1
|
Jiang DH, Ni H, Curti M, Phan V, Jiang JG, Wu L. Cytogenetic and Molecular Characteristics in Adult Hispanic Acute Myeloid Leukemia Patients From Puerto Rico. Cureus 2024; 16:e70388. [PMID: 39469370 PMCID: PMC11515688 DOI: 10.7759/cureus.70388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/30/2024] Open
Abstract
The cytogenetic and molecular heterogeneity of acute myeloid leukemia (AML) is characterized as a contributing factor in the disparity of treatment outcomes and clinical outcomes seen among ethnic and racial groups. In this study, we have retrospectively evaluated the karyotypes of 800 adult Hispanic AML patients from Puerto Rico (PR). Acute promyelocytic leukemia with PML-RARA is the most common recurrent cytogenetic abnormality, compatible with previously published results. Among these AML patients, 163 patients had 21 gene panels performed. Twenty-six (15.95%) patients showed no detectable mutations, and 137 patients (84.05%) showed at least one mutation. Compared with previously published data from other examined Hispanic AML populations in the United States, mutational frequencies of these 21 genes, except for ASXL1, WT1, and KRAS, show no significant difference. This is the largest study to date about the landscape of cytogenetic and molecular abnormalities in Hispanic AML patients and a first report regarding the frequencies of these abnormalities in Puerto Rican Hispanic AML patients.
Collapse
Affiliation(s)
| | - Hongyu Ni
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Mario Curti
- Hematology and Oncology, University of California, Irvine (UCI) Health, Los Alamitos, USA
| | - Vu Phan
- Hematology and Oncology, University of California, Irvine (UCI) Health, Los Alamitos, USA
| | - Jie-Gen Jiang
- Pathology, University of California, Irvine (UCI) Health, Los Alamitos, USA
| | - Lihong Wu
- Hematology and Oncology, City of Hope, Long Beach, USA
| |
Collapse
|
2
|
Shukla M, Abdul-Hay M, Choi JH. Molecular Features and Treatment Paradigms of Acute Myeloid Leukemia. Biomedicines 2024; 12:1768. [PMID: 39200232 PMCID: PMC11351617 DOI: 10.3390/biomedicines12081768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy that is considered to be a disease of aging, and traditionally has been treated with induction chemotherapy, followed by consolidation chemotherapy and/or allogenic hematopoietic stem cell transplantation. More recently, with the use of next-generation sequencing and access to molecular information, targeted molecular approaches to the treatment of AML have been adopted. Molecular targeting is gaining prominence, as AML mostly afflicts the elderly population, who often cannot tolerate traditional chemotherapy. Understanding molecular changes at the gene level is also important for accurate disease classification, risk stratification, and prognosis, allowing for more personalized medicine. Some mutations are well studied and have an established gene-specific therapy, including FLT3 and IDH1/2, while others are being investigated in clinical trials. However, data on most known mutations in AML are still minimal and therapeutic studies are in pre-clinical stages, highlighting the importance of further research and elucidation of the pathophysiology involving these genes. In this review, we aim to highlight the key molecular alterations and chromosomal changes that characterize AML, with a focus on pathophysiology, presently available treatment approaches, and future therapeutic options.
Collapse
Affiliation(s)
| | | | - Jun H. Choi
- Department of Hematology and Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York, NY 10016, USA; (M.S.)
