1
|
Zhang Y, Cheng Y, Tang H, Yue Q, Cai X, Lu Z, Hao Y, Dai A, Hou T, Liu H, Kong N, Ji X, Lu C, Xu S, Huang K, Zeng X, Wen Y, Ma W, Guan J, Lin Y, Zheng W, Pan H, Wu J, Wu R, Wei N. APOE ε4-associated downregulation of the IL-7/IL-7R pathway in effector memory T cells: Implications for Alzheimer's disease. Alzheimers Dement 2024; 20:6441-6455. [PMID: 39129310 PMCID: PMC11497660 DOI: 10.1002/alz.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.
Collapse
Affiliation(s)
- Ying‐Jie Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of RehabilitationThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yan Cheng
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of RadiologyThe Second Hospital of Shandong UniversityJinanChina
| | - Hai‐Liang Tang
- Department of NeurosurgeryFudan University Huashan HospitalShanghai Medical College Fudan UniversityShanghaiChina
| | - Qi Yue
- Department of NeurosurgeryFudan University Huashan HospitalShanghai Medical College Fudan UniversityShanghaiChina
| | - Xin‐Yi Cai
- Department of PathologyProvincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Zhi‐Jie Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yi‐Xuan Hao
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - An‐Xiang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ting Hou
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Hao‐Xin Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Nan Kong
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Chang‐Hao Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Sheng‐Liang Xu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Kai Huang
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xin Zeng
- Department of GeriatricsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ya‐Qi Wen
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Wan‐Yin Ma
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ji‐Tian Guan
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yan Lin
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Wen‐Bin Zheng
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Hui Pan
- Department of Family MedicineShantou Longhu People's HospitalShantouChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ren‐Hua Wu
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
2
|
Nichakawade TD, Ge J, Mog BJ, Lee BS, Pearlman AH, Hwang MS, DiNapoli SR, Wyhs N, Marcou N, Glavaris S, Konig MF, Gabelli SB, Watson E, Sterling C, Wagner-Johnston N, Rozati S, Swinnen L, Fuchs E, Pardoll DM, Gabrielson K, Papadopoulos N, Bettegowda C, Kinzler KW, Zhou S, Sur S, Vogelstein B, Paul S. TRBC1-targeting antibody-drug conjugates for the treatment of T cell cancers. Nature 2024; 628:416-423. [PMID: 38538786 PMCID: PMC11250631 DOI: 10.1038/s41586-024-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor β-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.
Collapse
Affiliation(s)
- Tushar D Nichakawade
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaxin Ge
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bum Seok Lee
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alexander H Pearlman
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, San Francisco, CA, USA
| | - Sarah R DiNapoli
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nicolas Wyhs
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nikita Marcou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephanie Glavaris
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Maximilian F Konig
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra B Gabelli
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Evangeline Watson
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cole Sterling
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nina Wagner-Johnston
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lode Swinnen
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ephraim Fuchs
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Surojit Sur
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Suman Paul
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, van de Geer E, Verstegen MJAM, Splinter E, van Reijmersdal SV, Buijs A, Galjart N, van Eyndhoven W, van Min M, Kuiper R, Kemmeren P, Mullighan CG, de Laat W, Meijerink JPP. Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep 2023; 42:112373. [PMID: 37060567 PMCID: PMC10750298 DOI: 10.1016/j.celrep.2023.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.
Collapse
Affiliation(s)
- Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carlo Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Shunsuke Kimura
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | | | | | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | | | | - Arjan Buijs
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Roland Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G Mullighan
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | - Wouter de Laat
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Xu X, Zhang W, Xuan L, Yu Y, Zheng W, Tao F, Nemechek J, He C, Ma W, Han X, Xie S, Zhao M, Wang J, Qu Y, Liu Q, Perry JM, Jiang L, Zhao M. PD-1 signalling defines and protects leukaemic stem cells from T cell receptor-induced cell death in T cell acute lymphoblastic leukaemia. Nat Cell Biol 2023; 25:170-182. [PMID: 36624186 DOI: 10.1038/s41556-022-01050-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023]
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.
Collapse
Affiliation(s)
- Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenwen Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wen Zheng
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Tao
- Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Ma
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siyu Xie
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Wang
- Department of Pediatric Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Qu
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John M Perry
- Children's Mercy Kansas City, Kansas City, MO, USA.,University of Kansas Medical Center, Kansas City, KS, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Leoncin M, La Starza R, Roti G, Pagliaro L, Bassan R, Mecucci C. Modern treatment approaches to adult acute T-lymphoblastic and myeloid/T-lymphoblastic leukemia: from current standards to precision medicine. Curr Opin Oncol 2022; 34:738-747. [PMID: 36017547 DOI: 10.1097/cco.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most recent advancements in the management of adult T-cell acute lymphoblastic leukemia (T-ALL), we summarize insights into molecular diagnostics, immunotherapy, targeted therapy and new techniques of drug sensitivity profiling that may support further therapeutic progress in T-ALL subsets. RECENT FINDINGS With current induction/consolidation chemotherapy and/or risk-oriented allogeneic stem cell transplantation programs up to 95% adult T-ALL patients achieve a remission and >50% (up to 80% in adolescents and young adults) are cured. The group of patients who fail upfront therapy, between 25% and 40%, is enriched in high-risk characteristics (unfavorable genetics, persistent minimal residual disease) and represents the ideal setting for the study of molecular mechanisms of disease resistance, and consequently explore novel ways of restoration of drug sensitivity and assess patient/subset-specific patterns of drug vulnerability to targeting agents, immunotherapy and cell therapy. SUMMARY The emerging evidence supports the contention that precision medicine may soon allow valuable therapeutic chances to adult patients with high-risk T-ALL. The ongoing challenge is to identify the best way to integrate all these new data into the therapeutic path of newly diagnosed patients, with a view to optimize the individual treatment plan and increase the cure rate.
Collapse
Affiliation(s)
- Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | - Cristina Mecucci
- Department of Medicine and Surgery, University of Perugia, Perugia
| |
Collapse
|
6
|
Belhocine M, Simonin M, Abad Flores JD, Cieslak A, Manosalva I, Pradel L, Smith C, Mathieu EL, Charbonnier G, Martens JHA, Stunnenberg HG, Maqbool MA, Mikulasova A, Russell LJ, Rico D, Puthier D, Ferrier P, Asnafi V, Spicuglia S. Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Res 2022; 32:1328-1342. [PMID: 34162697 PMCID: PMC9341507 DOI: 10.1101/gr.266924.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
Broad domains of H3K4 methylation have been associated with consistent expression of tissue-specific, cell identity, and tumor suppressor genes. Here, we identified broad domain-associated genes in healthy human thymic T cell populations and a collection of T cell acute lymphoblastic leukemia (T-ALL) primary samples and cell lines. We found that broad domains are highly dynamic throughout T cell differentiation, and their varying breadth allows the distinction between normal and neoplastic cells. Although broad domains preferentially associate with cell identity and tumor suppressor genes in normal thymocytes, they flag key oncogenes in T-ALL samples. Moreover, the expression of broad domain-associated genes, both coding and noncoding, is frequently deregulated in T-ALL. Using two distinct leukemic models, we showed that the ectopic expression of T-ALL oncogenic transcription factor preferentially impacts the expression of broad domain-associated genes in preleukemic cells. Finally, an H3K4me3 demethylase inhibitor differentially targets T-ALL cell lines depending on the extent and number of broad domains. Our results show that the regulation of broad H3K4me3 domains is associated with leukemogenesis, and suggest that the presence of these structures might be used for epigenetic prioritization of cancer-relevant genes, including long noncoding RNAs.
Collapse
Affiliation(s)
- Mohamed Belhocine
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
- Molecular Biology and Genetics Laboratory, Dubai, United Arab Emirates
| | - Mathieu Simonin
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - José David Abad Flores
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Iris Manosalva
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Lydie Pradel
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Eve-Lyne Mathieu
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Joost H A Martens
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Muhammad Ahmad Maqbool
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Macclesfield SK104TG, United Kingdom
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa J Russell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Denis Puthier
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Pierre Ferrier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, 13288 Marseille, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| |
Collapse
|
7
|
Steimlé T, Dourthe ME, Alcantara M, Touzart A, Simonin M, Mondesir J, Lhermitte L, Bond J, Graux C, Grardel N, Cayuela JM, Arnoux I, Gandemer V, Balsat M, Vey N, Macintyre E, Ifrah N, Dombret H, Petit A, Baruchel A, Ruminy P, Boissel N, Asnafi V. Clinico-biological features of T-cell acute lymphoblastic leukemia with fusion proteins. Blood Cancer J 2022; 12:14. [PMID: 35082269 PMCID: PMC8791998 DOI: 10.1038/s41408-022-00613-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) represent 15% of pediatric and 25% of adult ALL. Since they have a particularly poor outcome in relapsed/refractory cases, identifying prognosis factors at diagnosis is crucial to adapting treatment for high-risk patients. Unlike acute myeloid leukemia and BCP ALL, chromosomal rearrangements leading to chimeric fusion-proteins with strong prognosis impact are sparsely reported in T-ALL. To address this issue an RT-MPLA assay was applied to a consecutive series of 522 adult and pediatric T-ALLs and identified a fusion transcript in 20% of cases. PICALM-MLLT10 (4%, n = 23), NUP214-ABL1 (3%, n = 19) and SET-NUP214 (3%, n = 18) were the most frequent. The clinico-biological characteristics linked to fusion transcripts in a subset of 235 patients (138 adults in the GRAALL2003/05 trials and 97 children from the FRALLE2000 trial) were analyzed to identify their prognosis impact. Patients with HOXA trans-deregulated T-ALLs with MLLT10, KMT2A and SET fusion transcripts (17%, 39/235) had a worse prognosis with a 5-year EFS of 35.7% vs 63.7% (HR = 1.63; p = 0.04) and a trend for a higher cumulative incidence of relapse (5-year CIR = 45.7% vs 25.2%, HR = 1.6; p = 0.11). Fusion transcripts status in T-ALL can be robustly identified by RT-MLPA, facilitating risk adapted treatment strategies for high-risk patients.
