1
|
Belt AJ, Grant S, Tombes RM, Rothschild SC. Myeloid Targeted Human MLL-ENL and MLL-AF9 Induces cdk9 and bcl2 Expression in Zebrafish Embryos. PLoS Genet 2024; 20:e1011308. [PMID: 38829886 PMCID: PMC11175583 DOI: 10.1371/journal.pgen.1011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/13/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Acute myeloid leukemia (AML) accounts for greater than twenty thousand new cases of leukemia annually in the United States. The average five-year survival rate is approximately 30%, pointing to the need for developing novel model systems for drug discovery. In particular, patients with chromosomal rearrangements in the mixed lineage leukemia (MLL) gene have higher relapse rates with poor outcomes. In this study we investigated the expression of human MLL-ENL and MLL-AF9 in the myeloid lineage of zebrafish embryos. We observed an expansion of MLL positive cells and determined these cells colocalized with the myeloid markers spi1b, mpx, and mpeg. In addition, expression of MLL-ENL and MLL-AF9 induced the expression of endogenous bcl2 and cdk9, genes that are often dysregulated in MLL-r-AML. Co-treatment of lyz: MLL-ENL or lyz:MLL-AF9 expressing embryos with the BCL2 inhibitor, Venetoclax, and the CDK9 inhibitor, Flavopiridol, significantly reduced the number of MLL positive cells compared to embryos treated with vehicle or either drug alone. In addition, cotreatment with Venetoclax and Flavopiridol significantly reduced the expression of endogenous mcl1a compared to vehicle, consistent with AML. This new model of MLL-r-AML provides a novel tool to understand the molecular mechanisms underlying disease progression and a platform for drug discovery.
Collapse
MESH Headings
- Zebrafish/genetics
- Zebrafish/embryology
- Animals
- Cyclin-Dependent Kinase 9/genetics
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Humans
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Sulfonamides/pharmacology
- Piperidines/pharmacology
- Embryo, Nonmammalian
- Flavonoids/pharmacology
- Myeloid Cells/metabolism
- Myeloid Cells/drug effects
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Alex J. Belt
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Robert M. Tombes
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah C. Rothschild
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
2
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Taznin T, Perera K, Gibert Y, Ward AC, Liongue C. Cytokine Receptor-Like Factor 3 (CRLF3) Contributes to Early Zebrafish Hematopoiesis. Front Immunol 2022; 13:910428. [PMID: 35795682 PMCID: PMC9251315 DOI: 10.3389/fimmu.2022.910428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is an ancient protein conserved across metazoans that contains an archetypal cytokine receptor homology domain (CHD). This domain is found in cytokine receptors present in bilateria, including higher vertebrates, that play key roles in a variety of developmental and homeostatic processes, particularly relating to blood and immune cells. However, understanding of CRLF3 itself remains very limited. This study aimed to investigate this evolutionarily significant protein by studying its embryonic expression and function in early development, particularly of blood and immune cells, using zebrafish as a model. Expression of crlf3 was identified in mesoderm-derived tissues in early zebrafish embryos, including the somitic mesoderm and both anterior and posterior lateral plate mesoderm. Later expression was observed in the thymus, brain, retina and exocrine pancreas. Zebrafish crlf3 mutants generated by genome editing technology exhibited a significant reduction in primitive hematopoiesis and early definitive hematopoiesis, with decreased early progenitors impacting on multiple lineages. No other obvious phenotypes were observed in the crlf3 mutants.
Collapse
Affiliation(s)
- Tarannum Taznin
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Yann Gibert
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- *Correspondence: Clifford Liongue,
| |
Collapse
|
4
|
Falkenberg LG, Beckman SA, Ravisankar P, Dohn TE, Waxman JS. Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. Dis Model Mech 2021; 14:dmm048439. [PMID: 34028558 PMCID: PMC8214733 DOI: 10.1242/dmm.048439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
The pathology of primary ciliary dyskinesia (PCD) is predominantly attributed to impairment of motile cilia. However, PCD patients also have perplexing functional defects in myeloid cells, which lack motile cilia. Here, we show that coiled-coil domain-containing protein 103 (CCDC103), one of the genes that, when mutated, is known to cause PCD, is required for the proliferation and directed migration of myeloid cells. CCDC103 is expressed in human myeloid cells, where it colocalizes with cytoplasmic microtubules. Zebrafish ccdc103/schmalhans (smh) mutants have macrophages and neutrophils with reduced proliferation, abnormally rounded cell morphology and an inability to migrate efficiently to the site of sterile wounds, all of which are consistent with a loss of cytoplasmic microtubule stability. Furthermore, we demonstrate that direct interactions between CCDC103 and sperm associated antigen 6 (SPAG6), which also promotes microtubule stability, are abrogated by CCDC103 mutations from PCD patients, and that spag6 zebrafish mutants recapitulate the myeloid defects observed in smh mutants. In summary, we have illuminated a mechanism, independent of motile cilia, to explain functional defects in myeloid cells from PCD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lauren G. Falkenberg
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati OH 45267, USA
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah A. Beckman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tracy E. Dohn
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati OH 45267, USA
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Linnerz T, Hall CJ. The Diverse Roles of Phagocytes During Bacterial and Fungal Infections and Sterile Inflammation: Lessons From Zebrafish. Front Immunol 2020; 11:1094. [PMID: 32582182 PMCID: PMC7289964 DOI: 10.3389/fimmu.2020.01094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
The immediate and natural reaction to both infectious challenges and sterile insults (wounds, tissue trauma or crystal deposition) is an acute inflammatory response. This inflammatory response is mediated by activation of the innate immune system largely comprising professional phagocytes (neutrophils and macrophages). Zebrafish (danio rerio) larvae possess many advantages as a model organism, including their genetic tractability and highly conserved innate immune system. Exploiting these attributes and the live imaging potential of optically transparent zebrafish larvae has greatly contributed to our understanding of how neutrophils and macrophages orchestrate the initiation and resolution phases of inflammatory responses. Numerous bacterial and fungal infection models have been successfully established using zebrafish as an animal model and studies investigating neutrophil and macrophage behavior to sterile insults have also provided unique insights. In this review we highlight how examining the larval zebrafish response to specific bacterial and fungal pathogens has uncovered cellular and molecular mechanisms behind a variety of phagocyte responses, from those that protect the host to those that are detrimental. We also describe how modeling sterile inflammation in larval zebrafish has provided an opportunity to dissect signaling pathways that control the recruitment, and fate, of phagocytes at inflammatory sites. Finally, we briefly discuss some current limitations, and opportunities to improve, the zebrafish model system for studying phagocyte biology.