| |
Collapse
|
3
|
Yang S, Sun M, Chen L, Zhang H, Sun L, Liu E, Tian X, Hou X, Lin Y, Lu M. WNT inhibitory factor 1 (WIF1) is a novel fusion partner of RUNX family transcription factor 1 (RUNX1) in acute myeloid leukemia with t(12;21)(q14;q22). J Hematop 2024:10.1007/s12308-024-00597-4. [PMID: 39066949 DOI: 10.1007/s12308-024-00597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
As a member of the core transcription factor family, RUNX1 plays an important role in stem cell differentiation. RUNX1 rearrangements are common in myeloid and lymphoid tumors [1]. (Blood 129(15):2070-2082, 2017). One of the most commonly detected abnormalities in acute myeloid leukemia (AML) is the translocation t(8;21)(q22;q22) (Blood Adv 4(1):229-238, 2020), resulting in a RUNX1::RUNX1T1 fusion. Occasionally, RUNX1 is translocated with other genes. This article describes an AML patient with a specific chromosomal translocation involving the RUNX1 gene and the identification of the RUNX1::WIF1 fusion. Chromosomal abnormalities were detected through karyotype analysis, break gene involved was identified via fluorescence in situ hybridization (FISH), and the novel fusion was identified through transcriptome sequencing and subsequently confirmed through reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing. A 79-year-old female patient diagnosed with AML was found to have a t(12;21)(q14;q12) translocation. FISH analysis provided evidence of RUNX1 gene rearrangement. Additionally, transcriptomic sequencing revealed a novel fusion known as RUNX1::WIF1, which consists of RUNX1 exon 2 and WIF1 exon 3. The novel fusion was further confirmed through RT-PCR and Sanger sequencing. We identified WIF1 as a novel fusion partner of RUNX1 in AML. Additionally, this is the first report of a RUNX1 fusion gene with the break point in intron 2, resulting in an out-of-frame fusion. Further research is needed to investigate the impact of this novel fusion on the establishment and progression of the disease.
Collapse
Affiliation(s)
- Shaobin Yang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Ming Sun
- Department of Hematology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Long Chen
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Hong Zhang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Lidan Sun
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Enbin Liu
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xin Tian
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Xiaoju Hou
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of Al-Aided Hematopathology Diagnosis, Tianjin, China
| | - Mize Lu
- Department of Hematology, Affiliated Wuxi People's Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
4
|
Chen Q, Hong Y, Chen W, Lin F, Zeng J, Huang Y, Zhang L, Yao J, Xu B. Prognostic implications of cGAS and STING gene expression in acute myeloid leukemia. Exp Biol Med (Maywood) 2024; 249:10108. [PMID: 38510490 PMCID: PMC10954193 DOI: 10.3389/ebm.2024.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/25/2023] [Indexed: 03/22/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most threatening hematological malignances. cGAS-STING pathway plays an important role in tumor immunity and development. However, the prognostic role of cGAS-STING pathway in AML remains unknown. Firstly, The expression of cGAS and STING was analyzed by bioinformatics analysis. Subsequently, Bone marrow samples were collected from 120 AML patients and 15 healthy individuals in an independent cohort. The cGAS and STING expression was significantly elevated in AML patients compared with healthy controls. Patients with high cGAS and STING expression had a higher NRAS/KRAS mutation rate and lower complete remission (CR) rate. High cGAS and STING expression was significantly associated with lower overall survival (OS) and disease-free survival (DFS). Our findings revealed that the expression levels of cGAS and STING in AML are elevated. High expression of cGAS and STING correlated with worse OS and DFS and may be a useful biomarker for inferior prognosis in AML patients.
Collapse
Affiliation(s)
- Qiuling Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Hong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - WeiFeng Chen
- Department of Hematology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Feng Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jiawei Zeng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yueting Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Li Zhang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Karra L, Finger AM, Shechtman L, Krush M, Huang RMY, Prinz M, Tennvooren I, Bahl K, Hysienaj L, Gonzalez PG, Combes AJ, Gonzalez H, Argüello RJ, Spitzer MH, Roose JP. Single cell proteomics characterization of bone marrow hematopoiesis with distinct Ras pathway lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572584. [PMID: 38187679 PMCID: PMC10769276 DOI: 10.1101/2023.12.20.572584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Normal hematopoiesis requires constant prolific production of different blood cell lineages by multipotent hematopoietic stem cells (HSC). Stem- and progenitor- cells need to balance dormancy with proliferation. How genetic alterations impact frequency, lineage potential, and metabolism of HSC is largely unknown. Here, we compared induced expression of KRAS G12D or RasGRP1 to normal hematopoiesis. At low-resolution, both Ras pathway lesions result in skewing towards myeloid lineages. Single-cell resolution CyTOF proteomics unmasked an expansion of HSC- and progenitor- compartments for RasGRP1, contrasted by a depletion for KRAS G12D . SCENITH™ quantitates protein synthesis with single-cell precision and corroborated that immature cells display low metabolic SCENITH™ rates. Both RasGRP1 and KRAS G12D elevated mean SCENITH™ signals in immature cells. However, RasGRP1-overexpressing stem cells retain a metabolically quiescent cell-fraction, whereas this fraction diminishes for KRAS G12D . Our temporal single cell proteomics and metabolomics datasets provide a resource of mechanistic insights into altered hematopoiesis at single cell resolution.
