1
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
2
|
Ubaid S, Kashif M, Laiq Y, Nayak AK, Kumar V, Singh V. Targeting HIF-1α in sickle cell disease and cancer: unraveling therapeutic opportunities and risks. Expert Opin Ther Targets 2024; 28:357-373. [PMID: 38861226 DOI: 10.1080/14728222.2024.2367640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION HIF-1α, a key player in medical science, holds immense significance in therapeutic approaches. This review delves into its complex dynamics, emphasizing the delicate balance required for its modulation. HIF-1α stands as a cornerstone in medical research, its role extending to therapeutic strategies. This review explores the intricate interplay surrounding HIF-1α, highlighting its critical involvement and the necessity for cautious modulation. AREAS COVERED In sickle cell disease (SCD), HIF-1α's potential to augment fetal hemoglobin (HbF) production and mitigate symptoms is underscored. Furthermore, its role in cancer is examined, particularly its influence on survival in hypoxic tumor microenvironments, angiogenesis, and metastasis. The discussion extends to the intricate relationship between HIF-1α modulation and cancer risks in SCD patients, emphasizing the importance of balancing therapeutic benefits and potential hazards. EXPERT OPINION Managing HIF-1α modulation in SCD patients requires a nuanced approach, considering therapeutic potential alongside associated risks, especially in exacerbating cancer risks. An evolutionary perspective adds depth, highlighting adaptations in populations adapted to low-oxygen environments and aligning cancer cell metabolism with primitive cells. The role of HIF-1α as a therapeutic target is discussed within the context of complex cancer biology and metabolism, acknowledging varied responses across diverse cancers influenced by intricate evolutionary adaptations.
Collapse
Affiliation(s)
- Saba Ubaid
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Yusra Laiq
- Department of Biotechnology, Era University, Lucknow, India
| | | | - Vipin Kumar
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vivek Singh
- Department of Biochemistry, King George's Medical University, Lucknow, India
| |
Collapse
|
3
|
Casimir M, Colard M, Dussiot M, Roussel C, Martinez A, Peyssonnaux C, Mayeux P, Benghiat S, Manceau S, Francois A, Marin N, Pène F, Buffet PA, Hermine O, Amireault P. Erythropoietin downregulates red blood cell clearance, increasing transfusion efficacy in severely anemic recipients. Am J Hematol 2023; 98:1923-1933. [PMID: 37792521 DOI: 10.1002/ajh.27117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Red blood cells (RBC) transfusion is used to alleviate symptoms and prevent complications in anemic patients by restoring oxygen delivery to tissues. RBC transfusion efficacy, that can be measured by a rise in hemoglobin (Hb) concentration, is influenced by donor-, product-, and recipient-related characteristics. In some studies, severe pre-transfusion anemia is associated with a greater than expected Hb increment following transfusion but the biological mechanism underpinning this relationship remains poorly understood. We conducted a prospective study in critically ill patients and quantified Hb increment following one RBC transfusion. In a murine model, we investigated the possibility that, in conjunction with the host erythropoietic response, the persistence of transfused donor RBC is improved to maintain a highest RBC biomass. We confirmed a correlation between a greater Hb increment and a deeper pre-transfusion anemia in a cohort of 17 patients. In the mouse model, Hb increment and post-transfusion recovery were increased in anemic recipients. Post-transfusion RBC recovery was improved in hypoxic mice or those receiving an erythropoiesis-stimulating agent and decreased in those treated with erythropoietin (EPO)-neutralizing antibodies, suggesting that EPO signaling is necessary to observe this effect. Irradiated recipients also showed decreased post-transfusion RBC recovery. The EPO-induced post-transfusion RBC recovery improvement was abrogated in irradiated or in macrophage-depleted recipients, but maintained in splenectomized recipients, suggesting a mechanism requiring erythroid progenitors and macrophages, but which is not spleen-specific. Our study highlights a physiological role of EPO in downregulating post-transfusion RBC clearance, contributing to maintain a vital RBC biomass to rapidly cope with hypoxemia.
Collapse
Affiliation(s)
- Madeleine Casimir
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Département d'Hématologie, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
- Laboratory of Excellence GR-Ex, Paris, France
| | - Martin Colard
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Département d'Hématologie, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
- Laboratory of Excellence GR-Ex, Paris, France
| | - Michael Dussiot
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Camille Roussel
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité et Université des Antilles, INSERM, BIGR, Paris, France
- Laboratoire d'Hématologie Générale, Hôpital Universitaire Necker Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Anaïs Martinez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Patrick Mayeux
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Samantha Benghiat
- Département d'Hématologie, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Sandra Manceau
- Laboratory of Excellence GR-Ex, Paris, France
- Biotherapy Department, French National Sickle Cell Disease Referral Center, Clinical Investigation Center, Hôpital Necker, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Anne Francois
- Établissement Français du Sang d'Ile de France, Site Hôpital Européen Georges Pompidou, Paris, France
| | - Nathalie Marin
- Service de Médecine Intensive-Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris, France
| | - Frédéric Pène
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Médecine Intensive-Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université Paris Cité, Paris, France
| | - Pierre A Buffet
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité et Université des Antilles, INSERM, BIGR, Paris, France
- Service Des Maladies Infectieuses et Tropicales, Hôpital Universitaire Necker Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Département d'Hématologie, Hôpital Universitaire Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Pascal Amireault
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Institut Imagine, Université Paris Cité, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Université Paris Cité et Université des Antilles, INSERM, BIGR, Paris, France
| |
Collapse
|
4
|
Choueiri TK, Powles T, Voss MH, Plimack ER, Gurney H, Song Y, Perini RF, Rodriguez-Lopez K, Rini BI. LITESPARK-012: pembrolizumab plus lenvatinib with or without belzutifan or quavonlimab for advanced renal cell carcinoma. Future Oncol 2023; 19:2631-2640. [PMID: 37882432 DOI: 10.2217/fon-2023-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Combination treatment with immunotherapy agents and/or vascular endothelial growth factor tyrosine kinase inhibitors are a standard of care for patients with advanced clear cell renal cell carcinoma (ccRCC). Novel therapeutic combinations that include the hypoxia-inducible factor 2α inhibitor belzutifan and the cytotoxic T-lymphocyte-associated protein 4 inhibitor quavonlimab are being investigated for their potential to further improve patient outcomes. This protocol describes the rationale and design of the randomized, phase III LITESPARK-012 study, which will evaluate the efficacy and safety of pembrolizumab plus lenvatinib with or without belzutifan or quavonlimab as first-line treatment for advanced ccRCC. Results from this study may support triplet combination therapies as a potential new standard of care for advanced ccRCC. Clinical trial registry: NCT04736706 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Toni K Choueiri
- Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Thomas Powles
- Barts Health NHS Trust & the Royal Free NHS Foundation Trust, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Martin H Voss
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Howard Gurney
- Westmead Hospital, Sydney, NSW, Australia
- Macquarie University Hospital, Sydney, NSW, Australia
| | - Yue Song
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | - Brian I Rini
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
5
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Jain C, Parimi S, Huang W, Hannifin S, Singhal R, Das NK, Lee KE, Shah YM. Myeloid Hif2α is not essential to maintain systemic iron homeostasis. Exp Hematol 2023; 125-126:25-36.e1. [PMID: 37562670 PMCID: PMC11046397 DOI: 10.1016/j.exphem.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Dietary consumption serves as the primary source of iron uptake, and erythropoiesis acts as a major regulator of systemic iron demand. In addition to intestinal iron absorption, macrophages play a crucial role in recycling iron from senescent red blood cells. The kidneys are responsible for the production of erythropoietin (Epo), which stimulates erythropoiesis, whereas the liver plays a central role in producing the iron-regulatory hormone hepcidin. The transcriptional regulator hypoxia-inducible factor (HIF)2α has a central role in the regulation of Epo, hepcidin, and intestinal iron absorption and therefore plays a crucial role in coordinating the tissue crosstalk to maintain systemic iron demands. However, the precise involvement of Hif2α in macrophages in terms of iron homeostasis remains uncertain. Our study demonstrates that deleting Hif2α in macrophages does not disrupt the expression of iron transporters or basal erythropoiesis. Mice lacking Hif2α in myeloid cells exhibited no discernible differences in hemodynamic parameters, including hemoglobin concentrations and erythrocyte count, when compared with littermate controls. This similarity was observed under conditions of both dietary iron deficiency and acute erythropoietic demand. Notably, we observed a significant increase in the expression of iron transporters in the duodenum during iron deficiency, indicating heightened iron absorption. Therefore, our findings suggest that the disruption of Hif2α in myeloid cells does not significantly impact systemic iron homeostasis under normal physiologic conditions. However, its disruption induces adaptive physiologic changes in response to elevated iron demand, potentially serving as a mechanism to sustain increased erythropoietic demand.
Collapse
Affiliation(s)
- Chesta Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Sanjana Parimi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI; Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI; Department of Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Sean Hannifin
- Program in Immunology, University of Michigan, Ann Arbor, MI
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Kyoung Eun Lee
- Department of Pharmacology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
7
|
Jorgensen K, Song D, Weinstein J, Garcia OA, Pearson LN, Inclán M, Rivera-Chira M, León-Velarde F, Kiyamu M, Brutsaert TD, Bigham AW, Lee FS. High-Altitude Andean H194R HIF2A Allele Is a Hypomorphic Allele. Mol Biol Evol 2023; 40:msad162. [PMID: 37463421 PMCID: PMC10370452 DOI: 10.1093/molbev/msad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.