Collapse
Affiliation(s)
- Thomas Steimlé
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Marie-Emilie Dourthe
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
| | - Marion Alcantara
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Aurore Touzart
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Mathieu Simonin
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France
- Department of Pediatric Hematology and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), GH HUEP, Armand Trousseau Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 938, CDR Saint-Antoine, GRC n°07, GRC MyPAC, Paris, France
| | - Johanna Mondesir
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Ludovic Lhermitte
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Carlos Graux
- Department of Hematology, Université catholique de Louvain, CHU UCL Namur - site Godinne, Yvoir, Belgium
| | - Nathalie Grardel
- Laboratory of Hematology, CHRU Lille, Lille, France and U1172, INSERM, Lille, France
| | - Jean-Michel Cayuela
- Laboratory of Hematology and EA 3518 University Hospital Saint-Louis, AP-HP and Université de Paris, Paris, France
| | - Isabelle Arnoux
- Hematology Laboratory, Marseille University Hospital Timone, Marseille, France
| | - Virginie Gandemer
- Department of Pediatric Hematology and Oncology, University Hospital of Rennes, Rennes, France
| | - Marie Balsat
- Service d'hématologie clinique, Hôpital Lyon Sud, Marseille, France
| | - Norbert Vey
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et CRCINA INSERM, Angers, France
| | - Hervé Dombret
- Institut de Recherche Saint-Louis, Université de Paris, EA-3518, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), GH HUEP, Armand Trousseau Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 938, CDR Saint-Antoine, GRC n°07, GRC MyPAC, Paris, France
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, EA-3518, Paris, France
| | - Philippe Ruminy
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis, Université de Paris, EA-3518, Paris, France
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
- AP-HP, Hôpital Saint Louis, Unité d'Hématologie Adolescents et Jeunes Adultes, Paris, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
8
|
Mansur MB, Furness CL, Nakjang S, Enshaei A, Alpar D, Colman SM, Minto L, Irving J, Poole BV, Noronha EP, Savola S, Iqbal S, Gribben J, Pombo-de-Oliveira MS, Ford TM, Greaves MF, van Delft FW. The genomic landscape of teenage and young adult T-cell acute lymphoblastic leukemia. Cancer Med 2021; 10:4864-4873. [PMID: 34080325 PMCID: PMC8290240 DOI: 10.1002/cam4.4024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Treatment on risk adapted intensive pediatric protocols has improved outcome for teenagers and young adults (TYA) with T-cell acute lymphoblastic leukemia (T-ALL). Understanding the biology of disease in this age group and the genetic basis of relapse is a key goal as patients with relapsed/refractory disease have poor outcomes with conventional chemotherapy and novel molecular targets are required. This study examines the question of whether TYA T-ALL has a specific biological-molecular profile distinct from pediatric or adult T-ALL. METHODS Genomic characterization was undertaken of a retrospective discovery cohort of 80 patients aged 15-26 years with primary or relapsed T-ALL, using a combination of Genome-Wide Human SNP Array 6.0, targeted gene mutation and promoter methylation analyses. Findings were confirmed by MLPA, real-time quantitative PCR, and FISH. Whole Exome Sequencing was performed in 4 patients with matched presentation and relapse to model clonal evolution. A prevalence analysis was performed on a final data set of 1,792 individual cases to identify genetic lesions with age specific frequency patterns, including 972 pediatric (1-14 years), 439 TYA (15-24 years) and 381 adult (≥25 years) cases. These cases were extracted from 19 publications with comparable genomic data identified through a PubMed search. RESULTS Genomic characterization of this large cohort of TYA T-ALL patients identified recurrent isochromosome 7q i(7q) in our discovery cohort (n = 3). Prevalence analysis did not identify any age specific genetic abnormalities. Genomic analysis of 6 pairs of matched presentation - relapsed T-ALL established that all relapses were clonally related to the initial leukemia. Whole exome sequencing analysis revealed recurrent, targetable, mutations disrupting NOTCH, PI3K/AKT/mTOR, FLT3, NRAS as well as drug metabolism pathways. CONCLUSIONS All genetic aberrations in TYA T-ALL occurred with an incidence similar or intermediate to that reported in the pediatric and adult literature, demonstrating that overall TYA T-ALL exhibits a transitional genomic profile. Analysis of matched presentation - relapse supported the hypothesis that relapse is driven by the Darwinian evolution of sub-clones associated with drug resistance (NT5C2 and TP53 mutations) and re-iterative mutation of known key T-ALL drivers, including NOTCH1.
Collapse
Affiliation(s)
- Marcela B Mansur
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Division of Clinical Research, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.,Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Donat Alpar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sue M Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Lynne Minto
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julie Irving
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Beth V Poole
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Elda P Noronha
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Suvi Savola
- Oncogenetics, MRC-Holland, Amsterdam, The Netherlands
| | - Sameena Iqbal
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Tony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Frederik W van Delft
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Paul S, Pearlman AH, Douglass J, Mog BJ, Hsiue EHC, Hwang MS, DiNapoli SR, Konig MF, Brown PA, Wright KM, Sur S, Gabelli SB, Li Y, Ghiaur G, Pardoll DM, Papadopoulos N, Bettegowda C, Kinzler KW, Zhou S, Vogelstein B. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med 2021; 13:eabd3595. [PMID: 33649188 PMCID: PMC8236299 DOI: 10.1126/scitranslmed.abd3595] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/30/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
Immunotherapies such as chimeric antigen receptor (CAR) T cells and bispecific antibodies redirect healthy T cells to kill cancer cells expressing the target antigen. The pan-B cell antigen-targeting immunotherapies have been remarkably successful in treating B cell malignancies. Such therapies also result in the near-complete loss of healthy B cells, but this depletion is well tolerated by patients. Although analogous targeting of pan-T cell markers could, in theory, help control T cell cancers, the concomitant healthy T cell depletion would result in severe and unacceptable immunosuppression. Thus, therapies directed against T cell cancers require more selective targeting. Here, we describe an approach to target T cell cancers through T cell receptor (TCR) antigens. Each T cell, normal or malignant, expresses a unique TCR β chain generated from 1 of 30 TCR β chain variable gene families (TRBV1 to TRBV30). We hypothesized that bispecific antibodies targeting a single TRBV family member expressed in malignant T cells could promote killing of these cancer cells, while preserving healthy T cells that express any of the other 29 possible TRBV family members. We addressed this hypothesis by demonstrating that bispecific antibodies targeting TRBV5-5 (α-V5) or TRBV12 (α-V12) specifically lyse relevant malignant T cell lines and patient-derived T cell leukemias in vitro. Treatment with these antibodies also resulted in major tumor regressions in mouse models of human T cell cancers. This approach provides an off-the-shelf, T cell cancer selective targeting approach that preserves enough healthy T cells to maintain cellular immunity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Mog
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Michael S Hwang
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Patrick A Brown
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Surojit Sur
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Gabriel Ghiaur
- Hematologic Malignancies and Bone Marrow Transplantation Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth W Kinzler
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Ludwig Center and Lustgarten Laboratory, at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Liu X, Zou Y, Zhang L, Chen X, Yang W, Guo Y, Chen Y, Zhang Y, Zhu X. Early T-cell precursor acute lymphoblastic leukemia and other subtypes: a retrospective case report from a single pediatric center in China. J Cancer Res Clin Oncol 2021; 147:2775-2788. [PMID: 33651142 DOI: 10.1007/s00432-021-03551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is rare in China and case reports are varied. We conducted an in-depth analysis of newly diagnosed children with T-ALL from January 1999 to April 2015 in our center, to show the biological differences between Chinese ETP-ALL children and other immune types of T-ALL. METHODS The newly diagnosed children with T-ALL were divided into four groups according to their immunophenotype: ETP-ALL, early non-ETP-ALL, cortical T-ALL and medullary T-ALL. Disease-free survival (DFS), event-free survival (EFS), and overall survival (OS) rates were estimated by the Kaplan-Meier method. The Cox regression model was used for multivariate analysis. RESULTS A total of 117 newly diagnosed children with T-ALL were enrolled in this study. The 10-year EFS and OS rates for all patients were 59.0 ± 4.7% and 61.0 ± 4.7%, respectively, with a median follow-up of 64 (5-167) months. Univariate analysis showed that ETP-ALL patients had the lowest 10-year DFS rate of 32.1 ± 11.7%, while cortical T-ALL had the highest DFS rate of 81.3 ± 8.5% compared with early non-ETP-ALL (61.6 ± 7.0%) and medullary T-ALL (59.1 ± 10.6%). Multivariate analysis demonstrated that only ETP-ALL and involvement of the central nervous system were independent prognostic factors. CONCLUSION Compared with other subtypes, pediatric ETP-ALL had a poor treatment response and high recurrence rate while cortical T-ALL appeared to have much better outcome. Our observations highlight the need for an individualized treatment regime for ETP-ALL.
Collapse
Affiliation(s)
- Xiaoming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
11
|
Cieslak A, Charbonnier G, Tesio M, Mathieu EL, Belhocine M, Touzart A, Smith C, Hypolite G, Andrieu GP, Martens JHA, Janssen-Megens E, Gut M, Gut I, Boissel N, Petit A, Puthier D, Macintyre E, Stunnenberg HG, Spicuglia S, Asnafi V. Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation. J Exp Med 2021; 217:151947. [PMID: 32667968 PMCID: PMC7478722 DOI: 10.1084/jem.20192360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 01/30/2023] Open
Abstract
Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXA5-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αβ T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.
