1
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 2021; 125:164-175. [PMID: 33824479 PMCID: PMC8292450 DOI: 10.1038/s41416-021-01328-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Heterogeneity within a tumour increases its ability to adapt to constantly changing constraints, but adversely affects a patient's prognosis, therapy response and clinical outcome. Intratumoural heterogeneity results from a combination of extrinsic factors from the tumour microenvironment and intrinsic parameters from the cancer cells themselves, including their genetic, epigenetic and transcriptomic traits, their ability to proliferate, migrate and invade, and their stemness and plasticity attributes. Cell plasticity constitutes the ability of cancer cells to rapidly reprogramme their gene expression repertoire, to change their behaviour and identities, and to adapt to microenvironmental cues. These features also directly contribute to tumour heterogeneity and are critical for malignant tumour progression. In this article, we use breast cancer as an example of the origins of tumour heterogeneity (in particular, the mutational spectrum and clonal evolution of progressing tumours) and of tumour cell plasticity (in particular, that shown by tumour cells undergoing epithelial-to-mesenchymal transition), as well as considering interclonal cooperativity and cell plasticity as sources of cancer cell heterogeneity. We review current knowledge on the functional contribution of cell plasticity and tumour heterogeneity to malignant tumour progression, metastasis formation and therapy resistance.
Collapse
|
3
|
|
4
|
Frizzled-10 Extracellular Vesicles Plasma Concentration Is Associated with Tumoral Progression in Patients with Colorectal and Gastric Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2715968. [PMID: 31275379 PMCID: PMC6582832 DOI: 10.1155/2019/2715968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/31/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication during the carcinogenesis. Our attention has been focused on small EVs (sEVs) protein content in colorectal and gastric cancer (CRC and GC). Frizzled (FZD) proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in the carcinogenesis of CRC and GC. Here, the expression of a specific FZD protein, namely, FZD-10, was investigated in the sEVs extracted from plasma of patients affected by CRC and GC as involved in canonical and noncanonical Wnt signaling in cancer stem cells with a subsequent modification of cellular heterogeneity, omics reprogramming, and tumor plasticity. The expression of FZD-10 protein in the sEVs extracted from plasma of patients affected by CRC and GC and sEVs from plasma of healthy subjects was evaluated against the level of protein Hsp70, established as EVs specific markers along with CD63 and ALIX proteins. The FZD-10 extract from sEVs isolated from plasma of the controls and the CRC or GC subjects indicated that its expression in oncological patients was higher than in the control group, while, at the end of the treatment, it reached values comparable with the average level of controls. Furthermore, the level of FZD-10 in the whole plasma was found comparable with its level in the sEVs extract. The level of FZD-10 in the sEVs represents a potential reliable biomarker with a valuable prognostic function for the diagnosis of CRC and GC and for monitoring the treatment response.
Collapse
|
5
|
Jiang X, Yang Z. Multiple biological functions of transcription factor 21 in the development of various cancers. Onco Targets Ther 2018; 11:3533-3539. [PMID: 29950858 PMCID: PMC6016277 DOI: 10.2147/ott.s164033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factor 21 (TCF21) is a basic helix–loop–helix transcription factor that binds to DNA and regulates cell differentiation and cell fate specification through mesenchymal–epithelial transition during development. The TCF21 gene is epigenetically inactivated in many types of human cancers and exerts a wide variety of functions, including the regulation of epithelial–mesenchymal transition, invasion, metastasis, cell cycle, and autophagy. This review focuses on research progress in relation to the roles of TCF21 in tumor development. We systematically consider multiple pathological functions of TCF21 in various cancers, revealing the molecular bases of its diverse biological roles and providing new directions for future research.
Collapse
Affiliation(s)
- Xiaodi Jiang
- Department of Infectious Disease, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Bozzi F, Brich S, Dagrada GP, Negri T, Conca E, Cortelazzi B, Belfiore A, Perrone F, Gualeni AV, Gloghini A, Cabras A, Brenca M, Maestro R, Zaffaroni N, Casali P, Bertulli R, Deraco M, Pilotti S. Epithelioid peritoneal mesothelioma: a hybrid phenotype within a mesenchymal-epithelial/epithelial-mesenchymal transition framework. Oncotarget 2018; 7:75503-75517. [PMID: 27705913 PMCID: PMC5342756 DOI: 10.18632/oncotarget.12262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to reconsider the biological characteristics of epithelioid malignant peritoneal mesothelioma (E-MpM) in the light of new concepts about epithelial mesenchymal transition and mesenchymal epithelial reverse transition (EMT/MErT) and the role of epigenetic reprogramming in this context. To this end we profiled surgical specimens and derived cells cultures by a number of complementary approaches i.e. immunohistochemistry, immunofluorescence, in situ hybridization, biochemistry, pluripotent stem cell arrays, treatments with cytokines, growth factors and specific inhibitors.The analyses of the surgical specimens showed that i) EZH2 is expressed throughout the spectrum of MpM, ii) that E-MpM (including the high-grade undifferentiated form) are characterised by c-MYC and miRNA 17-5p expression, and iii) that progression to sarcomatoid MpM is dictated by EMT regulators. They also showed that E-MpM expressed c-MET and are enriched in E- and P-cadherins- and VEGFR2-expressing CSCs, thus strongly supporting a role for MErT reprogramming in endowing E-MpM tumour cells with stemness and plasticity, and hence with a drug resistant phenotype. The cell culture-based experiments confirmed the stemness traits and plasticity of E-MpM, and support the view that EZH2 is a druggable target in this tumor.
Collapse
Affiliation(s)
- Fabio Bozzi
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Brich
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,MOSE-DEA University of Trieste, Trieste, Italy
| | - Gian Paolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tiziana Negri
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Conca
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Cortelazzi
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonino Belfiore
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ambra Vittoria Gualeni
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonello Cabras
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Brenca
- Experimental Oncology 1, Centro di Riferimento Oncologico, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Roberta Maestro
- Experimental Oncology 1, Centro di Riferimento Oncologico, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Casali
- Adult Mesenchymal Tumor Medical Oncology Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rossella Bertulli
- Adult Mesenchymal Tumor Medical Oncology Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcello Deraco
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
7
|
Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y, Zhu Y, Li D, Zhou J. HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:26. [PMID: 26842802 PMCID: PMC4741030 DOI: 10.1186/s13046-016-0298-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a dedifferentiation process that mainly involves in mesenchymal marker upregulation, epithelial maker downregulation and cell polarity loss. Related hypoxia factors play a crucial role in EMT, however, it remains few evidence to clarify the role of HIF-2α in EMT in pancreatic cancer. Method In this study, we investigated the expression of HIF-2α and E-cadherin by immunohistochemistry in 70 pancreatic cancer patients, as well as the correlation to the clinicopathologic characteristics. Then we regulated the expression of HIF-2α in pancreatic cancer cells to examine the role of HIF-2α on invasion and migration in vitro. Finally, we tested the relation of HIF-2α and EMT related proteins by Western blot and determined whether HIF-2α regulated EMT through Twist regulating the expression of E-cadherin by Chromatin immunoprecipitation (ChIP) assay. Results We found that HIF-2α protein was expressed positively in 67.1 % (47/70) of pancreatic cancer tissues and 11.4 % (8/70) of adjacent non-tumor pancreatic tissues, and there was a significant difference in the positive rate of HIF-2α protein between two groups (χ2 = 45.549, P < 0.05). In addition, the staining for HIF-2α was correlated with tumor differentiation (P < 0.05), clinical stage (P < 0.05) and lymph node metastasis (P < 0.05), while E-cadherin expression was only correlated with lymph node metastasis (P < 0.05). HIF-2α promoted cell migration, invasion in vitro, and regulated the expression of E-cadherin and MMPs, which are critical to EMT. Our further ChIP assay suggested that only Twist2 could bind to the promoter of E-cadherin in -714 bp region site, but there is no positive binding capacity in -295 bp promoter region site of E-cadherin. Clinical tissues IHC staining showed that Twist2 and E-cadherin expression had an obviously negative correlation in pancreatic cancer. Nevertheless, it had no obvious correlation between Twist1 and E-cadherin. Conclusion These findings indicated that HIF-2α promotes EMT in pancreatic cancer by regulating Twist2 binding to the promoter of E-cadherin, which meant that HIF-2α and this pathway may be effective therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xu Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Yanbo Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
