1
|
Knight V. Phospho-flow cytometry assays for diagnostic use - A discussion of assay utility and assay development and validation challenges. J Immunol Methods 2025; 537:113818. [PMID: 39855543 DOI: 10.1016/j.jim.2025.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/03/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Detection of changes in phosphorylation of cell signaling molecules using flow cytometry is termed "phosphoflow" or "phospho-flow cytometry". Phosphoflow has wide application for basic research into the mechanics of cell signaling, for evaluating aberrant signaling in cancerous cells and tissues, for studying efficacy or off-target effects during drug and vaccine development, and for functional assessment of pathogenic variants of genes that are known to play a role in development or function of the immune system. Phosphoflow has not been widely adopted in clinical laboratories owing to the challenges with developing and validating robust assays consistent with clinical laboratory regulatory standards. This review provides a brief overview of the utility of phosphoflow and points of consideration for development and validation of phosphoflow assays for diagnostic use, with a focus on inborn errors of immunity.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Immunopathology and Hematopathology Laboratory, Children's Hospital, 13123 East 16(th) Avenue, Aurora, CO 80045, United States of America.
| |
Collapse
|
2
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Aranda CS, Gouveia-Pereira MP, da Silva CJM, Rizzo MCFV, Ishizuka E, de Oliveira EB, Condino-Neto A. Severe combined immunodeficiency diagnosis and genetic defects. Immunol Rev 2024; 322:138-147. [PMID: 38287514 DOI: 10.1111/imr.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Severe combined immunodeficiency (SCID) is a rare and life-threatening genetic disorder that severely impairs the immune system's ability to defend the body against infections. Often referred to as the "bubble boy" disease, SCID gained widespread recognition due to the case of David Vetter, a young boy who lived in a sterile plastic bubble to protect him from germs. SCID is typically present at birth, and it results from genetic mutations that affect the development and function of immune cells, particularly T cells and B cells. These immune cells are essential for identifying and fighting off infections caused by viruses, bacteria, and fungi. In SCID patients, the immune system is virtually non-existent, leaving them highly susceptible to recurrent, severe infections. There are several forms of SCID, with varying degrees of severity, but all share common features. Newborns with SCID often exhibit symptoms such as chronic diarrhea, thrush, skin rashes, and persistent infections that do not respond to standard treatments. Without prompt diagnosis and intervention, SCID can lead to life-threatening complications and a high risk of mortality. There are over 20 possible affected genes. Treatment options for SCID primarily involve immune reconstitution, with the most well-known approach being hematopoietic stem cell transplantation (HSCT). Alternatively, gene therapy is also available for some forms of SCID. Once treated successfully, SCID patients can lead relatively normal lives, but they may still require vigilant infection control measures and lifelong medical follow-up to manage potential complications. In conclusion, severe combined immunodeficiency is a rare but life-threatening genetic disorder that severely compromises the immune system's function, rendering affected individuals highly vulnerable to infections. Early diagnosis and appropriate treatment are fundamental. With this respect, newborn screening is progressively and dramatically improving the prognosis of SCID.
Collapse
Affiliation(s)
- Carolina Sanchez Aranda
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | - Mariana Pimentel Gouveia-Pereira
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | - Celso Jose Mendanha da Silva
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | - Maria Candida Faria Varanda Rizzo
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | | | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Instituto Jo Clemente, and Immunogenic Laboratories, São Paulo, Brazil
| |
Collapse
|
5
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Zebrafish Model of Severe Combined Immunodeficiency (SCID) Due to JAK3 Mutation. Biomolecules 2022; 12:biom12101521. [PMID: 36291730 PMCID: PMC9599616 DOI: 10.3390/biom12101521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
JAK3 is principally activated by members of the interleukin-2 receptor family and plays an essential role in lymphoid development, with inactivating JAK3 mutations causing autosomal-recessive severe combined immunodeficiency (SCID). This study aimed to generate an equivalent zebrafish model of SCID and to characterize the model across the life-course. Genome editing of zebrafish jak3 created mutants similar to those observed in human SCID. Homozygous jak3 mutants showed reduced embryonic T lymphopoiesis that continued through the larval stage and into adulthood, with B cell maturation and adult NK cells also reduced and neutrophils impacted. Mutant fish were susceptible to lymphoid leukemia. This model has many of the hallmarks of human SCID resulting from inactivating JAK3 mutations and will be useful for a variety of pre-clinical applications.
Collapse
|
7
|
Wei L, Xia H, Liang Z, Yu H, Liang Z, Yang X, Li Y. Disrupted expression of long non-coding RNAs in the human oocyte: the possible epigenetic culprits leading to recurrent oocyte maturation arrest. J Assist Reprod Genet 2022; 39:2215-2225. [PMID: 36018477 PMCID: PMC9596671 DOI: 10.1007/s10815-022-02596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To depict the lncRNA expression during human oocyte maturation and explore the lncRNAs leading to recurrent oocyte maturation arrest. METHODS LncRNA sequencing was performed on pooled RNA from 20 oocytes of each group (recurrent oocyte maturation arrest (ROMA), of germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stages. Bioinformatics software was deployed to compare the lncRNA differential expression between the normal and ROMA oocytes. The co-expression of lncRNA/mRNA was illustrated with the Cytoscape software. The pooled RNA from every 10 oocytes of each group (ROMA, GV, MI, MII) was extracted for further qPCR validation. RESULTS There were 17 downregulated and 3 upregulated lncRNAs in the ROMA oocyte. Among them, co-expression analysis indicated that NEAT1 and NORAD were both downregulated. Basing on the KEGG enrichment analysis, PRCKA and JAK3 might be the target genes in the PI3K-Akt pathway and modulated by NEAT1 and NORAD. As validated by qPCR, the expressional levels of lncRNA candidates (NEAT1 and NORAD) and their target genes (PRKCA and JAK3) were confirmed to be extremely lower in the ROMA oocyte than in the normal oocyte. CONCLUSION By targeting the PI3K-Akt pathway genes PRKCA and JAK3, the abnormal expression of NEAT1 and NORAD is suggested to impede oocyte maturation and impair oocyte genome integrity.
Collapse
Affiliation(s)
- Lina Wei
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Huayang Xia
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhongkun Liang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hao Yu
- Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhenjie Liang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xi Yang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Li
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Pan Y, Pan H, Lian C, Wu B, Lin J, Huang G, Cui B. Case Report: Mutations in JAK3 causing severe combined immunodeficiency complicated by disseminated Bacille Calmette-Guérin disease and Pneumocystis pneumonia. Front Immunol 2022; 13:1055607. [PMID: 36466884 PMCID: PMC9712176 DOI: 10.3389/fimmu.2022.1055607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As a form of severe combined immunodeficiency (SCID), Janus kinase 3 (JAK3) deficiency can be fatal during severe infections in children, especially after inoculation of live-attenuated vaccines. We report a unique case of JAK3 deficiency with two compound heterozygous JAK3 mutations complicated by disseminated Bacille Calmette-Guérin (BCG) disease and Pneumocystis pneumonia. CASE DESCRIPTION A 5-month-old Chinese girl presented with recurring fever and productive cough after BCG vaccination and ineffective antibiotic treatment. Chest CT demonstrated bilateral infiltrations, enlarged mediastinal and axillary lymph nodes, and hypoplasia of the thymus. Mycobacterium tuberculosis and Pneumocystis jirovecii were detected from blood samples by sequencing. Acid-fast bacilli were also found from the sputum aspirate and gastric aspirate. Lymphocyte subset analyses indicated T-B+NK- immunodeficiency, and gene sequencing identified two heterozygous missense mutations (one unreported globally) in the Janus homology 7 (JH7) domain of JAK3. The patient received rifampicin, isoniazid, ethambutol, and trimethoprim/sulfamethoxazole and was discharged after improvements but against advice. OUTCOME The patient died at 13 months of age due to severe infections and hepatic damage. DISCUSSION SCID should be recognized before inoculation of live-attenuated vaccines in children. Newborn screening for SCID is advocated. Further investigations are needed to better understand the pathogenicity of the variants and molecular mechanism of the JH7 domain of JAK3.