Collapse
Affiliation(s)
- Kelsey Jorgensen
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julien Weinstein
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed A Garcia
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, State College, PA, USA
| | - María Inclán
- División de. Estudios Políticos, Centro de Investigación y Docencia Económicas, Mexico City, CDMX, Mexico
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Fabiola León-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Motzer RJ, Schmidinger M, Eto M, Suarez C, Figlin R, Liu Y, Perini R, Zhang Y, Heng DY. LITESPARK-011: belzutifan plus lenvatinib vs cabozantinib in advanced renal cell carcinoma after anti-PD-1/PD-L1 therapy. Future Oncol 2023; 19:113-121. [PMID: 36752726 DOI: 10.2217/fon-2022-0802] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The first-in-class, small molecule HIF-2α inhibitor, belzutifan, has demonstrated promising antitumor activity in previously treated patients with clear cell renal cell carcinoma (RCC). HIF-2α also regulates VEGF expression and is involved in resistance to anti-VEGF therapy. This study describes the rationale and design for a randomized, phase III study evaluating efficacy and safety of belzutifan plus the tyrosine kinase inhibitor (TKI) lenvatinib versus the TKI cabozantinib in patients with advanced RCC progressing after anti-PD-1/PD-L1 therapy in the first- or second-line setting or as adjuvant therapy. Considering the unmet need for effective and tolerable treatment of advanced RCC following immune checkpoint inhibitors, belzutifan plus lenvatinib may have a positive benefit/risk profile. Clinical Trial Registration: NCT04586231 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Robert J Motzer
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Masatoshi Eto
- Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Cristina Suarez
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| | - Robert Figlin
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
10
|
Wang N, Hua J, Fu Y, An J, Chen X, Wang C, Zheng Y, Wang F, Ji Y, Li Q. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol 2023; 11:1125723. [PMID: 36923253 PMCID: PMC10008962 DOI: 10.3389/fcell.2023.1125723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Jing Hua
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yuhua Fu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Jiading District, Shanghai, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Chuancui Wang
- Department of Pulmonary and Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Yanghong Zheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| |
Collapse
|
11
|
Future perspectives of anemia management in chronic kidney disease using hypoxia-inducible factor-prolyl hydroxylase inhibitors. Pharmacol Ther 2022; 239:108272. [DOI: 10.1016/j.pharmthera.2022.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
|
12
|
Feng R, Mayuranathan T, Huang P, Doerfler PA, Li Y, Yao Y, Zhang J, Palmer LE, Mayberry K, Christakopoulos GE, Xu P, Li C, Cheng Y, Blobel GA, Simon MC, Weiss MJ. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature 2022; 610:783-790. [PMID: 36224385 PMCID: PMC9773321 DOI: 10.1038/s41586-022-05312-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to β-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2β2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and β-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1β heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for β-haemoglobinopathies.
Collapse
Affiliation(s)
- Ruopeng Feng
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip A Doerfler
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Zhang
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lance E Palmer
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Peng Xu
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Cheng
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
13
|
Koury MJ, Agarwal R, Chertow GM, Eckardt K, Fishbane S, Ganz T, Haase VH, Hanudel MR, Parfrey PS, Pergola PE, Roy‐Chaudhury P, Tumlin JA, Anders R, Farag YMK, Luo W, Minga T, Solinsky C, Vargo DL, Winkelmayer WC. Erythropoietic effects of vadadustat in patients with anemia associated with chronic kidney disease. Am J Hematol 2022; 97:1178-1188. [PMID: 35751858 PMCID: PMC9543410 DOI: 10.1002/ajh.26644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Patients with chronic kidney disease (CKD) develop anemia largely because of inappropriately low erythropoietin (EPO) production and insufficient iron available to erythroid precursors. In four phase 3, randomized, open-label, clinical trials in dialysis-dependent and non-dialysis-dependent patients with CKD and anemia, the hypoxia-inducible factor prolyl hydroxylase inhibitor, vadadustat, was noninferior to the erythropoiesis-stimulating agent, darbepoetin alfa, in increasing and maintaining target hemoglobin concentrations. In these trials, vadadustat increased the concentrations of serum EPO, the numbers of circulating erythrocytes, and the numbers of circulating reticulocytes. Achieved hemoglobin concentrations were similar in patients treated with either vadadustat or darbepoetin alfa, but compared with patients receiving darbepoetin alfa, those receiving vadadustat had erythrocytes with increased mean corpuscular volume and mean corpuscular hemoglobin, while the red cell distribution width was decreased. Increased serum transferrin concentrations, as measured by total iron-binding capacity, combined with stable serum iron concentrations, resulted in decreased transferrin saturation in patients randomized to vadadustat compared with patients randomized to darbepoetin alfa. The decreases in transferrin saturation were associated with relatively greater declines in serum hepcidin and ferritin in patients receiving vadadustat compared with those receiving darbepoetin alfa. These results for serum transferrin saturation, hepcidin, ferritin, and erythrocyte indices were consistent with improved iron availability in the patients receiving vadadustat. Thus, overall, vadadustat had beneficial effects on three aspects of erythropoiesis in patients with anemia associated with CKD: increased endogenous EPO production, improved iron availability to erythroid cells, and increased reticulocytes in the circulation.
Collapse
Affiliation(s)
- Mark J. Koury
- Division of Hematology/Oncology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Rajiv Agarwal
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Kai‐Uwe Eckardt
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - Steven Fishbane
- Division of Nephrology, Department of MedicineHofstra Northwell School of MedicineGreat NeckNew YorkUSA
| | - Tomas Ganz
- Department of Medicine and Pathology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Volker H. Haase
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Mark R. Hanudel
- Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Patrick S. Parfrey
- Department of MedicineMemorial UniversitySt John'sNewfoundland and LabradorCanada
| | | | | | | | | | | | - Wenli Luo
- Akebia Therapeutics, Inc.CambridgeMassachusettsUSA
| | - Todd Minga
- Akebia Therapeutics, Inc.CambridgeMassachusettsUSA
| | | | | | | |
Collapse
|
14
|
Thévenod F, Schreiber T, Lee WK. Renal hypoxia-HIF-PHD-EPO signaling in transition metal nephrotoxicity: friend or foe? Arch Toxicol 2022; 96:1573-1607. [PMID: 35445830 PMCID: PMC9095554 DOI: 10.1007/s00204-022-03285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia–PHD–HIF–EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysiology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become available for therapy.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany.
| | - Timm Schreiber
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School EWL, Bielefeld University, R.1 B2-13, Morgenbreede 1, 33615 Bielefeld, Germany
| |
Collapse
|
15
|
Davis L, Recktenwald M, Hutt E, Fuller S, Briggs M, Goel A, Daringer N. Targeting HIF-2α in the Tumor Microenvironment: Redefining the Role of HIF-2α for Solid Cancer Therapy. Cancers (Basel) 2022; 14:1259. [PMID: 35267567 PMCID: PMC8909461 DOI: 10.3390/cancers14051259] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit, driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and future directions.
Collapse
Affiliation(s)
- Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Schuyler Fuller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madison Briggs
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Nichole Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
16
|
Yasuoka Y, Izumi Y, Fukuyama T, Omiya H, Pham TD, Inoue H, Oshima T, Yamazaki T, Uematsu T, Kobayashi N, Shimada Y, Nagaba Y, Yamashita T, Mukoyama M, Sato Y, Wall SM, Sands JM, Takahashi N, Kawahara K, Nonoguchi H. Effects of Roxadustat on Erythropoietin Production in the Rat Body. Molecules 2022; 27:1119. [PMID: 35164384 PMCID: PMC8838165 DOI: 10.3390/molecules27031119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
Anemia is a major complication of chronic renal failure. To treat this anemia, prolylhydroxylase domain enzyme (PHD) inhibitors as well as erythropoiesis-stimulating agents (ESAs) have been used. Although PHD inhibitors rapidly stimulate erythropoietin (Epo) production, the precise sites of Epo production following the administration of these drugs have not been identified. We developed a novel method for the detection of the Epo protein that employs deglycosylation-coupled Western blotting. With protein deglycosylation, tissue Epo contents can be quantified over an extremely wide range. Using this method, we examined the effects of the PHD inhibitor, Roxadustat (ROX), and severe hypoxia on Epo production in various tissues in rats. We observed that ROX increased Epo mRNA expression in both the kidneys and liver. However, Epo protein was detected in the kidneys but not in the liver. Epo protein was also detected in the salivary glands, spleen, epididymis and ovaries. However, both PHD inhibitors (ROX) and severe hypoxia increased the Epo protein abundance only in the kidneys. These data show that, while Epo is produced in many tissues, PHD inhibitors as well as severe hypoxia regulate Epo production only in the kidneys.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (N.T.); (K.K.)
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (H.I.); (M.M.)
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Haruki Omiya
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Iwate, Japan; (H.O.); (T.Y.)
| | - Truyen D. Pham
- Renal Division, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB Room 3313, Atlanta, GA 30322, USA; (T.D.P.); (S.M.W.); (J.M.S.)
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (H.I.); (M.M.)
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (N.T.); (K.K.)
| | - Taiga Yamazaki
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Takayuki Uematsu
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Yoshitaka Shimada
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| | - Yasushi Nagaba
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Iwate, Japan; (H.O.); (T.Y.)
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (H.I.); (M.M.)
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Kanagawa, Japan;
| | - Susan M. Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB Room 3313, Atlanta, GA 30322, USA; (T.D.P.); (S.M.W.); (J.M.S.)
| | - Jeff M. Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB Room 3313, Atlanta, GA 30322, USA; (T.D.P.); (S.M.W.); (J.M.S.)