8
|
Farace C, Oliver JA, Melguizo C, Alvarez P, Bandiera P, Rama AR, Malaguarnera G, Ortiz R, Madeddu R, Prados J. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS One 2015; 10:e0134111. [PMID: 26230845 PMCID: PMC4521885 DOI: 10.1371/journal.pone.0134111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities of SLRP in response to CSC enrichment, simultaneously acquiring TMZ resistance, cellular heterogeneity, and a quiescent phenotype, suggesting a novel pivotal role for SLRP in drug resistance and cell plasticity of CSC-like, allowing cell survival and ECM/niche modulation potential.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- * E-mail: (CF); (RM)
| | | | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pablo Alvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ana Rosa Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Giulia Malaguarnera
- Research Center "The Great Senescence", University of Catania, Catania, Italy
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- National Institute of Biostructures and Biosystem (INBB), Rome, Italy
- * E-mail: (CF); (RM)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.Granada), SAS-University of Granada, Granada, Spain
| |
Collapse
|
9
|
Li Y, Che Q, Bian Y, Zhou Q, Jiang F, Tong H, Ke J, Wang K, Wan XP. Autocrine motility factor promotes epithelial-mesenchymal transition in endometrial cancer via MAPK signaling pathway. Int J Oncol 2015. [PMID: 26201353 DOI: 10.3892/ijo.2015.3091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autocrine motility factor (AMF) as a cytokine and a growth factor, is known to regulate tumor cell growth and motility in the progress of various human malignant tumors, however, its role in endometrial cancer (EC) has not been fully studied. In the present study, using immunohistochemistry, we found that AMF was highly expressed in EC tissues compared with normal endometrial tissues and tissue micrioarray technology showed positive correlation between AMF expression and epithelial-to-mesenchymal transition (EMT) related markers E-cadherin, vimentin and Snail. Next, we detected that silencing of AMF by stable transfection with shRNA induced mesenchymal-to-epithelial transition phenotype in Ishikawa and HEC-1B cells by qRT-PCR, western blotting and immunofluorescence. Gene expression profile revealed that AMF silencing resulted in altered expression of EMT related molecular mediators including Snail and transforming growth factor β receptor 1, and involvement of mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, we found that EMT related markers were downregulated with pretreatment of the MAPK-specific inhibitor U0126 by western blotting. The present study is the first to support a role for AMF mediating EMT in endometrial cancer through MAPK signaling. Therefore, AMF may provide a potential prognostic and therapeutic target in preventing EC progression.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Yiding Bian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Huan Tong
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
10
|
Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, An J, Dong X, Liu F, Wang Y. ZEB2 promotes vasculogenic mimicry by TGF-β1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol 2015; 98:352-9. [DOI: 10.1016/j.yexmp.2015.03.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 01/17/2023]
|
11
|
Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelial-mesenchymal transition (EMT) progression. Tumour Biol 2015; 36:6701-14. [PMID: 25820824 DOI: 10.1007/s13277-015-3354-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
CtBP2, as a transcriptional corepressor of epithelial-specific genes, has been reported to promote tumor due to upregulating epithelial-mesenchymal transition (EMT) in cancer cells. CtBP2 was also demonstrated to contribute to the proliferation of esophageal squamous cell carcinoma (ESCC) cells through a negative transcriptional regulation of p16(INK4A). In this study, for the first time, we reported that CtBP2 expression, along with CCNH/CDK7, was higher in ESCC tissues with lymph node metastases than in those without lymph node metastases. Moreover, both CtBP2 and CCNH/CDK7 were positively correlated with E-cadherin, tumor grade, and tumor metastasis. However, the concrete mechanism of CtBP2's role in enhancing ESCC migration remains incompletely understood. We confirmed that CCNH/CDK7 could directly interact with CtBP2 in ESCC cells in vivo and in vitro. Furthermore, our data demonstrate for the first time that CtBP2 enhanced the migration of ESCC cells in a CCNH/CDK7-dependent manner. Our results indicated that CCNH/CDK7-CtBP2 axis may augment ESCC cell migration, and targeting the interaction of both may provide a novel therapeutic target of ESCC.
Collapse
|
12
|
Gong SP, Kim B, Kwon HS, Yang WS, Jeong JW, Ahn J, Lim JM. The co-injection of somatic cells with embryonic stem cells affects teratoma formation and the properties of teratoma-derived stem cell-like cells. PLoS One 2014; 9:e105975. [PMID: 25180795 PMCID: PMC4152121 DOI: 10.1371/journal.pone.0105975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to assess the biological reactions triggered by stem cell transplantation related to phenotypic alteration, host-to-cell response, chromosomal stability, transcriptional alteration, and stem cell-like cell re-expansion. B6CBAF1 mouse embryonic stem cells (ESCs) were injected subcutaneously into homologous or heterologous (B6D2F1) recipients, and heterologous injections were performed with or without co-injection of B6D2F1 fetal fibroblasts. All homologous injections resulted in teratoma formation, whereas a sharp decrease in formation was detected after heterologous injection (100 vs. 14%; p<0.05). The co-injection of somatic cells in heterologous injections enhanced teratoma formation significantly (14 vs. 75%; p<0.05). Next, ESC-like cell colonies with the same genotype as parental ESCs were formed by culturing teratoma-dissociated cells. Compared with parental ESCs, teratoma-derived ESC-like cells exhibited significantly increased aneuploidy, regardless of homologous or heterologous injections. Repopulation of the parental ESCs was the main factor that induced chromosomal instability, whereas the co-injection of somatic cells did not restore chromosomal normality. Different genes were expressed in the parental ESCs and teratoma-derived ESC-like cells; the difference was larger with parental vs. heterologous than parental vs. homologous co-injections. The co-injection of somatic cells decreased this difference further. In conclusion, the host-to-cell interactions triggered by ESC transplantation could be modulated by co-injection with somatic cells. A mouse model using homologous or heterologous transplantation of stem cells could help monitor cell adaptability and gene expression after injection.
Collapse
Affiliation(s)
- Seung Pyo Gong
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Department of Marine Bio-materials and Aquaculture, Pukyong National University, Busan, Korea
| | - Boyun Kim
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hyo Sook Kwon
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Woo Sub Yang
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Jiyeon Ahn
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jeong Mook Lim
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute for Agriculture and Life Science, Seoul, Korea
- * E-mail:
| |
Collapse
|
13
|
Yang Z, Li DM, Xie Q, Dai DQ. Protein expression and promoter methylation of the candidate biomarker TCF21 in gastric cancer. J Cancer Res Clin Oncol 2014; 141:211-20. [PMID: 25156819 DOI: 10.1007/s00432-014-1809-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/04/2014] [Indexed: 01/18/2023]
Abstract
PURPOSE Transcription factor 21 (TCF21) has been identified as a candidate tumor suppressor at 6q23-q24 that is epigenetically inactivated in many types of human cancers. This study aimed to determine the expression of TCF21 mRNA and protein in gastric cancer cell lines and tissue specimens and then investigate the prognostic impact of TCF21 expression in gastric cancer and analyze the relationship between TCF21 expression and methylation level. METHODS We used real-time PCR and immunohistochemical staining to detect the expression of TCF21 and used methylation-specific-PCR to determine the methylation status of TCF21 in gastric cancer samples and gastric cancer cell lines. RESULTS The results showed that TCF21 expression level in gastric cancer samples was significantly lower than in normal adjacent tissue samples. The Kaplan-Meier survival analysis demonstrated that TCF21 was a significant prognosticator of cancer-specific survival (p = 0.001). Furthermore, the methylation level of TCF21 in gastric cancer samples was much higher than the samples in normal adjacent tissue. Treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxy-cytidine can upregulate the expression of TCF21 in gastric cancer cells. CONCLUSIONS These results suggest that the low expression of TCF21 was an independent prognostic factor for poor survival in patients with gastric cancer. Aberrant methylation was an important reason for the downregulation of TCF21 and may be associated with tumorigenesis in gastric cancer.