Collapse
Affiliation(s)
- Ying Pan
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Pan
- The Outpatient Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
- The Clinical Research Unit, Shantou University Medical College, Shantou, Guangdong, China
| | - Chunan Lian
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Beiyan Wu
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jieying Lin
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guang Huang
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Binglin Cui
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Binglin Cui,
| |
Collapse
|
9
|
Isailovic N, Ceribelli A, Cincinelli G, Vecellio M, Guidelli G, Caprioli M, Luciano N, Motta F, Selmi C, De Santis M. Lymphocyte modulation by tofacitinib in patients with rheumatoid arthritis. Clin Exp Immunol 2021; 205:142-149. [PMID: 33899926 DOI: 10.1111/cei.13609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Tofacitinib is an oral small molecule targeting the intracellular Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways approved for the treatment of active rheumatoid arthritis (RA). We investigated the effects of tofacitinib on the response of RA lymphocytes to B and T cell collagen epitopes in their native and post-translationally modified forms. In particular, peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy subjects were cultured with type II collagen peptides (T261-273, B359-369, carT261-273, citB359-369) or with phorbol myristate acetate (PMA)/ionomycin/CD40L in the presence or absence of 100 nM tofacitinib for 20 h and analyzed by fluorescence activated cell sorter (FACS). Cultures without brefeldin A were used for cytokine supernatant enzyme-linked immunosorbent assay (ELISA) analysis. Tofacitinib down-regulated inflammatory cytokines by stimulated B [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] and T [interferon (IFN)-γ, IL-17 or TNF-α] cells in the short term, while a significant reduction of IL-17 and IL-6 levels in peripheral blood mononuclear cell (PBMC) supernatant was also observed. IL-10 was significantly reduced in collagen-stimulated B cells from patients with RA and increased in controls, thus mirroring an altered response to collagen self-epitopes in RA. Tofacitinib partially prevented the IL-10 down-modulation in RA B cells stimulated with collagen epitopes. In conclusion, the use of tofacitinib exerts a rapid regulatory effect on B cells from patients with RA following stimulation with collagen epitopes while not reducing inflammatory cytokine production by lymphocytes.
Collapse
Affiliation(s)
- Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Gilberto Cincinelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Giacomo Guidelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Marta Caprioli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Nicoletta Luciano
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
10
|
Grimsholm O, Piano Mortari E, Davydov AN, Shugay M, Obraztsova AS, Bocci C, Marasco E, Marcellini V, Aranburu A, Farroni C, Silvestris DA, Cristofoletti C, Giorda E, Scarsella M, Cascioli S, Barresi S, Lougaris V, Plebani A, Cancrini C, Finocchi A, Moschese V, Valentini D, Vallone C, Signore F, de Vincentiis G, Zaffina S, Russo G, Gallo A, Locatelli F, Tozzi AE, Tartaglia M, Chudakov DM, Carsetti R. The Interplay between CD27 dull and CD27 bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory. Cell Rep 2021; 30:2963-2977.e6. [PMID: 32130900 DOI: 10.1016/j.celrep.2020.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 10/24/2022] Open
Abstract
Memory B cells (MBCs) epitomize the adaptation of the immune system to the environment. We identify two MBC subsets in peripheral blood, CD27dull and CD27bright MBCs, whose frequency changes with age. Heavy chain variable region (VH) usage, somatic mutation frequency replacement-to-silent ratio, and CDR3 property changes, reflecting consecutive selection of highly antigen-specific, low cross-reactive antibody variants, all demonstrate that CD27dull and CD27bright MBCs represent sequential MBC developmental stages, and stringent antigen-driven pressure selects CD27dull into the CD27bright MBC pool. Dynamics of human MBCs are exploited in pregnancy, when 50% of maternal MBCs are lost and CD27dull MBCs transit to the more differentiated CD27bright stage. In the postpartum period, the maternal MBC pool is replenished by the expansion of persistent CD27dull clones. Thus, the stability and flexibility of human B cell memory is ensured by CD27dull MBCs that expand and differentiate in response to change.
Collapse
Affiliation(s)
- Ola Grimsholm
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy; Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Eva Piano Mortari
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Alexey N Davydov
- Central European Institute of Technology, 625 00 Brno, Czech Republic
| | - Mikhail Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, 101000 Moscow, Russia
| | - Anna S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, 101000 Moscow, Russia
| | - Chiara Bocci
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Emiliano Marasco
- Division of Rheumatology, Bambino Gesù Children's Hospital IRCCS, 00146 Roma, Italy
| | - Valentina Marcellini
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Chiara Farroni
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | | | | | - Ezio Giorda
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Marco Scarsella
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Simona Cascioli
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, 25121 Brescia, Italy
| | - Alessandro Plebani
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, 00146 Bambino Gesù Children's Hospital, Rome, Italy
| | - Caterina Cancrini
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, 00146 Bambino Gesù Children's Hospital, Rome, Italy; School of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Andrea Finocchi
- DPUO, Division of Immuno-Infectivology, University Department of Pediatrics, 00146 Bambino Gesù Children's Hospital, Rome, Italy; School of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Viviana Moschese
- Pediatric Immunology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Diletta Valentini
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cristina Vallone
- Department of Obstetrics and Gynaecology, Misericordia Hospital Grosseto, Usl Toscana Sud-est, 58100 Grosseto, Italy
| | - Fabrizio Signore
- Department of Obstetrics and Gynaecology, Misericordia Hospital Grosseto, Usl Toscana Sud-est, 58100 Grosseto, Italy
| | | | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | | | - Angela Gallo
- Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Franco Locatelli
- Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy; Department of Pediatrics, Sapienza, University of Rome, 00161 Rome, Italy
| | - Alberto E Tozzi
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCSS, 00146 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Dmitriy M Chudakov
- Central European Institute of Technology, 625 00 Brno, Czech Republic; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, 101000 Moscow, Russia
| | - Rita Carsetti
- B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy; Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
11
|
El Hawary R, Meshaal S, Mauracher A, Opitz L, Abd Elaziz D, Lotfy S, Eldash A, Boutros J, Galal N, Pachlopnik Schmid J, Elmarsafy A. Whole-exome sequencing of T - B + severe combined immunodeficiency in Egyptian infants, JAK3 predominance and novel variants. Clin Exp Immunol 2021; 203:448-457. [PMID: 33040328 PMCID: PMC7874839 DOI: 10.1111/cei.13536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is fatal if not treated with immune reconstitution. In Egypt, T- B+ SCID accounts for 38·5% of SCID diagnoses. An accurate genetic diagnosis is essential for choosing appropriate treatment modalities and for offering genetic counseling to the patient's family. The objectives of this study were to describe the clinical, immunological and molecular characteristics of a cohort of twenty Egyptian patients with T- B+ SCID. The initial diagnosis (based on clinical features and flow cytometry) was followed by molecular investigation (whole-exome sequencing). All patients had the classic clinical picture for SCID, including failure to thrive (n = 20), oral candidiasis (n = 17), persistent diarrhea (n = 14), pneumonia (n = 13), napkin dermatitis (n = 10), skin rash (n = 7), otitis media (n = 3) and meningitis (n = 2). The onset of manifestations was at the age of 2·4 ± 1·6 months and diagnosis at the age of 6·7 ± ·5 months, giving a diagnostic delay of 4·3 months. JAK3 gene variants were most frequent (n = 12) with three novel variants identified, followed by IL2Rγ variants (n = 6) with two novel variants. IL7Rα and CD3ε variants were found once, with a novel variant each. T- B+ NK- SCID accounted for approximately 90% of the Egyptian patients with T- B+ SCID. Of these T- B+ NK- SCID cases, 60% were autosomal recessive syndromes caused by JAK3 mutations and 30% were X-linked syndromes. It might be useful to sequence the JAK3 gene (i.e. targeted Sanger sequencing) in all T- B+ SCID patients, especially after X-linked SCID has been ruled out. Hence, no more than 10% of T- B+ SCID patients might require next-generation for a molecular diagnosis.