Collapse
Affiliation(s)
- Tanja Linnerz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
7
|
Zebrafish Granulocyte Colony-Stimulating Factor Receptor Maintains Neutrophil Number and Function throughout the Life Span. Infect Immun 2019; 87:IAI.00793-18. [PMID: 30455199 DOI: 10.1128/iai.00793-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023] Open
Abstract
Granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, represents a major regulator of neutrophil production and function in mammals, with inactivating extracellular mutations identified in a cohort of neutropenia patients unresponsive to G-CSF treatment. This study sought to elucidate the role of the zebrafish G-CSFR by generating mutants harboring these inactivating extracellular mutations using genome editing. Zebrafish csf3r mutants possessed significantly decreased numbers of neutrophils from embryonic to adult stages, which were also functionally compromised, did not respond to G-CSF, and displayed enhanced susceptibility to bacterial infection. The study has identified an important role for the zebrafish G-CSFR in maintaining the number and functionality of neutrophils throughout the life span and created a bona fide zebrafish model of nonresponsive neutropenia.
Collapse
|
8
|
Wang X, Li J, Yang Z, Wang L, Li L, Deng W, Zhou J, Wang L, Xu C, Chen Q, Wang QK. phlda3 overexpression impairs specification of hemangioblasts and vascular development. FEBS J 2018; 285:4071-4081. [PMID: 30188605 PMCID: PMC6218282 DOI: 10.1111/febs.14653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023]
Abstract
The phlda3 gene encodes a small, 127-amino acid protein with only a PH domain, and is involved in tumor suppression, proliferation of islet β-cells, insulin secretion, glucose tolerance, and liver injury. However, the role of phlda3 in vascular development is unknown. Here, we show that phlda3 overexpression decreases the expression levels of hemangioblast markers scl, fli1, and etsrp and intersegmental vessel (ISV) markers flk1 and cdh5, and disrupts ISV development in tg(flk1:GFP) and tg(fli1:GFP) zebrafish. Moreover, phlda3 overexpression inhibits the activation of protein kinase B (AKT) in zebrafish embryos, and the developmental defects of ISVs by phlda3 overexpression were reversed by the expression of a constitutively active form of AKT. These data suggest that phlda3 is a negative regulator of hemangioblast specification and ISV development via AKT signaling.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhongcheng Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wenqing Deng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Juan Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic; Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic; Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Abstract
Assessing the immunotoxicity of xenobiotics by current regulatory testing has revealed compounds that can cause immunosuppression and stimulation. Flow cytometry is a cutting edge technique that can provide data on how toxicants can alter the quality and quantity of the immune response after exposure. Here we describe protocols for how to use flow cytometry to measure the immune response in multiple rodent organs (blood and lymphoid and nonlymphoid) as well as in novel models recently being utilized in the field of toxicology. These methods can be used for current testing and to determine mechanisms by which a xenobiotic can cause immunotoxicity.
Collapse
Affiliation(s)
- Scott T Espenschied
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
10
|
Potts KS, Bowman TV. Modeling Myeloid Malignancies Using Zebrafish. Front Oncol 2017; 7:297. [PMID: 29255698 PMCID: PMC5722844 DOI: 10.3389/fonc.2017.00297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS) and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
Carmona SJ, Teichmann SA, Ferreira L, Macaulay IC, Stubbington MJT, Cvejic A, Gfeller D. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types. Genome Res 2017; 27:451-461. [PMID: 28087841 PMCID: PMC5340972 DOI: 10.1101/gr.207704.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell-specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates.
Collapse
Affiliation(s)
- Santiago J Carmona
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Lauren Ferreira
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Iain C Macaulay
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Michael J T Stubbington
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - David Gfeller
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
|
13
|
Abstract
The development of the zebrafish (Danio rerio) infectious disease model has provided new insights and information into pathogenesis. Many of these new discoveries would not have been possible using a typical mammalian model. The advantages of using this model are many and in the last 15 years the model has been exploited for the analysis of many different pathogens. Here, we describe in detail how to perform a bacterial infection using either the adult zebrafish or zebrafish larvae using microinjection. Multiple methods of analysis are described that can be used to address specific questions pertaining to disease progression and the interactions with the immune system.