Collapse
Affiliation(s)
- Z Yang
- Cancer Center, The Fourth Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
14
|
Eid JE, Garcia CB. Reprogramming of mesenchymal stem cells by oncogenes. Semin Cancer Biol 2014; 32:18-31. [PMID: 24938913 DOI: 10.1016/j.semcancer.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) originate from embryonic mesoderm and give rise to the multiple lineages of connective tissues. Transformed MSCs develop into aggressive sarcomas, some of which are initiated by specific chromosomal translocations that generate fusion proteins with potent oncogenic properties. The sarcoma oncogenes typically prime MSCs through aberrant reprogramming. They dictate commitment to a specific lineage but prevent mature differentiation, thus locking the cells in a state of proliferative precursors. Deregulated expression of lineage-specific transcription factors and controllers of chromatin structure play a central role in MSC reprogramming and sarcoma pathogenesis. This suggests that reversing the epigenetic aberrancies created by the sarcoma oncogenes with differentiation-related reagents holds great promise as a beneficial addition to sarcoma therapies.
Collapse
Affiliation(s)
- Josiane E Eid
- Department of Cancer Biology, Vanderbilt University Medical Center, 771 Preston, Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Christina B Garcia
- Department of Pediatrics-Nutrition, Baylor College of Medicine, BCM320, Huston, TX 77030, USA
| |
Collapse
|
15
|
Weng W, Yin J, Zhang Y, Qiu J, Wang X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol 2014; 44:812-8. [PMID: 24424621 DOI: 10.3892/ijo.2014.2253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/30/2013] [Indexed: 11/06/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. Upregulation of metastasis-associated protein 1 (MTA1) has been reported to contribute to the development of esophageal squamous cell carcinoma. Therefore, the objective of our study was to identify the molecular mechanisms of MTA1 underlying the invasion and metastasis of ESCC. We overexpressed MTA1 in ESCC cells to examine the role of MTA1 in the regulation of the cell invasion. In addition, using luciferase reporter assay and electrophoretic mobility shift assays, we evaluated the binding of MTA1 to the promoter of E-cadherin. We found that MTA1 overexpression promotes invasiveness of the human esophageal carcinoma cell line EC-9706. This effect was accompanied by downregulation of the epithelial cell marker E-cadherin and upregulation of vimentin and MMP-9 luciferase reporter assays showed that MTA1 inhibited the promoter activity of E-cadherin and that this was dependent on Snail, Slug and HDAC1. We also found that Snail and Slug bound the E-boxes in the promoter of E-cadherin and recruited MTA1 and HDAC1 to suppress E-cadherin expression, as confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. MTA1 promotes tumor invasion by downregulation of E-cadherin. These results demonstrate a novel role for MTA1 in the regulation of esophageal squamous cell carcinoma invasion and provide insight into the mechanisms involved in this process.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jiayi Yin
- Department of Clinical Medicine, Shanghai Jiaotong University Affiliated Renji Hospital, Shanghai 200127, P.R. China
| | - Yue Zhang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jin Qiu
- Department of Gynaecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
16
|
Svachova H, Kryukov F, Kryukova E, Sevcikova S, Nemec P, Greslikova H, Rihova L, Kubiczkova L, Hajek R. Nestin expression throughout multistep pathogenesis of multiple myeloma. Br J Haematol 2013; 164:701-9. [PMID: 24329895 DOI: 10.1111/bjh.12689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/13/2013] [Indexed: 12/12/2022]
Abstract
The stem cell marker nestin (NES) is found in dividing cells of developing and regenerating tissues. Upon terminal differentiation, NES expression is diminished but may be re-expressed following injury or in cancer. Surprisingly, we recently confirmed NES as a tumour-specific marker for mature CD138(+) 38(+) plasma cells (PC) in multiple myeloma (MM). The present study analysed NES expression throughout the spectrum of MM developmental stages, starting with individuals with no haematological malignancy, through monoclonal gammopathy of undetermined significance (MGUS) and MM to plasma cell leukaemia (PCL) and MM cell lines. NES was analysed in bone marrow PC of 163 MM, four PCL and nine MGUS patients, 10 individuals with no haematological malignancy and 6 myeloma cell lines (OPM-2, RPMI-8226, MOLP-8, U-266, EJM, NCI-H929) by flow cytometry and/or real-time polymerase chain reaction or immunochemistry. We observed a tendency of increased NES expression in parallel with disease progression. NES was evaluated as a reliable marker for accurate discrimination between MM patients and the control group. High NES levels were strongly associated with the presence of 1q21 gain. For the first time, NES was demonstrated to predict worse response to conventional therapy/novel agents. These results suggest that NES might become a useful clinical parameter with an important role in MM pathogenesis.
Collapse
Affiliation(s)
- Hana Svachova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lavasani M, Pollett JB, Usas A, Thompson SD, Pollett AF, Huard J. The microenvironment-specific transformation of adult stem cells models malignant triton tumors. PLoS One 2013; 8:e82173. [PMID: 24349213 PMCID: PMC3857244 DOI: 10.1371/journal.pone.0082173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Here, we demonstrated the differentiation potential of murine muscle-derived stem/progenitor cells (MDSPCs) toward myogenic, neuronal, and glial lineages. MDSPCs, following transplantation into a critical-sized sciatic nerve defect in mice, showed full regeneration with complete functional recovery of the injured peripheral nerve at 6 weeks post-implantation. However, several weeks after regeneration of the sciatic nerve, neoplastic growths were observed. The resulting tumors were malignant peripheral nerve sheath tumors (MPNSTs) with rhabdomyoblastic differentiation, expressing myogenic, neurogenic, and glial markers, common markers of human malignant triton tumors (MTTs). No signs of tumorigenesis were observed 17 weeks post-implantation of MDSPCs into the gastrocnemius muscles of dystrophic/mdx mice, or 1 year following subcutaneous or intravenous injection. While MDSPCs were not oncogenic in nature, the neoplasias were composed almost entirely of donor cells. Furthermore, cells isolated from the tumors were serially transplantable, generating tumors when reimplanted into mice. However, this transformation could be abrogated by differentiation of the cells toward the neurogenic lineage prior to implantation. These results establish that MDSPCs participated in the regeneration of the injured peripheral nerve but transformed in a microenvironment- and time-dependent manner, when they likely received concomitant neurogenic and myogenic differentiation signals. This microenvironment-specific transformation provides a useful mouse model for human MTTs and potentially some insight into the origins of this disease.
Collapse
Affiliation(s)
- Mitra Lavasani
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| | - Jonathan B. Pollett
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Arvydas Usas
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth D. Thompson
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron F. Pollett
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Johnny Huard
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| |
Collapse
|
18
|
Kuroda Y, Dezawa M. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat Rec (Hoboken) 2013; 297:98-110. [PMID: 24293378 DOI: 10.1002/ar.22798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained a great deal of attention for regenerative medicine because they can be obtained from easy accessible mesenchymal tissues, such as bone marrow, adipose tissue, and the umbilical cord, and have trophic and immunosuppressive effects to protect tissues. The most outstanding property of MSCs is their potential for differentiation into cells of all three germ layers. MSCs belong to the mesodermal lineage, but they are known to cross boundaries from mesodermal to ectodermal and endodermal lineages, and differentiate into a variety of cell types both in vitro and in vivo. Such behavior is exceptional for tissue stem cells. As observed with hematopoietic and neural stem cells, tissue stem cells usually generate cells that belong to the tissue in which they reside, and do not show triploblastic differentiation. However, the scientific basis for the broad multipotent differentiation of MSCs still remains an enigma. This review summarizes the properties of MSCs from representative mesenchymal tissues, including bone marrow, adipose tissue, and the umbilical cord, to demonstrate their similarities and differences. Finally, we introduce a novel type of pluripotent stem cell, multilineage-differentiating stress-enduring (Muse) cells, a small subpopulation of MSCs, which can explain the broad spectrum of differentiation ability in MSCs.