Collapse
Affiliation(s)
- R. El Hawary
- Faculty of MedicineClinical Pathology DepartmentCairo UniversityCairoEgypt
| | - S. Meshaal
- Faculty of MedicineClinical Pathology DepartmentCairo UniversityCairoEgypt
| | - A.A. Mauracher
- Division of ImmunologyUniversity Children’s Hospital ZurichZurichSwitzerland
| | - L. Opitz
- ETH ZurichFunctional Genomics Center ZürichUniversity of ZurichZurichSwitzerland
| | - D. Abd Elaziz
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | - S. Lotfy
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | - A. Eldash
- Faculty of MedicineClinical Pathology DepartmentCairo UniversityCairoEgypt
| | - J. Boutros
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | - N. Galal
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| | | | - A. Elmarsafy
- Faculty of MedicinePediatrics DepartmentCairo UniversityCairoEgypt
| |
Collapse
|
12
|
Lee GW, Lee SW, Kim J, Ju YJ, Kim HO, Yun CH, Cho JH. Supraphysiological Levels of IL-2 in Jak3-Deficient Mice Promote Strong Proliferative Responses of Adoptively Transferred Naive CD8 + T Cells. Front Immunol 2021; 11:616898. [PMID: 33584707 PMCID: PMC7876067 DOI: 10.3389/fimmu.2020.616898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023] Open
Abstract
The antigen-independent, strong proliferative responses of naive CD8+ T cells have been well demonstrated in a particular strain of mice lacking IL-2 receptors. This type of proliferation is mainly driven by common gamma-chain (γc) cytokines, such as IL-2, IL-7, and IL-15, present at abnormally high levels in these mice. Similarly, in the present study, we showed that mice lacking Janus kinase 3 (Jak3), a tyrosine kinase crucial for γc cytokine signaling, could induce strong proliferation of adoptively transferred naive CD8+ T cells. This proliferation was also independent of antigenic stimulation, but heavily dependent on IL-2, as evidenced by the failure of proliferation of adoptively transferred IL-2 receptor alpha- and beta-chain-deficient naive CD8+ T cells. Consistent with this, Jak3–/– mice showed elevated serum levels of IL-2 compared to wild-type mice, and interestingly, IL-2 production was due to high levels of accumulation of activated CD4+ T cells in Jak3–/– mice along with defective CD4+ T regulatory cells. Collectively, these findings reveal previously unidentified unique immune contexts of Jak3–/– mice that cause robust IL-2-driven T cell expansion and have a clinical implication for designing a treatment strategy for human patients with loss-of-function genetic mutations of Jak3.
Collapse
Affiliation(s)
- Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea.,Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, South Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun Hospital, Jeonnam, South Korea
| | - Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea.,Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, South Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun Hospital, Jeonnam, South Korea
| | - Juhee Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee-Ok Kim
- Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun Hospital, Jeonnam, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Ho Cho
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, South Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun Hospital, Jeonnam, South Korea
| |
Collapse
|
13
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
14
|
Erman B, Çipe F. Genetic Screening of the Patients with Primary Immunodeficiency by Whole-Exome Sequencing. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2021; 33:19-24. [PMID: 33406023 DOI: 10.1089/ped.2019.1097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Primary immunodeficiencies (PIDs) are a heterogeneous group of congenital disorders characterized by susceptibility to recurrent infections, allergy, malignancies and autoimmunity. The identification of disease-causing genetic defects is critically important for treatment options. In last decade, next-generation sequencing (NGS)-based methods has enabled the rapid genetic screening and the discovery of new genetic defects in PIDs. In this study, we investigated causative mutations in patients with PID by NGS. Methods: We applied whole-exome sequencing in 8 PID patients. Detected mutations by NGS were validated by Sanger sequencing. Results: We made a genetic diagnosis in 5 of 8 (63%) patients, including 3 novel disease-causing variants. The identified mutations were found in RAG1, RAG2, JAK3, RFXANK, and CYBA genes. Conclusions: Our results show that whole-exome sequencing can facilitate the genetic diagnosis of the patients with PID.
Collapse
Affiliation(s)
- Baran Erman
- Department of Molecular Biology and Genetics, Istınye University, Istanbul, Turkey.,Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Funda Çipe
- Department of Pediatrics, Medical School, Istinye University, Istanbul, Turkey
| |
Collapse
|
15
|
Goldberg L, Simon AJ, Lev A, Barel O, Stauber T, Kunik V, Rechavi G, Somech R. Atypical immune phenotype in severe combined immunodeficiency patients with novel mutations in IL2RG and JAK3. Genes Immun 2020; 21:326-334. [PMID: 32921793 DOI: 10.1038/s41435-020-00111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
Mutations in the common gamma chain of the interleukin 2 receptor (IL2RG) or the associated downstream signaling enzyme Janus kinase 3 (JAK3) genes are typically characterized by a T cell-negative, B cell-positive, natural killer (NK) cell-negative (T-B+NK-) severe combined immunodeficiency (SCID) immune phenotype. We report clinical course, immunological, genetic and proteomic work-up of two patients with different novel mutations in the IL-2-JAK3 pathway with a rare atypical presentation of T-B+NK- SCID. Lymphocyte subpopulation revealed significant T cells lymphopenia, normal B cells, and NK cells counts (T-B+NK+SCID). Despite the presence of B cells, IgG levels were low and IgA and IgM levels were undetectable. T-cell proliferation in response to mitogens in patient 1 was very low and T-cell receptor V-beta chain repertoire in patient 2 was polyclonal. Whole-exome sequencing revealed novel mutations in both patients (patient 1-c.923delC frame-shift mutation in the IL2RG gene, patient 2-c.G172A a homozygous missense mutation in the JAK3 gene). Bioinformatic analysis of the JAK3 mutation indicated deleterious effect and 3D protein modeling located the mutation to a surface exposed alpha-helix structure. Our findings help to link between genotype and phenotype, which is a key factor for the diagnosis and treatment of SCID patients.
Collapse
Affiliation(s)
- Lior Goldberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Amos J Simon
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Atar Lev
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel HaShomer, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Vered Kunik
- Bioinformatics Consulting, Gat Rimon, Israel
| | - Gideon Rechavi
- Sheba Cancer Research Center, Sheba Medical Center, Tel HaShomer, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel HaShomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Sheba Medical Center, Tel HaShomer, Israel.
| |
Collapse
|
16
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
17
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
18
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
19
|
Simonović N, Witalisz-Siepracka A, Meissl K, Lassnig C, Reichart U, Kolbe T, Farlik M, Bock C, Sexl V, Müller M, Strobl B. NK Cells Require Cell-Extrinsic and -Intrinsic TYK2 for Full Functionality in Tumor Surveillance and Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:1724-1734. [PMID: 30718299 DOI: 10.4049/jimmunol.1701649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a widely expressed receptor-associated kinase that is involved in signaling by a variety of cytokines with important immune regulatory activities. Absence of TYK2 in mice results in impaired NK cell maturation and antitumor activity, although underlying mechanisms are largely unknown. Using conditional ablation of TYK2 in NK cells we show that TYK2 is required for IFN-γ production by NK cells in response to IL-12 and for an efficient immune defense against Listeria monocytogenes Deletion of TYK2 in NK cells did not impact NK cell maturation and IFN-γ production upon NK cell activating receptor (actR) stimulation. Similarly, NK cell-mediated tumor surveillance was unimpaired upon deletion of TYK2 in NK cells only. In line with the previously reported maturation-associated Ifng promoter demethylation, the less mature phenotype of Tyk2-/- NK cells correlated with an increased CpG methylation at the Ifng locus. Treatment with the DNA hypomethylating agent 5-aza-2-deoxycytidine restored the ability of Tyk2-/- NK cells to produce IFN-γ upon actR but not upon IL-12 stimulation. NK cell maturation was dependent on the presence of TYK2 in dendritic cells and could be rescued in Tyk2-deficient mice by treatment with exogenous IL-15/IL-15Rα complexes. IL-15 treatment also rescued the in vitro cytotoxicity defect and the impaired actR-induced IFN-γ production of Tyk2-/- NK cells. Collectively, our findings provide the first evidence, to our knowledge, for a key role of TYK2 in the host environment in promoting NK cell maturation and antitumor activity.