Collapse
Affiliation(s)
- Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, Theories and Approaches of Genomic Complexity, UMR1090, Marseille, France.,Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Melania Tesio
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Eve-Lyne Mathieu
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, Theories and Approaches of Genomic Complexity, UMR1090, Marseille, France.,Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Mohamed Belhocine
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, Theories and Approaches of Genomic Complexity, UMR1090, Marseille, France.,Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Aurore Touzart
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France.,Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Guillaume Hypolite
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Guillaume P Andrieu
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Joost H A Martens
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Eva Janssen-Megens
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Marta Gut
- Centro Nacional de Análisis Genómico-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Denis Puthier
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, Theories and Approaches of Genomic Complexity, UMR1090, Marseille, France.,Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Salvatore Spicuglia
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, Theories and Approaches of Genomic Complexity, UMR1090, Marseille, France.,Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| |
Collapse
|
12
|
Xu W, Chen S, Wang X, Wu H, Yamada H, Hirano T. Methylprednisolone potentiates tetrandrine pharmacodynamics against human T lymphoblastoid leukemia MOLT-4 cells via regulation of NF-κB activation and cell cycle transition. Steroids 2020; 163:108714. [PMID: 32818521 DOI: 10.1016/j.steroids.2020.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 11/20/2022]
Abstract
Low response to glucocorticoid (GC) predicts therapeutic failure in acute T lymphoblastic leukemia (T-ALL). The efficient and safe strategies are still required for the treatment of relapsed T-ALL. Our previous study revealed that tetrandrine induces apoptosis in human T lymphoblastoid leukemia cells possibly via activation of NF-κB. GCs are recognized as typical NF-κB inhibitors and are used for the treatment of T-ALL patients. In the present study, we examined whether methylprednisolone (MP) potentiates the cytotoxic effect of tetrandrine (TET) via NF-κB regulation by using human T lymphoblastoid leukemia MOLT-4 cells. WST-8 assay data showed that nM grade of MP increased cytotoxicity of TET against MOLT-4 cells in vitro. This effect seemed to be related to the potentiation of TET action by MP to induce apoptosis. Meanwhile, the combination also impeded the transition of cell cycle from G0/G1 phase to S phase. However, the regulation effect of this combination on cell cycle had no relationship with cyclin signaling pathway, since the drug-combination did not influence on the expression of cyclin A2/B1/D1 in MOLT-4 cells. On the other hand, the combination significantly inhibited the phosphorylation of NF-κB (p < 0.01). These results suggest that nM grade of MP potentiates the cytotoxic effect of TET possibly via regulation of NF-κB activation and "G0/G1 to S" phase transition in human T lymphoblastoid leukemia MOLT-4 cells. Combination of TET and MP may provide a new therapeutic strategy for relapsed T-ALL.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China; Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Hongguang Wu
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruki Yamada
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
13
|
Capria S, Molica M, Mohamed S, Bianchi S, Moleti ML, Trisolini SM, Chiaretti S, Testi AM. A review of current induction strategies and emerging prognostic factors in the management of children and adolescents with acute lymphoblastic leukemia. Expert Rev Hematol 2020; 13:755-769. [PMID: 32419532 DOI: 10.1080/17474086.2020.1770591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia is the most frequent hematologic malignancy in children. Almost 95% of children potentially achieve a complete remission after the induction treatment, but over the last years, new insights in the genomic disease profile and in minimal residual disease detection techniques have led to an improvement in the prognostic stratification, identifying selected patients' subgroups with peculiar therapeutic needs. AREAS COVERED According to a comprehensive search of peer-review literature performed in Pubmed, in this review we summarize the recent evidences on the induction treatment strategies comprised in the children acute lymphoblastic leukemia scenario, focusing on the role of key drugs such as corticosteroids and asparaginase and discussing the crucial significance of the genomic characterization at baseline which may drive the proper induction treatment choice. EXPERT OPINION Current induction strategies already produce durable remissions in a significant proportion of standard-risk children with acute lymphoblastic leukemia. A broader knowledge of the biologic features related to acute lymphoblastic leukemia subtypes with worse prognosis, and an optimization of targeted drugs now available, might lead to the achievement of long-term molecular remissions in this setting.
Collapse
Affiliation(s)
- Saveria Capria
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Matteo Molica
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Sara Mohamed
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Simona Bianchi
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Maria Luisa Moleti
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Silvia Maria Trisolini
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| | - Anna Maria Testi
- Hematology, Department of Translational and Precision Medicine, 'Sapienza" University of Rome , Rome, Italy
| |
Collapse
|
14
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
15
|
Marques LVC, Noronha EP, Andrade FG, Dos Santos-Bueno FV, Mansur MB, Terra-Granado E, Pombo-de-Oliveira MS. CD44 Expression Profile Varies According to Maturational Subtypes and Molecular Profiles of Pediatric T-Cell Lymphoblastic Leukemia. Front Oncol 2018; 8:488. [PMID: 30430079 PMCID: PMC6220090 DOI: 10.3389/fonc.2018.00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 11/18/2022] Open
Abstract
CD44 is a glycoprotein expressed in leucocytes and a marker of leukemia-initiating cells, being shown to be important in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). In this study, we have (i) identified the aberrant antigenic pattern of CD44 and its isoform CD44v6 in T-ALL; (ii) tested the association with different T-cell subtypes and genomic alterations; (iii) identified the impact of CD44 status in T-ALL outcome. Samples from 184 patients (123 T-ALL and 61 AML; <19 years) were analyzed throughout multiparametric flow cytometry. Mutations in N/KRAS, NOTCH1, FBXW7 as well as STIL-TAL1 and TLX3 rearrangements were detected using standard molecular techniques. CD44 expression was characterized in all T-ALL and AML cases. Compared with AML samples in which the median fluorescence intensity (MFI) was 79.1 (1–1272), T-ALL was relatively low, with MFI 43.2 (1.9–1239); CD44v6 expression was rarely found, MFI 1 (0.3-3.7). T-ALL immature subtypes (mCD3/CD1aneg) had a lower CD44 expression, MFI 57.5 (2.7–866.3), whereas mCD3/TCRγδpos cases had higher expressions, MFI 99.9 (16.4–866.3). NOTCH1mut and STIL-TAL1 were associated with low CD44 expression, whereas N/KRASmut and FBXW7mut cases had intermediate expression. In relation to clinical features, CD44 expression was associated with tumor infiltrations (p = 0.065). However, no association was found with initial treatment responses and overall survival prediction. Our results indicate that CD44 is aberrantly expressed in T-ALL being influenced by different genomic alterations. Unraveling this intricate mechanism is required to place CD44 as a therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Luísa Vieira Codeço Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Elda Pereira Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | | | - Marcela B Mansur
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Eugenia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Gachet S, El-Chaar T, Avran D, Genesca E, Catez F, Quentin S, Delord M, Thérizols G, Briot D, Meunier G, Hernandez L, Pla M, Smits WK, Buijs-Gladdines JG, Van Loocke W, Menschaert G, André-Schmutz I, Taghon T, Van Vlierberghe P, Meijerink JP, Baruchel A, Dombret H, Clappier E, Diaz JJ, Gazin C, de Thé H, Sigaux F, Soulier J. Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. Cancer Discov 2018; 8:1614-1631. [PMID: 30266814 DOI: 10.1158/2159-8290.cd-17-0831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/12/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
Deletion of chromosome 6q is a well-recognized abnormality found in poor-prognosis T-cell acute lymphoblastic leukemia (T-ALL). Using integrated genomic approaches, we identified two candidate haploinsufficient genes contiguous at 6q14, SYNCRIP (encoding hnRNP-Q) and SNHG5 (that hosts snoRNAs), both involved in regulating RNA maturation and translation. Combined silencing of both genes, but not of either gene alone, accelerated leukemogeneis in a Tal1/Lmo1/Notch1-driven mouse model, demonstrating the tumor-suppressive nature of the two-gene region. Proteomic and translational profiling of cells in which we engineered a short 6q deletion by CRISPR/Cas9 genome editing indicated decreased ribosome and mitochondrial activities, suggesting that the resulting metabolic changes may regulate tumor progression. Indeed, xenograft experiments showed an increased leukemia-initiating cell activity of primary human leukemic cells upon coextinction of SYNCRIP and SNHG5. Our findings not only elucidate the nature of 6q deletion but also highlight the role of ribosomes and mitochondria in T-ALL tumor progression. SIGNIFICANCE: The oncogenic role of 6q deletion in T-ALL has remained elusive since this chromosomal abnormality was first identified more than 40 years ago. We combined genomic analysis and functional models to show that the codeletion of two contiguous genes at 6q14 enhances malignancy through deregulation of a ribosome-mitochondria axis, suggesting the potential for therapeutic intervention.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- Stéphanie Gachet
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Tiama El-Chaar
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - David Avran
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Laboratory APHP, Hôpital Saint-Louis, Paris, France
| | - Eulalia Genesca
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Frédéric Catez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard; Université Lyon 1, Lyon, France
| | - Samuel Quentin
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Laboratory APHP, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gabriel Thérizols
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard; Université Lyon 1, Lyon, France
| | - Delphine Briot
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Laboratory APHP, Hôpital Saint-Louis, Paris, France
| | - Godelieve Meunier
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lucie Hernandez
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marika Pla
- Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM UMRS 940, Hôpital Saint-Louis, Paris, France
| | - Willem K Smits
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jessica G Buijs-Gladdines
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Isabelle André-Schmutz
- U1163 INSERM, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Tom Taghon
- Cancer Research Institute, Ghent University, Ghent, Belgium
| | | | - Jules P Meijerink
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - André Baruchel
- Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Pediatry Department, Robert Debré Hospital, Paris, France
| | - Hervé Dombret
- Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Department, Hôpital Saint-Louis, Paris, France
| | - Emmanuelle Clappier
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Laboratory APHP, Hôpital Saint-Louis, Paris, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard; Université Lyon 1, Lyon, France
| | - Claude Gazin
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de La Recherche Fondamentale, CEA, Evry, France
| | - Hugues de Thé
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - François Sigaux
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France.,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Laboratory APHP, Hôpital Saint-Louis, Paris, France
| | - Jean Soulier
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France. .,Institute of Hematology (IUH), Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Hematology Laboratory APHP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
17
|
Acute lymphoblastic leukemia in adolescent and young adults: treat as adults or as children? Blood 2018; 132:351-361. [DOI: 10.1182/blood-2018-02-778530] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Abstract
Adolescent and young adult (AYA) patients with acute lymphoblastic leukemia (ALL) are recognized as a unique population with specific characteristics and needs. In adolescents age 15 to 20 years, the use of fully pediatric protocols is supported by many comparative studies of pediatric and adult cooperative groups. In young adults, growing evidence suggests that pediatric-inspired or even fully pediatric approaches may also dramatically improve outcomes, leading to long-term survival rates of almost 70%, despite diminishing indications of hematopoietic stem-cell transplantation. In the last decade, better knowledge of the ALL oncogenic landscape according to age distribution and minimal residual disease assessments has improved risk stratification. New targets have emerged, mostly in the heterogeneous B-other group, particularly in the Philadelphia-like ALL subgroup, which requires both in-depth molecular investigations and specific evaluations of targeted treatments. The remaining gap in the excellent results reported in children has many other contributing factors that should not be underestimated, including late or difficult access to care and/or trials, increased acute toxicities, and poor adherence to treatment. Specific programs should be designed to take into account those factors and finally ameliorate survival and quality of life for AYAs with ALL.