Collapse
|
6
|
Shen X, Dong P, Kong J, Sun N, Wang F, Sang L, Xu Y, Zhang M, Chen X, Guo R, Wang S, Lin Q, Jiang Z, Xu S, Zhang C, Bian Z, Wang W, Guo R. Targeted single-cell RNA sequencing analysis reveals metabolic reprogramming and the ferroptosis-resistant state in hematologic malignancies. Cell Biochem Funct 2023; 41:1343-1356. [PMID: 37823726 DOI: 10.1002/cbf.3869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Hematologic malignancies are the most common hematopoietic diseases and a major public health concern. However, the mechanisms underlying myeloid tumors remain unknown owing to the intricate interplay between mutations and diverse clonal evolution patterns, as evidenced by the analysis of bulk cell-derived omics data. Several single-cell omics techniques have been used to characterize the hierarchies and altered immune microenvironments of hematologic malignancies. The comprehensive single-cell atlas of hematologic malignancies provides novel opportunities for personalized combinatorial targeted treatments, avoiding unwanted chemo-toxicity. In the present study, we performed transcriptome sequencing by combining single-cell RNA sequencing (scRNA-seq) with a targeted oncogenic gene panel for acute myeloid leukemia, overcoming the limitations of scRNA-seq in detecting oncogenic mutations. The distribution of oncogenic IDH1, IDH2, and KRAS mutations in each cell type was identified in the bone marrow (BM) samples of each patient. Our findings suggest that ferroptosis and metabolic reprogramming are involved in the tumorigenesis and chemotherapy resistance of oncogenic mutation-carrying cells. Biological progression via IDH1, IDH2, and KRAS mutations arrests hematopoietic maturation. Our study findings provide a rationale for using primary BM cells for personalized treatment in clinical settings.
Collapse
Affiliation(s)
- Xiaohui Shen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyuan Dong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, The Afliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Congli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weimin Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Durinikova A, Folta A, Pardy F, Svaton J, Drncova M, Weinbergerova B, Cetkovsky P, Racil Z, Jindra P, Szotkowski T, Zak P, Mayer J, Jeziskova I. Single and multiple point NRAS mutations in acute myeloid leukemia: a study of 327 well molecularly characterized patients. Leuk Lymphoma 2022; 63:3237-3240. [PMID: 36047997 DOI: 10.1080/10428194.2022.2116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anna Durinikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adam Folta
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Filip Pardy
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Svaton
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Marie Drncova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Weinbergerova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Cetkovsky
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavel Jindra
- Department of Hematology and Oncology, University Hospital Pilsen, Pilsen, Czech Republic
| | - Tomas Szotkowski
- Department of Hemato-Oncology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Pavel Zak
- Department of Internal Medicine - Department of Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Ivana Jeziskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Rivera D, Kim K, Kanagal-Shamanna R, Borthakur G, Montalban-Bravo G, Daver N, Dinardo C, Short NJ, Yilmaz M, Pemmaraju N, Takahashi K, Jabbour EJ, Pierce S, Konopleva M, Bhalla K, Garcia-Manero G, Ravandi F, Kantarjian H, Kadia TM. Implications of RAS mutational status in subsets of patients with newly diagnosed acute myeloid leukemia across therapy subtypes. Am J Hematol 2022; 97:1599-1606. [PMID: 36117258 DOI: 10.1002/ajh.26731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/31/2023]