Collapse
Affiliation(s)
- Natalija Simonović
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Katrin Meissl
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Caroline Lassnig
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ursula Reichart
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Department of Agrobiotechnology IFA Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; and
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Birgit Strobl
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
20
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev 2019; 287:202-225. [PMID: 30565241 PMCID: PMC6310041 DOI: 10.1111/imr.12725] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
Human NK cells are innate immune effectors that play a critical roles in the control of viral infection and malignancy. The importance of their homeostasis and function can be demonstrated by the study of patients with primary immunodeficiencies (PIDs), which are part of the family of diseases known as inborn defects of immunity. While NK cells are affected in many PIDs in ways that may contribute to a patient's clinical phenotype, a small number of PIDs have an NK cell abnormality as their major immunological defect. These PIDs can be collectively referred to as NK cell deficiency (NKD) disorders and include effects upon NK cell numbers, subsets, and/or functions. The clinical impact of NKD can be severe including fatal viral infection, with particular susceptibility to herpesviral infections, such as cytomegalovirus, varicella zoster virus, and Epstein-Barr virus. While NKD is rare, studies of these diseases are important for defining specific requirements for human NK cell development and homeostasis. New themes in NK cell biology are emerging through the study of both known and novel NKD, particularly those affecting cell cycle and DNA damage repair, as well as broader PIDs having substantive impact upon NK cells. In addition, the discovery of NKD that affects other innate lymphoid cell (ILC) subsets opens new doors for better understanding the relationship between conventional NK cells and other ILC subsets. Here, we describe the biology underlying human NKD, particularly in the context of new insights into innate immune cell function, including a discussion of recently described NKD with accompanying effects on ILC subsets. Given the impact of these disorders upon human immunity with a common focus upon NK cells, the unifying message of a critical role for NK cells in human host defense singularly emerges.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
22
|
Di Matteo G, Chiriaco M, Scarselli A, Cifaldi C, Livadiotti S, Di Cesare S, Ferradini V, Aiuti A, Rossi P, Finocchi A, Cancrini C. JAK3 mutations in Italian patients affected by SCID: New molecular aspects of a long-known gene. Mol Genet Genomic Med 2018; 6:713-721. [PMID: 30032486 PMCID: PMC6160700 DOI: 10.1002/mgg3.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in the Janus Kinase 3 (JAK3) gene cause an autosomal recessive form of severe combined immunodeficiency (SCID) usually characterized by the absence of both T and NK cells, but preserved numbers of B lymphocytes (T‐B+NK‐SCID). The detection of larger (>100 bp) genomic duplications or deletions can be more difficult to be detected by PCR‐based methods or standard NGS protocols, and a broad range of mutation detection techniques are necessary. Methods We report four unrelated Italian patients (two females and two males) with SCID phenotype. Protein expression, functional studies, molecular analysis by standard methods and NGS, and transcripts studies were performed to obtain a definitive diagnosis. Results Here, we describe four JAK3‐deficient patients from four unrelated families. The first patient is homozygous for the known c.1951 C>T mutation causing the amino acidic change p.R651W. The other two patients, originating from the same small Italian town, resulted compound heterozygotes for the same g.15410_16542del deletion and two different novel mutations, g.13319_13321delTTC and c.933T>G (p.F292V), respectively. The fourth patient was compound heterozygous for the novel mutations p.V599G and p.W709R. Defective STAT5 phosphorylation after IL2 or IL15 stimulation corroborated the mutation pathogenicity. Concerning g.15410_16542del mutation, probably due to an unequal homologous recombination between Alu elements of JAK3 gene, microsatellites analysis revealed that both unrelated Pt2 and Pt3 and their carrier family members shared the same haplotype. These data support the hypothesis of a founder effect for the g.15410_16542del mutation that might have inherited in both unrelated families from the same ancient progenitor. Conclusion Different molecular techniques are still required to obtain a definitive diagnosis of AR‐SCID particularly in all cases in which a monoallelic mutation is found by standard mutation scanning methods.
Collapse
Affiliation(s)
- Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Chiriaco
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Alessia Scarselli
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Cristina Cifaldi
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Silvia Di Cesare
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
23
|
B-cell differentiation and IL-21 response in IL2RG/JAK3 SCID patients after hematopoietic stem cell transplantation. Blood 2018; 131:2967-2977. [PMID: 29728406 DOI: 10.1182/blood-2017-10-809822] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) typically results in donor T-cell engraftment and function in patients with severe combined immunodeficiency (SCID), but humoral immunity, particularly when using donors other than matched siblings, is variable. B-cell function after HSCT for SCID depends on the genetic cause, the use of pre-HSCT conditioning, and whether donor B-cell chimerism is achieved. Patients with defects in IL2RG or JAK3 undergoing HSCT without conditioning often have poor B-cell function post-HSCT, perhaps as a result of impairment of IL-21 signaling in host-derived B cells. To investigate the effect of pre-HSCT conditioning on B-cell function, and the relationship of in vitro B-cell function to clinical humoral immune status, we analyzed 48 patients with IL2RG/JAK3 SCID who were older than 2 years after HSCT with donors other than matched siblings. T follicular helper cells (TFH) developed in these patients with kinetics similar to healthy young children; thus, poor B-cell function could not be attributed to a failure of TFH development. In vitro differentiation of B cells into plasmablasts and immunoglobulin secretion in response to IL-21 strongly correlated with the use of conditioning, donor B-cell engraftment, freedom from immunoglobulin replacement, and response to tetanus vaccine. Patients receiving immunoglobulin replacement who had normal serum immunoglobulin M showed poor response to IL-21 in vitro, similar to those with low serum IgM. In vitro response of B cells to IL-21 may predict clinically relevant humoral immune function in patients with IL2RG/JAK3 SCID after HSCT.
Collapse
|
24
|
Mace EM. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency. Front Immunol 2018; 9:445. [PMID: 29563913 PMCID: PMC5845875 DOI: 10.3389/fimmu.2018.00445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Human natural killer (NK) cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K)-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
25
|
Collinge M, Ball DJ, Bowman CJ, Nilson AL, Radi ZA, Vogel WM. Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. Regul Toxicol Pharmacol 2018; 94:306-322. [PMID: 29454012 DOI: 10.1016/j.yrtph.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/25/2023]
Abstract
Tofacitinib, an oral Janus kinase (JAK) inhibitor for treatment of rheumatoid arthritis, targets JAK1, JAK3, and to a lesser extent JAK2 and TYK2. JAK1/3 inhibition impairs gamma common chain cytokine receptor signaling, important in lymphocyte development, homeostasis and function. Adult and juvenile cynomolgus monkey and rat studies were conducted and the impact of tofacitinib on immune parameters (lymphoid tissues and lymphocyte subsets) and function (T-dependent antibody response (TDAR), mitogen-induced T cell proliferation) assessed. Tofacitinib administration decreased circulating T cells and NK cells in juvenile and adult animals of both species. B cell decreases were observed only in rats. These changes and decreased lymphoid tissue cellularity are consistent with the expected pharmacology of tofacitinib. No differences were observed between juvenile and adult animals, either in terms of doses at which effects were observed or differential effects on immune endpoints. Lymphomas were observed in three adult monkeys. Tofacitinib impaired the primary TDAR in juvenile monkeys, although a recall response was generated. Complete or partial reversal of the effects on the immune system was observed.