Collapse
Affiliation(s)
- Melody N Neely
- Department of Biology, Texas Woman's University, 1200 Frame St., P.O. Box 425799, Denton, TX, 76204, USA.
| |
Collapse
|
14
|
Astin JW, Keerthisinghe P, Du L, Sanderson LE, Crosier KE, Crosier PS, Hall CJ. Innate immune cells and bacterial infection in zebrafish. Methods Cell Biol 2016; 138:31-60. [PMID: 28129850 DOI: 10.1016/bs.mcb.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The physical attributes of the zebrafish, including optical transparency during embryogenesis, large clutch sizes, external development, and rapid organogenesis were features that initially attracted developmental biologists to use this vertebrate as an experimental model system. With the progressive development of an extensive genetic "tool kit" and an ever-growing number of transgenic reporter lines, the zebrafish model has evolved into an informative system in which to mimic and study aspects of human disease, including those associated with bacterial infections. This chapter provides detailed protocols for microinjection of bacterial strains into zebrafish larvae and subsequent experiments to investigate single-larva bacterial burdens, live imaging of specific neutrophil and macrophage bactericidal functions, and how these protocols may be applied to drug discovery approaches to uncover novel immunomodulatory drugs.
Collapse
Affiliation(s)
- J W Astin
- University of Auckland, Auckland, New Zealand
| | | | - L Du
- University of Auckland, Auckland, New Zealand
| | | | - K E Crosier
- University of Auckland, Auckland, New Zealand
| | - P S Crosier
- University of Auckland, Auckland, New Zealand
| | - C J Hall
- University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Cebpα is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish. J Genet Genomics 2016; 43:593-600. [PMID: 27751705 DOI: 10.1016/j.jgg.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
In vertebrates, myeloid cells arise from multiple waves of development: the first or embryonic wave of myelopoiesis initiates early from non-hematopoietic stem cell (HSC) precursors and gives rise to myeloid cells transiently during early development; whereas the second or adult wave of myelopoiesis emerges later from HSCs and produces myeloid cells continually during fetal and adult life. In the past decades, a great deal has been learnt about the development of myeloid cells from adult myelopoiesis, yet the genetic network governing embryonic myelopoiesis remains poorly defined. In this report, we present an in vivo study to delineate the role of Cebpα during zebrafish embryonic myelopoiesis. We show that embryonic myelopoiesis in cebpα-deficient zebrafish mutants initiates properly but fails to produce macrophages and neutrophils. The lack of macrophages and neutrophils in the mutants is largely attributed to the cell cycle arrest of embryonic myeloid progenitors, resulting in the impairment of their maintenance and subsequent differentiation. We further show that Cebpα, perhaps acting cooperatively with Runx1, plays a critical role in embryonic neutrophil maintenance. Our findings reveal a new role of Cebpα in embryonic myelopoiesis.
Collapse
|
16
|
Overexpression of FLT3-ITD driven by spi-1 results in expanded myelopoiesis with leukemic phenotype in zebrafish. Leukemia 2016; 30:2098-2101. [PMID: 27271227 DOI: 10.1038/leu.2016.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Abstract
Zebrafish as a model system have been instrumental in understanding early vertebrate development, especially of the hematopoietic system. The external development of zebrafish and their genetic amenability have allowed in-depth studies of multiple blood cell types and their respective genetic regulation. This chapter highlights some new data in zebrafish hematopoiesis regarding primitive and definitive hematopoiesis in the embryonic and adult fish, allowing the isolation of prospective progenitor subsets. It also highlights assays developed to examine the function of these progenitors in vivo and in vitro, allowing an evolutionary understanding of the hematopoietic system and how zebrafish can be better utilized as a model system for a multitude of hematopoietic disorders.
Collapse
Affiliation(s)
- D L Stachura
- California State University, Chico, Chico, CA, United States
| | - D Traver
- University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Shi X, He BL, Ma ACH, Leung AYH. Fishing the targets of myeloid malignancies in the era of next generation sequencing. Blood Rev 2015; 30:119-30. [PMID: 26443083 DOI: 10.1016/j.blre.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/15/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
Recent advent in next generation sequencing (NGS) and bioinformatics has generated an unprecedented amount of genetic information in myeloidmalignancies. This information may shed lights to the pathogenesis, diagnosis and prognostication of these diseases and provide potential targets for therapeutic intervention. However, the rapid emergence of genetic information will quickly outpace their functional validation by conventional laboratory platforms. Foundational knowledge about zebrafish hematopoiesis accumulated over the past two decades and novel genomeediting technologies and research strategies in thismodel organismhavemade it a unique and timely research tool for the study of human blood diseases. Recent studies modeling human myeloid malignancies in zebrafish have also highlighted the technical feasibility and clinical relevance of thesemodels. Careful validation of experimental protocols and standardization among laboratorieswill further enhance the application of zebrafish in the scientific communities and provide important insights to the personalized treatment ofmyeloid malignancies.
Collapse
Affiliation(s)
- Xiangguo Shi
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Bai-Liang He
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Alvin C H Ma
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Anskar Y H Leung
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| |
Collapse
|
19
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Zebrafish as a Model for the Study of Human Myeloid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641475. [PMID: 26064935 PMCID: PMC4433643 DOI: 10.1155/2015/641475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023]
Abstract
Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies.
