord blood cells are likely to be readily available since they are generally discarded after parturition. Provided the mother of the neonate consents to the use of the umbilical cord blood, this material can provide a useful resource without any further complicating critical or ethical concerns. Here, we describe a method that does not require feeder cells but provides an efficient approach to the production of enucleated RBCs from the hematopoietic stem and progenitor cells in umbilical cord blood.
Collapse
Affiliation(s)
- Kenichi Miharada
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
45
|
Ji P, Lodish HF. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation. Biochem Biophys Res Commun 2011; 417:1188-92. [PMID: 22226968 DOI: 10.1016/j.bbrc.2011.12.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 01/14/2023]
Abstract
During late stages of mammalian erythropoiesis the nucleus undergoes chromatin condensation, migration to the plasma membrane, and extrusion from the cytoplasm surrounded by a segment of plasma membrane. Since nuclear condensation occurs in all vertebrates, mammalian erythroid membrane and cytoskeleton proteins were implicated as playing important roles in mediating the movement and extrusion of the nucleus. Here we use erythroid ankyrin deficient and band 3 knockout mouse models to show that band 3, but not ankyrin, plays an important role in regulating the level of erythroid cell membrane proteins, as evidenced by decreased cell surface expression of glycophorin A in band 3 knockout mice. However, neither band 3 nor ankyrin are required for enucleation. These results demonstrate that mammalian erythroblast enucleation does not depend on the membrane integrity generated by the ankyrin-band 3 complex.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
46
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
47
|
Hiroyama T, Miharada K, Kurita R, Nakamura Y. Plasticity of cells and ex vivo production of red blood cells. Stem Cells Int 2011; 2011:195780. [PMID: 21785608 PMCID: PMC3137953 DOI: 10.4061/2011/195780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022] Open
Abstract
The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If transfusable RBCs could be produced abundantly from certain resources, it would be very useful. Our group has developed a method to produce enucleated RBCs efficiently from hematopoietic stem/progenitor cells present in umbilical cord blood. More recently, it was reported that enucleated RBCs could be abundantly produced from human embryonic stem (ES) cells. The common obstacle for application of these methods is that they require very high cost to produce sufficient number of RBCs that are applicable in the clinic. If erythroid cell lines (immortalized cell lines) able to produce transfusable RBCs ex vivo were established, they would be valuable resources. Our group developed a robust method to obtain immortalized erythroid cell lines able to produce mature RBCs. To the best of our knowledge, this was the first paper to show the feasibility of establishing immortalized erythroid progenitor cell lines able to produce enucleated RBCs ex vivo. This result strongly suggests that immortalized human erythroid progenitor cell lines able to produce mature RBCs ex vivo can also be established.
Collapse
Affiliation(s)
- Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
48
|
Ji P, Murata-Hori M, Lodish HF. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 2011; 21:409-15. [PMID: 21592797 DOI: 10.1016/j.tcb.2011.04.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Reticulocyte remodeling has emerged as an important model for the understanding of vesicular trafficking and selective autophagy in mammalian cells. This review covers recent advances in our understanding of these processes in reticulocytes and the role of these processes in erythroid development. RECENT FINDINGS Enucleation is caused by the coalescence of vesicles at the nuclear-cytoplasmic junction and microfilament contraction. Mitochondrial elimination is achieved through selective autophagy, in which mitochondria are targeted to autophagosomes, and undergo subsequent degradation and exocytosis. The mechanism involves an integral mitochondrial outer membrane protein and general autophagy pathways. Plasma membrane remodeling, and the elimination of certain intracellular organelles occur through the exosomal pathway. SUMMARY Vesicular trafficking and selective autophagy have emerged as central processes in cellular remodeling. In reticulocytes, this includes enucleation and the elimination of all membrane-bound organelles and ribosomes. Ubiquitin-like conjugation pathways, which are required for autophagy in yeast, are not essential for mitochondrial clearance in reticulocytes. Thus, in higher eukaryotes, there appears to be redundancy between these pathways and other processes, such as vesicular nucleation. Future studies will address the relationship between autophagy and vesicular trafficking, and the significance of both for cellular remodeling.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
50
|
An X, Mohandas N. Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 2011; 93:139-143. [PMID: 21293952 DOI: 10.1007/s12185-011-0779-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 11/28/2022]
Abstract
This review summarizes our current understanding of the role of erythroblastic islands in erythropoiesis, membrane assembly during terminal erythroid differentiation and cellular and membrane reorganization during reticulocyte maturation.
Collapse
Affiliation(s)
- Xiuli An
- Laboratory of Membrane Biology, The New York Blood Center, New York, NY, USA
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, The New York Blood Center, 310 East 67th St, New York, NY, 10065, USA.
| |
Collapse
|