1
|
Istomina PV, Gorchakov AA, Paoin C, Yamabhai M. Phage display for discovery of anticancer antibodies. N Biotechnol 2024; 83:205-218. [PMID: 39186973 DOI: 10.1016/j.nbt.2024.08.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Antibodies and antibody-based immunotherapeutics are the mainstays of cancer immunotherapy. Expanding the repertoire of cancer-specific and cancer-associated epitopes targetable with antibodies represents an important area of research. Phage display is a powerful approach allowing the use of diverse antibody libraries to be screened for binding to a wide range of targets. In this review, we summarize the basics of phage display technology and highlight the advances in anticancer antibody identification and modification via phage display platform. Finally, we describe phage display-derived anticancer monoclonal antibodies that have been approved to date or are in clinical development.
Collapse
Affiliation(s)
- Polina V Istomina
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8/2, Novosibirsk 630090, Russia
| | - Chatchanok Paoin
- Medical Oncology Division, Institute of Medicine, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Prodi E, Neri D, De Luca R. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy. Onco Targets Ther 2024; 17:697-715. [PMID: 39224695 PMCID: PMC11368152 DOI: 10.2147/ott.s480787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Otelfingen, 8112, Switzerland
- University of Trento, Italy, CiBIO (Department of Cellular, Computational and Integrative Biology), Povo, 38123, Trento
| | - Dario Neri
- Philogen Spa, Siena, 53100, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
4
|
Rotta G, Puca E, Cazzamalli S, Neri D, Dakhel Plaza S. Cytokine Biopharmaceuticals with "Activity-on-Demand" for Cancer Therapy. Bioconjug Chem 2024; 35:1075-1088. [PMID: 38885090 DOI: 10.1021/acs.bioconjchem.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cytokines are small proteins that modulate the activity of the immune system. Because of their potent immunomodulatory properties, some recombinant cytokines have undergone clinical development and have gained marketing authorization for the therapy of certain forms of cancer. Recombinant cytokines are typically administered at ultralow doses, as many of them can cause substantial toxicity even at submilligram quantities. In an attempt to increase the therapeutic index, fusion proteins based on tumor-homing antibodies (also called "immunocytokines") have been considered, and some products in this class have reached late-stage clinical trials. While antibody-cytokine fusions, which preferentially localize in the neoplastic mass, can activate tumor-resident leukocytes and may be more efficacious than their nontargeted counterparts, such products typically conserve an intact cytokine activity, which may prevent escalation to curative doses. To further improve tolerability, several strategies have been conceived for the development of antibody-cytokine fusions with "activity-on-demand", acting on tumors but helping spare normal tissues from undesired toxicity. In this article, we have reviewed some of the most promising strategies, outlining their potential as well as possible limitations.
Collapse
Affiliation(s)
- Giulia Rotta
- Philochem AG, CH-8112 Otelfingen, Switzerland
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | | | | | - Dario Neri
- Philogen S.p.A, 53100 Siena, Italy
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
5
|
Yan L, Chen Y, Zhang S, Zhu C, Xiao S, Xia H, Chen X, Guo D, Lv X, Rao L, Zhuang M. Reconstruction of TNF-α with specific isoelectric point released from SPIONs basing on variable charge to enhance pH-sensitive controlled-release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102758. [PMID: 38852881 DOI: 10.1016/j.nano.2024.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The clinical application of tumor necrosis factor-α (TNF-α) is limited by its short half-life, subeffective concentration in the targeted area and severe systemic toxicity. In this study, the recombinant polypeptide S4-TNF-α was constructed and coupled with chitosan-modified superparamagnetic iron oxide nanoparticles (S4-TNF-α-SPIONs) to achieve pH-sensitive controlled release and active tumor targeting activity. The isoelectric point (pI) of S4-TNF-α was reconstructed to approach the pH of the tumor microenvironment. The negative-charge S4-TNF-α was adsorbed to chitosan-modified superparamagnetic iron oxide nanoparticles (CS-SPIONs) with a positive charge through electrostatic adsorption at physiological pH. The acidic tumor microenvironment endowed S4-TNF-α with a zero charge, which accelerated S4-TNF-α release from CS-SPIONs. Our studies showed that S4-TNF-α-SPIONs displayed an ideal pH-sensitive controlled release capacity and improved antitumor effects. Our study presents a novel approach to enhance the pH-sensitive controlled-release of genetically engineered drugs by adjusting their pI to match the pH of the tumor microenvironment.
Collapse
Affiliation(s)
- Lin Yan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yadi Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Shihao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Chunjie Zhu
- School of Basic Medicine Guangdong Medical University, Dongguan 523808, China
| | - Shangying Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Haishan Xia
- School of Basic Medicine Guangdong Medical University, Dongguan 523808, China
| | - Xiaohua Chen
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China
| | - Dan Guo
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China
| | - Xiaohua Lv
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China
| | - Lei Rao
- Guangdong Provincial key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Medical college, Shaoguan University, Shaoguan 512005, China; Department of Biomedicine, Chengdu Medical College, Chengdu 610500, China.
| | - Manjiao Zhuang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of pharmacy, Guangdong Medical University, 523808, China.
| |
Collapse
|
6
|
Flatz L, Wagner NB, Denisjuk N, Do P, Nadal L, Puca E, Elia G, Covelli A, Neri D, Cozzio A. Intratumoral administration of daromun in non-melanoma skin cancer: Preliminary results from a phase 2 non-randomized controlled trial. J Eur Acad Dermatol Venereol 2024. [PMID: 38959382 DOI: 10.1111/jdv.20163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Lukas Flatz
- Department of Dermatology, University Hospital Tuebingen, Tübingen, Germany
| | - Nikolaus B Wagner
- Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalja Denisjuk
- Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Peter Do
- Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lisa Nadal
- Philogen/Philochem, Otelfingen, Switzerland
| | | | | | | | - Dario Neri
- Philogen/Philochem, Otelfingen, Switzerland
| | - Antonio Cozzio
- Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
7
|
Rotta G, Gilardoni E, Ravazza D, Mock J, Seehusen F, Elsayed A, Puca E, De Luca R, Pellegrino C, Look T, Weiss T, Manz MG, Halin C, Neri D, Dakhel Plaza S. A novel strategy to generate immunocytokines with activity-on-demand using small molecule inhibitors. EMBO Mol Med 2024; 16:904-926. [PMID: 38448543 PMCID: PMC11018789 DOI: 10.1038/s44321-024-00034-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Cytokine-based therapeutics have been shown to mediate objective responses in certain tumor entities but suffer from insufficient selectivity, causing limiting toxicity which prevents dose escalation to therapeutically active regimens. The antibody-based delivery of cytokines significantly increases the therapeutic index of the corresponding payload but still suffers from side effects associated with peak concentrations of the product in blood upon intravenous administration. Here we devise a general strategy (named "Intra-Cork") to mask systemic cytokine activity without impacting anti-cancer efficacy. Our technology features the use of antibody-cytokine fusions, capable of selective localization at the neoplastic site, in combination with pathway-selective inhibitors of the cytokine signaling, which rapidly clear from the body. This strategy, exemplified with a tumor-targeted IL12 in combination with a JAK2 inhibitor, allowed to abrogate cytokine-driven toxicity without affecting therapeutic activity in a preclinical model of cancer. This approach is readily applicable in clinical practice.
Collapse
Affiliation(s)
- Giulia Rotta
- Philochem AG, CH-8112, Otelfingen, Switzerland
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | | | | | | | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Abdullah Elsayed
- Philochem AG, CH-8112, Otelfingen, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Emanuele Puca
- Philochem AG, CH-8112, Otelfingen, Switzerland
- Philogen S.p.A, 53100, Siena, Italy
| | | | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, CH-8091, Zurich, Switzerland
| | - Thomas Look
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, CH-8091, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, CH-8091, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, CH-8091, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Dario Neri
- Philochem AG, CH-8112, Otelfingen, Switzerland.
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland.