Collapse
|
18
|
Barbutti I, Xavier-Ferrucio JM, Machado-Neto JA, Ricon L, Traina F, Bohlander SK, Saad STO, Archangelo LF. CATS (FAM64A) abnormal expression reduces clonogenicity of hematopoietic cells. Oncotarget 2018; 7:68385-68396. [PMID: 27588395 PMCID: PMC5356563 DOI: 10.18632/oncotarget.11724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The CATS (FAM64A) protein interacts with CALM (PICALM) and the leukemic fusion protein CALM/AF10. CATS is highly expressed in leukemia, lymphoma and tumor cell lines and its protein levels strongly correlates with cellular proliferation in both malignant and normal cells. In order to obtain further insight into CATS function we performed an extensive analysis of CATS expression during differentiation of leukemia cell lines. While CATS expression decreased during erythroid, megakaryocytic and monocytic differentiation, a markedly increase was observed in the ATRA induced granulocytic differentiation. Lentivirus mediated silencing of CATS in U937 cell line resulted in somewhat reduced proliferation, altered cell cycle progression and lower migratory ability in vitro; however was not sufficient to inhibit tumor growth in xenotransplant model. Of note, CATS knockdown resulted in reduced clonogenicity of CATS-silenced cells and reduced expression of the self-renewal gene, GLI-1. Moreover, retroviral mediated overexpression of the murine Cats in primary bone marrow cells lead to decreased colony formation. Although our in vitro data suggests that CATS play a role in cellular processes important for tumorigenesis, such as cell cycle control and clonogenicity, these effects were not observed in vivo.
Collapse
Affiliation(s)
- Isabella Barbutti
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Juliana M Xavier-Ferrucio
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Lauremilia Ricon
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Leticia Fröhlich Archangelo
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil.,Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Thymic negative selection is a process that aims to eliminate autoreactive T cells by inducing the apoptosis of thymocytes expressing a T-cell receptor (TCR) with high affinity for self-MHC. In this issue, Trinquand and colleagues demonstrate that TCR engagement or anti-CD3 stimulation of TCR-expressing T acute lymphoblastic leukemia cells results in their apoptosis. This cell death is reminiscent of thymic negative selection and has the potential for therapeutic exploitation. Cancer Discov; 6(9); 946-8. ©2016 AACR.See related article by Trinquand et al., p. 972.
Collapse
Affiliation(s)
- François Lemonnier
- Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. Department of Medical Biophysics, University of Toronto, University Health Network, Toronto, Canada.
| |
Collapse
|
20
|
Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood 2017; 131:289-300. [PMID: 29051182 DOI: 10.1182/blood-2017-04-778829] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022] Open
Abstract
Risk stratification in childhood T-cell acute lymphoblastic leukemia (T-ALL) is mainly based on minimal residual disease (MRD) quantification. Whether oncogenetic mutation profiles can improve the discrimination of MRD-defined risk categories was unknown. Two hundred and twenty FRALLE2000T-treated patients were tested retrospectively for NOTCH1/FBXW7/RAS and PTEN alterations. Patients with NOTCH1/FBXW7 (N/F) mutations and RAS/PTEN (R/P) germ line (GL) were classified as oncogenetic low risk (gLoR; n = 111), whereas those with N/F GL and R/P GL mutations or N/F and R/P mutations were classified as high risk (gHiR; n = 109). Day 35 MRD status was available for 191 patients. Five-year cumulative incidence of relapse (CIR) and disease-free survival were 36% and 60% for gHiR patients and 11% and 89% for gLoR patients, respectively. Importantly, among the 60% of patients with MRD <10-4, 5-year CIR was 29% for gHiR patients and 4% for gLoR patients. Based on multivariable Cox models and stepwise selection, the 3 most discriminating variables were the oncogenetic classifier, MRD, and white blood cell (WBC) count. Patients harboring a WBC count ≥200 × 109/L, gHiR classifier, and MRD ≥10-4 demonstrated a 5-year CIR of 46%, whereas the 58 patients (30%) with a WBC count <200 × 109/L, gLoR classifier, and MRD <10-4 had a very low risk of relapse, with a 5-year CIR of only 2%. In childhood T-ALL, the N/F/R/P mutation profile is an independent predictor of relapse. When combined with MRD and a WBC count ≥200 × 109/L, it identifies a significant subgroup of patients with a low risk of relapse.
Collapse
|
21
|
Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, Fielding A, Tan SH, Sanda T, Weintraub AS, Li B, Shen S, Zhang J, Mansour MR, Young RA, Look AT. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 2017; 31:2057-2064. [PMID: 28260788 PMCID: PMC5629363 DOI: 10.1038/leu.2017.75] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Oncogenic driver mutations are those that provide a proliferative or survival advantage to neoplastic cells, resulting in clonal selection. Although most cancer-causing mutations have been detected in the protein-coding regions of the cancer genome; driver mutations have recently also been discovered within noncoding genomic sequences. Thus, a current challenge is to gain precise understanding of how these unique genomic elements function in cancer pathogenesis, while clarifying mechanisms of gene regulation and identifying new targets for therapeutic intervention. Here we report a C-to-T single nucleotide transition that occurs as a somatic mutation in noncoding sequences 4 kb upstream of the transcriptional start site of the LMO1 oncogene in primary samples from patients with T-cell acute lymphoblastic leukaemia. This single nucleotide alteration conforms to an APOBEC-like cytidine deaminase mutational signature, and generates a new binding site for the MYB transcription factor, leading to the formation of an aberrant transcriptional enhancer complex that drives high levels of expression of the LMO1 oncogene. Since APOBEC-signature mutations are common in a broad spectrum of human cancers, we suggest that noncoding nucleotide transitions such as the one described here may activate potent oncogenic enhancers not only in T-lymphoid cells but in other cell lineages as well.
Collapse
Affiliation(s)
- Z Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - A Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Y Liu
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - T Leon
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - A Fielding
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - S H Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - T Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - A S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - B Li
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Shen
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - M R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - R A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Boissel N. How should we treat the AYA patient with newly diagnosed ALL? Best Pract Res Clin Haematol 2017; 30:175-183. [PMID: 29050690 DOI: 10.1016/j.beha.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
Adolescent and young adult (AYA) patients with acute lymphoblastic leukaemia (ALL) are recognized as a unique population with specific characteristics and needs. In adolescents aged 15-20 years old, the use of full paediatric protocols is supported by many comparative studies of paediatric and adult cooperative groups. In young adults, growing evidence suggests that paediatric-inspired approaches may also improve outcomes and lead to long-term survival rates of almost 70%. In the last decade, better knowledge of ALL oncogenic landscape, age distribution, and minimal residual disease prognostic impact have improved risk stratification. New targets have emerged mostly in the heterogeneous subgroup of Philadelphia-like ALL and will require both in-depth molecular investigations and specific evaluations in rare subgroups of ALL. The remaining gap with the excellent results reported in children has many other contributing factors that should not be underestimated including late or difficult access to care, or poor adherence to treatment.
Collapse
Affiliation(s)
- Nicolas Boissel
- Adolescent & Young Adult Hematology Unit, Saint-Louis Hospital, EA-3518, Paris 7 University, 1 avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
23
|
Villarese P, Lours C, Trinquand A, Le Noir S, Belhocine M, Lhermitte L, Cieslak A, Tesio M, Petit A, LeLorch M, Spicuglia S, Ifrah N, Dombret H, Langerak AW, Boissel N, Macintyre E, Asnafi V. TCRα rearrangements identify a subgroup of NKL-deregulated adult T-ALLs associated with favorable outcome. Leukemia 2017; 32:61-71. [PMID: 28592888 DOI: 10.1038/leu.2017.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) results from leukemic transformation of T-cell precursors arrested at specific differentiation stages, including an 'early-cortical' thymic maturation arrest characterized by expression of cytoplasmic TCRβ but no surface T-cell receptor (TCR) and frequent ectopic expression of the TLX1/3 NK-like homeotic proteins (NKL). We designed a TCRα VJC PCR to identify clonal TCRα rearrangements in 32% of 127 T-ALLs, including 0/52 immature/TCRγδ lineage cases and 41/75 (55%) TCRαβ lineage cases. Amongst the latter, TCRα rearrangements were not identified in 30/54 (56%) of IMβ/pre-αβ early-cortical T-ALLs, of which the majority (21/30) expressed TLX1/3. We reasoned that the remaining T-ALLs might express other NKL proteins, so compared transcript levels of 46 NKL in T-ALL and normal thymic subpopulations. Ectopic overexpression of 10 NKL genes, of which six are unreported in T-ALL (NKX2-3, BARHL1, BARX2, EMX2, LBX2 and MSX2), was detectable in 17/104 (16%) T-ALLs. Virtually all NKL overexpressing T-ALLs were TCRα unrearranged and ectopic NKL transcript expression strongly repressed Eα activity, suggesting that ectopic NKL expression is the major determinant in early-cortical thymic T-ALL maturation arrest. This immunogenetic T-ALL subtype, defined by TCRβ VDJ but no TCRα VJ rearrangement, is associated with a favorable outcome in GRAALL-treated adult T-ALLs.
Collapse
Affiliation(s)
- P Villarese
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - C Lours
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - A Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - S Le Noir
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - M Belhocine
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.,Aix Marseille Univ, INSERM, TAGC UMR1090, Marseille, France
| | - L Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - A Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - M Tesio
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - A Petit
- Department of Hematology and Oncologie Pédiatrique, Hôpital Trousseau Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - M LeLorch
- Laboratory of Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - S Spicuglia
- Aix Marseille Univ, INSERM, TAGC UMR1090, Marseille, France
| | - N Ifrah
- Department of Hematology, Centre Hospitalier, Angers, France
| | - H Dombret
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, Paris, France
| | - A W Langerak
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - N Boissel
- University Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, Paris, France
| | - E Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France
| | - V Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker Enfants-Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France.,Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| |
Collapse
|
24
|
Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia. Blood Adv 2017; 1:733-747. [PMID: 29296717 DOI: 10.1182/bloodadvances.2017005538] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/27/2017] [Indexed: 11/20/2022] Open
Abstract
The oncogenic mechanisms driven by aberrantly expressed transcription factors in T-cell acute leukemia (T-ALL) are still elusive. MicroRNAs (miRNAs) play an important role in normal development and pathologies. Here, we examined the expression of 738 miRNA species in 41 newly diagnosed pediatric T-ALLs and in human thymus-derived cells. We found that expression of 2 clustered miRNAs, miR-125b/99a, peaks in primitive T cells and is upregulated in the T leukemia homeobox 3 (TLX3)-positive subtype of T-ALL. Using loss- and gain-of-function approaches, we established functional relationships between TLX3 and miR-125b. Both TLX3 and miR-125b support in vitro cell growth and in vivo invasiveness of T-ALL. Besides, ectopic expression of TLX3 or miR-125b in human hematopoietic progenitor cells enhances production of T-cell progenitors and favors their accumulation at immature stages of T-cell development resembling the differentiation arrest observed in TLX3 T-ALL. Ectopic miR-125b also remarkably accelerated leukemia in a xenograft model, suggesting that miR125b is an important mediator of the TLX3-mediated transformation program that takes place in immature T-cell progenitors. Mechanistically, TLX3-mediated activation of miR-125b may impact T-cell differentiation in part via repression of Ets1 and CBFβ genes, 2 regulators of T-lineage. Finally, we established that TLX3 directly regulates miR-125b production through binding and transactivation of LINC00478, a long noncoding RNA gene, which is the host of miR-99a/Let-7c/miR-125b. Altogether, our results reveal an original functional link between TLX3 and oncogenic miR-125b in T-ALL development.