Collapse
|
21
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
22
|
Lewis KL, Del Cid N, Traver D. Perspectives on antigen presenting cells in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:63-73. [PMID: 24685511 PMCID: PMC4158852 DOI: 10.1016/j.dci.2014.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 05/29/2023]
Abstract
Antigen presentation is a critical step in the activation of naïve T lymphocytes. In mammals, dendritic cells (DCs), macrophages, and B lymphocytes can all function as antigen presenting cells (APCs). Although APCs have been identified in zebrafish, it is unclear if they fulfill similar roles in the initiation of adaptive immunity. Here we review the characterization of zebrafish macrophages, DCs, and B cells and evidence of their function as true APCs. Finally, we discuss the conservation of APC activity in vertebrates and the use of zebrafish to provide a new perspective on the evolution of these functions.
Collapse
Affiliation(s)
- Kanako L Lewis
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Natasha Del Cid
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - David Traver
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
23
|
Abstract
Wound repair requires the integration of complex cellular networks to restore tissue homeostasis. Defects in wound repair are associated with human disease including pyoderma gangrenosum, a heterogeneous disorder that is characterized by unhealed wounds and chronic inflammation of unclear etiology. Despite its clinical importance, there remain significant gaps in understanding how different types of cells communicate to integrate inflammation and wound repair. Recent progress in wound and regenerative biology has been gained by studying genetically tractable model organisms, like zebrafish, that retain the ability to regenerate. The optical transparency and ease of genetic manipulation make zebrafish an ideal model system to dissect multi-cellular and tissue level interactions during wound repair. The focus of this review is on recent advances in understanding how inflammation and wound repair are orchestrated and integrated to achieve wound resolution and tissue regeneration using zebrafish.
Collapse
Affiliation(s)
- Danny C LeBert
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Anna Huttenlocher
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
24
|
Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish. THE JOURNAL OF IMMUNOLOGY 2014; 192:5739-48. [PMID: 24835394 DOI: 10.4049/jimmunol.1301376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
Collapse
Affiliation(s)
- Rowena S Lewis
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria 3050, Australia
| | - Suzita M Noor
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fiona W Fraser
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| |
Collapse
|
25
|
Zebrafish eaf1 suppresses foxo3b expression to modulate transcriptional activity of gata1 and spi1 in primitive hematopoiesis. Dev Biol 2014; 388:81-93. [DOI: 10.1016/j.ydbio.2014.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/13/2013] [Accepted: 01/11/2014] [Indexed: 12/28/2022]
|
26
|
Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S, Hogan BM, de Jong-Curtain TA, Heath JK, Lieschke GJ. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett 2013; 587:2150-7. [PMID: 23714367 DOI: 10.1016/j.febslet.2013.05.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Mutated spliceosome components are recurrently being associated with perturbed tissue development and disease pathogenesis. Cephalophŏnus (cph), is a zebrafish mutant carrying an early premature STOP codon in the spliceosome component Prpf8 (pre-mRNA processing factor 8). Cph initially develops normally, but then develops widespread cell death, especially in neurons, and is embryonic lethal. Cph mutants accumulate aberrantly spliced transcripts retaining both U2- and U12-type introns. Within early haematopoiesis, myeloid differentiation is impaired, suggesting Prpf8 is required for haematopoietic development. Cph provides an animal model for zygotic PRPF8 dysfunction diseases and for evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In the last five years, the zebrafish (Danio rerio) has rapidly gained popularity as a model system for studying leukocyte migration and trafficking in vivo. The optical clarity of zebrafish embryos, as well as the potential for genetic manipulation and the development of tools for live imaging, have provided new insight into how leukocytes migrate in response to directional cues in live animals. This Commentary discusses recent progress in our understanding of how leukocytes migrate in vivo, including the role of intracellular signaling through phosphatidylinositol 3-kinase (PI3K) in both random and directed migration. The importance of leukocyte reverse migration in the resolution of inflammation will also be discussed. Finally, we will highlight how zebrafish models have helped to provide new insight into leukocyte migration and the way in which migration is altered in disease.
Collapse
Affiliation(s)
- Qing Deng
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
28
|
Taylor HB, Liepe J, Barthen C, Bugeon L, Huvet M, Kirk PDW, Brown SB, Lamb JR, Stumpf MPH, Dallman MJ. P38 and JNK have opposing effects on persistence of in vivo leukocyte migration in zebrafish. Immunol Cell Biol 2013; 91:60-9. [PMID: 23165607 PMCID: PMC3540327 DOI: 10.1038/icb.2012.57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 01/11/2023]
Abstract
The recruitment and migration of macrophages and neutrophils is an important process during the early stages of the innate immune system in response to acute injury. Transgenic pu.1:EGFP zebrafish permit the acquisition of leukocyte migration trajectories during inflammation. Currently, these high-quality live-imaging data are mainly analysed using general statistics, for example, cell velocity. Here, we present a spatio-temporal analysis of the cell dynamics using transition matrices, which provide information of the type of cell migration. We find evidence that leukocytes exhibit types of migratory behaviour, which differ from previously described random walk processes. Dimethyl sulfoxide treatment decreased the level of persistence at early time points after wounding and ablated temporal dependencies observed in untreated embryos. We then use pharmacological inhibition of p38 and c-Jun N-terminal kinase mitogen-activated protein kinases to determine their effects on in vivo leukocyte migration patterns and discuss how they modify the characteristics of the cell migration process. In particular, we find that their respective inhibition leads to decreased and increased levels of persistent motion in leukocytes following wounding. This example shows the high level of information content, which can be gained from live-imaging data if appropriate statistical tools are used.