- Philogen S.p.A, 53100, Siena, Italy.
| | | |
Collapse
|
8
|
Pabani A, Gainor JF. Facts and Hopes: Immunocytokines for Cancer Immunotherapy. Clin Cancer Res 2023; 29:3841-3849. [PMID: 37227449 DOI: 10.1158/1078-0432.ccr-22-1837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
The clinical development of cytokines as cancer therapeutics has been limited due to significant toxicities generally observed with systemic administration. This narrow therapeutic window, together with relatively modest efficacy, has made natural cytokines unattractive drug candidates. Immunocytokines represent a class of next-generation cytokines designed to overcome the challenges associated with traditional cytokines. These agents seek to improve the therapeutic index of cytokines by using antibodies as vehicles for the targeted delivery of immunomodulatory agents within the local tumor microenvironment (TME). Various molecular formats and cytokine payloads have been studied. In this review, we provide an overview of the rationale, preclinical support, and current clinical development strategies for immunocytokines.
Collapse
Affiliation(s)
- Aliyah Pabani
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Justin F Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Prodi E, Comacchio C, Gilardoni E, Di Nitto C, Puca E, Neri D, De Luca R. An Antibody Targeting Fibroblast Activation Protein Simultaneously Fused to Interleukin-2 and Tumor Necrosis Factor Selectively Localizes to Neoplastic Lesions. Antibodies (Basel) 2023; 12:antib12020029. [PMID: 37092450 PMCID: PMC10123652 DOI: 10.3390/antib12020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
The delivery of specific cytokine payloads to a neoplastic environment employing antibodies able to selectively accumulate at the tumor site represents an attractive strategy to stimulate an immune response to cancer. Whilst conventional antibody-cytokine fusions based on a single payload have shown potent anticancer activity, the concomitant delivery of two cytokine payloads may further improve the therapeutic outcome as the immune system typically adopts multiple signals to reinforce an antitumor strategy. We here describe a potency-matched dual-cytokine antibody fusion protein containing a tumor-targeting antibody fragment specific to human fibroblast activation protein (FAP), simultaneously linked to both interleukin-2 (IL2) and a tumor necrosis factor (TNF) mutant. The resulting fusion protein, termed IL2-7NP2-TNFmut, formed stable non-covalent trimers driven by the interaction of the tumor necrosis factor subunits. Both cytokine payloads retained their biological activity within the fusion protein, as shown by in vitro cellular assays. The tumor-targeting properties and the anticancer activity of IL2-7NP2-TNFmut were investigated in vivo in immunocompromised mice bearing SKRC52 cells transduced with human FAP. The fusion protein preferentially localized to the cancer site and induced partial tumor retardation.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
- CiBIO (Department of Cellular, Computational and Integrative Biology), University of Trento, 38123 Trento, Italy
| | | | | | | | - Emanuele Puca
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | | | | |
Collapse
|
10
|
Cojocaru E, Napolitano A, Fisher C, Huang P, Jones RL, Thway K. What's the latest with investigational drugs for soft tissue sarcoma? Expert Opin Investig Drugs 2022; 31:1239-1253. [PMID: 36424693 DOI: 10.1080/13543784.2022.2152324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Despite extensive research undertaken in the past 20-30 years, the treatment for soft tissue sarcoma (STS) has remained largely the same, with anthracycline-based chemotherapy remaining the first choice for treating advanced or metastatic STS. AREAS COVERED This review focuses on newly approved drugs for STS and current research directions, including recent results of late-phase trials in patients with STS. We cover several different histological subtypes, and we discuss the role of adoptive cell transfer (ACT) therapies for the treatment of synovial and myxoid/round cell (high-grade myxoid) liposarcoma, one of the most promising areas of treatment development to date. We searched clinicaltrials.gov and pubmed.ncbi.nih.gov, as well as recent year proceedings from the annual conferences of the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), and Connective Tissue Oncology Society (CTOS). EXPERT OPINION Immune-oncology drugs (IOs) show promise in certain subtypes of STS, but it is recognized that PD-1/PD-L1 axis inhibition is not enough on its own. Better trial stratifications based on the molecular categorization of different subtypes of STS are needed, and more evidence suggests that 'one size fits all' treatment is no longer sustainable in this heterogeneous and aggressive group of tumors.
Collapse
Affiliation(s)
- Elena Cojocaru
- Cancer Genetic Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK
| | - Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK
| | - Cyril Fisher
- Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Paul Huang
- Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Khin Thway
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, SW3 6JJ, London, UK.,Protein Networks Team, Division of Molecular Pathology, The Institute of Cancer Research, SW7 3RP, London, UK
| |
Collapse
|
11
|
Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci 2022; 79:509. [PMID: 36066630 PMCID: PMC9448690 DOI: 10.1007/s00018-022-04514-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022]
Abstract
Monoclonal antibody (mAb) therapy has successfully been introduced as treatment of several lymphomas and leukemias. However, solid tumors reduce the efficacy of mAb therapy because of an immune-suppressive tumor micro-environment (TME), which hampers activation of effector immune cells. Pro-inflammatory cytokine therapy may counteract immune suppression in the TME and increase mAb efficacy, but untargeted pro-inflammatory cytokine therapy is limited by severe off-target toxicity and a short half-life of cytokines. Antibody-cytokine fusion proteins, also referred to as immunocytokines, provide a solution to either issue, as the antibody both acts as local delivery platform and increases half-life. The antibody can furthermore bridge local cytotoxic immune cells, like macrophages and natural killer cells with tumor cells, which can be eliminated after effector cells are activated via the cytokine. Currently, a variety of different antibody formats as well as a handful of cytokine payloads are used to generate immunocytokines. However, many potential formats and payloads are still left unexplored. In this review, we describe current antibody formats and cytokine moieties that are used for the development of immunocytokines, and highlight several immunocytokines in (pre-)clinical studies. Furthermore, potential future routes of development are proposed.
Collapse
Affiliation(s)
- Dennis Y Gout
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lotte S Groen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands.,LUMICKS, Paalbergweg 3, 1105 AG, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1108, Amsterdam, The Netherlands. .,Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, The Netherlands. .,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands. .,Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol 2022; 19:192-209. [PMID: 35043005 PMCID: PMC8803834 DOI: 10.1038/s41423-021-00786-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
Cytokines exert powerful immunomodulatory effects that are critical to physiology and pathology in humans. The application of natural cytokines in clinical studies has not been clearly established, and there are often problems associated with toxicity or lack of efficacy. The key reasons can be attributed to the pleiotropy of cytokine receptors and undesired activation of off-target cells. With a deeper understanding of the structural principles and functional signals of cytokine-receptor interactions, artificial modification of cytokine signaling through protein engineering and synthetic immunology has become an increasingly feasible and powerful approach. Engineered cytokines are designed to selectively target cells. Herein, the theoretical and experimental evidence of cytokine engineering is reviewed, and the "supercytokines" resulting from structural enhancement and the "immunocytokines" generated by antibody fusion are described. Finally, the "engager cytokines" formed by the crosslinking of cytokines and bispecific immune engagers and other synthetic cytokines formed by nonnatural analogs are also discussed.
Collapse
|
13
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Enhanced Detection of Desmoplasia by Targeted Delivery of Iron Oxide Nanoparticles to the Tumour-Specific Extracellular Matrix. Pharmaceutics 2021; 13:pharmaceutics13101663. [PMID: 34683956 PMCID: PMC8539756 DOI: 10.3390/pharmaceutics13101663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023] Open
Abstract
Diagnostic imaging of aggressive cancer with a high stroma content may benefit from the use of imaging contrast agents targeted with peptides that have high binding affinity to the extracellular matrix (ECM). In this study, we report the use of superparamagnetic iron-oxide nanoparticles (IO-NP) conjugated to a nonapeptide, CSGRRSSKC (CSG), which specifically binds to the laminin-nidogen-1 complex in tumours. We show that CSG-IO-NP accumulate in tumours, predominantly in the tumour ECM, following intravenous injection into a murine model of pancreatic neuroendocrine tumour (PNET). In contrast, a control untargeted IO-NP consistently show poor tumour uptake, and IO-NP conjugated to a pentapeptide, CREKA that bind fibrin clots in blood vessels show restricted uptake in the angiogenic vessels of the tumours. CSG-IO-NP show three-fold higher intratumoral accumulation compared to CREKA-IO-NP. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate significant uptake of CSG-IO-NP irrespective of tumour size, whereas the uptake of CREKA-IO-NP is only consistent in small tumours of less than 3 mm in diameter. Larger tumours with significantly reduced tumour blood vessels show a lack of CREKA-IO-NP uptake. Our data suggest CSG-IO-NP are particularly useful for detecting stroma in early and advanced solid tumours.