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (N.T.); (K.K.)
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (N.T.); (K.K.)
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| |
Collapse
|
17
|
Bapst AM, Knöpfel T, Nolan KA, Imeri F, Schuh CD, Hall AM, Guo J, Katschinski DM, Wenger RH. Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin-producing cells. J Cell Physiol 2022; 237:2420-2433. [PMID: 35014036 PMCID: PMC9303970 DOI: 10.1002/jcp.30677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
Abstract
In adult mammals, the kidney is the main source of circulating erythropoietin (Epo), the master regulator of erythropoiesis. In vivo data in mice demonstrated multiple subtypes of interstitial renal Epo‐producing (REP) cells. To analyze the differentiation plasticity of fibroblastoid REP cells, we used a transgenic REP cell reporter mouse model to generate conditionally immortalized REP‐derived (REPD) cell lines. Under nonpermissive conditions, REPD cells ceased from proliferation and acquired a stem cell‐like state, with strongly enhanced hypoxia‐inducible factor 2 (HIF‐2α), stem cell antigen 1 (SCA‐1), and CD133 expression, but also enhanced alpha‐smooth muscle actin (αSMA) expression, indicating myofibroblastic signaling. These cells maintained the “on‐off” nature of Epo expression observed in REP cells in vivo, whereas other HIF target genes showed a more permanent regulation. Like REP cells in vivo, REPD cells cultured in vitro generated long tunneling nanotubes (TNTs) that aligned with endothelial vascular structures, were densely packed with mitochondria and became more numerous under hypoxic conditions. Although inhibition of mitochondrial oxygen consumption blunted HIF signaling, removal of the TNTs did not affect or even enhance the expression of HIF target genes. Apart from pericytes, REPD cells readily differentiated into neuroglia but not adipogenic, chondrogenic, or osteogenic lineages, consistent with a neuronal origin of at least a subpopulation of REP cells. In summary, these results suggest an unprecedented combination of differentiation features of this unique cell type.
Collapse
Affiliation(s)
- Andreas M Bapst
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Karen A Nolan
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Faik Imeri
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| | - Claus D Schuh
- National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Andrew M Hall
- National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland.,Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Jia Guo
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Dörthe M Katschinski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Centre of Competence in Research "Kidney.CH", University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Li F, Wei R, Huang M, Chen J, Li P, Ma Y, Chen X. Luteolin can ameliorate renal interstitial fibrosis-induced renal anaemia through the SIRT1/FOXO3 pathway. Food Funct 2022; 13:11896-11914. [DOI: 10.1039/d2fo02477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luteolin is a natural flavonoid exhibiting multiple pharmacological activities.
Collapse
Affiliation(s)
- Fei Li
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ribao Wei
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Mengjie Huang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jianwen Chen
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Ping Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Yue Ma
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xiangmei Chen
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| |
Collapse
|
19
|
Mima A. Hypoxia-inducible factor-prolyl hydroxylase inhibitors for renal anemia in chronic kidney disease: Advantages and disadvantages. Eur J Pharmacol 2021; 912:174583. [PMID: 34678238 DOI: 10.1016/j.ejphar.2021.174583] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Anemia is a common feature and complication of chronic kidney disease (CKD). Erythropoiesis-stimulating agents (ESAs) and recombinant human erythropoietin have been used widely in renal anemia treatment. Recently, hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PHIs) that may improve the treatment of renal anemia patients were launched. Previous studies indicated that HIF-PHIs may decrease hepcidin levels and modulate iron metabolism, thereby increasing total iron-binding capacity and reducing the need for iron supplementation. Furthermore, HIF-PHIs can reduce inflammation and oxidative stress in CKD. Recombinant erythropoietin has become a routine treatment for patients with CKD and end-stage renal disease with relatively few adverse effects. However, higher doses of recombinant erythropoietin have been demonstrated to be an independent predictor of mortality in patients under hemodialysis. Phase III clinical trials of HIF-PHIs in patients with anemia and dialysis-dependent CKD have shown their efficacy and safety in both non-dialysis and dialysis CKD patients. However, HIFα binds to specific hypoxia-response elements in the vascular endothelial growth factor or retinoic acid-related orphan receptor gamma t (RORγt) promoter, which may be involved in the progression of cancer, psoriasis, and rheumatoid arthritis. In this paper, we have summarized the mechanism, clinical application, and clinical trials of HIF-PHIs in the treatment of renal anemia and aimed to provide an overview of the new drugs in clinical practice, as well as reconsider the advantages and disadvantages of HIF-PHIs and ESAs. Presently, there are not enough clinical studies examining the effects of long-term administration of HIF-PHIs. Therefore, further studies will be needed.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
20
|
Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL, Oudard S, Else T, Maranchie JK, Welsh SJ, Thamake S, Park EK, Perini RF, Linehan WM, Srinivasan R. Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N Engl J Med 2021; 385:2036-2046. [PMID: 34818478 PMCID: PMC9275515 DOI: 10.1056/nejmoa2103425] [Citation(s) in RCA: 326] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Patients with von Hippel-Lindau (VHL) disease have a high incidence of renal cell carcinoma owing to VHL gene inactivation and constitutive activation of the transcription factor hypoxia-inducible factor 2α (HIF-2α). METHODS In this phase 2, open-label, single-group trial, we investigated the efficacy and safety of the HIF-2α inhibitor belzutifan (MK-6482, previously called PT2977), administered orally at a dose of 120 mg daily, in patients with renal cell carcinoma associated with VHL disease. The primary end point was objective response (complete or partial response) as measured according to the Response Evaluation Criteria in Solid Tumors, version 1.1, by an independent central radiology review committee. We also assessed responses to belzutifan in patients with non-renal cell carcinoma neoplasms and the safety of belzutifan. RESULTS After a median follow-up of 21.8 months (range, 20.2 to 30.1), the percentage of patients with renal cell carcinoma who had an objective response was 49% (95% confidence interval, 36 to 62). Responses were also observed in patients with pancreatic lesions (47 of 61 patients [77%]) and central nervous system hemangioblastomas (15 of 50 patients [30%]). Among the 16 eyes that could be evaluated in 12 patients with retinal hemangioblastomas at baseline, all (100%) were graded as showing improvement. The most common adverse events were anemia (in 90% of the patients) and fatigue (in 66%). Seven patients discontinued treatment: four patients voluntarily discontinued, one discontinued owing to a treatment-related adverse event (grade 1 dizziness), one discontinued because of disease progression as assessed by the investigator, and one patient died (of acute toxic effects of fentanyl). CONCLUSIONS Belzutifan was associated with predominantly grade 1 and 2 adverse events and showed activity in patients with renal cell carcinomas and non-renal cell carcinoma neoplasms associated with VHL disease. (Funded by Merck Sharp and Dohme and others; MK-6482-004 ClinicalTrials.gov number, NCT03401788.).
Collapse
Affiliation(s)
- Eric Jonasch
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Frede Donskov
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Othon Iliopoulos
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - W Kimryn Rathmell
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Vivek K Narayan
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Benjamin L Maughan
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Stephane Oudard
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Tobias Else
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Jodi K Maranchie
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Sarah J Welsh
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Sanjay Thamake
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Eric K Park
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Rodolfo F Perini
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - W Marston Linehan
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| | - Ramaprasad Srinivasan
- From the University of Texas M.D. Anderson Cancer Center, Houston (E.J.); Aarhus University Hospital, Aarhus, Denmark (F.D.); Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston (O.I.); Vanderbilt University Medical Center, Nashville (W.K.R.); University of Pennsylvania, Philadelphia (V.K.N.); the University of Utah, Salt Lake City (B.L.M.); Hôpital Européen Georges-Pompidou, University of Paris, Paris (S.O.); the University of Michigan, Ann Arbor (T.E.); the University of Pittsburgh, Pittsburgh (J.K.M.); Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom (S.J.W.); Merck, Kenilworth, NJ (S.T., E.K.P., R.F.P.); and the Center for Cancer Research, National Cancer Institute, Bethesda, MD (W.M.L., R.S.)
| |
Collapse
|
21
|
Weber Z, Sam A, Pena A, Henderson C, McCurnin D, Bhalala U, Garcia R, King J, Carr N. Understanding increased ferritin levels in pediatric ECMO patients. Blood Cells Mol Dis 2021; 92:102617. [PMID: 34656943 DOI: 10.1016/j.bcmd.2021.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Abnormally high serum ferritin levels have been reported during pediatric ECMO, attributed to frequent red blood cell transfusion and suggestive of iron overload. However, the utility of ferritin for diagnosing iron overload is complicated by its response as an acute-phase reactant. In this study, we aimed to assess the utility of ferritin for diagnosing ECMO-related iron overload, with secondary aims of understanding its relationship with inflammation and erythropoiesis. Ferritin was elevated in all pediatric ECMO runs (median 459 ng/ml, IQR = 327.3-694.4). While intermittent elevations in serum iron were observed, all normalized prior to decannulation. Unreported previously, erythropoietin (EPO) remained well above normative values prior to and throughout ECMO runs, despite frequent transfusion and exposure to hyperoxia. Ferritin correlated poorly with serum iron [r(80) = 0.05, p = 0.65], but correlated well with IL-6 [r(76) = 0.48, p < 0.001] and EPO [r(81) = 0.55, p < 0.001]. We suggest that serum ferritin is a poor biomarker of iron overload in ECMO patients, and that future investigation into its relationship with EPO is warranted.