Collapse
Affiliation(s)
- Yasumasa Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
19
|
Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br J Haematol 2013; 163:551-64. [PMID: 24111932 DOI: 10.1111/bjh.12563] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy characterized by the accumulation of clonal plasma cells (PCs) in the bone marrow (BM). Although novel therapeutic strategies have prolonged survival of patients, the disease remains difficult to treat with a high risk of relapse. The failure of therapy is thought to be associated with a persistent population of the so-called MM stem cells or myeloma initiating cells (MIC) that exhibit tumour-initiating potential, self-renewal and resistance to chemotherapy. However, the population responsible for the origin and sustainability of tumour mass has not been clearly characterized so far. This review summarizes current myeloma stem cell concepts and suggests that high phenotypic and intra-clonal heterogeneity, together with plasticity potential of MM might be other contributing factors explaining discrepancies among particular concepts and contributing to the treatment failure.
Collapse
Affiliation(s)
- Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Clinical Haematology, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | | |
Collapse
|
20
|
Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance. Cancer Lett 2013; 341:56-62. [PMID: 23830804 DOI: 10.1016/j.canlet.2013.06.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/02/2013] [Accepted: 06/08/2013] [Indexed: 12/17/2022]
Abstract
Tumour heterogeneity is a key characteristic of cancer and has significant implications relating to tumour response to chemotherapy as well as patient prognosis and potential relapse. It is being increasingly accepted that tumours are clonal in origin, suggestive of a tumour arising from a deregulated or mutated cell. Cancer stem cells (CSC) possess these capabilities, and with appropriate intracellular triggers and/or signalling from extracellular environments, can purportedly differentiate to initiate tumour formation. Additionally through epithelial mesenchymal plasticity (EMP), where cells gain and maintain characteristics of both epithelial and mesenchymal cell types, epithelial-derived tumour cells have been shown to de-differentiate to acquire cancer stem attributes, which also impart chemotherapy resistance. This new paradigm places EMP centrally in the process of tumour progression and metastasis, as well as modulating drug response to current forms of chemotherapy. Furthermore, EMP and CSCs have been identified in cancers arising from different tissue types making it a possible generic therapeutic target in cancer biology. Using breast cancer (BrCa) as an example, we summarise here the current understanding of CSCs, the role of EMP in cancer biology - especially in CSCs and different molecular subtypes, and the implications this has for current and future cancer treatment strategies.
Collapse
|
21
|
Zhang Y, Yan W, Chen X. P63 regulates tubular formation via epithelial-to-mesenchymal transition. Oncogene 2013; 33:1548-57. [PMID: 23542170 DOI: 10.1038/onc.2013.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 02/08/2023]
Abstract
P63, a p53 family member, is expressed as TA and ΔN isoforms. Interestingly, both TAp63 and ΔNp63 are transcription factors, and regulate both common and distinct sets of target genes. p63 is required for survival of some epithelial cell lineages, and lack of p63 leads to loss of epidermis and other epithelia in humans and mice. Here, we explored the role of p63 isoforms in cell proliferation, migration and tubulogenesis by using Madin-Darby Canine Kidney (MDCK) tubular epithelial cells in two- or three-dimensional (2-D or 3-D) culture. We found that like downregulation of p53, downregulation of p63 and TAp63 decreases expression of growth-suppressing genes, including p21, PUMA and MIC-1, and consequently promotes cell proliferation and migration in 2-D culture. However, in 3-D culture, downregulation of p63, especially TAp63, but not p53, decapacitates MDCK cells to form a cyst structure through enhanced epithelial-to-mesenchymal transition (EMT). In contrast, downregulation of ΔNp63 inhibits MDCK cell proliferation and migration in 2-D culture, and delays but does not block MDCK cell cyst formation and tubulogenesis in 3-D culture. Consistent with this, downregulation of ΔNp63 markedly upregulates growth-suppressing genes, including p21, PUMA and MIC-1. Taken together, these data suggest that TAp63 is the major isoform required for tubulogenesis by maintaining an appropriate level of EMT, whereas ΔNp63 fine-tunes the rate of cyst formation and tubulogenesis by maintaining an appropriate expression level of genes involved in cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Y Zhang
- Center for Comparative Oncology, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - W Yan
- Center for Comparative Oncology, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - X Chen
- Center for Comparative Oncology, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
22
|
Constantinovits M, Sipos F, Molnár B, Tulassay Z, Műzes G. Organizer and regulatory role of colonic isolated lymphoid follicles in inflammation. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:344-52. [PMID: 22982722 DOI: 10.1556/aphysiol.99.2012.3.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is supposed to play an integral role in the organization of colonic repair mechanisms. Majority of the GALT is composed of isolated and aggregated lymphoid follicles distributed throughout the intestines. These lymphoid follicles, including Peyer's patches of the small, and isolated lymphoid follicles (ILFs) of both the small and large intestines, are composed of a specialised follicle associated epithelium overlying a subepithelial dome containing numerous dendritic cells, macrophages, T and B cells. Within inflammatory conditions the number, the diameter and the density of ILFs are increasing. Follicles are involved not just in immune surveillance, but their presence is also indispensable for normal colonic mucosal regeneration. Regarding mucosal repair the relation of ILFs to bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts and crypt formations, and the putative organizer role of ILFs have not been clarified yet.
Collapse
|
23
|
Guo P, You JO, Yang J, Moses MA, Auguste DT. Using breast cancer cell CXCR4 surface expression to predict liposome binding and cytotoxicity. Biomaterials 2012; 33:8104-10. [PMID: 22884683 DOI: 10.1016/j.biomaterials.2012.07.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/21/2012] [Indexed: 01/13/2023]
Abstract
The primary cause of mortality in breast cancer is tumor aggressiveness, characterized by metastases to regional lymph nodes, bone marrow, lung, and liver. C-X-C chemokine receptor type 4 (CXCR4) has been shown to mobilize breast cancer cells along chemokine gradients. Quantification of CXCR4 surface expression may predict the efficacy of anti-CXCR4 labeled liposomal therapeutics to target and kill breast cancer cells. We evaluated gene and surface receptor expression of CXCR4 on breast cancer cell lines distinguished as having low and high invasiveness, MDA-MB-175VII and HCC1500, respectively. CXCR4 surface expression did not correlate with invasiveness. MDA-MB-175VII exhibited more binding to anti-CXCR4 labeled liposomes relative to HCC1500. Increased binding correlated with greater cell death relative to IgG labeled liposomes. Quantitative cell characterization may be used to select targeted therapeutics with enhanced efficacy and minimal side effects.
Collapse
Affiliation(s)
- Peng Guo
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
24
|
Auletta JJ, Bartholomew AM, Maziarz RT, Deans RJ, Miller RH, Lazarus HM, Cohen JA. The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy 2012; 4:529-47. [PMID: 22642335 PMCID: PMC3381871 DOI: 10.2217/imt.12.41] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS for which only partially effective therapies exist. Intense research defining the underlying immune pathophysiology is advancing both the understanding of MS as well as revealing potential targets for disease intervention. Mesenchymal stromal cell (MSC) therapy has the potential to modulate aberrant immune responses causing demyelination and axonal injury associated with MS, as well as to repair and restore damaged CNS tissue and cells. This article reviews the pathophysiology underlying MS, as well as providing a cutting-edge perspective into the field of MSC therapy based upon the experience of authors intrinsically involved in MS and MSC basic and translational science research.