Collapse
|
15
|
Dakhel S, Lizak C, Matasci M, Mock J, Villa A, Neri D, Cazzamalli S. An Attenuated Targeted-TNF Localizes to Tumors In Vivo and Regains Activity at the Site of Disease. Int J Mol Sci 2021; 22:10020. [PMID: 34576184 PMCID: PMC8469155 DOI: 10.3390/ijms221810020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Antibody-cytokine fusion proteins (immunocytokines) are gaining importance for cancer therapy, but those products are often limited by systemic toxicity related to the activity of the cytokine payload in circulation and in secondary lymphoid organs. Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. Here we describe a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. The fusion of the TNF(I97A) mutant to the L19 antibody promoted restoration of anti-tumor activity upon accumulation on the cognate antigen, the alternatively spliced EDB domain of fibronectin. In vivo administration of high doses (375 μg/Kg) of the fusion protein showed a potent anti-tumor effect without apparent toxicity compared with the wild type protein. L19-TNFI97A holds promise for the targeted delivery of TNF activity to neoplastic lesions, helping spare normal tissues.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Cricetulus
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Fibronectins/genetics
- Fibronectins/metabolism
- Fluorescent Antibody Technique
- Immunotherapy
- Mice, Inbred BALB C
- Mutation
- Protein Structure, Secondary
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Sheila Dakhel
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Christian Lizak
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Mattia Matasci
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Jacqueline Mock
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Alessandra Villa
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Dario Neri
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
- Philogen S.p.A., Piazza La Lizza, 7, 53100 Siena, Italy
| | - Samuele Cazzamalli
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| |
Collapse
|
16
|
The immunocytokine L19-TNF eradicates sarcomas in combination with chemotherapy agents or with immune check-point inhibitors. Anticancer Drugs 2021; 31:799-805. [PMID: 32304410 DOI: 10.1097/cad.0000000000000938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-cytokine fusion proteins (also called 'immunocytokines') represent an emerging class of biopharmaceutical products, which are being considered for cancer immunotherapy. When used as single agents, pro-inflammatory immunocytokines are rarely capable of inducing complete and durable cancer regression in mouse models and in patients. However, the combination treatment with conventional chemotherapy or with other immune-stimulatory agents typically increases the therapeutic efficacy of immunocytokines. In this article, we describe combination treatments of a tumor-targeting antibody-cytokine fusion protein based on the L19 antibody (specific to a splice isoform of fibronectin) fused to murine tumor necrosis factor with standard chemotherapy (dacarbazine, trabectedin or melphalan) or with an immune check-point inhibitor (anti-PD-1) in a BALB/c derived immunocompetent murine model of sarcoma (WEHI-164). All combination treatments led to improved tumor remission compared to single-agent treatments, suggesting that these combination partners may be suitable for further clinical development in sarcoma patients.
Collapse
|
17
|
Schliemann C, Hemmerle T, Berdel AF, Angenendt L, Kerkhoff A, Hering JP, Heindel W, Hartmann W, Wardelmann E, Chawla SP, de Braud F, Lenz G, Neri D, Kessler T, Berdel WE. Dose escalation and expansion phase I studies with the tumour-targeting antibody-tumour necrosis factor fusion protein L19TNF plus doxorubicin in patients with advanced tumours, including sarcomas. Eur J Cancer 2021; 150:143-154. [PMID: 33901793 DOI: 10.1016/j.ejca.2021.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND L19TNF is a recombinant fusion protein composed of a human antibody fragment and human tumour necrosis factor. L19TNF targets the EDB domain of oncofetal fibronectin highly expressed in tumour vasculature and induces tumour remission in mouse tumours. We summarise two phase I trials testing a combination of L19TNF with doxorubicin in patients with solid tumours, particularly soft tissue sarcomas (STS). PATIENTS AND METHODS The first study, an open-label, dose-escalation and expansion phase I study of L19TNF plus doxorubicin, enrolled 27 patients. Three cohorts (10.4-17 μg/kg L19TNF) of patients received L19TNF intravenously at days 1, 3, and 5 and doxorubicin (75 mg/m2, then 60 mg/m2) on day 1 every 3 weeks. The expansion cohort enrolled patients with STS. The second study tried to re-escalate the doxorubicin dose to 75 mg/m2 with 13 μg/kg L19TNF. Among primary objectives was the establishment of a recommended dose (RD). RESULTS The combination was safely applicable. Dose-limiting toxicity occurred either at 17 μg/kg L19TNF or at 75 mg/m2 doxorubicin. RD is 13 μg/kg L19TNF plus 60 mg/m2 doxorubicin. In 15 STS patients of the extension cohort evaluable for efficacy, antitumour activity was observed with complete remission in 1, partial remission in 1 and minor tumour shrinkage in 7 patients. The median overall survival for this heavily pretreated cohort was 14.9 months. CONCLUSION L19TNF can be safely applied in combination with doxorubicin and induces encouraging tumour remissions in patients with soft tissue sarcomas.
Collapse
Affiliation(s)
- Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany.
| | | | - Andrew F Berdel
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Linus Angenendt
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Jan P Hering
- Institute for Clinical Radiology, University Hospital Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Walter Heindel
- Institute for Clinical Radiology, University Hospital Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute for Pathology, University Hospital of Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute for Pathology, University Hospital of Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Sant P Chawla
- Sarcoma Oncology Center, 2811 Wilshire Blvd, Santa Monica, CA, 90403, USA
| | - Filippo de Braud
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milano MI, 20133, Italy
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | | | - Torsten Kessler
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
18
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
19
|
Ferrari M, Onuoha SC, Fossati-Jimack L, Nerviani A, Alves PL, Pagani S, Deantonio C, Colombo F, Santoro C, Sblattero D, Pitzalis C. Novel Bispecific Antibody for Synovial-Specific Target Delivery of Anti-TNF Therapy in Rheumatoid Arthritis. Front Immunol 2021; 12:640070. [PMID: 33679801 PMCID: PMC7933454 DOI: 10.3389/fimmu.2021.640070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Biologic drugs, especially anti-TNF, are considered as the gold standard therapy in rheumatoid arthritis. However, non-uniform efficacy, incidence of infections, and high costs are major concerns. Novel tissue-specific agents may overcome the current limitations of systemic administration, providing improved potency, and safety. We developed a bispecific antibody (BsAb), combining human arthritic joint targeting, via the synovial-specific single-chain variable fragment (scFv)-A7 antibody, and TNFα neutralization, via the scFv-anti-TNFα of adalimumab, with the binding/blocking capacity comparable to adalimumab -immunoglobulin G (IgG). Tissue-targeting capacity of the BsAb was confirmed on the human arthritic synovium in vitro and in a synovium xenograft Severe combined immune deficient (SCID) mouse model. Peak graft accumulation occurred at 48 h after injection with sustained levels over adalimumab-IgG for 7 days and increased therapeutic effect, efficiently decreasing tissue cellularity, and markers of inflammation with higher potency compared to the standard treatment. This study provides the first description of a BsAb capable of drug delivery, specifically to the disease tissue, and a strong evidence of improved therapeutic effect on the human arthritic synovium, with applications to other existing biologics.