Collapse
Affiliation(s)
- Zachary Weber
- Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - Ashley Sam
- Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Alejandra Pena
- University of Texas Health Science Center San Antonio Joe and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
| | - Cody Henderson
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Donald McCurnin
- University of Texas Health Science Center San Antonio Joe and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
| | - Utpal Bhalala
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Roger Garcia
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | | | - Nicholas Carr
- Brooke Army Medical Center, Fort Sam Houston, TX, USA; University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Leu T, Fandrey J, Schreiber T. (H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflugers Arch 2021; 473:1287-1299. [PMID: 34251509 PMCID: PMC8302505 DOI: 10.1007/s00424-021-02600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
HIF-2 represents a tissue-specific isoform of the hypoxia-inducible factors (HIFs) which regulate oxygen homeostasis in the cell. In acute oxygen deficiency, HIF transcription factors ensure the timely restoration of adequate oxygen supply. Particularly in medical conditions such as stroke, which have a high mortality risk due to ischaemic brain damage, rapid recovery of oxygen supply is of extraordinary importance. Nevertheless, the endogenous mechanisms are often not sufficient to respond to severe hypoxic stress with restoring oxygenation and fail to protect the tissue. Herein, we analysed murine neurospheres without functioning HIF-2α and found that special importance in the differentiation of neurons can be attributed to HIF-2 in the brain. Other processes, such as cell migration and signal transduction of different signalling pathways, appear to be mediated to some extent via HIF-2 and illustrate the function of HIF-2 in brain remodelling. Without hypoxic stress, HIF-2 in the brain presumably focuses on the fine-tuning of the neural network. However, a therapeutically increase of HIF-2 has the potential to regenerate or replace destroyed brain tissue and help minimize the consequences of an ischaemic stroke.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany.
| | - Timm Schreiber
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, 58453, Witten, Germany
| |
Collapse
|
23
|
Au HK, Peng SW, Guo CL, Lin CC, Wang YL, Kuo YC, Law TY, Ho HN, Ling TY, Huang YH. Niche Laminin and IGF-1 Additively Coordinate the Maintenance of Oct-4 Through CD49f/IGF-1R-Hif-2α Feedforward Loop in Mouse Germline Stem Cells. Front Cell Dev Biol 2021; 9:646644. [PMID: 34381769 PMCID: PMC8351907 DOI: 10.3389/fcell.2021.646644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanism on how extracellular matrix (ECM) cooperates with niche growth factors and oxygen tension to regulate the self-renewal of embryonic germline stem cells (GSCs) still remains unclear. Lacking of an appropriate in vitro cell model dramatically hinders the progress. Herein, using a serum-free culture system, we demonstrated that ECM laminin cooperated with hypoxia and insulin-like growth factor 1 receptor (IGF-1R) to additively maintain AP activity and Oct-4 expression of AP+GSCs. We found the laminin receptor CD49f expression in d2 testicular GSCs that were surrounded by laminin. Laminin and hypoxia significantly increased the GSC stemness-related genes, including Hif-2α, Oct-4, IGF-1R, and CD49f. Cotreatment of IGF-1 and laminin additively increased the expression of IGF-IR, CD49f, Hif-2α, and Oct-4. Conversely, silencing IGF-1R and/or CD49f decreased the expression of Hif-2α and Oct-4. The underlying mechanism involved CD49f/IGF1R-(PI3K/AKT)-Hif-2α signaling loop, which in turn maintains Oct-4 expression, symmetric self-renewal, and cell migration. These findings reveal the additive niche laminin/IGF-IR network during early GSC development.
Collapse
Affiliation(s)
- Heng-Kien Au
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Syue-Wei Peng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chien-Chia Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lin Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsz-Yau Law
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hua Huang
- Taipei Medical University (TMU) Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Schneider Gasser EM, Gassmann M, Thiersch M. HIF-2: an important player in neuronal response to ischemia. Pflugers Arch 2021; 473:1175-1176. [PMID: 34245376 DOI: 10.1007/s00424-021-02601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland. .,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland.
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIPH), University of Zurich, Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIPH), University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Chen PM, Wilson PC, Shyer JA, Veselits M, Steach HR, Cui C, Moeckel G, Clark MR, Craft J. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci Transl Med 2021; 12:12/538/eaay1620. [PMID: 32269165 DOI: 10.1126/scitranslmed.aay1620] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/06/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
The kidney is a frequent target of autoimmune injury, including in systemic lupus erythematosus; however, how immune cells adapt to kidney's unique environment and contribute to tissue damage is unknown. We found that renal tissue, which normally has low oxygen tension, becomes more hypoxic in lupus nephritis. In the injured mouse tissue, renal-infiltrating CD4+ and CD8+ T cells express hypoxia-inducible factor-1 (HIF-1), which alters their cellular metabolism and prevents their apoptosis in hypoxia. HIF-1-dependent gene-regulated pathways were also up-regulated in renal-infiltrating T cells in human lupus nephritis. Perturbation of these environmental adaptations by selective HIF-1 blockade inhibited infiltrating T cells and reversed tissue hypoxia and injury in murine models of lupus. The results suggest that targeting HIF-1 might be effective for treating renal injury in autoimmune diseases.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Parker C Wilson
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin A Shyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Margaret Veselits
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Holly R Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marcus R Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, Departments of Medicine and Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Demandt JAF, van Kuijk K, Theelen TL, Marsch E, Heffron SP, Fisher EA, Carmeliet P, Biessen EAL, Sluimer JC. Whole-Body Prolyl Hydroxylase Domain (PHD) 3 Deficiency Increased Plasma Lipids and Hematocrit Without Impacting Plaque Size in Low-Density Lipoprotein Receptor Knockout Mice. Front Cell Dev Biol 2021; 9:664258. [PMID: 34055796 PMCID: PMC8160238 DOI: 10.3389/fcell.2021.664258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background and aims: Atherosclerosis is an important cause of clinical cardiovascular events. Atherosclerotic plaques are hypoxic, and reoxygenation improves plaque phenotype. Central players in hypoxia are hypoxia inducible factors (HIF) and their regulators, HIF-prolyl hydroxylase (PHD) isoforms 1, 2, and 3. PHD inhibitors, targeting all three isoforms, are used to alleviate anemia in chronic kidney disease. Likewise, whole-body PHD1 and PHD2ko ameliorate hypercholesterolemia and atherogenesis. As the effect of whole-body PHD3 is unknown, we investigated the effects of germline whole-body PHD3ko on atherosclerosis. Approach and Results: To initiate hypercholesterolemia and atherosclerosis low-density lipoprotein receptor knockout (LDLrko) and PHD3/LDLr double knockout (PHD3dko), mice were fed a high-cholesterol diet. Atherosclerosis and hypoxia marker pimonidazole were analyzed in aortic roots and brachiocephalic arteries. In contrast to earlier reports on PHD1- and PHD2-deficient mice, a small elevation in the body weight and an increase in the plasma cholesterol and triglyceride levels were observed after 10 weeks of diet. Dyslipidemia might be explained by an increase in hepatic mRNA expression of Cyp7a1 and fatty acid synthase, while lipid efflux of PHD3dko macrophages was comparable to controls. Despite dyslipidemia, plaque size, hypoxia, and phenotype were not altered in the aortic root or in the brachiocephalic artery of PHD3dko mice. Additionally, PHD3dko mice showed enhanced blood hematocrit levels, but no changes in circulating, splenic or lymphoid immune cell subsets. Conclusion: Here, we report that whole-body PHD3dko instigated an unfavorable lipid profile and increased hematocrit, in contrast to other PHD isoforms, yet without altering atherosclerotic plaque development.
Collapse
Affiliation(s)
- Jasper A. F. Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas L. Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Elke Marsch
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Edward A. Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Leuven, Belgium
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Wojan F, Stray-Gundersen S, Nagel MJ, Lalande S. Short exposure to intermittent hypoxia increases erythropoietin levels in healthy individuals. J Appl Physiol (1985) 2021; 130:1955-1960. [PMID: 33955265 DOI: 10.1152/japplphysiol.00941.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Few minutes of hypoxic exposure stabilizes hypoxia-inducible factor-1α, resulting in erythropoietin (EPO) gene transcription and production. The objective of this study was to identify the shortest intermittent hypoxia protocol necessary to increase serum EPO levels in healthy individuals. In a first experiment, spontaneous EPO changes under normoxia (NORM) and the EPO response to five 4-min cycles of intermittent hypoxia (IH5) were determined in six individuals. In a second experiment, the EPO response to eight 4-min cycles of intermittent hypoxia (IH8) and 120 min of continuous hypoxia (CONT) was determined in six individuals. All hypoxic protocols were performed at a targeted arterial oxygen saturation of 80%. There was no significant change in EPO levels in response to normoxia or in response to five cycles of intermittent hypoxia (NORM: 9.5 ± 1.8 to 10.5 ± 1.8, IH5: 11.4 ± 2.3 to 13.4 ± 2.1 mU/mL, main effect for time P = 0.35). There was an increase in EPO levels in response to eight cycles of intermittent hypoxia and 120 min of continuous hypoxia, with peak levels observed 4.5 h after the onset of hypoxia (IH8: 11.2 ± 2.0 to 16.7 ± 2.2, CONT: 11.1 ± 3.8 to 19.4 ± 3.8 mU/mL, main effect for time P < 0.01). Eight cycles of intermittent hypoxia increased EPO levels to a similar extent as 120 min of continuous hypoxia (main effect for condition P = 0.36). Eight 4-min cycles of intermittent hypoxia represent the shortest protocol to increase serum EPO levels in healthy individuals.NEW & NOTEWORTHY The objective of this study was to identify the shortest intermittent hypoxia protocol necessary to increase serum erythropoietin levels in healthy individuals. Eight 4-min bouts of intermittent hypoxia, representing a hypoxic duration of 32 min at an arterial oxygen saturation of 80%, significantly increased erythropoietin levels in healthy individuals. These findings suggest that a short session of intermittent hypoxia has the potential to increase oxygen-carrying capacity.