Collapse
Affiliation(s)
- Harriet B Taylor
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | - Juliane Liepe
- Department of Life Sciences, Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, UK
| | - Charlotte Barthen
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | - Laurence Bugeon
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | - Maxime Huvet
- Department of Life Sciences, Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, UK
| | - Paul DW Kirk
- Department of Life Sciences, Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, UK
- Institute of Mathematical Sciences, Imperial College London, London, UK
| | - Simon B Brown
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Jonathan R Lamb
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | - Michael PH Stumpf
- Department of Life Sciences, Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, UK
- Institute of Mathematical Sciences, Imperial College London, London, UK
- Department of Life Sciences, Centre for Integrative Systems Biology, Imperial College London, London, UK
| | - Margaret J Dallman
- Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College London, London, UK
- Department of Life Sciences, Centre for Integrative Systems Biology, Imperial College London, London, UK
| |
Collapse
|
29
|
Xu J, Du L, Wen Z. Myelopoiesis during Zebrafish Early Development. J Genet Genomics 2012; 39:435-42. [DOI: 10.1016/j.jgg.2012.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022]
|
30
|
Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012; 2012:830703. [PMID: 22888355 PMCID: PMC3410305 DOI: 10.1155/2012/830703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/20/2012] [Accepted: 06/08/2012] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.
Collapse
|
31
|
Myelopoiesis and myeloid leukaemogenesis in the zebrafish. Adv Hematol 2012; 2012:358518. [PMID: 22851971 PMCID: PMC3407620 DOI: 10.1155/2012/358518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022] Open
Abstract
Over the past ten years, studies using the zebrafish model have contributed to our understanding of vertebrate haematopoiesis, myelopoiesis, and myeloid leukaemogenesis. Novel insights into the conservation of haematopoietic lineages and improvements in our capacity to identify, isolate, and culture such haematopoietic cells continue to enhance our ability to use this simple organism to address disease biology. Coupled with the strengths of the zebrafish embryo to dissect developmental myelopoiesis and the continually expanding repertoire of models of myeloid malignancies, this versatile organism has established its niche as a valuable tool to address key questions in the field of myelopoiesis and myeloid leukaemogenesis. In this paper, we address the recent advances and future directions in the field of myelopoiesis and leukaemogenesis using the zebrafish system.
Collapse
|
32
|
Onnebo SMN, Rasighaemi P, Kumar J, Liongue C, Ward AC. Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica 2012; 97:1895-903. [PMID: 22733019 DOI: 10.3324/haematol.2012.064659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chromosomal translocations resulting in alternative fusions of the human TEL (ETV6) and JAK2 genes have been observed in cases of acute lymphoblastic leukemia and chronic myelogenous leukemia, but a full understanding of their role in disease etiology has remained elusive. In this study potential differences between these alternative TEL-JAK2 fusions, including their lineage specificity, were investigated. DESIGN AND METHODS TEL-JAK2 fusion types derived from both T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia were generated using the corresponding zebrafish tel and jak2a genes and placed under the control of either the white blood cell-specific spi1 promoter or the ubiquitously-expressed cytomegalovirus promoter. These constructs were injected into zebrafish embryos and their effects on hematopoiesis examined using a range of molecular approaches. In addition, the functional properties of the alternative fusions were investigated in vitro. RESULTS Injection of the T-cell acute lymphoblastic leukemia-derived tel-jak2a significantly perturbed lymphopoiesis with a lesser effect on myelopoiesis in zebrafish embryos. In contrast, injection of the atypical chronic myelogenous leukemia-derived tel-jak2a resulted in significant perturbation of the myeloid compartment. These phenotypes were observed regardless of whether expressed in a white blood cell-specific or ubiquitous manner, with no overt cellular proliferation outside of the hematopoietic cells. Functional studies revealed subtle differences between the alternative forms, with the acute lymphoblastic leukemia variant showing higher activity, but reduced downstream signal transducer and activator of transcription activation and decreased sensitivity to JAK2 inhibition. JAK2 activity was required to mediate the effects of both variants on zebrafish hematopoiesis. CONCLUSIONS This study indicates that the molecular structure of alternative TEL-JAK2 fusions likely contributes to the etiology of disease. The data further suggest that this class of oncogene exerts its effects in a cell lineage-specific manner, which may be due to differences in downstream signaling.
Collapse
Affiliation(s)
- Sara M N Onnebo
- School of Life & Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | | | | | |
Collapse
|
33
|
Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood 2012; 119:5239-49. [PMID: 22493295 DOI: 10.1182/blood-2011-12-398362] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proper cell fate choice in myelopoiesis is essential for generating correct numbers of distinct myeloid subsets manifesting a wide spectrum of subset-specific activities during development and adulthood. Studies have suggested that myeloid fate choice is primarily regulated by transcription factors; however, new intrinsic regulators and their underlying mechanisms remain to be elucidated. Zebrafish embryonic myelopoiesis gives rise to neutrophils and macrophages and represents a promising system to derive new regulatory mechanisms for myeloid fate decision in vertebrates. Here we present an in vivo study of cell fate specification during zebrafish embryonic myelopoiesis through characterization of the embryos with altered Pu.1, Runx1 activity alone, or their combinations. Genetic analysis shows that low and high Pu.1 activities determine embryonic neutrophilic granulocyte and macrophage fate, respectively. Inactivation and overexpression of Runx1 in zebrafish uncover Runx1 as a key embryonic myeloid fate determinant that favors neutrophil over macrophage fate. Runx1 is induced by high Pu.1 level and in turn transrepresses pu.1 expression, thus constituting a negative feedback loop that fashions a favorable Pu.1 level required for balanced fate commitment to neutrophils versus macrophages. Our findings define a Pu.1-Runx1 regulatory loop that governs the equilibrium between distinct myeloid fates by assuring an appropriate Pu.1 dosage.