Collapse
Affiliation(s)
- Jeffery J Auletta
- National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Buchtová M, Štembírek J, Glocová K, Matalová E, Tucker A. Early Regression of the Dental Lamina Underlies the Development of Diphyodont Dentitions. J Dent Res 2012; 91:491-8. [DOI: 10.1177/0022034512442896] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Functional tooth germs in mammals, reptiles, and chondrichthyans are initiated from a dental lamina. The longevity of the lamina plays a role in governing the number of tooth generations. Monophyodont species have no replacement dental lamina, while polyphyodont species have a permanent continuous lamina. In diphyodont species, the dental lamina fragments and regresses after initiation of the second tooth generation. Regression of the lamina seems to be an important mechanism in preventing the further development of replacement teeth. Defects in the complete removal of the lamina lead to cyst formation and has been linked to ameloblastomas. Here, we show the previously unknown mechanisms behind the disappearance of the dental lamina, involving a combination of cell migration, cell-fate transformation, and apoptosis. Lamina regression starts with the loss of the basement membrane, allowing the epithelial cells to break away from the lamina and migrate into the surrounding mesenchyme. Cells deactivate epithelial markers (E-cadherin, cytokeratin), up-regulate Slug and MMP2, and activate mesenchymal markers (vimentin), while residual lamina cells are removed by apoptosis. The uncovering of the processes behind lamina degradation allows us to clarify the evolution of diphyodonty, and provides a mechanism for future manipulation of the number of tooth generations.
Collapse
Affiliation(s)
- M. Buchtová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Veveri 97, 602 00 Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - J. Štembírek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - K. Glocová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - E. Matalová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Veveri 97, 602 00 Brno, Czech Republic
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - A.S. Tucker
- Department of Craniofacial Development and Stem Cell Biology and Department of Orthodontics, King’s College London, Dental Institute, London, SE1 9RT, UK
| |
Collapse
|
26
|
Sipos F, Galamb O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J Gastroenterol 2012; 18:601-8. [PMID: 22363130 PMCID: PMC3281216 DOI: 10.3748/wjg.v18.i7.601] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions are well established biological events which have an important role in not just normal tissue and organ development, but in the pathogenesis of diseases. Increasing evidence has established their presence in the human colon during colorectal carcinogenesis and cancer invasion, chronic inflammation-related fibrosis and in the course of mucosal healing. A large body of evidence supports the role for transforming growth factor-β and its downstream Smad signaling, the phosphatidylinositol 3'-kinase/Akt/mTOR axis, the Ras-mitogen-activated protein kinase/Snail/Slug and FOXC2 pathway, and Hedgehog signaling and microRNAs in the development of colorectal cancers via epithelial-to-mesenchymal transition. C-met and Frizzled-7, among others, seem to be the principle effectors of mesenchymal-to-epithelial transition, hence have a role not just in mucosal regeneration but in the progression of colonic wall fibrosis. Here we discuss a role for these pathways in the initiation and development of the transition events. A better understanding of their induction and regulation may lead to the identification of pathways and factors that could be potent therapeutic targets. The inhibition of epithelial-to-mesenchymal transition using mTOR kinase inhibitors targeting the ATP binding pocket and which inhibit both mTORC1 and mTORC2, RNA aptamers or peptide mimetics, such as a Wnt5A-mimetic, may all be useful in both cancer treatment and delaying fibrosis, while the induction of mesenchymal-to-epithelial transition in induced pluripotent stem cells may enhance epithelial healing in the case of severe mucosal damage. The preliminary results of the current studies are promising, but more clinical investigations are needed to develop new and safe therapeutic strategies for diseases of the colon.
Collapse
|
27
|
Kitada M. Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population. Anat Sci Int 2012; 87:24-44. [PMID: 22237924 DOI: 10.1007/s12565-011-0128-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/20/2011] [Indexed: 01/01/2023]
Abstract
Mesenchymal cell populations, referred to as mesenchymal stem cells or multipotent stromal cells (MSCs), which include bone marrow stromal cells (BMSCs), umbilical cord stromal cells and adipose stromal cells (ASCs), participate in tissue repair when transplanted into damaged or degenerating tissues. The trophic support and immunomodulation provided by MSCs can protect against tissue damage, and the differentiation potential of these cells may help to replace lost cells. MSCs are easily accessible and can be expanded on a large scale. In addition, BMSCs and ASCs can be harvested from the patient himself. Thus, MSCs are considered promising candidates for cell therapy. In this review, I will discuss recently discovered high-efficiency induction systems for deriving Schwann cells and neurons from MSCs. Other features of MSCs that are important for tissue repair include the self-renewing property of stem cells and their potential for differentiation. Thus, I will also discuss the stemness of MSCs and describe the discovery of a certain stem cell type among adult MSCs that can self-renew and differentiate into cells of all three germ layers. Furthermore, I will explore the prospects of using this cell population for cell therapy.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
28
|
Explanting is an ex vivo model of renal epithelial-mesenchymal transition. J Biomed Biotechnol 2011; 2011:212819. [PMID: 22162630 PMCID: PMC3227440 DOI: 10.1155/2011/212819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022] Open
Abstract
Recognised by their
de novo expression of alpha-smooth muscle actin
(SMA), recruitment of myofibroblasts is key to
the pathogenesis of fibrosis in chronic kidney
disease. Increasingly, we realise that
epithelial-mesenchymal transition (EMT) may be an
important source of these cells. In this study
we describe a novel model of renal EMT. Rat
kidney explants were finely diced on
gelatin-coated Petri dishes and cultured in
serum-supplemented media. Morphology and
immunocytochemistry were used to identify
mesenchymal (vimentin+, α-smooth muscle
actin (SMA)+, desmin+), epithelial
(cytokeratin+), and endothelial (RECA+) cells at
various time points. Cell outgrowths were all
epithelial in origin (cytokeratin+) at day 3. By
day 10, 50 ± 12%
(mean ± SE) of cytokeratin+
cells double-labelled for SMA, indicating EMT.
Lectin staining established a proximal tubule
origin. By day 17, cultures consisted only of
myofibroblasts (SMA+/cytokeratin−). Explanting
is a reproducible ex vivo model
of EMT. The ability to modify this change in
phenotype provides a useful tool to study the
regulation and mechanisms of renal
tubulointerstitial fibrosis.
Collapse
|
29
|
Shoshani O, Zipori D. Mammalian cell dedifferentiation as a possible outcome of stress. Stem Cell Rev Rep 2011; 7:488-93. [PMID: 21279479 DOI: 10.1007/s12015-011-9231-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Differentiation cascades are arranged hierarchically; stem cells positioned at the top of the hierarchy generate committed progenitors that, in turn, proliferate and further differentiate stepwise into mature progeny. This rigid, irreversible structure ensures the phenotypic stability of adult tissues. However, such rigidity may be problematic under conditions of tissue damage when reconstitution is required. Although it may seem unlikely that the restrictions on changes in cell phenotypes would be lifted to enable tissue reconstitution, it is nevertheless possible that mammalian tissues are endowed with sufficient flexibility to enable their adaptation to extreme conditions.
Collapse
Affiliation(s)
- Ofer Shoshani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
30
|
Thaler R, Rumpler M, Spitzer S, Klaushofer K, Varga F. Mospd1, a new player in mesenchymal versus epidermal cell differentiation. J Cell Physiol 2011; 226:2505-15. [PMID: 21792907 DOI: 10.1002/jcp.22595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mospd1 codes for a small protein with unknown physiological function, which is part of a family of genes, including Mospd2 and Mospd3, defined by the presence of the major sperm protein domain and two transmembrane domains. This work characterizes the Mospd1 gene, the intracellular location of the protein and its expression in different mouse tissues and mesenchymal cell lines during differentiation. The role of Mospd1 in mesenchymal cellular differentiation was studied by siRNA knockdown experiments in mouse osteoblastic MC3T3-E1 cells. Transfection experiments of the targeted cDNA show MOSPD1 located in the endoplasmatic reticulum and in the Golgi apparatus. Removal of the last exon of the gene resulted in localization of the protein in the nucleus, which was attributed to a nuclear export sequence in the N-terminal part. In mouse tissues the gene was generally strongly expressed while mesenchymal tissues showed the highest expression. In mesenchymal cell lines Mospd1 mRNA was higher expressed in cells with advanced differentiation status. In osteoblastic, myoblastic, and adipocytic cell lines Mospd1 was up-regulated during differentiation. Genome-wide gene expression analysis after knockdown of Mospd1 by siRNA in MC3T3-E1 cells revealed a shift in the gene expression pattern from mesenchymal to epithelial genes featuring up-regulation of the epithelial cadherin Cdh1 and down-regulation of its inhibitors Snail1 and 2 and the mesenchymal cadherin Cdh11, suggesting a mesenchymal to epithelial transition. From these data we conclude that Mospd1 plays a pivotal role in the developmental regulation at the switch between mesenchymal and epithelial cells.