Collapse
Affiliation(s)
- Mathieu Ferrari
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shimobi C Onuoha
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Liliane Fossati-Jimack
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alessandra Nerviani
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro L Alves
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sara Pagani
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Deantonio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, Novara, Italy
| | - Federico Colombo
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, Novara, Italy
| | | | - Costantino Pitzalis
- Department of Experimental Medicine and Rheumatology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
20
|
Mortensen MR, Mock J, Bertolini M, Stringhini M, Catalano M, Neri D. Targeting an engineered cytokine with interleukin-2 and interleukin-15 activity to the neovasculature of solid tumors. Oncotarget 2020; 11:3972-3983. [PMID: 33216834 PMCID: PMC7646832 DOI: 10.18632/oncotarget.27772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
There is a growing interest in the antibody-based delivery of cytokines to the tumor environment as a means to boost the anti-cancer activity of tumor-resident T cells and NK cells. Here, we describe the expression and characterization of fusion proteins, featuring the L19 antibody (specific to the alternatively-spliced EDB domain of fibronectin) and an engineered cytokine with interleukin-2 and interleukin-15 properties. The cytokine moiety was fused either at the N-terminal or at the C-terminal extremity and both fusion proteins showed a selective tumor accumulation in a quantitative biodistribution experiment. The N-terminal fusion inhibited tumor growth in immunocompetent mice bearing F9 carcinomas or WEHI-164 sarcomas when used as single agent. The anticancer activity was compared to the one of the same cytokine payload used as recombinant protein or fused to an anti-hen egg lysozyme antibody, serving as negative control of irrelevant specificity in the mouse. These results indicate that the antibody-based delivery of engineered cytokines to the tumor neovasculature may mediate a potent anticancer activity.
Collapse
Affiliation(s)
- Michael R Mortensen
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Bertolini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Weiss T, Puca E, Silginer M, Hemmerle T, Pazahr S, Bink A, Weller M, Neri D, Roth P. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci Transl Med 2020; 12:12/564/eabb2311. [DOI: 10.1126/scitranslmed.abb2311] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma is a poorly immunogenic cancer, and the successes with recent immunotherapies in extracranial malignancies have, so far, not been translated to this devastating disease. Therefore, there is an urgent need for new strategies to convert the immunologically cold glioma microenvironment into a hot one to enable effective antitumor immunity. Using the L19 antibody, which is specific to a tumor-associated epitope of extracellular fibronectin, we developed antibody-cytokine fusions—immunocytokines—with interleukin-2 (IL2), IL12, or tumor necrosis factor (TNF). We showed that L19 accumulated in the tumor microenvironment of two orthotopic immunocompetent mouse glioma models. Furthermore, intravenous administration of L19-mIL12 or L19-mTNF cured a proportion of tumor-bearing mice, whereas L19-IL2 did not. This therapeutic activity was abolished in RAG−/− mice or upon depletion of CD4 or CD8 T cells, suggesting adaptive immunity. Mechanistically, both immunocytokines promoted tumor-infiltrating lymphocytes and increased the amounts of proinflammatory cytokines within the tumor microenvironment. In addition, L19-mTNF induced tumor necrosis. Systemic administration of the fully human L19-TNF fusion protein to patients with glioblastoma (NCT03779230) was safe, decreased regional blood perfusion within the tumor, and was associated with increasing tumor necrosis and an increase in tumor-infiltrating CD4 and CD8 T cells. The extensive preclinical characterization and subsequent clinical translation provide a robust basis for future studies with immunocytokines to treat malignant brain tumors.
Collapse
Affiliation(s)
- Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Emanuele Puca
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Manuela Silginer
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | | | - Shila Pazahr
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
22
|
Balza E, Carnemolla B, Orecchia P, Rubartelli A, Poggi A, Mortara L. Tumor Vasculature Targeted TNFα Therapy: Reversion of Microenvironment Anergy and Enhancement of the Anti-tumor Efficiency. Curr Med Chem 2020; 27:4233-4248. [PMID: 30182839 DOI: 10.2174/0929867325666180904121118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Tumor cells and tumor-associated stromal cells such as immune, endothelial and mesenchimal cells create a Tumor Microenvironment (TME) which allows tumor cell promotion, growth and dissemination while dampening the anti-tumor immune response. Efficient anti-tumor interventions have to keep into consideration the complexity of the TME and take advantage of immunotherapy and chemotherapy combined approaches. Thus, the aim of tumor therapy is to directly hit tumor cells and reverse endothelial and immune cell anergy. Selective targeting of tumor vasculature using TNFα-associated peptides or antibody fragments in association with chemotherapeutic agents, has been shown to exert a potent stimulatory effect on endothelial cells as well as on innate and adaptive immune responses. These drug combinations reducing the dose of single agents employed have led to minimize the associated side effects. In this review, we will analyze different TNFα-mediated tumor vesseltargeted therapies in both humans and tumor mouse models, with emphasis on the role played by the cross-talk between natural killer and dendritic cells and on the ability of TNFα to trigger tumor vessel activation and normalization. The improvement of the TNFα-based therapy with anti-angiogenic immunomodulatory drugs that may convert the TME from immunosuppressive to immunostimulant, will be discussed as well.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Paola Orecchia
- Immunology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Rubartelli
- Cell Biology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Policlinico San Martino, Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy
| |
Collapse
|
23
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Dual-engineered, “Trojanized” macrophages bio-modally eradicate tumors through biologically and photothermally deconstructing cancer cells in an on-demand, NIR-commanded, self-explosive manner. Biomaterials 2020; 250:120021. [DOI: 10.1016/j.biomaterials.2020.120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
|
25
|
Neri D. Antibody-Cytokine Fusions: Versatile Products for the Modulation of Anticancer Immunity. Cancer Immunol Res 2020; 7:348-354. [PMID: 30824549 DOI: 10.1158/2326-6066.cir-18-0622] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The remarkable clinical success of immune-checkpoint inhibitors for the treatment of a growing number of cancer types has sparked interest in the discovery of novel forms of immunotherapy, which may be used alone or in combination. In this context, cytokine-based therapeutics are well poised to play a role in modern cancer therapy. This article focuses on antibody-cytokine fusion proteins (also called "immunocytokines") as one class of biopharmaceuticals that can substantially improve the therapeutic index and, thus, the applicability of cytokine products. In many preclinical settings, antibodies can be used to preferentially deliver many (but not all) types of cytokines to primary and metastatic tumor lesions. The antibody-based delivery of certain proinflammatory payloads (such as IL2, IL12, and TNF) to the tumor microenvironment can lead to a dramatic potentiation of their anticancer activity. However, although some fusion proteins have advanced to late-stage clinical trials, much work remains to be done in order to fully characterize the mechanism of action and the pharmaceutical potential of immunocytokines in the clinical setting. Various factors contribute to in vivo performance, including the target antigen, the antibody properties, the nature of the payload, the format of the fusion protein, the dose, and schedule, as well as their use in combination with other therapeutic modalities. Protein engineering opportunities and insights in cancer immunology are contributing to the development of next-generation immunocytokine products and of novel therapeutic concepts, with the goal to increase antitumor activity and reduce systemic toxicity (a common problem for cytokine-based biopharmaceuticals).
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
26
|
Mock J, Pellegrino C, Neri D. A universal reporter cell line for bioactivity evaluation of engineered cytokine products. Sci Rep 2020; 10:3234. [PMID: 32094407 PMCID: PMC7040017 DOI: 10.1038/s41598-020-60182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Engineered cytokine products represent a growing class of therapeutic proteins which need to be tested for biological activity at various stages of pharmaceutical development. In most cases, dedicated biological assays are established for different products, in a process that can be time-consuming and cumbersome. Here we describe the development and implementation of a universal cell-based reporter system for various classes of immunomodulatory proteins. The novel system capitalizes on the fact that the signaling of various types of pro-inflammatory agents (e.g., cytokines, chemokines, Toll-like receptor agonists) may involve transcriptional activation by NF-κB. Using viral transduction, we generated stably-transformed cell lines of B or T lymphocyte origin and compared the new reporter cell lines with conventional bioassays. The experimental findings with various interleukins and with members of the TNF superfamily revealed that the newly-developed “universal” bioassay method yielded bioactivity data which were comparable to the ones obtained with dedicated conventional methods. The engineered cell lines with reporters for NF-κB were tested with several antibody-cytokine fusions and may be generally useful for the characterization of novel immunomodulatory products. The newly developed methodology also revealed a mechanism for cytokine potentiation, based on the antibody-mediated clustering of TNF superfamily members on tumor-associated extracellular matrix components.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
27
|
Ueda A, Umetsu M, Nakanishi T, Hashikami K, Nakazawa H, Hattori S, Asano R, Kumagai I. Chemically Crosslinked Bispecific Antibodies for Cancer Therapy: Breaking from the Structural Restrictions of the Genetic Fusion Approach. Int J Mol Sci 2020; 21:ijms21030711. [PMID: 31973200 PMCID: PMC7037651 DOI: 10.3390/ijms21030711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022] Open
Abstract
Antibodies are composed of structurally and functionally independent domains that can be used as building blocks to construct different types of chimeric protein-format molecules. However, the generally used genetic fusion and chemical approaches restrict the types of structures that can be formed and do not give an ideal degree of homogeneity. In this study, we combined mutation techniques with chemical conjugation to construct a variety of homogeneous bivalent and bispecific antibodies. First, building modules without lysine residues—which can be chemical conjugation sites—were generated by means of genetic mutation. Specific mutated residues in the lysine-free modules were then re-mutated to lysine residues. Chemical conjugation at the recovered lysine sites enabled the construction of homogeneous bivalent and bispecific antibodies from block modules that could not have been so arranged by genetic fusion approaches. Molecular evolution and bioinformatics techniques assisted in finding viable alternatives to the lysine residues that did not deactivate the block modules. Multiple candidates for re-mutation positions offer a wide variety of possible steric arrangements of block modules, and appropriate linkages between block modules can generate highly bioactive bispecific antibodies. Here, we propose the effectiveness of the lysine-free block module design for site-specific chemical conjugation to form a variety of types of homogeneous chimeric protein-format molecule with a finely tuned structure and function.