Abstract
Activating mutations in RAS have been reported in about 10-15% of patients with AML; previous studies have not identified a prognostic significance. However, RAS mutations have emerged as a potential resistance mechanism to treatment with inhibitors of FLT3, IDH, and BCL2. We aimed to determine the characteristics and outcomes of patients with RAS-mutated (RAS-mut) AML across therapy subsets of 1410 patients newly diagnosed (ND AML). RAS-mut was observed in 273 (20%) patients. Overall, patients with RAS-mut AML had an estimated 3-year survival rate of 38% vs. 28% in those with RAS wild type (RAS-wt), p = .01. Among patients with RAS-mut, favorable karyotype and concomitant NPM1 mutations were associated with a higher CR/CRi rate, OR 23.2 (95% CI: 2.7-192.7; p < .001) and OR 2.8 (95% CI: 1.1-6.9; p = .02), respectively, while secondary and treated secondary (ts)-AML were associated with low response rates, OR 0.34 (95% CI: 0.1-0.9; p = .04) and OR 0.22 (95% CI: 0.09-0.5; p = .001), respectively. Intensive chemotherapy was associated with high response rates OR 5.9 (95% CI: 2.9-12.2; p < .001). Better median OS was observed among those with favorable karyotype, HR 0.28 (95% CI: 0.1-0.6; p = .002), and those treated with intensive chemotherapy, HR 0.42 (95% CI: 0.2-0.6 p < .001). Conversely, ts- AML and co-occurrence of mutations in TP53 were associated with poor median OS; HR 2.3 (95% CI: 1.4-3.9; p = .001) and HR 1.7 (95% CI: 0.9-3.1; p = .06), respectively. The addition of venetoclax was associated with a non-significant improvement in CR/CRi and OS.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kunhwa Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney Dinardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Zhao D, Eladl E, Zarif M, Capo‐Chichi J, Schuh A, Atenafu E, Minden M, Chang H. Molecular characterization of
AML‐MRC
reveals
TP53
mutation as an adverse prognostic factor irrespective of
MRC
‐defining criteria,
TP53
allelic state, or
TP53
variant allele frequency. Cancer Med 2022; 12:6511-6522. [PMID: 36394085 PMCID: PMC10067127 DOI: 10.1002/cam4.5421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) generally confers poor prognosis, however, patient outcomes are heterogeneous. The impact of TP53 allelic state and variant allele frequency (VAF) in AML-MRC remains poorly defined. METHODS We retrospectively evaluated 266 AML-MRC patients who had NGS testing at our institution from 2014 to 2020 and analyzed their clinical outcomes based on clinicopathological features. RESULTS TP53 mutations were associated with cytogenetic abnormalities in 5q, 7q, 17p, and complex karyotype. Prognostic evaluation of TP53MUT AML-MRC revealed no difference in outcome between TP53 double/multi-hit state and single-hit state. Patients with high TP53MUT variant allele frequency (VAF) had inferior outcomes compared to patients with low TP53MUT VAF. When compared to TP53WT patients, TP53MUT patients had inferior outcomes regardless of MRC-defining criteria, TP53 allelic state, or VAF. TP53 mutations and elevated serum LDH were independent predictors for inferior OS and EFS, while PHF6 mutations and transplantation were independent predictors for favorable OS and EFS. NRAS mutation was an independent predictor for favorable EFS. CONCLUSIONS Our study suggests that TP53MUT AML-MRC defines a very-high-risk subentity of AML in which novel therapies should be explored.