Collapse
Affiliation(s)
- Frank Wojan
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Sten Stray-Gundersen
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Mercedes J Nagel
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Sophie Lalande
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
28
|
Mallik N, Das R, Malhotra P, Sharma P. Congenital erythrocytosis. Eur J Haematol 2021; 107:29-37. [PMID: 33840141 DOI: 10.1111/ejh.13632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Erythrocytosis, or increased red cell mass, may be labeled as primary or secondary, depending on whether the molecular defect is intrinsic to the red blood cells/their precursors or extrinsic to them, the latter being typically associated with elevated erythropoietin (EPO) levels. Inherited/congenital erythrocytosis (CE) of both primary and secondary types is increasingly recognized as the cause in many patients in whom acquired, especially neoplastic causes have been excluded. During the past two decades, the underlying molecular mechanisms of CE are increasingly getting unraveled. Gain-in-function mutations in the erythropoietin receptor gene were among the first to be characterized in a disorder termed primary familial and congenital polycythemia. Another set of mutations affect the components of the oxygen-sensing pathway. Under normoxic conditions, the hypoxia-inducible factor (HIF), upon hydroxylation by the prolyl-4-hydroxylase domain protein 2 (PHD2) enzyme, is degraded by the von Hippel-Lindau protein. In hypoxic conditions, failure of prolyl hydroxylation leads to stabilization of HIF and activation of the EPO gene. CE has been found to be caused by loss-of-function mutations in VHL and PHD2/EGLN1 as well as gain-of-function mutations in HIF-2α (EPAS1), all resulting in constitutive activation of EPO signaling. Apart from these, globin gene mutations leading to formation of high oxygen affinity hemoglobins also cause CE. Rarely, bisphosphoglycerate mutate mutations, affecting the 2,3-bisphosphoglycerate levels, can increase the oxygen affinity of hemoglobin and cause CE. This narrative review examines the current mutational spectrum of CE and the distinctive pathogenetic mechanisms that give rise to this increasingly recognized condition in various parts of the world.
Collapse
Affiliation(s)
- Nabhajit Mallik
- Department of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Pankaj Malhotra
- Adult Clinical Hematology Unit, Department of Internal Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Prashant Sharma
- Department of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
29
|
Choueiri TK, Bauer TM, Papadopoulos KP, Plimack ER, Merchan JR, McDermott DF, Michaelson MD, Appleman LJ, Thamake S, Perini RF, Zojwalla NJ, Jonasch E. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat Med 2021; 27:802-805. [PMID: 33888901 DOI: 10.1038/s41591-021-01324-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/17/2021] [Indexed: 12/29/2022]
Abstract
Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor that frequently accumulates in clear cell renal cell carcinoma (ccRCC), resulting in constitutive activation of genes involved in carcinogenesis. Belzutifan (MK-6482, previously known as PT2977) is a potent, selective small molecule inhibitor of HIF-2α. Maximum tolerated dose, safety, pharmacokinetics, pharmacodynamics and anti-tumor activity of belzutifan were evaluated in this first-in-human phase 1 study (NCT02974738). Patients had advanced solid tumors (dose-escalation cohort) or previously treated advanced ccRCC (dose-expansion cohort). Belzutifan was administered orally using a 3 + 3 dose-escalation design, followed by expansion at the recommended phase 2 dose (RP2D) in patients with ccRCC. In the dose-escalation cohort (n = 43), no dose-limiting toxicities occurred at doses up to 160 mg once daily, and the maximum tolerated dose was not reached; the RP2D was 120 mg once daily. Plasma erythropoietin reductions were observed at all doses; erythropoietin concentrations correlated with plasma concentrations of belzutifan. In patients with ccRCC who received 120 mg once daily (n = 55), the confirmed objective response rate was 25% (all partial responses), and the median progression-free survival was 14.5 months. The most common grade ≥3 adverse events were anemia (27%) and hypoxia (16%). Belzutifan was well tolerated and demonstrated preliminary anti-tumor activity in heavily pre-treated patients, suggesting that HIF-2α inhibition might offer an effective treatment for ccRCC.
Collapse
Affiliation(s)
- Toni K Choueiri
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | - Eric Jonasch
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Wang B, Peng YJ, Su X, Zhang C, Nagati JS, Garcia JA, Prabhakar NR. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985) 2021; 130:1122-1132. [PMID: 33539264 DOI: 10.1152/japplphysiol.00817.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory receptor (Olfr) 78 is expressed in the carotid bodies (CB) and participates in CB responses to acute hypoxia. Olfr78 is also expressed in the kidney, which is a major site of erythropoietin (Epo) production by hypoxia. The present study examined the role of Olfr78 in cardiorespiratory and renal Epo gene responses to hypobaric hypoxia (HH), simulating low O2 condition experienced at high altitude. Studies were performed on adult, male wild-type (WT) and Olfr78 null mice treated with 18 h of HH (0.4 atmospheres). HH-treated WT mice exhibited increased baseline breathing, augmented hypoxic ventilatory response, elevated blood pressure, and plasma norepinephrine (NE) levels. These effects were associated with increased baseline CB sensory nerve activity and augmented CB sensory nerve response to subsequent acute hypoxia. In contrast, HH-treated Olfr78 null mice showed an absence of cardiorespiratory and CB sensory nerve responses, suggesting impaired CB-dependent cardiorespiratory adaptations. WT mice responded to HH with activation of the renal Epo gene expression and elevated plasma Epo levels, and these effects were attenuated or absent in Olfr78 null mice. The attenuated Epo activation by HH was accompanied with markedly reduced hypoxia-inducible factor (HIF)-2α protein and reduced activation of HIF-2 target gene Sod-1 in Olfr78 null mice, suggesting impaired transcriptional activation of HIF-2 contributes to attenuated Epo responses to HH. These results demonstrate a hitherto uncharacterized role for Olfr78 in cardiorespiratory adaptations and renal Epo gene activation by HH such as that experienced at high altitude.NEW & NOTEWORTHY In this study, we delineated a previously uncharacterized role for olfactory receptor 78 (Olfr78), a G-protein-coupled receptor in regulation of erythropoietin and cardiorespiratory responses to hypobaric hypoxia. Our results demonstrate a striking loss of cardiorespiratory adaptations accompanied by an equally striking absence of carotid body sensory nerve responses to hypobaric hypoxia in Olfr78 null mice. We further demonstrate a hitherto uncharacterized role for Olfr78 in erythropoietin activation by hypobaric hypoxia.
Collapse
Affiliation(s)
- Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Chongxu Zhang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jason S Nagati
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| | - Joseph A Garcia
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Agarwal AK. Iron metabolism and management: focus on chronic kidney disease. Kidney Int Suppl (2011) 2021; 11:46-58. [PMID: 33777495 PMCID: PMC7983022 DOI: 10.1016/j.kisu.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Anemia is common in patients with chronic kidney disease (CKD) and results from the dysregulation of iron metabolism and erythropoiesis. Hepcidin is a key regulator of iron availability and leads to iron sequestration during the state of iron repletion. Decreases in the level of hepcidin in the presence of hypoxia and/or iron limitation allow for greater iron availability for erythropoiesis. However, kidney excretion of hepcidin decreases as the severity of CKD increases, whereas production of hepcidin is increased under inflammatory conditions often present in patients with CKD, both of which contribute to anemia. Assessment of iron status is, therefore, essential in the treatment of anemia. However, current laboratory tests for the determination of the adequate supply of iron have many limitations, including diurnal variation in the levels of biomarkers, lack of standardized reference methods across laboratories, and confounding by the presence of inflammation. In addition, the current treatment paradigm for anemia of CKD can further disrupt iron homeostasis; for example, treatment with erythropoiesis-stimulating agents in the absence of supplemental iron can induce functional iron deficiency. Moreover, supplemental iron can further increase levels of hepcidin. Several novel therapies, including hypoxia-inducible factor prolyl hydroxylase inhibitors and hepcidin inhibitors/antagonists, have shown promise in attenuating the levels and/or activity of hepcidin in anemia of CKD, thus ensuring the availability of iron for erythropoiesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Department of Medicine, VA Central California Health Care System, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Neumann G, Hottenrott K, Hottenrott L. Der Eisenstoffwechsel und seine Bedeutung für das Höhentraining. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2021. [DOI: 10.1007/s12662-021-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ZusammenfassungEin Eisenmangel und eine katabole Stoffwechsellage behindern die Zunahme des Gesamthämoglobins und damit einen Anstieg der Sauerstofftransportkapazität, sodass die Wirksamkeit des Höhentrainings herabgesetzt ist. Die Eisenhomöostase wird sehr fein durch das hepatische Hormon Hepcidin (HEPC) kontrolliert, welches die Eisenaufnahmefähigkeit der Darmzellen über ein spezielles Protein, dem Ferroportin, kontrolliert. Unter Hypoxie stimuliert das Protein HIF-1 α die Freisetzung des Erythropoitins (EPO). Unzureichende Eisenspeicher und/oder eine Vitamin-B12-Unterversorgung bei Athleten, besonders bei jungen Frauen, sind Wochen vor einem Höhentraining durch eine orale Eisen- und/oder Vitamin-B12-Substitution unter ärztlicher Kontrolle, aufzufüllen. Voraussetzung für eine leistungsfördernde Wirkung des Höhentrainings ist ein mehrmaliger Aufenthalt in mittleren Höhen von 1700 m bis 3000 m. Als Aufenthaltsdauer werden 350 h bis 500 h oder zwei bis drei Wochen empfohlen. Mangelnde Eisenverfügbarkeit und ein Energiedefizit können die Wirksamkeit des Höhentrainings negativ beeinflussen. Liegt aus medizinischer Sicht eine Eisenunterversorgung vor, dann wird zu einer oralen Supplementation vor und während des Höhentrainings geraten. Bei normaler Eisenverfügbarkeit führt die gesteigerte Hämatopoese durch EPO zur Zunahme des Gesamthämoglobins. Die Wirkung des hypoxieinduzierten Hämoglobinanstiegs ist nach dem Höhentraining auf drei bis vier Wochen begrenzt.