Collapse
Affiliation(s)
| | - Mitsuo Umetsu
- Correspondence: (M.U.); (I.K.); Tel.: +81-22-795-7274 (M.U.); +81-22-795-7275 (I.K.)
| | | | | | | | | | | | - Izumi Kumagai
- Correspondence: (M.U.); (I.K.); Tel.: +81-22-795-7274 (M.U.); +81-22-795-7275 (I.K.)
| |
Collapse
|
28
|
Comparative evaluation of bolus and fractionated administration modalities for two antibody-cytokine fusions in immunocompetent tumor-bearing mice. J Control Release 2020; 317:282-290. [PMID: 31790729 DOI: 10.1016/j.jconrel.2019.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
Abstract
Antibody-cytokine fusion proteins are being considered as biopharmaceuticals for cancer immunotherapy. Tumor-homing cytokine fusions typically display an improved therapeutic activity compared to the corresponding unmodified cytokine products, but toxicity profiles at equivalent doses are similar, since side effects are mainly driven by the cytokine concentration in blood. In order to explore avenues to harness the therapeutic potential of antibody-cytokine fusions while decreasing potential toxicity, we compared bolus and fractionated administration modalities for two tumor-targeting antibody-cytokine fusion proteins based on human interleukin-2 (IL2) and murine tumor necrosis factor (TNF) (i.e., L19-hIL2 and L19-mTNF) in two murine immunocompetent mouse models of cancer (F9 and C51). A comparative quantitative biodistribution analysis with radio-labeled protein preparations revealed that a fractionated administration of L19-hIL2 could deliver comparable product doses to the tumor with decreased product concentration in blood and normal organs, compared to bolus injection. By contrast, L19-mTNF (a product that causes a selective vascular shutdown in the tumor) accumulated most efficiently after bolus injection. Fractionated schedules allowed the safe administration of a cumulative dose of L19-mTNF, which was 2.5-times higher than the lethal dose for bolus injection. Dose fractionation led to a prolonged tumor growth inhibition for F9 teratocarcinomas, but not for C51 colorectal tumors, which responded best to bolus injection. Thus, dose fractionation may have different outcomes for the same antibody-cytokine product in different biological contexts.
Collapse
|
29
|
Zhang J, Endres S, Kobold S. Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy 2020; 11:201-213. [PMID: 30730277 DOI: 10.2217/imt-2018-0111] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapy has changed the treatment landscape for cancer patients, especially for those with metastatic spread. While the immunotherapeutic armamentarium is constantly growing, as exemplified by approved compounds, clinical outcome remains variable both within and across entities. A sufficient infiltration into the tumor microenvironment and successful activation of effector T lymphocytes against tumor cells have been identified as predictors for responses to T cell-based immunotherapies. However, tumor cells have developed a variety of mechanisms to reduce T cell homing and access to the tumor tissue to prevent activity of anticancer immunity. As a consequence, investigations have interrogated strategies to improve the efficacy of cancer immunotherapies by enhancing T cell infiltration into tumor tissues. In this review, we summarize mechanisms of how tumor tissue shapes immune suppressive microenvironment to prevent T cell access to the tumor site. We focus on current strategies to improve cancer immunotherapies through enhancing T cell infiltration.
Collapse
Affiliation(s)
- Jin Zhang
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337 Munich, Germany, Member of the German Center of Lung Research
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337 Munich, Germany, Member of the German Center of Lung Research
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337 Munich, Germany, Member of the German Center of Lung Research
| |
Collapse
|
30
|
Zhuang M, Chen X, Du D, Shi J, Deng M, Long Q, Yin X, Wang Y, Rao L. SPION decorated exosome delivery of TNF-α to cancer cell membranes through magnetism. NANOSCALE 2020; 12:173-188. [PMID: 31803890 DOI: 10.1039/c9nr05865f] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factor (TNF-α) is capable of inducing apoptosis and is a promising candidate for genetic engineering drugs in cancer therapy; however, the serious side-effects of TNF-α hinder their clinical application. In the present study, a method for preparing fusion proteins of cell-penetrating peptides (CPP) and TNF-α (CTNF-α)-anchored exosomes coupled with superparamagnetic iron oxide nanoparticles (CTNF-α-exosome-SPIONs) with membrane targeting anticancer activity has been demonstrated. To acquire exosomes with TNF-α anchored in its membrane, a CTNF-α expression vector was constructed and a stable mesenchymal stem cell cell line that expressed CTNF-α was established. Conjugating transferrin-modified SPIONs (Tf-SPIONs) onto CTNF-α-exosomes through transferrin-transferrin receptor (Tf-TfR) interaction yields CTNF-α-exosome-SPIONs with good water dispersibility. The incorporation of TNF-α into exosomes and the conjugation of SPIONs significantly enhanced the binding capacity of TNF-α to its membrane-bound receptor TNFR I, thus increasing the therapeutic effects. CTNF-α-exosome-SPIONs significantly enhanced tumor cell growth inhibition via induction of the TNFR I-mediated apoptotic pathway. In vivo studies using murine melanoma subcutaneous cancer models showed that TNF-α-loaded exosome-based vehicle delivery enhanced cancer targeting under an external magnetic field and suppressed tumor growth with mitigating toxicity. Taken together, our results suggest that CTNF-α-exosome-SPIONs showed great potential in membrane targeting therapy.