Collapse
Affiliation(s)
- Mark Collinge
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA.
| | - Douglas J Ball
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Christopher J Bowman
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Andrea L Nilson
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Zaher A Radi
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Portland Street, Cambridge, MA 02139, USA
| | - W Mark Vogel
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Portland Street, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Zhong L, Wang W, Ma M, Gou L, Tang X, Song H. Chronic active Epstein-Barr virus infection as the initial symptom in a Janus kinase 3 deficiency child: Case report and literature review. Medicine (Baltimore) 2017; 96:e7989. [PMID: 29049190 PMCID: PMC5662356 DOI: 10.1097/md.0000000000007989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE With the progress of sequencing technology, an increasing number of atypical primary immunodeficiency (PID) patients have been discovered, including Janus kinase 3 (JAK3) gene deficiency. PATIENT CONCERNS We report a patient who presented with chronic active Epstein-Barr virus (CAEBV) infection but responded poorly to treatment with ganciclovir. DIAGNOSES Next-generation sequencing (NGS) was performed, including all known PID genes, after which Sanger sequencing was performed to verify the results. Genetic analysis revealed that our patient had 2 novel compound heterozygous mutations of JAK3, a gene previously reported to cause a rare form of autosomal recessive severe combined immunodeficiency with recurrent infections. The p.H27Q mutation came from his father, while p. R222H from his mother. Thus, his diagnosis was corrected for JAK3-deficiency PID and CAEBV. INTERVENTIONS Maintenance treatment of subcutaneous injection of recombinant human interferon α-2a was given to our patient with 2 MU, 3 times a week. OUTCOMES Interferon alpha was applied and the EBV infection was gradually controlled and his symptoms ameliorated remarkably. Our patient is in good health now and did not have relapses. LESSONS The diagnoses of PID should be taken into consideration when CAEBV patients respond poorly to conventional treatments. Good results of our patient indicate that interferon α-2a may be an alternative treatment for those who are unwilling to accept hematopoietic stem cell transplantation (HSCT) like our patient. Literature review identified 59 additional cases of JAK3 deficiency with various infections.
Collapse
|
27
|
Gotthardt D, Sexl V. STATs in NK-Cells: The Good, the Bad, and the Ugly. Front Immunol 2017; 7:694. [PMID: 28149296 PMCID: PMC5241313 DOI: 10.3389/fimmu.2016.00694] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/28/2016] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK)-cells are major players in the fight against viral infections and transformed cells, but there is increasing evidence attributing a disease-promoting role to NK-cells. Cytokines present in the tumor microenvironment shape NK-cell maturation, function, and effector responses. Many cytokines signal via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway that is also frequently altered and constitutively active in a broad range of tumor cells. As a consequence, there are currently major efforts to develop therapeutic strategies to target this pathway. Therefore, it is of utmost importance to understand the role and contributions of JAK-STAT molecules in NK-cell biology-only this knowledge will allow us to predict effects of JAK-STAT inhibition for NK-cell functions and to successfully apply precision medicine. We will review the current knowledge on the role of JAK-STAT signaling for NK-cell functions and discuss conditions involved in the switch from NK-cell tumor surveillance to disease promotion.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
28
|
Ohs I, van den Broek M, Nussbaum K, Münz C, Arnold SJ, Quezada SA, Tugues S, Becher B. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun 2016; 7:13708. [PMID: 27982126 PMCID: PMC5172358 DOI: 10.1038/ncomms13708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/27/2016] [Indexed: 12/26/2022] Open
Abstract
Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (γc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted γc deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of γc-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of γc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state γc-signalling.
Collapse
Affiliation(s)
- Isabel Ohs
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Maries van den Broek
- Tumor Immunology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Nussbaum
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, and BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, D-79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, D-79104 Freiburg, Germany
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, WC1E 6BT London, UK
| | - Sonia Tugues
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Aranburu A, Piano Mortari E, Baban A, Giorda E, Cascioli S, Marcellini V, Scarsella M, Ceccarelli S, Corbelli S, Cantarutti N, De Vito R, Inserra A, Nicolosi L, Lanfranchi A, Porta F, Cancrini C, Finocchi A, Carsetti R. Human B-cell memory is shaped by age- and tissue-specific T-independent and GC-dependent events. Eur J Immunol 2016; 47:327-344. [PMID: 27859047 DOI: 10.1002/eji.201646642] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022]
Abstract
Switched and IgM memory B cells execute different and noninterchangeable functions. We studied memory B cells in children of different ages, in peripheral blood and spleen and compared them with those of children born asplenic or unable to build germinal centers. We show that, whereas switched memory B cells are mostly generated in the germinal centers at all ages, IgM memory B cells can be distinct in three types with different developmental history. Innate IgM memory B cells, the largest pool in infants, are generated in the spleen by a germinal center-independent mechanism. With age, if the spleen is present and germinal centers are functional, innate IgM memory B cells are remodelled and accumulate somatic mutations. The third type of IgM memory B cell is a by-product of the germinal center reaction. Our data suggest that the B-cell memory developmental program is implemented during the first 5-6 years of life.
Collapse
Affiliation(s)
- Alaitz Aranburu
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Eva Piano Mortari
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Anwar Baban
- Medical and Surgical Department of Pediatric Cardiology, Bambino Gesù Children Hospital, Rome
| | - Ezio Giorda
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Simona Cascioli
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Valentina Marcellini
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Marco Scarsella
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Sara Ceccarelli
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Sandro Corbelli
- Core Facilities, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicoletta Cantarutti
- Medical and Surgical Department of Pediatric Cardiology, Bambino Gesù Children Hospital, Rome
| | - Rita De Vito
- Division of Pathology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Inserra
- Pediatric General and Thoracic Surgery Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Luciana Nicolosi
- Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Fulvio Porta
- Department of Pediatrics, University of Brescia, Brescia, Italy
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Andrea Finocchi
- DPUO, University Department of Pediatrics, Bambino Gesù Children Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy.,Diagnostic Immunology Unit, Department of Oncohematology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
30
|
Kobayashi RH. Back to the Future: 1753 - Vitamin C Remediates Scurvy, 2016 - Folinic Acid Does the Same for MTHFD1-SCID with the Help of Exome Sequencing. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2016; 4:1167-1168. [PMID: 27836062 DOI: 10.1016/j.jaip.2016.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Roger H Kobayashi
- Department of Pediatrics, University of California Los Angeles School of Medicine, Los Angeles, Calif.
| |
Collapse
|
31
|
Gallego-Bustos F, Gotea V, Ramos-Amador JT, Rodríguez-Pena R, Gil-Herrera J, Sastre A, Delmiro A, Rai G, Elnitski L, González-Granado LI, Allende LM. A Case of IL-7R Deficiency Caused by a Novel Synonymous Mutation and Implications for Mutation Screening in SCID Diagnosis. Front Immunol 2016; 7:443. [PMID: 27833609 PMCID: PMC5081475 DOI: 10.3389/fimmu.2016.00443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/07/2016] [Indexed: 12/04/2022] Open
Abstract
Reported synonymous substitutions are generally non-pathogenic, and rare pathogenic synonymous variants may be disregarded unless there is a high index of suspicion. In a case of IL7 receptor deficiency severe combined immunodeficiency (SCID), the relevance of a non-reported synonymous variant was only suspected through the use of additional in silico computational tools, which focused on the impact of mutations on gene splicing. The pathogenic nature of the variant was confirmed using experimental validation of the effect on mRNA splicing and IL7 pathway function. This case reinforces the need to use additional experimental methods to establish the functional impact of specific mutations, in particular for cases such as SCID where prompt diagnosis can greatly impact on diagnosis, treatment, and survival.