Collapse
|
34
|
Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis. PLoS One 2012; 7:e30865. [PMID: 22363502 PMCID: PMC3281886 DOI: 10.1371/journal.pone.0030865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoic acid (RA) is known to regulate definitive myelopoiesis but its role in vertebrate primitive myelopoiesis remains unclear. Here we report that zebrafish primitive myelopoiesis is restricted by RA in a dose dependent manner mainly before 11 hpf (hours post fertilization) when anterior hemangioblasts are initiated to form. RA treatment significantly reduces expressions of anterior hemangioblast markers scl, lmo2, gata2 and etsrp in the rostral end of ALPM (anterior lateral plate mesoderm) of the embryos. The result indicates that RA restricts primitive myelopoiesis by suppressing formation of anterior hemangioblasts. Analyses of ALPM formation suggest that the defective primitive myelopoiesis resulting from RA treatment before late gastrulation may be secondary to global loss of cells for ALPM fate whereas the developmental defect resulting from RA treatment during 10–11 hpf should be due to ALPM patterning shift. Overexpressions of scl and lmo2 partially rescue the block of primitive myelopoiesis in the embryos treated with 250 nM RA during 10–11 hpf, suggesting RA acts upstream of scl to control primitive myelopoiesis. However, the RA treatment blocks the increased primitive myelopoiesis caused by overexpressing gata4/6 whereas the abolished primitive myelopoiesis in gata4/5/6 depleted embryos is well rescued by 4-diethylamino-benzaldehyde, a retinal dehydrogenase inhibitor, or partially rescued by knocking down aldh1a2, the major retinal dehydrogenase gene that is responsible for RA synthesis during early development. Consistently, overexpressing gata4/6 inhibits aldh1a2 expression whereas depleting gata4/5/6 increases aldh1a2 expression. The results reveal that RA signaling acts downstream of gata4/5/6 to control primitive myelopoiesis. But, 4-diethylamino-benzaldehyde fails to rescue the defective primitive myelopoiesis in either cloche embryos or lycat morphants. Taken together, our results demonstrate that RA signaling restricts zebrafish primitive myelopoiesis through acting downstream of gata4/5/6, upstream of, or parallel to, cloche, and upstream of scl.
Collapse
|
35
|
In vivo real-time visualization of leukocytes and intracellular hydrogen peroxide levels during a zebrafish acute inflammation assay. Methods Enzymol 2012; 506:135-56. [PMID: 22341223 DOI: 10.1016/b978-0-12-391856-7.00032-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Following injury, the inflammatory response directs the host immune cells to the wound to maintain tissue integrity and combat pathogens. The recruitment of immune cells to inflammatory sites is achieved through the establishment of a variety of signal gradients. Using a zebrafish embryo injury model, it was recently demonstrated that, upon injury, cells at the wound margin rapidly produce hydrogen peroxide (H(2)O(2)) which serves as an early paracrine signal to leukocytes. This chapter provides a method for performing in vivo time-lapse fluorescence microscopy to visualize leukocyte behaviors and wound-produced H(2)O(2) simultaneously in single zebrafish embryos during an acute inflammatory response. Protocols are included for inducing a robust, reproducible acute inflammatory response, for rapidly mounting immobilized embryos for time-lapse imaging, and for computing ratiometric data from the images of embryos expressing the genetically encoded H(2)O(2) sensor fluorophore HyPer. General issues to consider when designing multichannel fluorescent imaging are discussed, including particular considerations to note when monitoring intracellular H(2)O(2) concentration dynamics using HyPer.
Collapse
|
36
|
Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000-17. [PMID: 21366518 PMCID: PMC3319919 DOI: 10.2174/138945011795677809] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening.
Collapse
Affiliation(s)
- Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
37
|
|
38
|
McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. Developmental toxicity screening in zebrafish. ACTA ACUST UNITED AC 2011; 93:67-114. [DOI: 10.1002/bdrc.20210] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
O'Sullivan LA, Noor SM, Trengove MC, Lewis RS, Liongue C, Sprigg NS, Nicholson SE, Ward AC. Suppressor of cytokine signaling 1 regulates embryonic myelopoiesis independently of its effects on T cell development. THE JOURNAL OF IMMUNOLOGY 2011; 186:4751-61. [PMID: 21421851 DOI: 10.4049/jimmunol.1000343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) has been shown to play important roles in the immune system. It acts as a key negative regulator of signaling via receptors for IFNs and other cytokines controlling T cell development, as well as Toll receptor signaling in macrophages and other immune cells. To gain further insight into SOCS1, we have identified and characterized the zebrafish socs1 gene, which exhibited sequence and functional conservation with its mammalian counterparts. Initially maternally derived, the socs1 gene showed early zygotic expression in mesodermal structures, including the posterior intermediate cell mass, a site of primitive hematopoiesis. At later time points, expression was seen in a broad anterior domain, liver, notochord, and intersegmental vesicles. Morpholino-mediated knockdown of socs1 resulted in perturbation of specific hematopoietic populations prior to the commencement of lymphopoiesis, ruling out T cell involvement. However, socs1 knockdown also lead to a reduction in the size of the developing thymus later in embryogenesis. Zebrafish SOCS1 was shown to be able to interact with both zebrafish Jak2a and Stat5.1 in vitro and in vivo. These studies demonstrate a conserved role for SOCS1 in T cell development and suggest a novel T cell-independent function in embryonic myelopoiesis mediated, at least in part, via its effects on receptors using the Jak2-Stat5 pathway.