Collapse
Affiliation(s)
- Manjiao Zhuang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuelian Chen
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Dan Du
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Jiamei Shi
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Mian Deng
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Qian Long
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Xiaofei Yin
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| | - Yayu Wang
- Department of Cell Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | - Lei Rao
- Department of Biomedicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
31
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Dakhel S, Ongaro T, Gouyou B, Matasci M, Villa A, Neri D, Cazzamalli S. Targeted enhancement of the therapeutic window of L19-TNF by transient and selective inhibition of RIPK1-signaling cascade. Oncotarget 2019; 10:6678-6690. [PMID: 31803362 PMCID: PMC6877107 DOI: 10.18632/oncotarget.27320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/19/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Cytokine-based products are gaining importance for cancer immunotherapy. L19-TNF is a clinical-stage antibody-cytokine fusion protein that selectively accumulates to tumors and displays potent anticancer activity in preclinical models. Here, we describe an innovative approach to transiently inhibit off-target toxicity of L19-TNF, while maintaining antitumor activity. Methods GSK’963, a potent small molecule inhibitor of RIPK1, was tested in tumor-bearing mice for its ability to reduce acute toxicity associated with TNF signaling. The biological effects of L19-TNF on tumor cells, lymphocytes and tumor vessels were investigated with the aim to enable the administration of TNF doses, which would otherwise be lethal. Results Transient inhibition of RIPK1 allowed to increase the maximal tolerated dose of L19-TNF. The protective effect of GSK’963 did not affect the selective localization of the immunocytokine to tumors as evidenced by quantitative biodistribution analysis and allowed to reach high local TNF concentrations around tumor blood vessels, causing diffused vascular shutdown and hemorrhagic necrosis within the neoplastic mass. Conclusions The selective inhibition of RIPK1 with small molecule inhibitors can be used as a pharmaceutical tool to transiently mask TNF activity and improve the therapeutic window of TNF-based biopharmaceuticals. Similar approaches may be applicable to other pro-inflammatory cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | - Dario Neri
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich CH-8093, Switzerland
| | | |
Collapse
|
33
|
De Luca R, Gouyou B, Ongaro T, Villa A, Ziffels B, Sannino A, Buttinoni G, Galeazzi S, Mazzacuva M, Neri D. A Novel Fully-Human Potency-Matched Dual Cytokine-Antibody Fusion Protein Targets Carbonic Anhydrase IX in Renal Cell Carcinomas. Front Oncol 2019; 9:1228. [PMID: 31799191 PMCID: PMC6863974 DOI: 10.3389/fonc.2019.01228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Certain cytokines synergize in activating anti-cancer immunity at the site of disease and it may be desirable to generate biopharmaceutical agents, capable of simultaneous delivery of cytokine pairs to the tumor. In this article, we have described the cloning, expression and characterization of IL2-XE114-TNFmut, a dual-cytokine biopharmaceutical featuring the sequential fusion of interleukin-2 (IL2) with the XE114 antibody in scFv format and a tumor necrosis factor mutant (TNFmut). The fusion protein recognized the cognate antigen (carbonic anhydrase IX, a marker of hypoxia and of renal cell carcinoma) with high affinity and specificity. IL2-XE114-TNFmut formed a stable non-covalent homotrimeric structure, displayed cytokine activity in in vitro tests and preferentially localized to solid tumors in vivo. The product exhibited a partial growth inhibition of murine CT26 tumors transfected for carbonic anhydrase IX. When administered to Cynomolgus monkey as intravenous injection, IL2-XE114-TNFmut showed the expected plasma concentration of ~1,500 ng/ml at early time points, indicating the absence of any in vivo trapping events, and a half-life of ~2 h. IL2-XE114-TNFmut may thus be considered as a promising biopharmaceutical for the treatment of metastatic clear-cell renal cell carcinoma, since these tumors are known to be sensitive to IL2 and to TNF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianluca Buttinoni
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| |
Collapse
|
34
|
Yeow YL, Kotamraju VR, Wang X, Chopra M, Azme N, Wu J, Schoep TD, Delaney DS, Feindel K, Li J, Kennedy KM, Allen WM, Kennedy BF, Larma I, Sampson DD, Mahakian LM, Fite BZ, Zhang H, Friman T, Mann AP, Aziz FA, Kumarasinghe MP, Johansson M, Ee HC, Yeoh G, Mou L, Ferrara KW, Billiran H, Ganss R, Ruoslahti E, Hamzah J. Immune-mediated ECM depletion improves tumour perfusion and payload delivery. EMBO Mol Med 2019; 11:e10923. [PMID: 31709774 PMCID: PMC6895610 DOI: 10.15252/emmm.201910923] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immune‐modulating cytokine, tumour necrosis factor alpha (TNFα), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to laminin–nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFα‐CSG fusion protein to tumour ECM in tumour‐bearing mice. Intravenously injected TNFα‐CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECM‐rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumour‐bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFα.
Collapse
Affiliation(s)
- Yen Ling Yeow
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | | | - Xiao Wang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Meenu Chopra
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Nasibah Azme
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Jiansha Wu
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | | | - Derek S Delaney
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Kirk Feindel
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA, Australia
| | - Ji Li
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Kelsey M Kennedy
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Wes M Allen
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia.,Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Brendan F Kennedy
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia.,Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Irma Larma
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA, Australia
| | - David D Sampson
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA, Australia.,Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Brett Z Fite
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Hua Zhang
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Tomas Friman
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aman P Mann
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Farah A Aziz
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | | | - Hooi C Ee
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - George Yeoh
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Lingjun Mou
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Hector Billiran
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliana Hamzah
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
Miura JT, Zager JS. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol 2019; 15:3665-3674. [PMID: 31538818 DOI: 10.2217/fon-2019-0433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High-risk resectable melanoma poses therapeutic challenges as this subgroup remains most vulnerable for disease recurrence. Immunotherapy has established its efficacy in cases of advanced melanoma, and now is actively being investigated in the multimodal management of resectable disease. Daromun, an intralesional immunocytokine, has emerged as a unique immunotherapy in its ability to preferentially target tumor cells, resulting in direct destruction, while generating a bystander effect that leads to a distant treatment effect. On the basis of its mechanism of action, there is growing interest in delivering immune-based therapies in a neoadjuvant setting. In this review, the neo-DREAM study, a Phase III trial comparing the safety and efficacy of neoadjuvant Daromun for resectable stage IIIB/C melanoma will be described. Clinical Trial Registration Number: NCT03567889.
Collapse
Affiliation(s)
- John T Miura
- Departments of Cutaneous Oncology & Sarcoma, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Surgery, University of South Florida School of Medicine, Tampa FL, USA
| | - Jonathan S Zager
- Departments of Cutaneous Oncology & Sarcoma, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Surgery, University of South Florida School of Medicine, Tampa FL, USA
| |
Collapse
|
36
|
Murer P, Neri D. Antibody-cytokine fusion proteins: A novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol 2019; 52:42-53. [PMID: 30991144 DOI: 10.1016/j.nbt.2019.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Antibody-cytokine fusion proteins represent a novel class of biopharmaceuticals, with the potential to increase the therapeutic index of cytokine 'payloads' and to promote leukocyte infiltration at the site of disease. In this review, we present a survey of immunocytokines that have been used in preclinical models of cancer and in clinical trials. In particular, we highlight how antibody format, choice of target antigen and cytokine engineering, as well as combination strategies, may have a profound impact on therapeutic performance. Moreover, by using anti-inflammatory cytokines, antibody fusion strategies can conveniently be employed for the treatment of auto-immune and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
37
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
38
|
Murer P, Kiefer JD, Plüss L, Matasci M, Blümich SL, Stringhini M, Neri D. Targeted Delivery of TNF Potentiates the Antibody-Dependent Cell-Mediated Cytotoxicity of an Anti-Melanoma Immunoglobulin. J Invest Dermatol 2018; 139:1339-1348. [PMID: 30543899 DOI: 10.1016/j.jid.2018.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
Abstract
The recombinant murine IgG2a antibody TA99, directed against a melanoma antigen, was used to study combination modalities that potentiate antibody-dependent cell cytotoxicity. As previously reported, IgG2a(TA99) was extremely efficacious in preventing the growth of B16 lung metastases. However, the same antibody mediated only minimal tumor growth retardation when used to treat established neoplastic masses. The therapeutic activity of IgG2a(TA99) could be substantially enhanced by co-administration with an antibody-cytokine fusion (TA99-murine tumor necrosis factor [mTNF]), consisting of the TA99 antibody in single-chain variable fragment format fused to murine TNF. This fusion protein efficiently killed endothelial cells in vitro and displayed only minimal activity against B16 melanoma cells. In vivo, TA99-mTNF boosted the influx of natural killer cells and macrophages into B16 melanoma lesions. Therapy studies with two different administration schedules showed that the combination of TA99-mTNF and IgG2a(TA99) was superior to the individual products used as single agents. The combination treatment converted most of the tumor mass into a necrotic lesion, but a vital tumor rim eventually regrew, even when dacarbazine was included in the therapeutic regimen. The treatment modality described in this article may be applicable to the treatment of melanoma patients, given the specificity of the gp75 antigen and its conservation across species.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antibodies, Monoclonal, Murine-Derived/genetics
- Antibodies, Monoclonal, Murine-Derived/isolation & purification
- Antigens, Neoplasm/immunology
- CHO Cells
- Cell Line, Tumor/transplantation
- Cricetulus
- Drug Administration Schedule
- Drug Screening Assays, Antitumor
- Female
- Humans
- Immunoconjugates/administration & dosage
- Immunoconjugates/genetics
- Immunoconjugates/isolation & purification
- Immunoglobulin G/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Membrane Glycoproteins/immunology
- Mice
- Oxidoreductases/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tumor Necrosis Factor-alpha/administration & dosage
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/isolation & purification
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Louis Plüss
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | - Sandra L Blümich
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
39
|
Probst P, Stringhini M, Ritz D, Fugmann T, Neri D. Antibody-based Delivery of TNF to the Tumor Neovasculature Potentiates the Therapeutic Activity of a Peptide Anticancer Vaccine. Clin Cancer Res 2018; 25:698-709. [PMID: 30327303 DOI: 10.1158/1078-0432.ccr-18-1728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE There is a growing interest in the use of tumor antigens for therapeutic vaccination strategies. Unfortunately, in most cases, the use of peptide vaccines in patients does not mediate shrinkage of solid tumor masses.Experimental Design: Here, we studied the opportunity to boost peptide vaccination with F8-TNF, an antibody fusion protein that selectively delivers TNF to the tumor extracellular matrix. AH1, a model antigen to investigate CD8+ T-cell immunity in BALB/c mice, was used as vaccine. RESULTS Peptide antigens alone exhibited only a modest tumor growth inhibition. However, anticancer activity could be substantially increased by combination with F8-TNF. Analysis of T cells in tumors and in draining lymph nodes revealed a dramatic expansion of AH1-specific CD8+ T cells, which were strongly positive for PD-1, LAG-3, and TIM-3. The synergistic anticancer activity, observed in the combined use of peptide vaccination and F8-TNF, was largely due to the ability of the fusion protein to induce a rapid hemorrhagic necrosis in the tumor mass, thus leaving few residual tumor cells. While the cell surface phenotype of tumor-infiltrating CD8+ T cells did not substantially change upon treatment, the proportion of AH1-specific T cells was strongly increased in the combination therapy group, reaching more than 50% of the CD8+ T cells within the tumor mass. CONCLUSIONS Because both peptide vaccination strategies and tumor-homing TNF fusion proteins are currently being studied in clinical trials, our study provides a rationale for the combination of these 2 regimens for the treatment of patients with cancer.