Collapse
|
25
|
Trinquand A, Dos Santos NR, Tran Quang C, Rocchetti F, Zaniboni B, Belhocine M, Da Costa de Jesus C, Lhermitte L, Tesio M, Dussiot M, Cosset FL, Verhoeyen E, Pflumio F, Ifrah N, Dombret H, Spicuglia S, Chatenoud L, Gross DA, Hermine O, Macintyre E, Ghysdael J, Asnafi V. Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia. Cancer Discov 2016; 6:972-85. [PMID: 27354269 DOI: 10.1158/2159-8290.cd-15-0675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Cancer onset and progression involves the accumulation of multiple oncogenic hits, which are thought to dominate or bypass the physiologic regulatory mechanisms in tissue development and homeostasis. We demonstrate in T-cell acute lymphoblastic leukemia (T-ALL) that, irrespective of the complex oncogenic abnormalities underlying tumor progression, experimentally induced, persistent T-cell receptor (TCR) signaling has antileukemic properties and enforces a molecular program resembling thymic negative selection, a major developmental event in normal T-cell development. Using mouse models of T-ALL, we show that induction of TCR signaling by high-affinity self-peptide/MHC or treatment with monoclonal antibodies to the CD3ε chain (anti-CD3) causes massive leukemic cell death. Importantly, anti-CD3 treatment hampered leukemogenesis in mice transplanted with either mouse- or patient-derived T-ALLs. These data provide a strong rationale for targeted therapy based on anti-CD3 treatment of patients with TCR-expressing T-ALL and demonstrate that endogenous developmental checkpoint pathways are amenable to therapeutic intervention in cancer cells. SIGNIFICANCE T-ALLs are aggressive malignant lymphoid proliferations of T-cell precursors characterized by high relapse rates and poor prognosis, calling for the search for novel therapeutic options. Here, we report that the lineage-specific TCR/CD3 developmental checkpoint controlling cell death in normal T-cell progenitors remains switchable to induce massive tumor cell apoptosis in T-ALL and is amenable to preclinical therapeutic intervention. Cancer Discov; 6(9); 972-85. ©2016 AACR.See related commentary by Lemonnier and Mak, p. 946This article is highlighted in the In This Issue feature, p. 932.
Collapse
Affiliation(s)
- Amélie Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Nuno R Dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
| | - Christine Tran Quang
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Francesca Rocchetti
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Benedetta Zaniboni
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Mohamed Belhocine
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France. Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Marseille, France
| | - Cindy Da Costa de Jesus
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Melania Tesio
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Michael Dussiot
- INSERM UMR 1163 and CNRS ERL 8654, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratory of Excellence GR-Ex, Imagine Institute and Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - François-Loïc Cosset
- CIRI, EVIR Team, INSERM U1111, CNRS UMR 5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI, EVIR Team, INSERM U1111, CNRS UMR 5308, Université de Lyon-1, ENS de Lyon, Lyon, France. INSERM U1065, C3M, Equipe "Contrôle Métabolique des Morts Cellulaires," Nice, France
| | - Françoise Pflumio
- Laboratoire des Cellules Souches Hématopoïétiques et Leucémiques, UMR 967, INSERM, Commissariat à l'Energie Atomique, Université Paris Diderot, Université Paris 11, Institut de Radiobiologie Cellulaire et Moléculaire, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U892, Angers, France
| | - Hervé Dombret
- Université Paris 7, Hôpital Saint-Louis, AP-HP, Department of Hematology and Institut Universitaire d'Hématologie, Paris, France
| | - Salvatore Spicuglia
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, Marseille, France
| | - Lucienne Chatenoud
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France, and Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - David-Alexandre Gross
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France, and Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Olivier Hermine
- INSERM UMR 1163 and CNRS ERL 8654, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratory of Excellence GR-Ex, Imagine Institute and Paris Descartes University, Sorbonne Paris Cité, Paris, France. Department of Clinical Hematology, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Jacques Ghysdael
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France. Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
26
|
TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine 2016; 82:52-7. [PMID: 26817397 DOI: 10.1016/j.cyto.2015.12.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies.
Collapse
|
27
|
Fernandes MT, Ghezzo MN, Silveira AB, Kalathur RK, Póvoa V, Ribeiro AR, Brandalise SR, Dejardin E, Alves NL, Ghysdael J, Barata JT, Yunes JA, dos Santos NR. Lymphotoxin-β receptor in microenvironmental cells promotes the development of T-cell acute lymphoblastic leukaemia with cortical/mature immunophenotype. Br J Haematol 2015; 171:736-51. [PMID: 26456771 DOI: 10.1111/bjh.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Lymphotoxin-mediated activation of the lymphotoxin-β receptor (LTβR; LTBR) has been implicated in cancer, but its role in T-cell acute lymphoblastic leukaemia (T-ALL) has remained elusive. Here we show that the genes encoding lymphotoxin (LT)-α and LTβ (LTA, LTB) are expressed in T-ALL patient samples, mostly of the TAL/LMO molecular subtype, and in the TEL-JAK2 transgenic mouse model of cortical/mature T-ALL (Lta, Ltb). In these mice, expression of Lta and Ltb is elevated in early stage T-ALL. Surface LTα1 β2 protein is expressed in primary mouse T-ALL cells, but only in the absence of microenvironmental LTβR interaction. Indeed, surface LT expression is suppressed in leukaemic cells contacting Ltbr-expressing but not Ltbr-deficient stromal cells, both in vitro and in vivo, thus indicating that dynamic surface LT expression in leukaemic cells depends on interaction with its receptor. Supporting the notion that LT signalling plays a role in T-ALL, inactivation of Ltbr results in a significant delay in TEL-JAK2-induced leukaemia onset. Moreover, young asymptomatic TEL-JAK2;Ltbr(-/-) mice present markedly less leukaemic thymocytes than age-matched TEL-JAK2;Ltbr(+/+) mice and interference with LTβR function at this early stage delayed T-ALL development. We conclude that LT expression by T-ALL cells activates LTβR signalling in thymic stromal cells, thus promoting leukaemogenesis.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Marinella N Ghezzo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | | | - Ravi K Kalathur
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Vanda Póvoa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana R Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Institute for Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | | | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jacques Ghysdael
- Institut Curie-Centre de Recherche, Centre Universitaire, Orsay, France.,CNRS UMR3306, Centre Universitaire, Orsay, France.,INSERM U1005, Centre Universitaire, Orsay, France
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - José Andres Yunes
- Centro Infantil Boldrini, Campinas, SP, Brazil.,Department of Paediatrics, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nuno R dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| |
Collapse
|
28
|
Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun 2015; 6:6094. [PMID: 25615415 PMCID: PMC4317503 DOI: 10.1038/ncomms7094] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most frequently deregulated oncogenes. Yet, over half of the TAL1(+) cases lack TAL1 lesions, suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is focally diminished in TAL1(+) T-ALLs. Sequencing reveals that >20% of monoallelic TAL1(+) patients without previously known alterations display microinsertions or RAG1/2-mediated episomal reintegration in a single site 5' to TAL1. Using 'allelic-ChIP' and CrispR assays, we demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at the inserted but not the germline allele. We also show that, despite a considerable mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels, impact on clinical outcome. Altogether, these studies establish site-specific epigenetic desilencing as a mechanism of oncogenic activation.
Collapse
|
29
|
El-Menshawy N, Shahin D, Ghazi HF. Prognostic Significance of the Lymphoblastic Leukemia-Derived Sequence 1 (LYL1) GeneExpression in Egyptian Patients with AcuteMyeloid Leukemia. Turk J Haematol 2014; 31:128-35. [PMID: 25035669 PMCID: PMC4102039 DOI: 10.4274/tjh.2012.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/21/2012] [Indexed: 12/01/2022] Open
Abstract
Objective: Aberrant activation of transcription factor genes is the most frequent target of genetic alteration in lymphoid malignancies. The lymphoblastic leukemia-derived sequence 1 (LYL1) gene, which encodes a basic helix-loop helix, was first identified with human T-cell acute leukemia. Recent studies suggest its involvement in myeloid malignancies. We aimed to study the expression percent of oncogene LYL1 in primary and secondary high-risk myeloid leukemia and the impact on prognostic significance in those patients. Materials and Methods: Using quantitative real-time polymerase chain reaction for detection of LYL1 oncogenes, our study was carried out on 39 myeloid leukemia patients including de novo cases, myelodysplastic syndrome (MDS) with transformation, and chronic myelogenous leukemia (CML) in accelerated and blast crisis, in addition to 10 healthy individuals as the reference control. Results: LYL1 expression was increased at least 2 times compared to the controls. The highest expression of this transcription factor was observed in the MDS cases transformed to acute leukemia at 7.3±3.1, p=0.0011. LYL1 expression was found in 68.2%, 75%, and 77.8% of cases of acute myeloid leukemia, CML crisis, and MDS, respectively. Significant correlation of LYL1 overexpression with some subtypes of French-American-British classification was found. There was, for the first time, significant correlation between the blood count at diagnosis and LYL1 expression (p=0.023, 0.002, and 0.031 for white blood cells, hemoglobin, and platelets, respectively). The rate of complete remission was lower with very high levels of LYL1 expression and the risk of relapse increased with higher levels of LYL1 expression, suggesting an unfavorable prognosis for cases with enhanced expression. Conclusion: Overexpression of LYL1 is highly associated with acute myeloid leukemia and shows more expression in MDS with unfavorable prognosis in response to induction chemotherapy. These observations could signal a promising tool for a therapeutic target to basic helix–loop helix protein related to transcription factors, which may improve patient outcome in acute myeloid leukemia, MDS, and CML in blast crisis.