Collapse
Affiliation(s)
- R Thaler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | |
Collapse
|
31
|
Baer PC. Adipose-Derived Stem Cells and Their Potential to Differentiate into the Epithelial Lineage. Stem Cells Dev 2011; 20:1805-16. [DOI: 10.1089/scd.2011.0086] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt/M, Germany
| |
Collapse
|
32
|
Kuroda Y, Kitada M, Wakao S, Dezawa M. Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells? Arch Immunol Ther Exp (Warsz) 2011; 59:369-78. [PMID: 21789625 DOI: 10.1007/s00005-011-0139-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/07/2011] [Indexed: 01/01/2023]
Abstract
Adult stem cells typically generate the cell types of the tissue in which they reside, and thus the range of their differentiation is considered limited. Bone marrow mesenchymal stem cells (MSCs) are different from other somatic stem cells in that they differentiate not only into the same mesodermal-lineage such as bone, cartilage, and adipocytes but also into other lineages of ectodermal and endodermal cells. Thus, MSCs are a unique type of adult stem cells. In addition, MSCs home to damaged sites, differentiate into cells specific to the tissue and contribute to tissue repair. Therefore, application of MSCs in the treatment of various diseases, including liver dysfunction, myocardial infarction, and central nervous system repair, has been initiated. Because MSCs are generally harvested as adherent cells from bone marrow aspirates, however, they comprise heterogeneous cell populations and their wide-ranging differentiation ability and repair functions are not yet clear. Recent evidence suggests that a very small subpopulation of cells that assume a repair function with the ability to differentiate into trilineage cells resides among human MSCs and effective utilization of such cells is expected to improve the repair effect of MSCs. This review summarizes recent advances in the clarification of MSC properties and discusses future perspectives.
Collapse
Affiliation(s)
- Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan.
| | | | | | | |
Collapse
|
33
|
Sipos F, Muzes G. Isolated lymphoid follicles in colon: switch points between inflammation and colorectal cancer? World J Gastroenterol 2011; 17:1666-73. [PMID: 21483625 PMCID: PMC3072629 DOI: 10.3748/wjg.v17.i13.1666] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
Gut-associated lymphoid tissue is supposed to play a central role in both the organization of colonic repair mechanisms and colorectal carcinogenesis. In inflammatory conditions, the number, diameter and density of isolated lymphoid follicles (ILFs) increases. They are not only involved in immune surveillance, but their presence is also indispensable in normal mucosal regeneration of the colon. In carcinogenesis, ILFs may play a dual role. On the one hand they may support tumor growth and the metastatic process by vascular endothelial growth factor receptor signaling and producing a specific cytokine and cellular milieu, but on the other hand their presence is sometimes associated with a better prognosis. The relation of ILFs to bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts or crypt formation, which are all involved in mucosal repair and carcinogenesis, has not been directly studied. Data about the putative organizer role of ILFs is scattered in scientific literature.
Collapse
|
34
|
Sheng Y, Han GQ. Possibility of differentiation of hematopoietic stem cells into liver cells. Shijie Huaren Xiaohua Zazhi 2011; 19:925-929. [DOI: 10.11569/wcjd.v19.i9.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived hematopoietic stem cells have the potential to undergo multilineage differentiation. Recent studies have shown that, in a given microenvironment, hematopoietic stem cells can differentiate into liver cells. However, some researchers hold a dissenting view. This review discusses the possibility of differentiation of hematopoietic stem cells into liver cells.
Collapse
|
35
|
Sun YL, Yin SY, Zhou L, Xie HY, Zhang F, Wu LM, Zheng SS. Hepatocyte differentiation of human fibroblasts from cirrhotic liver in vitro and in vivo. Hepatobiliary Pancreat Dis Int 2011; 10:55-63. [PMID: 21269936 DOI: 10.1016/s1499-3872(11)60008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and fibroblasts have intimate relationships, and the phenotypic homology between fibroblasts and MSCs has been recently described. The aim of this study was to investigate the hepatic differentiating potential of human fibroblasts in cirrhotic liver. METHODS The phenotypes of fibroblasts in cirrhotic liver were labeled by biological methods. After that, the differentiation potential of these fibroblasts in vitro was characterized in terms of liver-specific gene and protein expression. Finally, an animal model of hepatocyte regeneration in severe combined immunodeficient (SCID) mice was created by retrorsine injection and partial hepatectomy, and the expression of human hepatocyte proteins in SCID mouse livers was checked by immunohistochemical analysis after fibroblast administration. RESULTS Surface immunophenotyping revealed that a minority of fibroblasts expressed markers of MSCs and hepatic epithelial cytokeratins as well as alpha-smooth muscle actin, but homogeneously expressed vimentin, desmin, prolyl 4-hydroxylase and fibronectin. These fibroblasts presented the characteristics of hepatocytes in vitro and differentiated directly into functional hepatocytes in the liver of hepatectomized SCID mice. CONCLUSIONS This study demonstrated that fibroblasts in cirrhotic liver have the potential to differentiate into hepatocyte-like cells in vitro and in vivo. Our findings infer that hepatic differentiation of fibroblasts may serve as a new target for reversion of liver fibrosis and a cell source for tissue engineering.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Artells R, Navarro A, Diaz T, Monzó M. Ultrastructural and immunohistochemical analysis of intestinal myofibroblasts during the early organogenesis of the human small intestine. Anat Rec (Hoboken) 2011; 294:462-71. [PMID: 21284092 DOI: 10.1002/ar.21333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/16/2010] [Indexed: 01/21/2023]
Abstract
Intestinal myofibroblasts (IMFs), also known as pericryptal fibroblasts, are found at the basement membrane of the intestinal epithelium. They are characterized by well-developed endoplasmic reticulum, cytoplasmic fibers, and fibrous extensions called fibronexi. IMFs have structural features in common both with fibroblasts and smooth cells. Vimentin, desmin, and α-smooth-muscle actin (α-SM) are markers commonly used to discriminate between IMFs and smooth muscle cells. Immunohistochemical studies have shown that, when α-SM and vimentin are positive in both IMFs and smooth muscle cells, desmin is negative in IMFs but positive in smooth muscle cells. In the adult intestine, IMFs play an important role in various functions, especially in tissue repair and scar formation during wound healing. In the embryonic intestine, however, wound healing does not occur, and to date, no studies have investigated the first appearance and subsequent evolution of IMFs. In this study, we have examined the human small intestine in embryos at 7, 9, and 11 weeks of development by ultrastructural and immunohistochemical analysis to shed light on the formation of IMFs during these early phases of organogenesis. At 7 weeks, the embryonic mesenchymal cells are similar to proto-myofibroblasts and may be the precursors of the IMFs detected at 9 weeks and more abundantly at 11 weeks by immunohistochemistry. These IMFs seem to mediate information flow between the epithelium and the mesenchyme and thus contribute to the development of the small intestine.