Collapse
Affiliation(s)
- Philipp Probst
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
40
|
Osaki T, Nakanishi T, Aoki M, Omizu T, Nishiura D, Kitamura M. Soluble Expression in Escherichia coli of a Single-Domain Antibody-Tumor Necrosis Factor α Fusion Protein Specific for Epidermal Growth Factor Receptor. Monoclon Antib Immunodiagn Immunother 2018; 37:20-25. [PMID: 29474158 DOI: 10.1089/mab.2017.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor-targeted antibody-cytokine fusion proteins, called immunocytokines, are expected to be a useful platform for the development of effective antitumor therapeutic agents; however, their design and cost-efficient production remain as challenges. In this study, we constructed an antibody-cytokine fusion protein (Ia1-TNFα) comprising the single-domain antibody Ia1, which targets epidermal growth factor receptor (EGFR) overexpressed in epithelial tumors and a tumor necrosis factor α (TNFα) domain, which has antitumor activity. Ia1-TNFα was produced in a soluble form by using an Escherichia coli expression system, and after affinity purification of the culture supernatant, an yield of ∼2 mg/L of cell culture was obtained. Gel filtration analysis showed that Ia1-TNFα existed predominantly as a trimer, which is consistent with the multimerization state of TNFα. Ia1-TNFα exhibited approximately 7-fold lower TNFα biological activity than that of TNFα itself. Flow cytometric analysis revealed that Ia1-TNFα specifically bound to EGFR-expressing tumor cells and that its binding activity was higher than that of monovalent Ia1, suggesting that the fusion protein bound to the tumor cells multivalently. Altogether, these results show that fusion of TNFα with a single-domain antibody could be a cost-efficient means of producing antitumor therapeutic agents.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Takeshi Nakanishi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Motoshi Aoki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Takahiro Omizu
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Daisuke Nishiura
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Masaya Kitamura
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| |
Collapse
|
41
|
Fujii H, Tanaka Y, Nakazawa H, Sugiyama A, Manabe N, Shinoda A, Shimizu N, Hattori T, Hosokawa K, Sujino T, Ito T, Niide T, Asano R, Kumagai I, Umetsu M. Compact Seahorse‐Shaped T Cell–Activating Antibody for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hiroto Fujii
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences Tohoku University 2‐1‐1 Katahira Aoba‐ku Sendai 980–8577 Japan
- JST PRESTO 2‐1‐1 Katahira Aoba‐ku Sendai 980–8577 Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Aruto Sugiyama
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Noriyoshi Manabe
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science Hokkaido University Sapporo 060–0810 Japan
| | - Nobutaka Shimizu
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization 1‐1 Oho Tsukuba Ibaraki 305–0801 Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Katsuhiro Hosokawa
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Takuma Sujino
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Teppei Niide
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| |
Collapse
|
42
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|
43
|
Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 2018; 51:e12441. [PMID: 29484738 DOI: 10.1111/cpr.12441] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti-cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Ventura E, Weller M, Macnair W, Eschbach K, Beisel C, Cordazzo C, Claassen M, Zardi L, Burghardt I. TGF-β induces oncofetal fibronectin that, in turn, modulates TGF-β superfamily signaling in endothelial cells. J Cell Sci 2018; 131:jcs.209619. [PMID: 29158223 DOI: 10.1242/jcs.209619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Gene splicing profiles are frequently altered in cancer, and the splice variants of fibronectin (FN) that contain the extra-domains A (EDA) or B (EDB), referred to as EDA+FN or EDB+FN, are highly upregulated in tumor vasculature. Transforming growth factor β (TGF-β) signaling has been attributed a pivotal role in glioblastoma, with TGF-β promoting angiogenesis and vessel remodeling. By using immunohistochemistry staining, we observed that the oncofetal FN isoforms EDA+FN and EDB+FN are expressed in glioblastoma vasculature. Ex vivo single-cell gene expression profiling of tumors by using CD31 and α-smooth muscle actin (αSMA) as markers for endothelial cells, and pericytes and vascular smooth muscle cells (VSMCs), respectively, confirmed the predominant expression of FN, EDA+FN and EDB+FN in the vascular compartment of glioblastoma. Specifically, within the CD31-positive cell population, we identified a positive correlation between the expression of EDA+FN and EDB+FN, and of molecules associated with TGF-β signaling. Further, TGF-β induced EDA+FN and EDB+FN in human cerebral microvascular endothelial cells and glioblastoma-derived endothelial cells in a SMAD3- and SMAD4-dependent manner. In turn, we found that FN modulated TGF-β superfamily signaling in endothelial cells via the EDA and EDB, pointing towards a bidirectional influence of oncofetal FN and TGF-β superfamily signaling.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Will Macnair
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Katja Eschbach
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Cinzia Cordazzo
- Sirius-biotech, c/o Advanced Biotechnology Center, 16132 Genoa, Italy
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Luciano Zardi
- Sirius-biotech, c/o Advanced Biotechnology Center, 16132 Genoa, Italy
| | - Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| |
Collapse
|
45
|
Lu L, Li ZJ, Li LF, Shen J, Zhang L, Li MX, Xiao ZG, Wang JH, Cho CH. A novel vascular-targeting peptide for gastric cancer delivers low-dose TNFα to normalize the blood vessels and improve the anti-cancer efficiency of 5-fluorouracil. Peptides 2017; 97:54-63. [PMID: 28970092 DOI: 10.1016/j.peptides.2017.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022]
Abstract
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, PR China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China.
| | - Zhi Jie Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Long Fei Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Lin Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Ming Xing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Zhan Gang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Jian Hao Wang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, PR China; School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, PR China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, PR China.