Collapse
Affiliation(s)
- Nadia El-Menshawy
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt
| | - Doaa Shahin
- Mansoura University Faculty of Medicine, Department of Clinical Pathology, Mansoura, Egypt
| | - Hayam Fathi Ghazi
- Mansoura University Faculty of Medicine, Department of Oncology Medicine, Mansoura, Egypt
| |
Collapse
|
30
|
Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA, Elliott N, Yi Y, Chen X, Downing J, Mullighan C, Swing DA, Tessarollo L, Li L, Love P, Jenkins NA, Copeland NG, Thompson MA, Du Y, Davé UP. LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways. PLoS One 2014; 9:e85883. [PMID: 24465765 PMCID: PMC3897537 DOI: 10.1371/journal.pone.0085883] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 02/03/2023] Open
Abstract
The LMO2 oncogene is deregulated in the majority of human T-cell leukemia cases and in most gene therapy-induced T-cell leukemias. We made transgenic mice with enforced expression of Lmo2 in T-cells by the CD2 promoter/enhancer. These transgenic mice developed highly penetrant T-ALL by two distinct patterns of gene expression: one in which there was concordant activation of Lyl1, Hhex, and Mycn or alternatively, with Notch1 target gene activation. Most strikingly, this gene expression clustering was conserved in human Early T-cell Precursor ALL (ETP-ALL), where LMO2, HHEX, LYL1, and MYCN were most highly expressed. We discovered that HHEX is a direct transcriptional target of LMO2 consistent with its concordant gene expression. Furthermore, conditional inactivation of Hhex in CD2-Lmo2 transgenic mice markedly attenuated T-ALL development, demonstrating that Hhex is a crucial mediator of Lmo2's oncogenic function. The CD2-Lmo2 transgenic mice offer mechanistic insight into concordant oncogene expression and provide a model for the highly treatment-resistant ETP-ALL subtype.
Collapse
Affiliation(s)
- Stephen Smith
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Rati Tripathi
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Charnise Goodings
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Susan Cleveland
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Elizabeth Mathias
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - J. Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Natalina Elliott
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Yajun Yi
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Liqi Li
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Love
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy A. Jenkins
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Neal G. Copeland
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Mary Ann Thompson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Utpal P. Davé
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|
31
|
Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengliné E, De Gunzburg N, Payet-Bornet D, Lhermitte L, Mossafa H, Lhéritier V, Bond J, Huguet F, Buzyn A, Leguay T, Cahn JY, Thomas X, Chalandon Y, Delannoy A, Bonmati C, Maury S, Nadel B, Macintyre E, Ifrah N, Dombret H, Asnafi V. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol 2013; 31:4333-42. [PMID: 24166518 DOI: 10.1200/jco.2012.48.5292] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The Group for Research in Adult Acute Lymphoblastic Leukemia (GRAALL) recently reported a significantly better outcome in T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1 and/or FBXW7 (N/F) mutations compared with unmutated T-ALL. Despite this, one third of patients with N/F-mutated T-ALL experienced relapse. PATIENTS AND METHODS In a series of 212 adult T-ALLs included in the multicenter randomized GRAALL-2003 and -2005 trials, we searched for additional N/K-RAS mutations and PTEN defects (mutations and gene deletion). RESULTS N/F mutations were identified in 143 (67%) of 212 patients, and lack of N/F mutation was confirmed to be associated with a poor prognosis. K-RAS, N-RAS, and PTEN mutations/deletions were identified in three (1.6%) of 191, 17 (8.9%) of 191, and 21 (12%) of 175 patients, respectively. The favorable prognostic significance of N/F mutations was restricted to patients without RAS/PTEN abnormalities. These observations led us to propose a new T-ALL oncogenetic classifier defining low-risk patients as those with N/F mutation but no RAS/PTEN mutation (97 of 189 patients; 51%) and all other patients (49%; including 13% with N/F and RAS/PTEN mutations) as high-risk patients. In multivariable analysis, this oncogenetic classifier remained the only significant prognostic covariate (event-free survival: hazard ratio [HR], 3.2; 95% CI, 1.9 to 5.15; P < .001; and overall survival: HR, 3.2; 95% CI, 1.9 to 5.6; P < .001). CONCLUSION These data demonstrate that the presence of N/F mutations in the absence of RAS or PTEN abnormalities predicts good outcome in almost 50% of adult T-ALL. Conversely, the absence of N/F or presence of RAS/PTEN alterations identifies the remaining cohort of patients with poor prognosis.
Collapse
Affiliation(s)
- Amélie Trinquand
- Amélie Trinquand, Raouf Ben Abdelali, Etienne Lengliné, Noémie De Gunzburg, Ludovic Lhermitte, Jonathan Bond, Agnès Buzyn, Elizabeth Macintyre, and Vahid Asnafi, University Paris Descartes, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-8147, and Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades; Jérôme Lambert, UMR-S-717, Hôpital Saint-Louis, AP-HP; Kheira Beldjord, Etienne Lengliné, and Hervé Dombret, University Paris 7, Hôpital Saint-Louis, AP-HP, and Institut Universitaire d'Hématologie, EA3518, Paris; Aline Tanguy-Schmidt and Norbert Ifrah, Pôle de Recherche et d'Enseignement Supérieur L'Université Nantes Angers Le Mans, Centre Hospitalier Universitaire Angers Service des Maladies du Sang et L'Institut National de la Santé et de la Recherche Médicale (INSERM) U892, Angers; Dominique Payet-Bornet and Bertrand Nadel, Center of Immunology of Marseille Luminy, Aix-Marseille University, INSERM U1104 and Centre National de la Recherche Scientifique (CNRS) UMR-7280, Marseille; Hossein Mossafa, Laboratoire Cerba, Cergy-Pontoise; Véronique Lhéritier and Xavier Thomas, Centre Hospitalier Lyon Sud, Lyon; Françoise Huguet, Hôpital Purpan, Toulouse; Thibaud Leguay, Centre Hospitalier du Haut Lévêque, Pessac; Jean-Yves Cahn, UMR-5525 CNRS-Université Joseph Fourier, Grenoble; Caroline Bonmati, Centre Hospitalier Régional Hôpital de Brabois, Vandoeuvre Les Nancy; Sebastien Maury, Hôpital Henry Mondor, Creteil, France; Yves Chalandon, University Hospital of Geneva, Geneva, Switzerland; and André Delannoy, Hopital de Jolimont, La Louviere, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gramatges MM, Rabin KR. The adolescent and young adult with cancer: state of the art-- acute leukemias. Curr Oncol Rep 2013; 15:317-24. [PMID: 23757222 DOI: 10.1007/s11912-013-0325-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite survival gains over the past several decades, adolescent and young adult (AYA) patients with both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) demonstrate a consistent survival disadvantage. The AYA population exhibits unique disease and host characteristics, and further study is needed to improve their outcomes. This review will highlight distinctive aspects of disease biology in this population, as well as salient treatment-related toxicities including osteonecrosis, pancreatitis, thromboembolism, hyperglycemia, and infections. The impact of obesity and differences in drug metabolism and chemotherapy resistance will also be discussed, as well as optimal treatment considerations for the AYA population.
Collapse
Affiliation(s)
- M Monica Gramatges
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine, Texas Children's Cancer Center, 1102 Bates St., Houston, TX 77030, USA.
| | | |
Collapse
|
33
|
Abstract
Lymphoblastic lymphoma (LBL) are thought to derive from immature precursor T-cells or B-cells. LBL are the second most common subtype of Non-Hodgkin Lymphoma (NHL) in children and adolescents. LBL are closely related to acute lymphoblastic leukemia (ALL), the most common type of cancer in children. Using ALL-type treatment regimen to treat children with LBL was an important development in the treatment of LBL. During the last decades, several systematic clinical trials contributed to the controlled optimization of treatment. Today event-free survival (EFS) can be achieved for 75-90% of patients. However, acute and long-term toxicity, the lack of prognostic parameters and the poor outcome for patients who suffer from refractory or relapsed LBL remain highly relevant subjects for improvement. To date, the pathogenesis of LBL is poorly understood. Learning more about the biology and pathogenesis of LBL might pave the way for targeted treatment to improve survival especially in relapsed and refractory patients.
Collapse
Affiliation(s)
- Eva Schmidt
- Department of Hematology and Oncology, University Hospital Muenster, Germany
| | | |
Collapse
|
34
|
Ben Abdelali R, Asnafi V, Petit A, Micol JB, Callens C, Villarese P, Delabesse E, Reman O, Lepretre S, Cahn JY, Guillerm G, Berthon C, Gardin C, Corront B, Leguay T, Béné MC, Ifrah N, Leverger G, Dombret H, Macintyre E. The prognosis of CALM-AF10-positive adult T-cell acute lymphoblastic leukemias depends on the stage of maturation arrest. Haematologica 2013; 98:1711-7. [PMID: 23831922 DOI: 10.3324/haematol.2013.086082] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CALM-AF10 (also known as PICALM-MLLT10) is the commonest fusion protein in T-cell acute lymphoblastic leukemia, but its prognostic impact remains unclear. Molecular screening at diagnosis identified CALM-AF10 in 30/431 (7%) patients with T-cell acute lymphoblastic leukemia aged 16 years and over and in 15/234 (6%) of those aged up to 15 years. Adult CALM-AF10-positive patients were predominantly (72%) negative for surface (s)CD3/T-cell receptor, whereas children were predominantly (67%) positive for T-cell receptor. Among 22 adult CALM-AF10-positive patients treated according to the LALA94/GRAALL03-05 protocols, the poor prognosis for event-free survival (P=0.0017) and overall survival (P=0.0014) was restricted to the 15 T-cell receptor-negative cases. Among CALM-AF10-positive, T-cell receptor-negative patients, 82% had an early T-cell precursor phenotype, reported to be of poor prognosis in pediatric T-cell acute lymphoblastic leukemia. Early T-cell precursor acute lymphoblastic leukemia corresponded to 22% of adult LALA94/GRAALL03-05 T-cell acute lymphoblastic leukemias, but had no prognostic impact per se. CALM-AF10 fusion within early T-cell precursor acute lymphoblastic leukemia (21%) did, however, identify a group with a poor prognosis with regards to event-free survival (P=0.04). CALM-AF10 therefore identifies a poor prognostic group within sCD3/T-cell receptor negative adult T-cell acute lymphoblastic leukemias and is over-represented within early T-cell precursor acute lymphoblastic leukemias, in which it identifies patients in whom treatment is likely to fail. Its prognosis and overlap with early T-cell precursor acute lymphoblastic leukemia in pediatric T-cell acute lymphoblastic leukemia merits analysis. The clinical trial GRAALL was registered at Clinical Trials.gov number NCT00327678.