Collapse
Affiliation(s)
- Davidson Zhao
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Entsar Eladl
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
- Department of Pathology, Faculty of Medicine Mansoura University Mansoura Egypt
| | - Mojgan Zarif
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - José‐Mario Capo‐Chichi
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Andre Schuh
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Eshetu Atenafu
- Department of Biostatistics University Health Network Toronto Ontario Canada
| | - Mark Minden
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Hematology and Medical Oncology University Health Network Toronto Ontario Canada
| |
Collapse
|
10
|
Zhang S, Liu J, Lu ZY, Xue YT, Mu XR, Liu Y, Cao J, Li ZY, Li F, Xu KL, Wu QY. Combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 promoted apoptosis and proliferation inhibition of AML cell lines. Cell Oncol (Dordr) 2022; 45:1005-1018. [PMID: 36036884 DOI: 10.1007/s13402-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE FLT3 mutations occurred in approximately one third of patients with acute myeloid leukemia (AML). FLT3-ITD mutations caused the constitutive activation of the RAS/MAPK signaling pathway. Ribosomal S6 Kinases (RSKs) were serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. However, roles and mechanisms of RSKs inhibitor LJH-685, and combinational effects of LJH-685 and FLT3 inhibitor FF-10101 on AML cells were till unclear. METHODS Cell viability assay, CFSE assay, RT-qPCR, Colony formation assay, PI stain, Annexin-V/7-AAD double stain, Western blot, and Xenogeneic transplantation methods were used to used to investigate roles and mechanisms of LJH-685 in the leukemogenesis of AML. RESULTS LJH-685 inhibited the proliferation and clone formation of AML cells, caused cell cycle arrest and induced the apoptosis of AML cells via inhibiting the RSK-YB-1 signaling pathway. MV4-11 and MOLM-13 cells carrying FLT3-ITD mutations were more sensitive to LJH-685 than that of other AML cell lines. Further studies suggested that LJH-685 combined with Daunorubicin or FF- 10101 synergistically inhibited the cell viability, promoted the apoptosis and caused cycle arrest of AML cells carrying FLT3-ITD mutations. Moreover, in vivo experiments also indicated that LJH-685 combined with FF-10101 or Daunorubicin prolonged the survival time of NSG mice and reduced the leukemogenesis of AML. CONCLUSION Thus, these observations demonstrated combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 showed synergism anti-leukemia effects in AML cell lines with FLT3-ITD mutations via inhibiting MAPK-RSKs-YB-1 pathway and provided new targets for therapeutic intervention especially for AML with FLT3-ITD mutations and Daunorubicin-resistant AML.
Collapse
Affiliation(s)
- Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing-Ru Mu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
11
|
Qin W, Chen X, Shen H, Wang Z, Cai X, Jiang N, Hua H. Comprehensive mutation profile in acute myeloid leukemia patients with RUNX1-RUNX1T1 or CBFB-MYH11 fusions. Turk J Haematol 2022; 39:84-93. [PMID: 35445594 PMCID: PMC9160702 DOI: 10.4274/tjh.galenos.2022.2021.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: This study was undertaken with the aim of better understanding the genomic landscape of core-binding factor (CBF) acute myeloid leukemia (AML). Materials and Methods: We retrospectively analyzed 112 genes that were detected using next-generation sequencing in 134 patients with de novo CBF-AML. FLT3-ITD, NPM1, and CEBPA mutations were detected by DNA-PCR and Sanger sequencing. Results: In the whole cohort, the most commonly mutated genes were c-KIT (33.6%) and NRAS (33.6%), followed by FLT3 (18.7%), KRAS (13.4%), RELN (8.2%), and NOTCH1 (8.2%). The frequencies of mutated genes associated with epigenetic modification, such as IDH1, IDH2, DNMT3A, and TET2, were low, being present in 1.5%, 0.7%, 2.2%, and 7.5% of the total number of patients, respectively. Inv(16)/t(16;16) AML patients exhibited more mutations of NRAS and KRAS (p=0.001 and 0.0001, respectively) than t(8;21) AML patients. Functionally mutated genes involved in signaling pathways were observed more frequently in the inv(16)/t(16;16) AML group (p=0.016), while the mutations involved in cohesin were found more frequently in the t(8;21) AML group (p=0.011). Significantly higher white blood cell counts were found in inv(16)/t(16;16) AML patients with c-KIT (c-KITmut) or NRAS (NRASmut) mutations compared to the corresponding t(8;21) AML/c-KITmut and t(8;21) AML/NRASmut groups (p=0.001 and 0.009, respectively). Conclusion: The mutation profiles of t(8;21) AML patients showed evident differences from those of patients with inv(16)/t(16;16) AML. We have provided a comprehensive overview of the mutational landscape of CBF-AML.