Collapse
Affiliation(s)
- Rosa Artells
- Human Anatomy Unit, Molecular Oncology and Embryology Laboratory, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S, Brodie AMH. Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res 2011; 71:1893-903. [PMID: 21245100 DOI: 10.1158/0008-5472.can-10-2458] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Approximately 25% of breast cancers do not express the estrogen receptor-α (ERα) and consequently do not respond to endocrine therapy. In these tumors, ERα repression is often due to epigenetic modifications such as methylation and histone deacetylation. For this reason, we investigated the ability of the histone deacetylase inhibitor entinostat (ENT) to trigger reexpression of ERα and aromatase in breast cancer cells, with the notion that this treatment would restore sensitivity to the aromatase inhibitor (AI) letrozole. ENT treatment of tumor cells increased expression of ERα and aromatase, along with the enzymatic activity of aromatase, in a dose-dependent manner both in vitro and in vivo. Notably, ERα and aromatase upregulation resulted in sensitization of breast cancer cells to estrogen and letrozole. Tumor growth rate was significantly lower in tumor xenografts following treatment with ENT alone and in combination with letrozole than in control tumors (P > 0.001). ENT plus letrozole also prevented lung colonization and growth of tumor cells, with a significant reduction (P > 0.03) in both visible and microscopic foci. Our results show that ENT treatment can be used to restore the letrozole responsiveness of ER-negative tumors. More generally, they provide a strong rationale for immediate clinical evaluation of combinations of histone deacetylase and aromatase inhibitors to treat ER-negative and endocrine-resistant breast cancers.
Collapse
Affiliation(s)
- Gauri J Sabnis
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine and University of Maryland Greenebaum Cancer Center, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pevsner-Fischer M, Levin S, Zipori D. The Origins of Mesenchymal Stromal Cell Heterogeneity. Stem Cell Rev Rep 2011; 7:560-8. [DOI: 10.1007/s12015-011-9229-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Reis STD, Pontes-Júnior J, Antunes AA, Sousa-Canavez JMD, Abe DK, Cruz JASD, Dall'oglio MF, Crippa A, Passerotti CC, Ribeiro-Filho LA, Viana NI, Srougi M, Leite KRM. Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer. Clinics (Sao Paulo) 2011; 66:1143-7. [PMID: 21876965 PMCID: PMC3148455 DOI: 10.1590/s1807-59322011000700004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/13/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate the correlation between transforming growth factor beta (TGF-β1) expression and prognosis in prostate cancer. PATIENTS AND METHODS TGF-β1 expression levels were analyzed using the quantitative real-time polymerase chain reaction to amplify RNA that had been isolated from fresh-frozen malignant and benign tissue specimens collected from 89 patients who had clinically localized prostate cancer and had been treated with radical prostatectomy. The control group consisted of li patients with benign prostate hyperplasia. The expression levels of TGF-β1 were compared between the groups in terms of Gleason scores, pathological staging, and prostate-specific antigen serum levels. RESULTS In the majority of the tumor samples, TGF-β1 was underexpressed 67.0% of PCa patients. The same expression pattern was identified in benign tissues of patients with prostate cancer. Although most cases exhibited underexpression of TGF-β1, a higher expression level was found in patients with Gleason scores ≥ 7 when compared to patients with Gleason scores < 7(p = 0.002). Among the 26 cases of TGF-β1 overexpression, 92.3% had poor prognostic features. CONCLUSIONS TGF-β1 was underexpressed in prostate cancers; however, higher expression was observed in tumors with higher Gleason scores, which suggests that TGF-β1 expression may be a useful prognostic marker for prostate cancer. Further studies of clinical specimens are needed to clarify the role of TGF-β1 in prostate carcinogenesis.
Collapse
Affiliation(s)
- Sabrina Thalita Dos Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reis STD, Pontes-Júnior J, Antunes AA, Sousa-Canavez JMD, Abe DK, Cruz JASD, Dall'oglio MF, Crippa A, Passerotti CC, Ribeiro-Filho LA, Viana NI, Srougi M, Leite KRM. Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer. Clinics (Sao Paulo) 2011. [PMID: 21876965 DOI: 10.1590/s1807-59322011000700004.pmid:21876965;pmcid:pmc3148455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
OBJECTIVE To evaluate the correlation between transforming growth factor beta (TGF-β1) expression and prognosis in prostate cancer. PATIENTS AND METHODS TGF-β1 expression levels were analyzed using the quantitative real-time polymerase chain reaction to amplify RNA that had been isolated from fresh-frozen malignant and benign tissue specimens collected from 89 patients who had clinically localized prostate cancer and had been treated with radical prostatectomy. The control group consisted of li patients with benign prostate hyperplasia. The expression levels of TGF-β1 were compared between the groups in terms of Gleason scores, pathological staging, and prostate-specific antigen serum levels. RESULTS In the majority of the tumor samples, TGF-β1 was underexpressed 67.0% of PCa patients. The same expression pattern was identified in benign tissues of patients with prostate cancer. Although most cases exhibited underexpression of TGF-β1, a higher expression level was found in patients with Gleason scores ≥ 7 when compared to patients with Gleason scores < 7(p = 0.002). Among the 26 cases of TGF-β1 overexpression, 92.3% had poor prognostic features. CONCLUSIONS TGF-β1 was underexpressed in prostate cancers; however, higher expression was observed in tumors with higher Gleason scores, which suggests that TGF-β1 expression may be a useful prognostic marker for prostate cancer. Further studies of clinical specimens are needed to clarify the role of TGF-β1 in prostate carcinogenesis.
Collapse
Affiliation(s)
- Sabrina Thalita Dos Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 2010; 21:1045-56. [PMID: 20565251 DOI: 10.1089/hum.2010.115] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This review describes the historical emergence of the concept of bone marrow mesenchymal stem cells (MSCs), summarizing data on Wolf and Trentin's hematopoietic inductive microenvironment; Dexter's hematopoiesis-supportive stromal cells; Friedenstein's osteogenic cells; and Pittenger's trilineal osteoblastic, chondrocytic, and adipocytic precursors; to finally introduce the specific bone marrow mesenchymal stem cells with differentiation potential to four lineages (mesenchymal and vascular smooth muscle lineages), and stromal and immunomodulatory capacities. Two points are the object of detailed discussion. The first point envisions the stem cell attributes (multipotentiality, self-renewal, tissue regeneration, population heterogeneity, plasticity, and lineage priming) compared with that of the paradigmatic hematopoietic stem cell. In the second point, we discuss the possible existence of bone marrow cells with greater differentiation potential, eventually pluripotential cells. The latter point raises the issues of cell fusion, reprogramming, or selection under nonstandardized conditions of rare populations of neuroectodermal origin, or of cells that had undergone mesenchymal-to-epithelial transition. In the last section, we review data on MSC senescence and possible malignant transformation secondary to extensive culture, gene transfer of telomerase, or mutations such as leading to Ewing's sarcoma. The set of data leads to the conclusion that bone marrow MSCs constitute a specific adult tissue stem cell population. The multiple characteristics of this stem cell type account for the versatility of the mechanisms of injured tissue repair. Although MSC administration may be extremely useful in a number of clinical applications, their transplantation is not without risks that must not be overlooked when developing cell therapy protocols.
Collapse
Affiliation(s)
- Pierre Charbord
- Institut National de la Recherche et Santé Médicale U, Université Paris XI, Kremlin Bicêtre, France.