Collapse
|
35
|
Zweier-Renn LA, Riz I, Hawley TS, Hawley RG. The DN2 Myeloid-T (DN2mt) Progenitor is a Target Cell for Leukemic Transformation by the TLX1 Oncogene. JOURNAL OF BONE MARROW RESEARCH 2013; 1:105. [PMID: 25309961 PMCID: PMC4191823 DOI: 10.4172/2329-8820.1000105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Inappropriate activation of the TLX1 (T-cell leukemia homeobox 1) gene by chromosomal translocation is a recurrent event in human T-cell Acute Lymphoblastic Leukemia (T-ALL). Ectopic expression of TLX1 in murine bone marrow progenitor cells using a conventional retroviral vector efficiently yields immortalized cell lines and induces T-ALL-like tumors in mice after long latency. METHODS To eliminate a potential contribution of retroviral insertional mutagenesis to TLX1 immortalizing and transforming function, we incorporated the TLX1 gene into an insulated self-inactivating retroviral vector. RESULTS Retrovirally transduced TLX1-expressing murine bone marrow progenitor cells had a growth/survival advantage and readily gave rise to immortalized cell lines. Extensive characterization of 15 newly established cell lines failed to reveal a common retroviral integration site. This comprehensive analysis greatly extends our previous study involving a limited number of cell lines, providing additional support for the view that constitutive TLX1 expression is sufficient to initiate the series of events culminating in hematopoietic progenitor cell immortalization. When TLX1-immortalized cells were co-cultured on OP9-DL1 monolayers under conditions permissive for T-cell differentiation, a latent T-lineage potential was revealed. However, the cells were unable to transit the DN2 myeloid-T (DN2mt)-DN2 T-lineage determined (DN2t) commitment step. The differentiation block coincided with failure to upregulate the zinc finger transcription factor gene Bcl11b, the human ortholog of which was shown to be a direct transcriptional target of TLX1 downregulated in the TLX1+ T-ALL cell line ALL-SIL. Other studies have described the ability of TLX1 to promote bypass of mitotic checkpoint arrest, leading to aneuploidy. We likewise found that diploid TLX1-expressing DN2mt cells treated with the mitotic inhibitor paclitaxel bypassed the mitotic checkpoint and displayed chromosomal instability. This was associated with elevated expression of TLX1 transcriptional targets involved in DNA replication and mitosis, including Ccna2 (cyclin A2), Ccnb1 (cyclin B1), Ccnb2 (cyclin B2) and Top2a (topoisomerase IIα). Notably, enforced expression of BCL11B in ALL-SIL T-ALL cells conferred resistance to the topoisomerase IIα poison etoposide. CONCLUSION Taken together with previous findings, the data reinforce a mechanism of TLX1 oncogenic activity linked to chromosomal instability resulting from dysregulated expression of target genes involved in mitotic processes. We speculate that repression of BCL11B expression may provide part of the explanation for the observation that aneuploid DNA content in TLX1+ leukemic T cells does not necessarily portend an unfavorable prognosis. This TLX1 hematopoietic progenitor cell immortalization/T-cell differentiation assay should help further our understanding of the mechanisms of TLX1-mediated evolution to malignancy and has the potential to be a useful predictor of disease response to novel therapeutic agents in TLX1+ T-ALL.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Graduate Program in Biochemistry and Molecular Genetics, George Washington University, Washington, DC, USA
| | - Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Sino-US Joint Laboratory of Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
36
|
Archangelo LF, Greif PA, Maucuer A, Manceau V, Koneru N, Bigarella CL, Niemann F, dos Santos MT, Kobarg J, Bohlander SK, Saad STO. The CATS (FAM64A) protein is a substrate of the Kinase Interacting Stathmin (KIS). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1269-79. [PMID: 23419774 DOI: 10.1016/j.bbamcr.2013.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. CATS is highly expressed in cancer cell lines in a cell cycle dependent manner and is induced by mitogens. CATS is considered a marker for proliferation, known to control the metaphase-to-anaphase transition during the cell division. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) protein as a CATS interacting partner. The interaction between CATS and KIS was confirmed by GST pull-down, co-immunoprecipitation and co-localization experiments. Using kinase assay we showed that CATS is a substrate of KIS and mapped the phosphorylation site to CATS serine 131 (S131). Protein expression analysis revealed that KIS levels changed in a cell cycle-dependent manner and in the opposite direction to CATS levels. In a reporter gene assay KIS was able to enhance the transcriptional repressor activity of CATS, independent of CATS phophorylation at S131. Moreover, we showed that CATS and KIS antagonize the transactivation capacity of CALM/AF10.In summary, our results show that CATS interacts with and is a substrate for KIS, suggesting that KIS regulates CATS function.
Collapse
|
37
|
Oram SH, Thoms J, Sive JI, Calero-Nieto FJ, Kinston SJ, Schütte J, Knezevic K, Lock RB, Pimanda JE, Göttgens B. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia. Leukemia 2013; 27:1348-57. [PMID: 23302769 PMCID: PMC3677138 DOI: 10.1038/leu.2013.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.
Collapse
Affiliation(s)
- S H Oram
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 2012; 120:3298-309. [DOI: 10.1182/blood-2012-04-425488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Chromosomal translocations involving the TCR loci represent one of the most recurrent oncogenic hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) and are generally believed to result from illegitimate V(D)J recombination events. However, molecular characterization and evaluation of the extent of recombinase involvement at the TCR-oncogene junction has not been fully evaluated. In the present study, screening for TCRβ and TCRα/δ translocations by FISH and ligation-mediated PCR in 280 T-ALLs allowed the identification of 4 previously unreported TCR-translocated oncogene partners: GNAG, LEF1, NKX2-4, and IL2RB. Molecular mapping of genomic junctions from TCR translocations showed that the majority of oncogenic partner breakpoints are not recombinase mediated and that the regulatory elements predominantly used to drive oncogene expression differ markedly in TCRβ (which are exclusively enhancer driven) and TCRα/δ (which use an enhancer-independent cryptic internal promoter) translocations. Our data also imply that oncogene activation takes place at a very immature stage of thymic development, when Dδ2-Dδ3/Dδ3-Jδ1 and Dβ-Jβ rearrangements occur, whereas the bulk leukemic maturation arrest occurs at a much later (cortical) stage. These observations have implications for T-ALL therapy, because the preleukemic early thymic clonogenic population needs to be eradicated and its disappearance monitored.
Collapse
|
39
|
Asnafi V, Ferrier P. [Deciphering functional activity of TLX homeodomain oncogenes in T-ALL: a clue for a differentiating therapy?]. Med Sci (Paris) 2012; 28:708-10. [PMID: 22920872 DOI: 10.1051/medsci/2012288012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
MESH Headings
- Atrophy
- Cell Survival
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/drug effects
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Genes, Homeobox
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Lymphopoiesis/drug effects
- Lymphopoiesis/genetics
- Molecular Targeted Therapy
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogenes
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Protein c-ets-1/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Thymocytes/drug effects
- Thymocytes/pathology
- Thymus Gland/pathology
Collapse
|
40
|
Receptor kinase profiles identify a rationale for multitarget kinase inhibition in immature T-ALL. Leukemia 2012; 27:305-14. [PMID: 22751451 DOI: 10.1038/leu.2012.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Constitutively activated FLT3 signaling is common in acute myeloid leukemia, and is currently under evaluation for targeted therapy, whereas little data is available in T-cell acute lymphoblastic leukemia (T-ALL). We analyzed 357 T-ALL cases for FLT3 mutations and transcript expression. FLT3 mutations (3% overall) and overexpression (FLT3 high expresser (FLT3(High))) were restricted to immature/TCRγδ T-ALLs. In vitro FLT3 inhibition induced apoptosis in only 30% of FLT3(High) T-ALLs and did not correlate with mutational status. In order to investigate the mechanisms of primary resistance to FLT3 inhibition, a broad quantitative screen for receptor kinome transcript deregulation was performed by Taqman Low Density Array. FLT3 deregulation was associated with overexpression of a network of receptor kinases (RKs), potentially responsible for redundancies and sporadic response to specific FLT3 inhibition. In keeping with this resistance to FLT3 inhibition could be reversed by dual inhibition of FLT3 and KIT with a synergistic effect. We conclude that immature T-ALL may benefit from multitargeted RK inhibition and that exploration of the receptor kinome defines a rational strategy for testing multitarget kinase inhibition in malignant diseases.
Collapse
|
41
|
Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J, Villarèse P, Vachez E, Dik WA, Millien C, Radford I, Verhoeyen E, Cosset FL, Petit A, Ifrah N, Dombret H, Hermine O, Spicuglia S, Langerak AW, Macintyre EA, Nadel B, Ferrier P, Asnafi V. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. Cancer Cell 2012; 21:563-76. [PMID: 22516263 DOI: 10.1016/j.ccr.2012.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 01/03/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Acute lymphoblastic leukemias (ALLs) are characterized by multistep oncogenic processes leading to cell-differentiation arrest and proliferation. Specific abrogation of maturation blockage constitutes a promising therapeutic option in cancer, which requires precise understanding of the underlying molecular mechanisms. We show that the cortical thymic maturation arrest in T-lineage ALLs that overexpress TLX1 or TLX3 is due to binding of TLX1/TLX3 to ETS1, leading to repression of T cell receptor (TCR) α enhanceosome activity and blocked TCR-Jα rearrangement. TLX1/TLX3 abrogation or enforced TCRαβ expression leads to TCRα rearrangement and apoptosis. Importantly, the autoextinction of clones carrying TCRα-driven TLX1 expression supports TLX "addiction" in TLX-positive leukemias and provides further rationale for targeted therapy based on disruption of TLX1/TLX3.