Collapse
Affiliation(s)
- Wei Qin
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Xiayu Chen
- Department of Hematology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - HongJie Shen
- Department of Hematology,The First Affiliated Hospital of Soochow University, Soochow, China
| | - Zheng Wang
- Department of Hematology,The First Affiliated Hospital of Soochow University, Soochow, China.,SuZhou jsuniwell medical laboratory, Suzhou, China
| | - Xiaohui Cai
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Naike Jiang
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, China
| | - Haiying Hua
- Department of Hematology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Kropp EM, Li Q. Mechanisms of Resistance to Targeted Therapies for Relapsed or Refractory Acute Myeloid Leukemia. Exp Hematol 2022; 111:13-24. [PMID: 35417742 PMCID: PMC10116852 DOI: 10.1016/j.exphem.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease of clonal hematopoiesis with a high rate of relapse and refractory disease despite intensive therapy. Traditionally, relapsed or refractory AML has increased therapeutic resistance and poor long-term survival. In recent years, advancements in the mechanistic understanding of leukemogenesis have allowed for the development of targeted therapies. These therapies offer novel alternatives to intensive chemotherapy and have prolonged survival in relapsed or refractory AML. Unfortunately, a significant portion of patients do not respond to these therapies and relapse occurs in most patients who initially responded. This review focuses on the mechanisms of resistance to targeted therapies in relapsed or refractory AML.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI.
| |
Collapse
|
13
|
RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia. Leukemia 2022; 36:1237-1252. [PMID: 35354920 PMCID: PMC9061298 DOI: 10.1038/s41375-022-01541-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Despite recent advances in acute myeloid leukemia (AML) molecular characterization and targeted therapies, a majority of AML cases still lack therapeutically actionable targets. In 127 AML cases with unmet therapeutic needs, as defined by the exclusion of ELN favorable cases and of FLT3-ITD mutations, we identified 51 (40%) cases with alterations in RAS pathway genes (RAS+, mostly NF1, NRAS, KRAS, and PTPN11 genes). In 79 homogeneously treated AML patients from this cohort, RAS+ status were associated with higher white blood cell count, higher LDH, and reduced survival. In AML models of oncogenic addiction to RAS-MEK signaling, the MEK inhibitor trametinib demonstrated antileukemic activity in vitro and in vivo. However, the efficacy of trametinib was heterogeneous in ex vivo cultures of primary RAS+ AML patient specimens. From repurposing drug screens in RAS-activated AML cells, we identified pyrvinium pamoate, an anti-helminthic agent efficiently inhibiting the growth of RAS+ primary AML cells ex vivo, preferentially in trametinib-resistant PTPN11- or KRAS-mutated samples. Metabolic and genetic complementarity between trametinib and pyrvinium pamoate translated into anti-AML synergy in vitro. Moreover, this combination inhibited the propagation of RA+ AML cells in vivo in mice, indicating a potential for future clinical development of this strategy in AML.