| |
Collapse
|
46
|
De Luca R, Soltermann A, Pretto F, Pemberton-Ross C, Pellegrini G, Wulhfard S, Neri D. Potency-matched Dual Cytokine-Antibody Fusion Proteins for Cancer Therapy. Mol Cancer Ther 2017; 16:2442-2451. [PMID: 28716814 PMCID: PMC5844457 DOI: 10.1158/1535-7163.mct-17-0211] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 01/23/2023]
Abstract
A novel biopharmaceutical, consisting of the F8 mAb (specific to a splice isoform of fibronectin) simultaneously fused to both TNF and IL2, was found to react with the majority of solid tumors and hematologic malignancies in mouse and man, but not with healthy adult tissues. The product selectively localized to neoplastic lesions in vivo, as evidenced by quantitative biodistribution studies using radioiodinated protein preparations. When the potency of the cytokine payloads was matched by a single-point mutation, the resulting fusion protein (IL2-F8-TNFmut) eradicated soft-tissue sarcomas in immunocompetent mice, which did not respond to individual antibody-cytokine fusion proteins or by standard doxorubicin treatment. Durable complete responses were also observed in mice bearing CT26, C1498, and F9 tumors. The simultaneous delivery of multiple proinflammatory payloads to the cancer site conferred protective immunity against subsequent tumor challenges. A fully human homolog of IL2-F8-TNFmut, which retained selectivity similar to its murine counterpart when tested on human material, may open new clinical applications for the immunotherapy of cancer. Mol Cancer Ther; 16(11); 2442-51. ©2017 AACR.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Alex Soltermann
- Institut für Klinische Pathologie, Universitätspital Zürich, Zürich, Switzerland
| | | | | | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Universität Zürich, Zürich, Switzerland
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
47
|
Jeon H, Kim D, Choi M, Kang S, Kim JY, Kim S, Jon S. Targeted Cancer Therapy Using Fusion Protein of TNFα and Tumor-Associated Fibronectin-Specific Aptide. Mol Pharm 2017; 14:3772-3779. [PMID: 28969419 DOI: 10.1021/acs.molpharmaceut.7b00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor necrosis factor-α has shown potent antitumor effects in preclinical and clinical studies. However, severe side effects at less than therapeutic doses have limited its systemic delivery, prompting the need for a new strategy for targeted delivery of the protein to tumors. Here, we report a fusion protein of mouse tumor necrosis factor (TNF)-α (mTNFα) and a cancer-targeting, high-affinity aptide and investigate its therapeutic efficacy in tumor-bearing mice. A fusion protein consisting of mTNFα, a linker, and an aptide specific to extra domain B (EDB) of fibronectin (APTEDB), designated mTNFα-APTEDB, was successfully produced by expression in Escherichia coli. mTNFα-APTEDB retained specificity and affinity for its target, EDB. In mice bearing EDB-overexpressing fibrosarcomas, mTNFα-APTEDB showed greater efficacy in inhibiting tumor growth than mTNFα alone or mTNFα linked to a nonrelevant aptide, without causing an appreciable loss in body weight. Moreover, in vivo antitumor efficacy was further significantly increased by combination treatment with the chemotherapeutic drug, melphalan, suggesting a synergistic effect attributable to enhanced drug uptake into the tumor as a result of TNFα-mediated enhanced vascular permeability. These results suggest that a fusion protein of mTNFα with a cancer-targeting peptide could be a new anticancer therapeutic option for ensuring potent antitumor efficacy after systemic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology , 202 Osongsaengmyeong 1-ro, Cheongjusi 28160, Chungcheongbuk-do, South Korea
| | | |
Collapse
|
48
|
Probst P, Kopp J, Oxenius A, Colombo MP, Ritz D, Fugmann T, Neri D. Sarcoma Eradication by Doxorubicin and Targeted TNF Relies upon CD8 + T-cell Recognition of a Retroviral Antigen. Cancer Res 2017; 77:3644-3654. [PMID: 28484076 DOI: 10.1158/0008-5472.can-16-2946] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
Antibody-cytokine complexes may offer new tools to treat cancer. Here, we show how TNF-linked antibodies, which recognize tumor-selective splice isoforms of fibronectin (F8-TNF), can be exploited to eradicate sarcomas in immunocompetent mice. We treated mice bearing WEHI-164 fibrosarcoma with a combination of F8-TNF and doxorubicin, curing the majority of treated animals (29/37). Notably, cured mice were resistant to rechallenge not only by WEHI-164 cells but also heterologous C51 or CT26 colorectal tumor cells in a CD8+ T-cell-dependent process. Mechanistic analyses revealed that each tumor cell line presented AH1, a common endogenous retroviral peptide. Numbers of AH1-specific CD8+ T cells exhibiting cytotoxic capacity were increased by F8-TNF plus doxorubicin treatment, arguing that cognate CD8+ T cells contributed to tumor eradication. Sequence analysis of T-cell receptors of CD8+ T cells revealed the presence of H-2Ld/AH1-specific T cells and an expansion of sequence diversity in treated mice. Overall, our findings provide evidence that retroviral genes contribute to tumoral immunosurveillance in a process that can be generally boosted by F8-TNF and doxorubicin treatment. Cancer Res; 77(13); 3644-54. ©2017 AACR.
Collapse
Affiliation(s)
- Philipp Probst
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Janine Kopp
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Annette Oxenius
- Department of Biology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
49
|
Robl B, Botter SM, Boro A, Meier D, Neri D, Fuchs B. Evaluation of F8-TNF-α in Models of Early and Progressive Metastatic Osteosarcoma. Transl Oncol 2017; 10:419-430. [PMID: 28448958 PMCID: PMC5406547 DOI: 10.1016/j.tranon.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
The targeted delivery of tumor necrosis factor-α (TNF-α) with antibodies specific to splice isoforms of fibronectin [e.g., F8-TNF, specific to the extra-domain A (EDA) domain of fibronectin] has already shown efficacy against experimental sarcomas but has not yet been investigated in orthotopic sarcomas. Here, we investigated F8-TNF in a syngeneic K7 M2-derived orthotopic model of osteosarcoma as a treatment against pulmonary metastases, the most frequent cause of osteosarcoma-related death. Immunofluorescence on human osteosarcoma tissue confirmed the presence of EDA in primary tumors (PTs) as well as metastases. In mice, the efficacy of F8-TNF against PTs and early pulmonary metastases was evaluated. Intratibial PT growth was not affected by F8-TNF, yet early micrometastases were reduced possibly due to an F8-TNF-dependent attraction of pulmonary CD4+, CD8+, and natural killer cells. Furthermore, immunofluorescence revealed stronger expression of EDA in early pulmonary metastases compared with PT tissue. To study progressing pulmonary metastases, a hind limb amputation model was established, and the efficacy of F8-TNF, alone or combined with doxorubicin, was investigated. Despite the presence of EDA in metastases, no inhibition of progressive metastatic growth was detected. No significant differences in numbers of CD4+ or CD8+ cells or F4/80+ and Ly6G+ myeloid-derived cells were observed, although a strong association between metastatic growth and presence of pulmonary Ly6G+ myeloid-derived cells was detected. In summary, these findings demonstrate the potential of F8-TNF in activating the immune system and reducing early metastatic growth yet suggest a lack of efficacy of F8-TNF alone or combined with doxorubicin against progressing osteosarcoma metastases.
Collapse
Affiliation(s)
- Bernhard Robl
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.
| | - Sander Martijn Botter
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.
| | - Aleksandar Boro
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.
| | - Daniela Meier
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| | - Bruno Fuchs
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.
| |
Collapse
|
50
|
Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: From resistance to vascular targeting agents to complete tumor ablation. Tumour Biol 2017; 39:1010428317691001. [DOI: 10.1177/1010428317691001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current vascular targeting strategies pursue two main goals: anti-angiogenesis agents aim to halt sprouting and the formation of new blood vessels, while vascular disrupting agents along with coaguligands seek to compromise blood circulation in the vessels. The ultimate goal of such therapies is to deprive tumor cells out of oxygen and nutrients long enough to succumb cancer cells to death. Most of vascular targeting agents presented promising therapeutic potential, but the final goal which is cure is rarely achieved. Nevertheless, in both preclinical and clinical settings, tumors tend to grow back, featuring a highly invasive, metastatic, and extremely resistant form. This review highlights the critical significance of tumor rim cells as the main factor, determining therapy success with vascular targeting agents. We present an overview of different single and combination treatments with vascular targeting agents that enable efficient targeting of tumor rim cells and long-lasting tumor cure. Understanding the nature of tumor rim cells, how they establish, how they manage to survive of vascular targeting agents, and how they contribute in tumor refractoriness, may open new avenues to the development of beneficial strategies, capable to eliminate residual rim cells, and enable tumor ablation once and forever.
Collapse
Affiliation(s)
- Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|