Collapse
Affiliation(s)
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH , Rockville, MD , USA
| | | | | | - Juana Gil-Herrera
- Servicio de Inmunología, Hospital Universitario e Instituto de Investigación Sanitaria Gregorio Marañón , Madrid , Spain
| | - Ana Sastre
- Servicio de Hematología Oncología, Hospital Universitario La Paz , Madrid , Spain
| | | | - Ghadi Rai
- GMGF, Aix-Marseille Université, Marseille, France; UMR_S 910, INSERM, Marseille, France
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH , Rockville, MD , USA
| | - Luis I González-Granado
- Instituto de Investigación I+12, Madrid, Spain; Unidad de Inmunodeficiencias, Pediatría, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación I+12, Madrid, Spain
| |
Collapse
|
32
|
Abolhassani H, Aghamohammadi A, Hammarström L. Monogenic mutations associated with IgA deficiency. Expert Rev Clin Immunol 2016; 12:1321-1335. [DOI: 10.1080/1744666x.2016.1198696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Yamaoka K. Benefit and Risk of Tofacitinib in the Treatment of Rheumatoid Arthritis: A Focus on Herpes Zoster. Drug Saf 2016; 39:823-40. [DOI: 10.1007/s40264-016-0430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Liu C, Duffy B, Bednarski JJ, Calhoun C, Lay L, Rundblad B, Payton JE, Mohanakumar T. Maternal T-Cell Engraftment Interferes With Human Leukocyte Antigen Typing in Severe Combined Immunodeficiency. Am J Clin Pathol 2016; 145:251-7. [PMID: 26834123 DOI: 10.1093/ajcp/aqv079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To report the laboratory investigation of a case of severe combined immunodeficiency (SCID) with maternal T-cell engraftment, focusing on the interference of human leukocyte antigen (HLA) typing by blood chimerism. METHODS HLA typing was performed with three different methods, including sequence-specific primer (SSP), sequence-specific oligonucleotide, and Sanger sequencing on peripheral blood leukocytes and buccal cells, from a 3-month-old boy and peripheral blood leukocytes from his parents. Short tandem repeat (STR) testing was performed in parallel. RESULTS HLA typing of the patient's peripheral blood leukocytes using the SSP method demonstrated three different alleles for each of the HLA-B and HLA-C loci, with both maternal alleles present at each locus. Typing results from the patient's buccal cells showed a normal pattern of inheritance for paternal and maternal haplotypes. STR enrichment testing of the patient's CD3+ T lymphocytes and CD15+ myeloid cells confirmed maternal T-cell engraftment, while the myeloid cell profile matched the patient's buccal cells. CONCLUSIONS Maternal T-cell engraftment may interfere with HLA typing in patients with SCID. Selection of the appropriate typing methods and specimens is critical for accurate HLA typing and immunologic assessment before allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Chang Liu
- From the Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology HLA Laboratory
| | | | | | | | - Lindsay Lay
- Molecular Diagnostic Laboratory, Barnes-Jewish Hospital, St Louis, MO
| | - Barrett Rundblad
- Molecular Diagnostic Laboratory, Barnes-Jewish Hospital, St Louis, MO
| | - Jacqueline E Payton
- From the Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology Molecular Diagnostic Laboratory, Barnes-Jewish Hospital, St Louis, MO
| | - Thalachallour Mohanakumar
- From the Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology HLA Laboratory Department of Surgery, Washington University School of Medicine, St Louis, MO; and\
| |
Collapse
|
35
|
McWilliams LM, Dell Railey M, Buckley RH. Positive Family History, Infection, Low Absolute Lymphocyte Count (ALC), and Absent Thymic Shadow: Diagnostic Clues for All Molecular Forms of Severe Combined Immunodeficiency (SCID). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2015; 3:585-91. [PMID: 25824440 PMCID: PMC4500664 DOI: 10.1016/j.jaip.2015.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 12/09/2014] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) is a syndrome uniformly fatal during infancy unless recognized and treated successfully by bone marrow transplantation or gene therapy. Because infants with SCID have no abnormal physical appearance, diagnosis is usually delayed unless newborn screening is performed. OBJECTIVE In this study, we sought to evaluate the presenting features of all 172 patients with SCID transplanted at this institution over the past 31 years. METHODS We reviewed original charts from 172 consecutive patients with classic SCID who received either T-cell-depleted HLA-haploidentical (N = 154) or HLA-identical (N = 18) nonablative related marrow transplants at Duke University Medical Center from 1982 to 2013. RESULTS The mean age at presentation was 4.87 months. When there was a family history of early infant death or known SCID (37%), the mean presentation age was much earlier, 2.0 months compared with 6.6 months. Failure to thrive was common, with 84 patients (50%) having a weight less than the 5th percentile. The leading infections included oral moniliasis (43%), viral infections (35.5%), and Pneumocystis jiroveci (26%) pneumonia. The group mean absolute lymphocyte count (ALC) was 1454/cmm; 88% of the infants had an ALC less than 3000/cmm. An absent thymic shadow was seen in 92% of infants with electronic radiographic data available. An absence of T-cell function was found in all patients. CONCLUSIONS Infants with SCID appear normal at birth but later present with failure to thrive and/or recurrent fungal, viral, and bacterial infections. Low ALCs and an absent thymic shadow on chest x-ray are key diagnostic clues. The absence of T-cell function confirms the diagnosis.
Collapse
Affiliation(s)
- Laurie M McWilliams
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC
| | - Mary Dell Railey
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC.
| |
Collapse
|
36
|
Schönberg K, Rudolph J, Vonnahme M, Parampalli Yajnanarayana S, Cornez I, Hejazi M, Manser AR, Uhrberg M, Verbeek W, Koschmieder S, Brümmendorf TH, Brossart P, Heine A, Wolf D. JAK Inhibition Impairs NK Cell Function in Myeloproliferative Neoplasms. Cancer Res 2015; 75:2187-99. [PMID: 25832652 DOI: 10.1158/0008-5472.can-14-3198] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Ruxolitinib is a small-molecule inhibitor of the JAK kinases, which has been approved for the treatment of myelofibrosis, a rare myeloproliferative neoplasm (MPN), but clinical trials are also being conducted in inflammatory-driven solid tumors. Increased infection rates have been reported in ruxolitinib-treated patients, and natural killer (NK) cells are immune effector cells known to eliminate both virus-infected and malignant cells. On this basis, we sought to compare the effects of JAK inhibition on human NK cells in a cohort of 28 MPN patients with or without ruxolitinib treatment and 24 healthy individuals. NK cell analyses included cell frequency, receptor expression, proliferation, immune synapse formation, and cytokine signaling. We found a reduction in NK cell numbers in ruxolitinib-treated patients that was linked to the appearance of clinically relevant infections. This reduction was likely due to impaired maturation of NK cells, as reflected by an increased ratio in immature to mature NK cells. Notably, the endogenous functional defect of NK cells in MPN was further aggravated by ruxolitinib treatment. In vitro data paralleled these in vivo results, showing a reduction in cytokine-induced NK cell activation. Further, reduced killing activity was associated with an impaired capacity to form lytic synapses with NK target cells. Taken together, our findings offer compelling evidence that ruxolitinib impairs NK cell function in MPN patients, offering an explanation for increased infection rates and possible long-term side effects associated with ruxolitinib treatment.
Collapse
Affiliation(s)
- Kathrin Schönberg
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | - Janna Rudolph
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | - Maria Vonnahme
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | | | - Isabelle Cornez
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | - Maryam Hejazi
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Clinic Düsseldorf, Düsseldorf, Germany
| | - Angela R Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Clinic Düsseldorf, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Clinic Düsseldorf, Düsseldorf, Germany
| | | | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Peter Brossart
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | - Annkristin Heine
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany
| | - Dominik Wolf
- Medical Clinic, Oncology, Hematology and Rheumatology, University Clinic Bonn (UKB), Bonn, Germany.
| |
Collapse
|
37
|
Picard C, Moshous D, Fischer A. The Genetic and Molecular Basis of Severe Combined Immunodeficiency. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Ebadi M, Aghamohammadi A, Rezaei N. Primary immunodeficiencies: a decade of shifting paradigms, the current status and the emergence of cutting-edge therapies and diagnostics. Expert Rev Clin Immunol 2014; 11:117-39. [DOI: 10.1586/1744666x.2015.995096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
|
40
|
Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol 2013; 133:1092-8. [PMID: 24290292 DOI: 10.1016/j.jaci.2013.09.044] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND The approach to the diagnosis of severe combined immunodeficiency disease (SCID) and related disorders varies among institutions and countries. OBJECTIVES The Primary Immune Deficiency Treatment Consortium attempted to develop a uniform set of criteria for diagnosing SCID and related disorders and has evaluated the results as part of a retrospective study of SCID in North America. METHODS Clinical records from 2000 through 2009 at 27 centers in North America were collected on 332 children treated with hematopoietic stem cell transplantation (HCT), enzyme replacement therapy, or gene therapy for SCID and related disorders. Eligibility for inclusion in the study and classification into disease groups were established by using set criteria and applied by an expert review group. RESULTS Two hundred eighty-five (86%) of the patients were determined to be eligible, and 47 (14%) were not eligible. Of the 285 eligible patients, 84% were classified as having typical SCID; 13% were classified as having leaky SCID, Omenn syndrome, or reticular dysgenesis; and 3% had a history of enzyme replacement or gene therapy. Detection of a genotype predicting an SCID phenotype was accepted for eligibility. Reasons for noneligibility were failure to demonstrate either impaired lymphocyte proliferation or maternal T-cell engraftment. Overall (n = 332) rates of testing were as follows: proliferation to PHA, 77%; maternal engraftment, 35%; and genotype, 79% (mutation identified in 62%). CONCLUSION Lack of complete laboratory evaluation of patients before HCT presents a significant barrier to definitive diagnosis of SCID and related disorders and prevented inclusion of subjects in our observational HCT study. This lesson is critical for patient care, as well as the design of future prospective treatment studies for such children because a well-defined and consistent study population is important for precision in outcomes analysis.