Collapse
|
33
|
Lappin KM, Mills KI, Lappin TR. Erythropoietin in bone homeostasis-Implications for efficacious anemia therapy. Stem Cells Transl Med 2021; 10:836-843. [PMID: 33475252 PMCID: PMC8133338 DOI: 10.1002/sctm.20-0387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Bone homeostasis and hematopoiesis are irrevocably linked in the hypoxic environment of the bone marrow. Erythropoietin (Epo) regulates erythropoiesis by binding to its receptor, Epor, on erythroid progenitor cells. The continuous process of bone remodeling is achieved by the finely balanced activity of osteoblasts in bone synthesis and osteoclasts in bone resorption. Both osteoblasts and osteoclasts express functional Epors, but the underlying mechanism of Epo‐Epor signaling in bone homeostasis is incompletely understood. Two recent publications have provided new insights into the contribution of endogenous Epo to bone homeostasis. Suresh et al examined Epo‐Epor signaling in osteoblasts in bone formation in mice and Deshet‐Unger et al investigated osteoclastogenesis arising from transdifferentiation of B cells. Both groups also studied bone loss in mice caused by exogenous human recombinant EPO‐stimulated erythropoiesis. They found that either deletion of Epor in osteoblasts or conditional knockdown of Epor in B cells attenuates EPO‐driven bone loss. These findings have direct clinical implications because patients on long‐term treatment for anemia may have an increased risk of bone fractures. Phase 3 trials of small molecule inhibitors of the PHD enzymes (hypoxia inducible factor‐prolyl hydroxylase inhibitors [HIF‐PHIs]), such as Roxadustat, have shown improved iron metabolism and increased circulating Epo levels in a titratable manner, avoiding the supraphysiologic increases that often accompany intravenous EPO therapy. The new evidence presented by Suresh and Deshet‐Unger and their colleagues on the effects of EPO‐stimulated erythropoiesis on bone homeostasis seems likely to stimulate discussion on the relative merits and safety of EPO and HIF‐PHIs.
Collapse
Affiliation(s)
- Katrina M Lappin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Terence R Lappin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
34
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
35
|
Hu X, Xie J, Chen N. Hypoxia-Inducible Factor-Proline Hydroxylase Inhibitor in the Treatment of Renal Anemia. KIDNEY DISEASES 2020; 7:1-9. [PMID: 33614728 DOI: 10.1159/000510587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
Background Anemia is a common complication in CKD patients. Despite the use of iron and erythropoietin-stimulating agents, the control rate of anemia in CKD is not satisfying. Novel drugs are needed for anemia correction. Summary HIF-PHI, hypoxia-inducible factor-proline hydroxylase inhibitor, a novel class of therapeutic agents, has been developed to treat anemia in CKD patients. Its main effects comprised boosting EPO production, enhancing iron utilization, and suppressing hepcidin production. Several stage 2 and stage 3 clinical trials have been run to test its efficacy and safety in both nondialysis and dialysis patients, of which the results are very encouraging. Here, we summarize the mechanism, clinical applications, and clinical trials of HIF-PHI in treating renal anemia in order to give an overview of the new drug in clinical practices. Key Messages HIF-PHI is a novel therapeutic agent of treating renal anemia in CKD patients. It is quite effective in improving anemia, which is unaffected by inflammation. Besides, it may ameliorate lipid metabolism as well. Furthermore, the oral form may improve patients' compliances with treatment. Thus, it may be a good alternative of anemia correction in CKD patients.
Collapse
Affiliation(s)
- Xiaofan Hu
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Hodson E, Ratcliffe P. Endothelial Oxygen Sensing in Alveolar Maintenance. Am J Respir Crit Care Med 2020; 202:917-919. [PMID: 32668176 PMCID: PMC7528780 DOI: 10.1164/rccm.202006-2149ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Emma Hodson
- The Francis Crick Institute, London, United Kingdom.,The Department of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom and
| | - Peter Ratcliffe
- The Francis Crick Institute, London, United Kingdom.,The Target Discovery Institute and Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Hamza E, Metzinger L, Metzinger-Le Meuth V. Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney Disease: A Review. Cells 2020; 9:cells9092039. [PMID: 32899941 PMCID: PMC7565991 DOI: 10.3390/cells9092039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem characterized by progressive kidney failure due to uremic toxicity and the complications that arise from it. Anemia consecutive to CKD is one of its most common complications affecting nearly all patients with end-stage renal disease. Anemia is a potential cause of cardiovascular disease, faster deterioration of renal failure and mortality. Erythropoietin (produced by the kidney) and iron (provided from recycled senescent red cells) deficiencies are the main reasons that contribute to CKD-associated anemia. Indeed, accumulation of uremic toxins in blood impairs erythropoietin synthesis, compromising the growth and differentiation of red blood cells in the bone marrow, leading to a subsequent impairment of erythropoiesis. In this review, we mainly focus on the most representative uremic toxins and their effects on the molecular mechanisms underlying anemia of CKD that have been studied so far. Understanding molecular mechanisms leading to anemia due to uremic toxins could lead to the development of new treatments that will specifically target the pathophysiologic processes of anemia consecutive to CKD, such as the newly marketed erythropoiesis-stimulating agents.
Collapse
Affiliation(s)
- Eya Hamza
- HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne, CEDEX 1, 80025 Amiens, France; (E.H.); (V.M.-L.M.)
| | - Laurent Metzinger
- HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne, CEDEX 1, 80025 Amiens, France; (E.H.); (V.M.-L.M.)
- Correspondence: ; Tel.: +33-2282-5356
| | - Valérie Metzinger-Le Meuth
- HEMATIM UR 4666, C.U.R.S, Université de Picardie Jules Verne, CEDEX 1, 80025 Amiens, France; (E.H.); (V.M.-L.M.)
- INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Sorbonne Paris Nord, CEDEX, 93017 Bobigny, France
| |
Collapse
|
38
|
Ehling M, Celus W, Martín-Pérez R, Alba-Rovira R, Willox S, Ponti D, Cid MC, Jones EAV, Di Conza G, Mazzone M. B55α/PP2A Limits Endothelial Cell Apoptosis During Vascular Remodeling: A Complementary Approach To Disrupt Pathological Vessels? Circ Res 2020; 127:707-723. [PMID: 32527198 PMCID: PMC7616433 DOI: 10.1161/circresaha.119.316071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE How endothelial cells (ECs) migrate and form an immature vascular plexus has been extensively studied. Yet, mechanisms underlying vascular remodeling remain poorly established. A better understanding of these processes may lead to the design of novel therapeutic strategies complementary to current angiogenesis inhibitors. OBJECTIVE Starting from our previous observations that PP2A (protein phosphatase 2) regulates the HIF (hypoxia-inducible factor)/PHD-2 (prolyl hydroxylase 2)-constituted oxygen machinery, we hypothesized that this axis could play an important role during blood vessel formation, tissue perfusion, and oxygen restoration. METHODS AND RESULTS We show that the PP2A regulatory subunit B55α is at the crossroad between vessel pruning and vessel maturation. Blood vessels with high B55α counter cell stress conditions and thrive for stabilization and maturation. When B55α is inhibited, ECs cannot cope with cell stress and undergo apoptosis, leading to massive pruning of nascent blood vessels. Mechanistically, we found that the B55α/PP2A complex restrains PHD-2 activity, promoting EC survival in a HIF-dependent manner, and furthermore dephosphorylates p38, altogether protecting ECs against cell stress occurring, for example, during the onset of blood flow. In tumors, EC-specific B55α deficiency induces pruning of immature-like tumor blood vessels resulting in delayed tumor growth and metastasis, without affecting nonpathological vessels. Consistently, systemic administration of a pan-PP2A inhibitor disrupts vascular network formation and tumor progression in vivo without additional effects on B55α-deficient vessels. CONCLUSIONS Our data underline a unique role of the B55α/PP2A phosphatase complex in vessel remodeling and suggest the use of PP2A-inhibitors as potent antiangiogenic drugs targeting specifically nascent blood vessels with a mode-of-action complementary to VEGF-R (vascular endothelial growth factor receptor)-targeted therapies. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Manuel Ehling
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Ward Celus
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Rosa Martín-Pérez
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Roser Alba-Rovira
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona (R.A.-R., M.C.C.)
| | - Sander Willox
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Donatella Ponti
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
- Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina (D.P.)