Collapse
Affiliation(s)
- Lynda A O'Sullivan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The evolutionarily conserved immune system of the zebrafish (Danio rerio), in combination with its genetic tractability, position it as an excellent model system in which to elucidate the origin and function of vertebrate immune cells. We recently reported the existence of antigen-presenting mononuclear phagocytes in zebrafish, namely macrophages and dendritic cells (DCs), but have been impaired in further characterizing the biology of these cells by the lack of a specific transgenic reporter line. Using regulatory elements of a class II major histocompatibility gene, we generated a zebrafish reporter line expressing green fluorescent protein (GFP) in all APCs, macrophages, DCs, and B lymphocytes. Examination of mhc2dab:GFP; cd45:DsRed double-transgenic animals demonstrated that kidney mhc2dab:GFP(hi); cd45:DsRed(hi) cells were exclusively mature monocytes/macrophages and DCs, as revealed by morphologic and molecular analyses. Mononuclear phagocytes were found in all hematolymphoid organs, but were most abundant in the intestine and spleen, where they up-regulate the expression of inflammatory cytokines upon bacterial challenge. Finally, mhc2dab:GFP and cd45:DsRed transgenes mark mutually exclusive cell subsets in the lymphoid fraction, enabling the delineation of the major hematopoietic lineages in the adult zebrafish. These findings suggest that mhc2dab:GFP and cd45:DsRed transgenic lines will be instrumental in elucidating the immune response in the zebrafish.
Collapse
|
41
|
Gray C, Loynes CA, Whyte MKB, Crossman DC, Renshaw SA, Chico TJA. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost 2011; 105:811-9. [PMID: 21225092 DOI: 10.1160/th10-08-0525] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/08/2010] [Indexed: 11/05/2022]
Abstract
The zebrafish is an outstanding model for intravital imaging of inflammation due to its optical clarity and the ability to express fluorescently labelled specific cell types by transgenesis. However, although several transgenic labelling myeloid cells exist, none allow distinction of macrophages from neutrophils. This prevents simultaneous imaging and examination of the individual contributions of these important leukocyte subtypes during inflammation. We therefore used Bacterial Artificial Chromosome (BAC) recombineering to generate a transgenic Tg(fms:GAL4.VP16)i186 , in which expression of the hybrid transcription factor Gal4-VP16 is driven by the fms (CSF1R) promoter. This was then crossed to a second transgenic expressing a mCherry-nitroreductase fusion protein under the control of the Gal4 binding site (the UAS promoter), allowing intravital imaging of mCherry-labelled macrophages. Further crossing this compound transgenic with the neutrophil transgenic Tg(mpx:GFP)i114 allowed clear distinction between macrophages and neutrophils and simultaneous imaging of their recruitment and behaviour during inflammation. Compared with neutrophils, macrophages migrate significantly more slowly to an inflammatory stimulus. Neutrophil number at a site of tissue injury peaked around 6 hours post injury before resolving, while macrophage recruitment increased until at least 48 hours. We show that macrophages were effectively ablated by addition of the prodrug metronidazole, with no effect on neutrophil number. Crossing with Tg(Fli1:GFP)y1 transgenic fish enabled intravital imaging of macrophage interaction with endothelium for the first time, revealing that endothelial contact is associated with faster macrophage migration. Tg(fms:GAL4.VP16)i186 thus provides a powerful tool for intravital imaging and functional manipulation of macrophage behaviour during inflammation.
Collapse
Affiliation(s)
- C Gray
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The zebrafish is an excellent model system to study vertebrate blood cell development due to a highly conserved hematopoietic system, optical transparency, and amenability to both forward and reverse genetic approaches. The development of functional assays to analyze the biology of hematopoietic mutants and diseased animals remains a work in progress. Here we discuss recent advances in zebrafish hematology, prospective isolation techniques, cellular transplantation, and culture-based assays that now provide more rigorous tests of hematopoietic stem and progenitor cell function. Together with the proven strengths of the zebrafish, the development and refinement of these assays further enable efforts to better understand the development and evolution of the vertebrate hematopoietic system.
Collapse
Affiliation(s)
- David L Stachura
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
43
|
Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M, Zakrzewska A, Spaink HP, Meijer AH. Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell Biol 2011; 105:273-308. [PMID: 21951535 DOI: 10.1016/b978-0-12-381320-6.00012-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major cell types of the innate immune system, macrophages and neutrophils, develop during the first two days of zebrafish embryogenesis. The interaction of these immune cells with pathogenic microbes can excellently be traced in the optically transparent zebrafish embryos. Various tools and methods have recently been developed for visualizing and isolating the zebrafish embryonic innate immune cells, for establishing infections by different micro-injection techniques, and for analyzing the host innate immune response following microbial recognition. Here we provide practical guidelines for the application of these methodologies and review the current state of the art in zebrafish infectious disease research.