Collapse
|
41
|
Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol 2013; 132:515-525. [PMID: 23993353 PMCID: PMC3917661 DOI: 10.1016/j.jaci.2013.07.020] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are part of the innate immune defense against infection and cancer and are especially useful in combating certain viral pathogens. The utility of NK cells in human health has been underscored by a growing number of persons who are deficient in NK cells and/or their functions. This can be in the context of a broader genetically defined congenital immunodeficiency, of which there are more than 40 presently known to impair NK cells. However, the abnormality of NK cells in certain cases represents the majority immunologic defect. In aggregate, these conditions are termed NK cell deficiency. Recent advances have added clarity to this diagnosis and identified defects in 3 genes that can cause NK cell deficiency, as well as some of the underlying biology. Appropriate consideration of these diagnoses and patients raises the potential for rational therapeutic options and further innovation.
Collapse
Affiliation(s)
- Jordan S Orange
- Immunology, Allergy, and Rheumatology, Baylor College of Medicine and the Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
42
|
Hirschhorn R, Hirschhorn K, Notarangelo LD. Immunodeficiency Disorders. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-30. [DOI: 10.1016/b978-0-12-383834-6.00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Post-transplantation B cell function in different molecular types of SCID. J Clin Immunol 2012; 33:96-110. [PMID: 23001410 DOI: 10.1007/s10875-012-9797-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022]
Abstract
PURPOSE Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T, B and sometimes NK cell function. Non-ablative HLA-identical or rigorously T cell-depleted haploidentical parental bone marrow transplantation (BMT) results in thymus-dependent genetically donor T cell development in the recipients, leading to a high rate of long-term survival. However, the development of B cell function has been more problematic. We report here results of analyses of B cell function in 125 SCID recipients prior to and long-term after non-ablative BMT, according to their molecular type. METHODS Studies included blood immunoglobulin measurements; antibody titers to standard vaccines, blood group antigens and bacteriophage Φ X 174; flow cytometry to examine for markers of immaturity, memory, switched memory B cells and BAFF receptor expression; B cell chimerism; B cell spectratyping; and B cell proliferation. RESULTS The results showed that B cell chimerism was not required for normal B cell function in IL7Rα-Def, ADA-Def and CD3-Def SCIDs. In X-linked-SCID, Jak3-Def SCID and those with V-D-J recombination defects, donor B cell chimerism was necessary for B cell function to develop. CONCLUSION The most important factor determining whether B cell function develops in SCID T cell chimeras is the underlying molecular defect. In some types, host B cells function normally. In those molecular types where host B cell function did not develop, donor B cell chimerism was necessary to achieve B cell function. 236 words.
Collapse
|
44
|
Borte S, Janzi M, Pan-Hammarström Q, von Döbeln U, Nordvall L, Winiarski J, Fasth A, Hammarström L. Placental transfer of maternally-derived IgA precludes the use of guthrie card eluates as a screening tool for primary immunodeficiency diseases. PLoS One 2012; 7:e43419. [PMID: 22916257 PMCID: PMC3420892 DOI: 10.1371/journal.pone.0043419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
There is a need for neonatal screening tools to improve the long-term clinical outcome of patients with primary immunodeficiency diseases (PID). Recently, a PCR-based screening method for both TRECs and KRECs using Guthrie card samples has been developed. However, the applicability of these excision circle assays is limited to patients with severe T or B cell lymphopenia (SCID, XLA and A-T), whereas the most common forms of PID are not detected. Absence of serum IgA is seen in a major fraction of patients with immunological defects. As serum IgA in newborns is considered to be of fetal origin, eluates from routinely collected dried blood spot samples might thus be suitable for identification of children with PID. To assess the applicability of such screening assays, stored Guthrie card samples were obtained from 47 patients with various forms of primary immunodeficiency diseases (SCID, XLA, A-T, HIGM and IgAD), 20 individuals with normal serum IgA levels born to IgA-deficient mothers and 51 matched healthy newborns. Surprisingly, normal serum IgA levels were found in all SCID, XLA, A-T and HIGM patients and, additionally, in all those IgAD patients born to IgA-sufficient mothers. Conversely, no serum IgA was found in any of the 16 IgAD patients born by IgA-deficient mothers. Moreover, half of the IgA-sufficient individuals born by IgA-deficient mothers also lacked IgA at birth whereas no IgA-deficient individuals were found among the controls. IgA in neonatal dried blood samples thus appears to be of both maternal and fetal origin and precludes its use as a reliable marker for neonatal screening of primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Stephan Borte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
- ImmunoDeficiencyCenter Leipzig (IDCL) at Hospital St. Georg gGmbH Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies Leipzig, Leipzig, Germany
- * E-mail: (SB); (LH)
| | - Magdalena Janzi
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ulrika von Döbeln
- Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Nordvall
- Department of Women’s and Children’s Health, Uppsala University, Academic Hospital, Uppsala, Sweden
| | - Jacek Winiarski
- Division of Pediatrics (CLINTEC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anders Fasth
- Department of Pediatrics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (SB); (LH)
| |
Collapse
|
45
|
Puck JM. Laboratory technology for population-based screening for severe combined immunodeficiency in neonates: the winner is T-cell receptor excision circles. J Allergy Clin Immunol 2012; 129:607-16. [PMID: 22285280 PMCID: PMC3294074 DOI: 10.1016/j.jaci.2012.01.032] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/31/2011] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
The most profound primary immunodeficiency disease, severe combined immunodeficiency (SCID), is fatal in infancy unless affected infants are provided with an adaptive immune system through allogeneic hematopoietic cell transplantation, enzyme replacement, or gene therapy. However, most infants with SCID lack a family history or any clinical clues before the onset of infections, making this serious but treatable disease a candidate for population-based newborn screening. Of several approaches considered for SCID screening, testing for T-cell receptor excision circles (TRECs), a DNA biomarker of normal T-cell development, has proved successful. TREC numbers can be measured in DNA isolated from the dried bloodspots already routinely collected for newborn screening. Infants with low or absent TRECs can thus be identified and referred for confirmatory testing and prompt intervention. TREC testing of newborns is now being performed in several states, indicating that this addition to the newborn screening panel can be successfully integrated into state public health programs.
Collapse
Affiliation(s)
- Jennifer M Puck
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143-0519, USA.
| |
Collapse
|
46
|
Should newborns be screened for immunodeficiency?: lessons learned from infants with recurrent otitis media. Curr Allergy Asthma Rep 2012; 11:491-8. [PMID: 21901305 DOI: 10.1007/s11882-011-0221-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recurrent otitis media in children is considered one of the warning signs of primary immunodeficiencies (PIDs), particularly antibody deficiencies. Infants who have the most serious and potentially lethal form of PID, severe combined immunodeficiency (SCID), sometimes present with recurrent otitis media. Most of the time, because of the severity of the immune defect, they develop more serious and systemic infections. SCID is distinct among the PIDs and considered a pediatric emergency. Diagnosing SCID during the newborn period is crucial because survival completely depends on early diagnosis and treatment. Mortality declines significantly if immune reconstitution is established before 3.5 months of age, particularly before severe infections have occurred. However, most patients are diagnosed after they have suffered chronic or recurrent infections and developed permanent sequelae. Without institution of population-based newborn screening, most infants will miss the opportunity to live a healthy life.