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona (R.A.-R., M.C.C.)
| | | | - Giusy Di Conza
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Massimiliano Mazzone
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| |
Collapse
|
39
|
Estrela GR, Arruda AC, Torquato HFV, Freitas-Lima LC, Perilhão MS, Wasinski F, Budu A, Fock RA, Paredes-Gamero EJ, Araujo RC. Gemfibrozil Induces Anemia, Leukopenia and Reduces Hematopoietic Stem Cells via PPAR-α in Mice. Int J Mol Sci 2020; 21:ijms21145050. [PMID: 32708962 PMCID: PMC7403977 DOI: 10.3390/ijms21145050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia, also called high cholesterol, is a form of hyperlipidemia, which may be a consequence of diet, obesity or diabetes. In addition, increased levels of low-density lipoprotein (LDL) and reduced levels of high-density lipoprotein (HDL) cholesterol are associated with a higher risk of atherosclerosis and coronary heart disease. Thus, controlling cholesterol levels is commonly necessary, and fibrates have been used as lipid-lowering drugs. Gemfibrozil is a fibrate that acts via peroxisome proliferator-activated receptor alpha to promote changes in lipid metabolism and decrease serum triglyceride levels. However, anemia and leukopenia are known side effects of gemfibrozil. Considering that gemfibrozil may lead to anemia and that gemfibrozil acts via peroxisome proliferator-activated receptor alpha, we treated wild-type and peroxisome proliferator-activated receptor alpha-knockout mice with gemfibrozil for four consecutive days. Gemfibrozil treatment led to anemia seven days after the first administration of the drug; we found reduced levels of hemoglobin, as well as red blood cells, white blood cells and a reduced percentage of hematocrits. PPAR-alpha-knockout mice were capable of reversing all of those reduced parameters induced by gemfibrozil treatment. Erythropoietin levels were increased in the serum of gemfibrozil-treated animals, and we also observed an increased expression of hypoxia-inducible factor-2 alpha (HIF-2α) and erythropoietin in renal tissue, while PPAR-alpha knockout mice treated with gemfibrozil did not present increased levels of serum erythropoietin or tissue HIF-2α and erythropoietin mRNA levels in the kidneys. We analyzed bone marrow and found that gemfibrozil reduced erythrocytes and hematopoietic stem cells in wild-type mice but not in PPAR-alpha-knockout mice, while increased colony-forming units were observed only in wild-type mice treated with gemfibrozil. Here, we show for the first time that gemfibrozil treatment leads to anemia and leukopenia via peroxisome proliferator-activated receptor alpha in mice.
Collapse
Affiliation(s)
- Gabriel Rufino Estrela
- Department of Clinical and Experimental Oncology, Discipline of Hematology and Hematotherapy, Federal University of São Paulo, São Paulo 04037002, Brazil
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo 04039032, Brazil; (A.C.A.); (M.S.P.)
- Correspondence: (G.R.E.); (R.C.A.); Tel.: +55-11-5576-4859 (R.C.A.)
| | - Adriano Cleis Arruda
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo 04039032, Brazil; (A.C.A.); (M.S.P.)
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039032, Brazil; (L.C.F.-L.); (A.B.)
| | - Heron Fernandes Vieira Torquato
- Department of Biochemistry, Federal University of São Paulo, São Paulo 04044020, Brazil; (H.F.V.T.); (E.J.P.-G.)
- Faculty of Pharmacy, University Center Braz Cubas, Mogi das Cruzes 08773380, Brazil
| | | | - Mauro Sérgio Perilhão
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo 04039032, Brazil; (A.C.A.); (M.S.P.)
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039032, Brazil; (L.C.F.-L.); (A.B.)
| | - Frederick Wasinski
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil;
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039032, Brazil; (L.C.F.-L.); (A.B.)
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, Brazil;
| | - Edgar Julian Paredes-Gamero
- Department of Biochemistry, Federal University of São Paulo, São Paulo 04044020, Brazil; (H.F.V.T.); (E.J.P.-G.)
- Faculty of Pharmaceutical, Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070900, Brazil
| | - Ronaldo Carvalho Araujo
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo 04039032, Brazil; (A.C.A.); (M.S.P.)
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039032, Brazil; (L.C.F.-L.); (A.B.)
- Correspondence: (G.R.E.); (R.C.A.); Tel.: +55-11-5576-4859 (R.C.A.)
| |
Collapse
|
40
|
Jia W, Zhen M, Li L, Zhou C, Sun Z, Liu S, Zhao Z, Li J, Wang C, Bai C. Gadofullerene nanoparticles for robust treatment of aplastic anemia induced by chemotherapy drugs. Am J Cancer Res 2020; 10:6886-6897. [PMID: 32550910 PMCID: PMC7295067 DOI: 10.7150/thno.46794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aplastic anemia (AA) is characterized as hypoplasia of bone marrow hematopoietic cells and hematopenia of peripheral blood cells. Though the supplement of exogenous erythropoietin (EPO) has been clinically approved for AA treatment, the side-effects hinder its further application. Here a robust treatment for AA induced by chemotherapy drugs is explored using gadofullerene nanoparticles (GFNPs). Methods: The gadofullerene were modified with hydrogen peroxide under alkaline conditions to become the water-soluble nanoparticles (GFNPs). The physicochemical properties, in vitro chemical construction, stability, hydroxyl radical scavenging ability, in vitro cytotoxicity, antioxidant activity, in vivo treatment efficacy, therapeutic mechanism and biological distribution, metabolism, toxicity of GFNPs were examined. Results: GFNPs with great stability and high-efficiency antioxidant activity could observably increase the number of red blood cells (RBC) in the peripheral blood of AA mice and relieve the abnormal pathological state of bone marrow. The erythropoiesis mainly includes hemopoietic stem cells (HSCs) differentiation, erythrocyte development in bone marrow and erythrocyte maturation in peripheral blood. The positive control-EPO promotes erythropoiesis by regulating HSCs differentiation and erythrocyte development in bone marrow. Different from the anti-AA mechanism of EPO, GFNPs have little impact on both the differentiation of HSCs and the myeloid erythrocyte development, but notably improve the erythrocyte maturation. Besides, GFNPs can notably decrease the excessive reactive oxygen species (ROS) and inhibit apoptosis of hemocytes in blood. In addition, GFNPs are mostly excreted from the living body and cause no serious toxicity. Conclusion: Our work provides an insight into the advanced nanoparticles to powerfully treat AA through ameliorating the erythrocyte maturation during erythropoiesis.
Collapse
|
41
|
|
42
|
Courtney KD, Ma Y, Diaz de Leon A, Christie A, Xie Z, Woolford L, Singla N, Joyce A, Hill H, Madhuranthakam AJ, Yuan Q, Xi Y, Zhang Y, Chang J, Fatunde O, Arriaga Y, Frankel AE, Kalva S, Zhang S, McKenzie T, Reig Torras O, Figlin RA, Rini BI, McKay RM, Kapur P, Wang T, Pedrosa I, Brugarolas J. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2019; 26:793-803. [PMID: 31727677 DOI: 10.1158/1078-0432.ccr-19-1459] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The heterodimeric transcription factor HIF-2 is arguably the most important driver of clear cell renal cell carcinoma (ccRCC). Although considered undruggable, structural analyses at the University of Texas Southwestern Medical Center (UTSW, Dallas, TX) identified a vulnerability in the α subunit, which heterodimerizes with HIF1β, ultimately leading to the development of PT2385, a first-in-class inhibitor. PT2385 was safe and active in a first-in-human phase I clinical trial of patients with extensively pretreated ccRCC at UTSW and elsewhere. There were no dose-limiting toxicities, and disease control ≥4 months was achieved in 42% of patients. PATIENTS AND METHODS We conducted a prospective companion substudy involving a subset of patients enrolled in the phase I clinical trial at UTSW (n = 10), who were treated at the phase II dose or above, involving multiparametric MRI, blood draws, and serial biopsies for biochemical, whole exome, and RNA-sequencing studies. RESULTS PT2385 inhibited HIF-2 in nontumor tissues, as determined by a reduction in erythropoietin levels (a pharmacodynamic marker), in all but one patient, who had the lowest drug concentrations. PT2385 dissociated HIF-2 complexes in ccRCC metastases, and inhibited HIF-2 target gene expression. In contrast, HIF-1 complexes were unaffected. Prolonged PT2385 treatment resulted in the acquisition of resistance, and we identified a gatekeeper mutation (G323E) in HIF2α, which interferes with drug binding and precluded HIF-2 complex dissociation. In addition, we identified an acquired TP53 mutation elsewhere, suggesting a possible alternate mechanism of resistance. CONCLUSIONS These findings demonstrate a core dependency on HIF-2 in metastatic ccRCC and establish PT2385 as a highly specific HIF-2 inhibitor in humans. New approaches will be required to target mutant HIF-2 beyond PT2385 or the closely related PT2977 (MK-6482).