| |
Collapse
|
42
|
Sipos F, Muzes G, Galamb O, Spisák S, Krenács T, Tóth K, Tulassay Z, Molnár B. The possible role of isolated lymphoid follicles in colonic mucosal repair. Pathol Oncol Res 2010; 16:11-8. [PMID: 19557549 DOI: 10.1007/s12253-009-9181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023]
Abstract
The continuous reformation and rapid repair of the colonic mucosa is essential for avoiding the aggregation of pernicious mutations induced by bacterial, toxic, or mitogenic factors. Gut-associated lymphoid tissue is supposed to play a central role in the organization of the repair mechanisms. In inflammatory conditions, the number, the diameter and the density of isolated lymphoid follicles (ILFs) are increasing. They are involved not just in immune surveillance, but their presence is also indispensable in normal mucosal regeneration of the colon. The relation of ILFs to the components of mucosal renewal such as bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts or crypt formation has not been directly studied, and data about their putative organizer role are scattered in scientific literature. Whether they act as a regenerative pool containing stem cells in case of mucosal damage, or they are responsible only for the optimal cytokine milieu for the differentiation of immigrating stem cells is a question under debate. Our aim is to review the relation of ILFs to the different elements of colonic mucosal repair.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Cell Analysis Laboratory, Semmelweis University, 1088, Budapest, Szentkirályi street 46., Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010; 51:545-56. [PMID: 19957372 DOI: 10.1002/hep.23311] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The up-regulation and nuclear relocation of epithelial-mesenchymal transition (EMT) regulator Twist1 have been implicated in the tumor invasion and metastasis of human hepatocellular carcinoma (HCC). The term vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. However, the relationship between Twist1 and VM formation is not clear. In this study, we explored HCC as a VM and EMT model in order to investigate the role of Twist1 in VM formation. We first examined the expression of Twist1 in human HCC samples and cell lines and found that Twist1 was frequently overexpressed in the nuclear relocation occurring in VM-positive HCCs (13/18 [72%]). Twist1 nuclear expression was likewise significantly associated with VM formation. Clinicopathological analysis revealed that both VM and Twist1 nuclear expressions present shorter survival durations than those without expression. We consistently demonstrated that an overexpression of Twist1 significantly enhanced cell motility, invasiveness, and VM formation in an HepG2 cell. Conversely, a knockdown of Twist1 by the short hairpin RNA approach remarkably reduced Bel7402 cell migration, invasion, and VM formation. Using chromatin immunoprecipitation, we also showed that Twist1 binds to the vascular endothelial (VE)-cadherin promoter and enhances its activity in a transactivation assay. CONCLUSION The results of this study indicate that Twist1 induces HCC cell plasticity in VM cells more through the suppression of E-cadherin expression and the induction of VE-cadherin up-regulation than through the VM pattern in vivo and in a three-dimensional in vitro system. Our findings also demonstrate a novel cogitation in cancer stem-like cell differentiation and that related molecular pathways may be used as novel therapeutic targets for the inhibition of HCC angiogenesis and metastasis.
Collapse
Affiliation(s)
- Tao Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Shi J, Wang DM, Wang CM, Hu Y, Liu AH, Zhang YL, Sun B, Song JG. Insulin Receptor Substrate-1 Suppresses Transforming Growth Factor-β1–Mediated Epithelial-Mesenchymal Transition. Cancer Res 2009; 69:7180-7. [DOI: 10.1158/0008-5472.can-08-4470] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B, Marini FC. The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 2009; 10:657-67. [PMID: 18985472 DOI: 10.1080/14653240802486517] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in the research of mesenchymal stromal cells/multipotent stromal cells (MSC) has revealed numerous beneficial innate characteristics, suggesting potential value in an array of cellular therapies. MSC are easily isolated from bone marrow (BM), fat and other tissues, and are readily propagated in vitro. Transplanted/injected MSC have been shown to migrate to a variety of organs and tissues; however, sites of inflammation and pathology elicit enhanced MSC homing for tissue remodeling and repair. Tumors utilize many of the same inflammatory mediators uncovered in wound healing and likewise provide a site for preferential MSC homing. Although incorporation into the tumor microenvironment is apparent, the role of recruited MSC in the tumor microenvironment remains unclear. Some published studies have shown enhancement of tumor growth and development, perhaps through immunomodulatory and pro-angiogenic properties, while others have shown no apparent effect or have demonstrated inhibition of tumor growth and extended survival. This controversy remains at the forefront as clinical applications of MSC commence in anti-tumor therapies as well as as adjuncts to stem cell transplantation and in ameliorating graft-versus-host disease. Careful analysis of past studies and thoughtful design of future experiments will help to resolve the discrepancies in the field and lead to clinical utility of MSC in disease treatment. This review highlights the current theories of the role of MSC in tumors and explores current controversies.
Collapse
Affiliation(s)
- S Kidd
- Section of Experimental Hematology and Therapy, Department of Stem Cell Transplant and Cellular Therapy, UT-MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
47
|
Funasaka T, Hogan V, Raz A. Phosphoglucose isomerase/autocrine motility factor mediates epithelial and mesenchymal phenotype conversions in breast cancer. Cancer Res 2009; 69:5349-56. [PMID: 19531650 DOI: 10.1158/0008-5472.can-09-0488] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is a housekeeping gene product/cytokine that catalyzes a step in glycolysis and gluconeogenesis, and acts as a multifunctional cytokine associated with aggressive tumors. PGI/AMF has been correlated significantly with breast cancer progression and poor prognosis in breast cancer. We show here that ectopic expression of PGI/AMF induced epithelial-to-mesenchymal transition (EMT) in MCF10A normal human breast epithelial cells, and inhibition of PGI/AMF expression triggered mesenchymal-to-epithelial transition (MET) in aggressive mesenchymal-type human breast cancer MDA-MB-231 cells. EMT in MCF10A cells was shown by morphologic changes and loss of E-cadherin/beta-catenin-mediated cell-cell adhesion, which is concomitant with the induction of the E-cadherin transcriptional repressor Snail and proteosome-dependent degradation of beta-catenin protein. Molecular analysis showed that PGI/AMF suppressed epithelial marker expressions and enhanced mesenchymal marker expressions. Silencing of PGI/AMF expression by RNA interference in MDA-MB-231 cells induced the reverse processes of EMT including altered cell shape, gain of epithelial marker, and reduction of mesenchymal marker, e.g., MET. Taken together, the results show the involvement of PGI/AMF in both EMT and MET: overexpression of PGI/AMF induces EMT in normal breast epithelial cells and reduction of PGI/AMF expression led to MET in aggressive breast cancer cells. These results suggest for the first time that PGI/AMF is a key gene to both EMT in the initiating step of cancer metastasis and MET in the later stage of metastasis during breast cancer progression.
Collapse
Affiliation(s)
- Tatsuyoshi Funasaka
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
48
|
Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol 2009; 131:651-60. [PMID: 19198871 DOI: 10.1007/s00418-009-0559-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2009] [Indexed: 01/24/2023]
Abstract
Snail is a regulator of epithelial-mesenchymal transition (EMT) and considered crucial to carcinoma metastasis, myofibroblast transdifferentiation, and fibroblast activation. To investigate the role of Snail in oral squamous cell carcinoma (OSCC), its immunohistochemical expression was analysed in 129 OSCC samples and correlated to nodal metastasis, histological grade, E-cadherin, and alpha smooth-muscle-actin (alpha SMA). The results were compared to findings in 23 basal cell carcinomas (BCC). Additionally, the influence of TGF beta 1 and EGF on Snail, E-cadherin, vimentin, and alpha SMA expression was analysed in two OSCC cell lines. As a result, Snail-positive cells were mainly found in the stroma of the OSCC invasive front without statistically significant correlation to histological grade or nodal metastasis. Snail was co-localised to alpha SMA but not to E-cadherin or cytokeratin and showed a significant correlation to the loss of membranous E-cadherin. All BCCs were Snail negative. In OSCC culture, the growth-factor-mediated EMT-like phenomenon was accompanied by alpha SMA down-regulation. In summary, Snail expression in OSCC is a stromal phenomenon associated with the myofibroblast phenotype and not related to growth-factor-mediated transdifferentiation of the carcinoma cells themselves. Consequently, Snail immunohistochemistry cannot contribute to the prediction of the metastatic potential. Furthermore, stromal Snail expression is suggested to be the result of mutual paracrine interaction of fibro-/myofibroblasts and dedifferentiated carcinoma cells leading to the generation of a special type of carcinoma-associated fibroblasts.
Collapse
|
49
|
Filip S, Mokry J, Horacek J, English D. Stem Cells and the Phenomena of Plasticity and Diversity: A Limiting Property of Carcinogenesis. Stem Cells Dev 2008; 17:1031-8. [DOI: 10.1089/scd.2007.0234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jiri Horacek
- Department of Medicine, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Denis English
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Florida
| |
Collapse
|
50
|
Final checkup of neoplastic DNA replication: Evidence for failure in decision-making at the mitotic cell cycle checkpoint G1/S. Exp Hematol 2008; 36:1403-16. [DOI: 10.1016/j.exphem.2008.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
|