Collapse
|
47
|
Bongfen SE, Rodrigue-Gervais IG, Berghout J, Torre S, Cingolani P, Wiltshire SA, Leiva-Torres GA, Letourneau L, Sladek R, Blanchette M, Lathrop M, Behr MA, Gruenheid S, Vidal SM, Saleh M, Gros P. An N-ethyl-N-nitrosourea (ENU)-induced dominant negative mutation in the JAK3 kinase protects against cerebral malaria. PLoS One 2012; 7:e31012. [PMID: 22363534 PMCID: PMC3283600 DOI: 10.1371/journal.pone.0031012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
Cerebral malaria (CM) is a lethal neurological complication of malaria. We implemented a genome-wide screen in mutagenized mice to identify host proteins involved in CM pathogenesis and whose inhibition may be of therapeutic value. One pedigree (P48) segregated a resistance trait whose CM-protective effect was fully penetrant, mapped to chromosome 8, and identified by genome sequencing as homozygosity for a mis-sense mutation (W81R) in the FERM domain of Janus-associated kinase 3 (Jak3). The causative effect of Jak3(W81R) was verified by complementation testing in Jak3(W81R/-) double heterozygotes that were fully protected against CM. Jak3(W81R) homozygotes showed defects in thymic development with depletion of CD8(+) T cell, B cell, and NK cell compartments, and defective T cell-dependent production of IFN-γ. Adoptive transfer of normal splenocytes abrogates CM resistance in Jak3(W81R) homozygotes, an effect attributed to the CD8(+) T cells. Jak3(W81R) behaves as a dominant negative variant, with significant CM resistance of Jak3(W81R/+) heterozygotes, compared to CM-susceptible Jak3(+/+) and Jak3(+/-) controls. CM resistance in Jak3(W81R/+) heterozygotes occurs in presence of normal T, B and NK cell numbers. These findings highlight the pathological role of CD8(+) T cells and Jak3-dependent IFN-γ-mediated Th1 responses in CM pathogenesis.
Collapse
Affiliation(s)
- Silayuv E. Bongfen
- Department of Biochemistry, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Ian-Gael Rodrigue-Gervais
- Department of Medicine, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Joanne Berghout
- Department of Biochemistry, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Sabrina Torre
- Department of Human Genetics, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Pablo Cingolani
- School of Computer Science, McGill University, Montreal, Canada
| | - Sean A. Wiltshire
- Department of Human Genetics, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Gabriel A. Leiva-Torres
- Department of Human Genetics, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Louis Letourneau
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Robert Sladek
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Mark Lathrop
- Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- The McGill University Health Center, Montreal, Canada
| | - Samantha Gruenheid
- Complex Traits Group, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Complex Traits Group, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
48
|
Yu GP, Nadeau KC, Berk DR, de Saint Basile G, Lambert N, Knapnougel P, Roberts J, Kavanau K, Dunn E, Stiehm ER, Lewis DB, Umetsu DT, Puck JM, Cowan MJ. Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID. Pediatr Transplant 2011; 15:733-41. [PMID: 21883749 PMCID: PMC3196791 DOI: 10.1111/j.1399-3046.2011.01563.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are few reports of clinical presentation, genotype, and HCT outcomes for patients with T-B+NK+ SCID. Between 1981 and 2007, eight of 84 patients with SCID who received and/or were followed after HCT at UCSF had the T-B+NK+ phenotype. One additional patient with T-B+NK+ SCID was identified as the sibling of a patient treated at UCSF. Chart reviews were performed. Molecular analyses of IL7R, IL2RG, JAK3, and the genes encoding the CD3 T-cell receptor components δ (CD3D), ε (CD3E), and ζ (CD3Z) were carried out. IL7R mutations were documented in four patients and CD3D mutations in two others. Three patients had no defects found. Only two of nine patients had an HLA-matched related HCT donor. Both survived, and neither developed GVHD. Five of seven recipients of haploidentical grafts survived. Although the majority of reported cases of T-B+NK+ SCID are caused by defects in IL7R, CD3 complex defects were also found in this series and should be considered when evaluating patients with T-B+NK+ SCID. Additional genes, mutations in which account for T-B+NK+ SCID, remain to be found. Better approaches to early diagnosis and HCT treatment are needed for patients lacking an HLA-matched related donor.
Collapse
Affiliation(s)
- Grace P Yu
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital at Stanford
| | - Kari C Nadeau
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital at Stanford
| | - David R Berk
- Departments of Medicine and Pediatrics, Divisions of Dermatology, Washington University School of Medicine
| | - Geneviève de Saint Basile
- Inserm, U768, Paris, F-75015 France,Université Paris Descartes, IRNEM (IFR95), Paris, F-75015 France,AP-HP, Hôpital Necker Enfants-Malades, Unité d'Immunologie-Hématologie Pédiatrique, Paris, F-75015 France
| | - Nathalie Lambert
- AP-HP, Hôpital Necker Enfants-Malades, Unité d'Immunologie-Hématologie Pédiatrique, Paris, F-75015 France
| | | | - Joseph Roberts
- Department of Pediatrics and Immunology, Duke University Medical Center
| | - Kristina Kavanau
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco Children's Hospital
| | - Elizabeth Dunn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco Children's Hospital
| | - E. Richard Stiehm
- Divison of Immunology, Allergy and Rheumatology, Department of Pediatrics, Mattel Children's Hospital at the University of California Los Angeles
| | - David B Lewis
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital at Stanford
| | - Dale T Umetsu
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Boston
| | - Jennifer M Puck
- Department of Pediatrics, Institute for Human Genetics, University of California San Francisco Children's Hospital
| | - Morton J Cowan
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco Children's Hospital
| |
Collapse
|
49
|
IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo. Blood 2011; 118:6824-35. [PMID: 22039266 DOI: 10.1182/blood-2011-06-362533] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SCID resulting from mutations in IL2RG or JAK3 is characterized by lack of T and natural killer cells; B cells are present in normal number, but antibody responses are defective. Hematopoietic cell transplantation (HCT) is curative for SCID. However, B-cell dysfunction persists in a substantial proportion of patients. We hypothesized that impaired B-cell responses after HCT in IL2RG/JAK3 deficiency results from poor donor B-cell engraftment and defective γc-dependent cytokine signaling in host B cells. To test this, and to identify which γc cytokine(s) is critical for humoral immunity, we studied 28 transplanted patients with IL2RG/JAK3 deficiency. Lack of donor B-cell engraftment associated with persistent humoral dysfunction and significantly reduced memory B cells. B-cell proliferation induced by CD40L alone or together with CpG, anti-Ig, IL-4, IL-10, or IL-13 was comparable in healthy controls and in post-HCT SCID patients, irrespective of their chimerism status. However, in vitro stimulation with CD40L/IL-21 induced B-cell proliferation, plasmablast differentiation, and antibody secretion in patients with donor B cells, but not in patients with autologous B cells. These data imply that IL-21-mediated signaling is critical for long-lived humoral immunity and to restore antibody responses in IL2RG/JAK3-deficient patients after HCT. Furthermore, in vitro stimulation with CD40L/IL-21 can predict in vivo B-cell immunity in IL2RG/JAK3 SCID after transplantation.
Collapse
|
50
|
Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res 2011; 49:25-43. [PMID: 21116871 DOI: 10.1007/s12026-010-8191-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T- and B-cell function and, in some types, also of NK cells and function. Mutations in thirteen different genes have been found to cause this condition, which is uniformly fatal in the first 2 years of life unless immune reconstitution can be accomplished. In the 42 years since the first bone marrow transplant was given in 1968, the standard treatment for all forms of SCID has been allogeneic bone marrow transplantation. Both HLA-identical unfractionated and T-cell-depleted HLA-haploidentical bone marrow transplants have been very successful in effecting immune reconstitution, especially if performed in the first 3.5 months of life and without pre-transplant chemotherapy. This paper summarizes the longterm outcome, according to molecular type, of 166 consecutive SCID infants given non-conditioned related donor bone marrow transplants at this institution over the past 28.3 years and reviews published reports of longterm outcomes of transplants in SCID performed at other centers.
Collapse
|