Collapse
Affiliation(s)
- Kevin D Courtney
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuanqing Ma
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alberto Diaz de Leon
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiqun Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Layton Woolford
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nirmish Singla
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Allison Joyce
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haley Hill
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ananth J Madhuranthakam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Yuan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yue Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenny Chang
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oluwatomilade Fatunde
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arthur E Frankel
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sanjeeva Kalva
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Song Zhang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert A Figlin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian I Rini
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Renée M McKay
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. .,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
43
|
Kristan A, Debeljak N, Kunej T. Genetic variability of hypoxia-inducible factor alpha (HIFA) genes in familial erythrocytosis: Analysis of the literature and genome databases. Eur J Haematol 2019; 103:287-299. [PMID: 31376207 DOI: 10.1111/ejh.13304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Familial erythrocytosis (FE) is a congenital disorder, defined by elevated red blood cell number, hemoglobin, and hematocrit. Among eight types of FE, type 4 is caused by variants in the EPAS1 gene. Two other hypoxia-inducible factor alpha (HIFA) subunits, HIF1A and HIF3A, have not yet been associated with medical history of FE, but have potential role in the development of erythrocytosis. To improve diagnosis, it is crucial to identify new variants in genes involved in erythrocyte production. Published literature and data from genome browsers were used to obtain HIFA sequence variants associated with erythrocytosis and to locate them on protein sequence and regulatory sites. We retrieved 24 variants from the literature: 2 in HIF1A, 20 in EPAS1 and 2 in HIF3A gene. Sixteen out of 20 variants in the EPAS1 gene are positioned in a conserved region of 13 amino acids within exon 12, next to regulatory post-translational modification and binding sites, suggesting that EPAS1 has an important role in erythropoiesis. The role of HIF1A and HIF3A in the development of erythrocytosis should be further investigated.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
44
|
Lappin TR, Lee FS. Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev 2019; 37:100590. [PMID: 31350093 DOI: 10.1016/j.blre.2019.100590] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Identification of the underlying defects in congenital erythrocytosis has provided mechanistic insights into the regulation of erythropoiesis and oxygen homeostasis. The Hypoxia Inducible Factor (HIF) pathway plays a key role in this regard. In this pathway, an enzyme, Prolyl Hydroxylase Domain protein 2 (PHD2), constitutively prolyl hydroxylates HIF-2α, thereby targeting HIF-2α for degradation by the von Hippel Lindau (VHL) tumor suppressor protein. Under hypoxia, this modification is attenuated, resulting in the stabilization of HIF-2α and transcriptional activation of the erythropoietin (EPO) gene. Circulating EPO then binds to the EPO receptor (EPOR) on red cell progenitors in the bone marrow, leading to expansion of red cell mass. Loss of function mutations in PHD2 and VHL, as well as gain of function mutations in HIF-2α and EPOR, are well established causes of erythrocytosis. Here, we highlight recent developments that show that the study of this condition is still evolving. Specifically, novel mutations have been identified that either change amino acids in the zinc finger domain of PHD2 or alter splicing of the VHL gene. In addition, continued study of HIF-2α mutations has revealed a distinctive genotype-phenotype correlation. Finally, novel mutations have recently been identified in the EPO gene itself. Thus, the cascade of genes that at a molecular level leads to EPO action, namely PHD2 - > HIF2A - > VHL - > EPO - > EPOR, are all mutational targets in congenital erythrocytosis.
Collapse
Affiliation(s)
- Terence R Lappin
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK.
| | - Frank S Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019; 8:cells8030207. [PMID: 30823476 PMCID: PMC6468851 DOI: 10.3390/cells8030207] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by an abrupt loss of renal function. Accumulating evidence indicates that incomplete or maladaptive repair after AKI can result in kidney fibrosis and the development and progression of chronic kidney disease (CKD). Hypoxia, a condition of insufficient supply of oxygen to cells and tissues, occurs in both acute and chronic kidney diseases under a variety of clinical and experimental conditions. Hypoxia-inducible factors (HIFs) are the "master" transcription factors responsible for gene expression in hypoxia. Recent researches demonstrate that HIFs play an important role in kidney injury and repair by regulating HIF target genes, including microRNAs. However, there are controversies regarding the pathological roles of HIFs in kidney injury and repair. In this review, we describe the regulation, expression, and functions of HIFs, and their target genes and related functions. We also discuss the involvement of HIFs in AKI and kidney repair, presenting HIFs as effective therapeutic targets.
Collapse
|
46
|
Watts ER, Walmsley SR. Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol Med 2018; 25:33-46. [PMID: 30442494 DOI: 10.1016/j.molmed.2018.10.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Cells sense and respond to hypoxia through the activity of the transcription factor HIF (hypoxia-inducible factor) and its regulatory hydroxylases, the prolyl hydroxylase domain enzymes (PHDs). Multiple isoforms of HIFs and PHDs exist, and isoform-selective roles have been identified in the context of the inflammatory environment, which is itself frequently hypoxic. Recent advances in the field have highlighted the complexity of this system, particularly with regards to the cell and context-specific activity of HIFs and PHDs. Because novel therapeutic agents which regulate this pathway are nearing the clinic, understanding the role of HIFs and PHDs in inflammation outcomes is an essential step in avoiding off-target effects and, crucially, in developing new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Emily R Watts
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sarah R Walmsley
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
47
|
Del Vecchio L, Locatelli F. Investigational hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI) for the treatment of anemia associated with chronic kidney disease. Expert Opin Investig Drugs 2018; 27:613-621. [PMID: 29975110 DOI: 10.1080/13543784.2018.1493455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In the last decade, concerns have been raised around the use of erythropoiesis-stimulating agents (ESAs) and intravenous iron in chronic kidney disease (CKD) patients, especially when given at high doses. Moreover, treatment with ESA is expensive. AREAS COVERED We searched PubMed for original articles, reviews, and editorials having as a topic anemia, CKD, hypoxia inducible factor, hepcidin, iron, and hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI). HIF-PHI are a new class of small molecules activating HIF-alfa isoforms (the main mediators of the effects of hypoxia on the body). This causes the secretion of endogenous erythropoietin and increased iron availability. Differing from ESA, HIF-PHI are administered orally. Preliminary data from phase-II clinical studies have shown their efficacy and safety in the short term. EXPERT OPINION HIF-PHI are a new promising class of drugs. The results of large, phase-III clinical studies are awaited to prove their efficacy and safety on cardiovascular events and cancer development in the long term. Their capability of penetrating the ESA market in the future will be influenced also by their selling price. The oral administration of HIF-PHI will be weighed to the 'intra-lines' infusion of ESA in hemodialysis or to the infrequent subcutaneous injections of long-acting ESA.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- a Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| | - Francesco Locatelli
- a Department of Nephrology and Dialysis , A. Manzoni Hospital , Lecco , Italy
| |
Collapse
|
48
|
Haase VH. Oxygen sensors as therapeutic targets in kidney disease. Nephrol Ther 2018; 13 Suppl 1:S29-S34. [PMID: 28577740 DOI: 10.1016/j.nephro.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/03/2023]
Abstract
Hypoxia is a common clinical problem that has profound effects on renal homeostasis. Prolyl-4-hydroxylases PHD1, 2 and 3 function as oxygen sensors and control the activity of hypoxia-inducible factor (HIF), an oxygen-sensitive transcription factor that regulates a multitude of hypoxia responses, which help cells and tissues to adapt to low oxygen environments. This review provides an overview of the molecular mechanisms that govern these hypoxia responses and discusses clinical experience with compounds that inhibit prolyl-4-hydroxylases to harness HIF responses for therapy in nephrology.
Collapse
Affiliation(s)
- Volker H Haase
- Department of medicine, Vanderbilt university medical center, Nashville, TN, USA; Departments of cancer biology and molecular physiology and biophysics, Vanderbilt university school of medicine, Nashville, TN, USA; Medical and research services, department of veterans affairs hospital, Tennessee Valley healthcare system, Nashville, TN, USA.
| |
Collapse
|
49
|
Smirnova NA, Osipyants AI, Khristichenko AY, Hushpulian DM, Nikulin SV, Chubar TA, Zakhariants AA, Tishkov VI, Gazaryan IG, Poloznikov AA. HIF2 ODD-luciferase reporter: the most sensitive assay for HIF prolyl hydroxylase inhibitors. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2051-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Zhang X, Shah BN, Zhang W, Saraf SL, Miasnikova G, Sergueeva A, Ammosova T, Niu X, Nouraie M, Nekhai S, Castro O, Gladwin MT, Prchal JT, Garcia JGN, Machado RF, Gordeuk VR. A genetic variation associated with plasma erythropoietin and a non-coding transcript of PRKAR1A in sickle cell disease. Hum Mol Genet 2018; 25:4601-4609. [PMID: 28173069 DOI: 10.1093/hmg/ddw299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/20/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
Blood erythropoietin (EPO) increases primarily to hypoxia. In sickle cell anaemia (homozygous HBBE6V; HbSS), plasma EPO is elevated due to hemolytic anaemia-related hypoxia. Hydroxyurea treatment reduces haemolysis and anaemia by increasing foetal haemoglobin, which leads to lower hypoxic transcriptional responses in blood mononuclear cells but paradoxically further increases EPO. To investigate this apparent hypoxia-independent EPO regulation, we assessed two sickle cell disease (SCD) cohorts for genetic associations with plasma EPO, by prioritizing 237,079 quantitative trait loci for expression level and/or transcript isoform variations of 12,727 genes derived from SCD blood mononuclear cells. We found an association between the T allele of SNP rs60684937 and increased plasma EPO (n = 567, combined P = 5.5 × 10 − 8 adjusted for haemoglobin and hydroxyurea) and validated it in independent SCD patients (n = 183, P = 0.018). The T allele of rs60684937 was associated with a relatively increased expression of a non-coding transcript of PRKAR1A (cAMP-dependent protein kinase type I-alpha regulatory subunit) in 58 SCD patients (P = 7.9 × 10 − 7) and 58 HapMap Yoruba samples (P = 0.0011). In conclusion, we demonstrate that plasma EPO elevation with hydroxyurea in SCD is independent of hypoxic responses and that genetic variation at SNP rs60684937 may contribute to EPO regulation through a cAMP-dependent protein kinase A pathway.
Collapse
Affiliation(s)
- Xu Zhang
- Comprehensive Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Binal N Shah
- Comprehensive Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Santosh L Saraf
- Comprehensive Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Xiaomei Niu
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Mehdi Nouraie
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Oswaldo Castro
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josef T Prchal
- Hematology Division, University of Utah, Salt Lake City, UT, USA
| | - Joe G N Garcia
- University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Roberto F Machado
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor R Gordeuk
- Comprehensive Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|