Collapse
Affiliation(s)
- Saïda Dadi
- Department of Hematologye, Université de Médecine Paris Descartes Sorbonne Cité, Centre National de la Recherche Scientifique (CNRS), France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fielding AK, Banerjee L, Marks DI. Recent Developments in the Management of T-Cell Precursor Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2012; 7:160-9. [DOI: 10.1007/s11899-012-0123-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Kraszewska MD, Dawidowska M, Kosmalska M, Sędek Ł, Grzeszczak W, Szczepański T, Witt M. Immunoglobulin/T-cell receptor gene rearrangements in the diagnostic paradigm of pediatric patients with T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53:1425-8. [DOI: 10.3109/10428194.2011.654338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Chen B, Wang YY, Shen Y, Zhang WN, He HY, Zhu YM, Chen HM, Gu CH, Fan X, Chen JM, Cao Q, Yang G, Jiang CL, Weng XQ, Zhang XX, Xiong SM, Shen ZX, Jiang H, Gu LJ, Chen Z, Mi JQ, Chen SJ. Newly diagnosed acute lymphoblastic leukemia in China (I): abnormal genetic patterns in 1346 childhood and adult cases and their comparison with the reports from Western countries. Leukemia 2012; 26:1608-16. [PMID: 22382891 DOI: 10.1038/leu.2012.26] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has been generally acknowledged that the diagnosis, treatment and prognosis evaluation of leukemia largely rely on an adequate identification of genetic abnormalities. A systemic analysis of genetic aberrations was performed in a cohort of 1346 patients with newly diagnosed acute lymphoblastic leukemia (ALL) in China. The pediatric patients had higher incidence of hyperdiploidy and t(12;21) (p13;q22)/ETV6-RUNX1 than adults (P<0.0001); in contrast, the occurrence of Ph and Ik6 variant of IKZF1 gene was much more frequent in adult patients (all P<0.0001). In B-ALL, the existence of Ik6 and that of BCR-ABL were statistically correlated (P<0.0001). In comparison with Western cohorts, the incidence of t(9;22) (q34;q11)/BCR-ABL (14.60%) in B-ALL and HOX11 expression in T-ALL (25.24%) seemed to be much higher in our group, while the incidence of t(12;21) (p13;q22)/ETV6-RUNX1 (15.34%) seemed to be lower in Chinese pediatric patients. The occurrence of hyperdiploidy was much lower either in pediatric (10.61% vs 20-38%) or adult patients (2.36% vs 6.77-12%) in our study than in Western reports. In addition, the frequencies of HOX11L2 in adult patients were much higher in our cohort than in Western countries (20.69% vs 4-11%). In general, it seems that Chinese ALL patients bear more adverse prognostic factors than their Western counterparts do.
Collapse
Affiliation(s)
- B Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
46
|
Chen E, Huang X, Zheng Y, Li YJ, Chesney A, Ben-David Y, Yang E, Hough MR. Phosphorylation of HOX11/TLX1 on Threonine-247 during mitosis modulates expression of cyclin B1. Mol Cancer 2010; 9:246. [PMID: 20846384 PMCID: PMC2949800 DOI: 10.1186/1476-4598-9-246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 09/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The HOX11/TLX1 (hereafter referred to as HOX11) homeobox gene was originally identified at a t(10;14)(q24;q11) translocation breakpoint, a chromosomal abnormality observed in 5-7% of T cell acute lymphoblastic leukemias (T-ALLs). We previously reported a predisposition to aberrant spindle assembly checkpoint arrest and heightened incidences of chromosome missegregation in HOX11-overexpressing B lymphocytes following exposure to spindle poisons. The purpose of the current study was to evaluate cell cycle specific expression of HOX11. RESULTS Cell cycle specific expression studies revealed a phosphorylated form of HOX11 detectable only in the mitotic fraction of cells after treatment with inhibitors to arrest cells at different stages of the cell cycle. Mutational analyses revealed phosphorylation on threonine-247 (Thr247), a conserved amino acid that defines the HOX11 gene family and is integral for the association with DNA binding elements. The effect of HOX11 phosphorylation on its ability to modulate expression of the downstream target, cyclin B1, was tested. A HOX11 mutant in which Thr247 was substituted with glutamic acid (HOX11 T247E), thereby mimicking a constitutively phosphorylated HOX11 isoform, was unable to bind the cyclin B1 promoter or enhance levels of the cyclin B1 protein. Expression of the wildtype HOX11 was associated with accelerated progression through the G2/M phase of the cell cycle, impaired synchronization in prometaphase and reduced apoptosis whereas expression of the HOX11 T247E mutant restored cell cycle kinetics, the spindle checkpoint and apoptosis. CONCLUSIONS Our results demonstrate that the transcriptional activity of HOX11 is regulated by phosphorylation of Thr247 in a cell cycle-specific manner and that this phosphorylation modulates the expression of the target gene, cyclin B1. Since it is likely that Thr247 phosphorylation regulates DNA binding activity to multiple HOX11 target sequences, it is conceivable that phosphorylation functions to regulate the expression of HOX11 target genes involved in the control of the mitotic spindle checkpoint.
Collapse
Affiliation(s)
- Edwin Chen
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 2010; 116:5268-79. [PMID: 20810926 DOI: 10.1182/blood-2010-06-292300] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is associated with a significant risk of disease relapse, but the biological basis for relapse is poorly understood. Here, we identify leukemiainitiating cells (L-ICs) on the basis of functional assays and prospective isolation and report a role for L-ICs in T-ALL disease and relapse. Long-term proliferation in response to NOTCH1 activating signals in OP9-DL1 coculture system or capacity to initiate leukemia in xenografts by the CD7(+)CD1a(-) subset of primary T-ALL samples was superior to other subsets, refining the identity of T-ALL L-ICs. T-ALL engraftment was improved in nonobese diabetic/severe combined immunodeficiency (NOD/scid)IL2Rγ(null) (NSG) mice compared with NOD/scid with anti-CD122 treatment (NS122), but both showed changes in leukemia immunophenotype. Clonal analysis of xenografts using the TCRG locus revealed the presence of subclones of T-ALL L-ICs, some of which possess a selective growth advantage and correlated with the capacity of CD7(+)CD1a(+) xenograft cells to engraft secondary NSG mice. Treatment of high-risk T-ALL xenografts eliminated CD1a(+) T-ALL cells, but CD1a(-) cells were resistant and their number was increased. Our results establish that primary CD1a(-) T-ALL cells are functionally distinct from CD1a(+) cells and that the CD7(+)CD1a(-) subset is enriched for L-IC activity that may be involved in mediating disease relapse after therapy.
Collapse
|
48
|
Meijerink JP. Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2010; 23:307-18. [DOI: 10.1016/j.beha.2010.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene 2010; 29:5796-808. [PMID: 20676125 DOI: 10.1038/onc.2010.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The T-cell oncogene Lim-only 2 (LMO2) critically influences both normal and malignant haematopoiesis. LMO2 is not normally expressed in T cells, yet ectopic expression is seen in the majority of T-acute lymphoblastic leukaemia (T-ALL) patients with specific translocations involving LMO2 in only a subset of these patients. Ectopic lmo2 expression in thymocytes of transgenic mice causes T-ALL, and retroviral vector integration into the LMO2 locus was implicated in the development of clonal T-cell disease in patients undergoing gene therapy. Using array-based chromatin immunoprecipitation, we now demonstrate that in contrast to B-acute lymphoblastic leukaemia, human T-ALL samples largely use promoter elements with little influence from distal enhancers. Active LMO2 promoter elements in T-ALL included a previously unrecognized third promoter, which we demonstrate to be active in cell lines, primary T-ALL patients and transgenic mice. The ETS factors ERG and FLI1 previously implicated in lmo2-dependent mouse models of T-ALL bind to the novel LMO2 promoter in human T-ALL samples, while in return LMO2 binds to blood stem/progenitor enhancers in the FLI1 and ERG gene loci. Moreover, LMO2, ERG and FLI1 all regulate the +1 enhancer of HHEX/PRH, which was recently implicated as a key mediator of early progenitor expansion in LMO2-driven T-ALL. Our data therefore suggest that a self-sustaining triad of LMO2/ERG/FLI1 stabilizes the expression of important mediators of the leukaemic phenotype such as HHEX/PRH.
Collapse
|
50
|
Riz I, Hawley TS, Luu TV, Lee NH, Hawley RG. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells. Mol Cancer 2010; 9:181. [PMID: 20618946 PMCID: PMC2913983 DOI: 10.1186/1476-4598-9-181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11) is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL) where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. RESULTS Global gene expression profiling after downregulation of TLX1 and inhibition of the NOTCH pathway in ALL-SIL cells revealed that TLX1 synergistically regulated more than 60% of the NOTCH-responsive genes. Structure-function analysis demonstrated that TLX1 binding to Groucho-related TLE corepressors was necessary for maximal transcriptional regulation of the NOTCH-responsive genes tested, implicating TLX1 modulation of the NOTCH-TLE regulatory network. Comparison of the dataset to publicly available biological databases indicated that the TLX1/NOTCH-coregulated genes are frequently targeted by MYC. Gain- and loss-of-function experiments confirmed that MYC was an essential mediator of TLX1/NOTCH transcriptional output and growth promotion in ALL-SIL cells, with TLX1 contributing to the NOTCH-MYC regulatory axis by posttranscriptional enhancement of MYC protein levels. Functional classification of the TLX1/NOTCH-coregulated targets also showed enrichment for genes associated with other human cancers as well as those involved in developmental processes. In particular, we found that TLX1, NOTCH and MYC coregulate CD1B and RAG1, characteristic markers of early cortical thymocytes, and that concerted downregulation of the TLX1 and NOTCH pathways resulted in their irreversible repression. CONCLUSIONS We found that TLX1 and NOTCH synergistically regulate transcription in T-ALL, at least in part via the sharing of a TLE corepressor and by augmenting expression of MYC. We conclude that the TLX1/NOTCH/MYC network is a central determinant promoting the growth and survival of TLX1+ T-ALL cells. In addition, the TLX1/NOTCH/MYC transcriptional network coregulates genes involved in T cell development, such as CD1 and RAG family members, and therefore may prescribe the early cortical stage of differentiation arrest characteristic of the TLX1 subgroup of T-ALL.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington, DC, USA
| | - Truong V Luu
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC, USA
| |
Collapse
|