Collapse
Affiliation(s)
- Chao Cui
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Goessling W, North TE. Hematopoietic stem cell development: using the zebrafish to identify the signaling networks and physical forces regulating hematopoiesis. Methods Cell Biol 2011; 105:117-36. [PMID: 21951528 DOI: 10.1016/b978-0-12-381320-6.00005-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSC) form the basis of the hematopoietic hierarchy, giving rise to each of the blood lineages found throughout the lifetime of the organism. The genetic programs regulating HSC development are highly conserved between vertebrate species. The zebrafish has proven to be an excellent model for discovering and characterizing the signaling networks and physical forces regulating vertebrate hematopoietic development.
Collapse
Affiliation(s)
- Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
45
|
Cows I, Bolland J, Nunn A, Kerins G, Stein J, Blackburn J, Hart A, Henry C, Britton JR, Coop G, Peeler E. Defining environmental risk assessment criteria for genetically modified fishes to be placed on the EU market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- I.G. Cows
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J.D. Bolland
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - A.D. Nunn
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - G. Kerins
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. Stein
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. Blackburn
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - A. Hart
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - C. Henry
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. R. Britton
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - G. Coop
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - E. Peeler
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| |
Collapse
|
46
|
Abstract
Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophage-specific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology.
Collapse
|
47
|
Stockhammer OW, Rauwerda H, Wittink FR, Breit TM, Meijer AH, Spaink HP. Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. Mol Immunol 2010; 48:179-90. [PMID: 20851470 DOI: 10.1016/j.molimm.2010.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/11/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
TRAF6 is a key player at the cross-roads of development and immunity. The analysis of its in vivo molecular function is a great challenge since severe developmental defects and early lethality caused by Traf6 deficiency in knock-out mice interfere with analyses of the immune response. In this study we have used a new strategy to analyze the function of Traf6 in a zebrafish-Salmonella infectious disease model. In our approach the effect of a Traf6 translation-blocking morpholino was titrated down to avoid developmental defects and the response to infection under these conditions was studied using the combination of microarray analysis and whole transcriptome deep sequencing. Transcriptome profiling of the traf6 knock-down allowed the identification of a gene set whose responsiveness during infection is highly dependent on Traf6. Expression trend analysis based on the resulting datasets identified nine clusters of genes with characteristic transcription response profiles, demonstrating Traf6 has a dynamic role as a positive and negative regulator. Among the Traf6-dependent genes was a large set of well known anti-microbial and inflammatory genes. Additionally, we identified several genes which were not previously linked to a response to microbial infection, such as the fertility hormone gene gnrh2 and the DNA-damage regulated autophagy modulator 1 gene dram1. With the use of the zebrafish embryo model we have now analyzed the in vivo function of Traf6 in the innate immune response without interference of adaptive immunity.
Collapse
Affiliation(s)
- Oliver W Stockhammer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Proulx K, Lu A, Sumanas S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev Biol 2010; 348:34-46. [PMID: 20832394 DOI: 10.1016/j.ydbio.2010.08.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/04/2010] [Accepted: 08/27/2010] [Indexed: 01/17/2023]
Abstract
Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well.
Collapse
Affiliation(s)
- Kira Proulx
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
49
|
Abstract
AbstractThe Spi1/Pu.1 transcription factor plays a crucial role in myeloid cell development in vertebrates. Despite extensive studies of Spi1, the controlled gene group remains largely unknown. To identify genes dependent on Spi1, we used a microarray strategy using a knockdown approach in zebrafish embryos combined with fluorescence-activated cell sorting of myeloid cells from transgenic embryos. This approach of using knockdowns with specific green fluorescent protein-marked cell types was highly successful in identifying macrophage-specific genes in Spi1-directed innate immunity. We found a gene group down-regulated on spi1 knockdown, which is also enriched in fluorescence-activated cell-sorted embryonic myeloid cells of a spi1:GFP transgenic line. This gene group, representing putative myeloid-specific Spi1 target genes, contained all 5 previously identified Spi1-dependent zebrafish genes as well as a large set of novel immune-related genes. Colocalization studies with neutrophil and macrophage markers revealed that genes cxcr3.2, mpeg1, ptpn6, and mfap4 were expressed specifically in early embryonic macrophages. In a functional approach, we demonstrated that gene cxcr3.2, coding for chemokine receptor 3.2, is involved in macrophage migration to the site of bacterial infection. Therefore, based on our combined transcriptome analyses, we discovered novel early macrophage-specific marker genes, including a signal transducer pivotal for macrophage migration in the innate immune response.
Collapse
|
50
|
Allen JP, Neely MN. Trolling for the ideal model host: zebrafish take the bait. Future Microbiol 2010; 5:563-9. [PMID: 20353298 DOI: 10.2217/fmb.10.24] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As little as 10 years ago, murine models of infectious disease were the host of choice for analyzing interactions between the pathogen and host during infection. However, not all pathogens can infect mice, nor do they always replicate the clinical syndromes observed in human infections. Furthermore, in the current economic environment, using mammalian models for large-scale screens may be less economically feasible. The emergence of the zebrafish (Danio rerio) as an infectious disease host model, as well as a model for vertebrate immune system development, has provided new information and insights into pathogenesis that, in many instances, would not have been possible using a murine model host. In this article we highlight some of the key findings and the latest techniques along with the many advantages of using the zebrafish host model to gain new insights into pathogenic mechanisms in a live vertebrate host.
Collapse
Affiliation(s)
- Jonathan P Allen
- Wayne State University School of Medicine, Department of Immunology & Microbiology, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|