Collapse
|
14
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
15
|
A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res 2021; 111:106727. [PMID: 34700049 DOI: 10.1016/j.leukres.2021.106727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults that affects the myeloid lineage. The recent advances have upgraded our understanding of the cytogenetic abnormalities and molecular mutations associated with AML that further aids in prognostication and risk stratification of the disease. Based on the highly heterogeneous nature of the disease and cytogenetic profile, AML patients can be stratified into favourable, intermediate and adverse-risk groups. The recurrent genetic alterations provide novel insights into the pathogenesis, clinical characteristics and also into the overall survival of the patients. In this review we are discussing about the cytogenetics of AML and the recurrent gene alterations such us NPM1, FLT3, CEBPA, TET-2, c-KIT, DNMT3A, IDH, RUNX1, AXSL1, WT1, Ras gene mutations etc. These gene mutations serve as important prognostic markers as well as potential therapeutic targets. AML patients respond to induction chemotherapy initially and subsequently achieve complete remission (CR), eventually most of them get relapsed.
Collapse
|
16
|
Jin H, Zhu Y, Hong M, Wu Y, Qiu H, Wang R, Jin H, Sun Q, Fu J, Li J, Qian S, Qiao C. Co-occurrence of KIT and NRAS mutations defines an adverse prognostic core-binding factor acute myeloid leukemia. Leuk Lymphoma 2021; 62:2428-2437. [PMID: 34024223 DOI: 10.1080/10428194.2021.1919660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular abnormalities are frequent in core-binding factor (CBF) AMLs, but their prognostic relevance is controversial. Sixty-two patients were retrospectively analyzed and 47 harbored at least one gene mutation with a next-generation-sequencing assay. The most common molecular mutation was KIT mutation (30.6%), followed by NRAS (24.2%) and ASXL1 (14.5%) mutations, which was associated with a higher number of bone marrow blasts (p = .049) and older age (p = .027). The survival analysis showed KIT mutation adversely affected the overall survival (OS) (p = .046). NRAS mutation was associated with inferior OS (p = .016) and RFS (p = .039). Eight patients carried co-mutations of KIT and NRAS and had worse OS (p = .012) and RFS (p = .034). The multivariate analysis showed age ≥60 years and additional chromosomal abnormalities were significant adverse factors for OS. Thus, co-mutations of KIT and NRAS were significantly associated with a poor prognosis and should be taken into account when assessing for prognostic stratification in patients with CBF-AML.
Collapse
Affiliation(s)
- Huimin Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hairong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxin Fu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Akram AM, Chaudhary A, Kausar H, Althobaiti F, Abbas AS, Hussain Z, Fatima N, Zafar E, Asif W, Afzal U, Yousaf Z, Zafar A, Harakeh SM, Qamer S. Analysis of RAS gene mutations in cytogenetically normal de novo acute myeloid leukemia patients reveals some novel alterations. Saudi J Biol Sci 2021; 28:3735-3740. [PMID: 34220225 PMCID: PMC8241590 DOI: 10.1016/j.sjbs.2021.04.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR). Amplicons were then subjected to sequencing and were analyzed through Geneious Prime 2019. Five of thirty one (16.12%) patients had altered sites in either NRAS or KRAS. The NRAS mutations were observed in three AML patients (N = 3, 9.67%). A novel missense mutation NRAS-I36R (239 T > G) representing a substitution of single nucleotide basepair found in NRAS exon 1 while exon 2 was detected with heterozygous mutation NRAS-E63X (318G > T) and insertion (A), resulting in frameshift of the amino acid sequence and insertion of two nucleotide basepairs (TA) in two of the patients. KRAS mutations (N = 2, 6.45%) were found in exon 1 whereas no mutations in KRAS exon 2 were detected in our patient cohort. Mutation in KRAS Exon 1, KRAS-D30N (280G > A) was observed in two patients and one of them also had a novel heterozygous mutation KRAS-L16N (240G > C). In addition there was no statistically significant association of mutRAS gene of AML patients with several prognostic markers including age, gender, karyotyping, CD34 positivity, cytogenetic abnormalities, total leukocyte count, white blood cell count and French-American-British (FAB) classification. However, the presence of mutRAS gene were strongly associated (p = 0.001) with increased percentage of bone marrow blasts. The prevalence of mutations in correlation with clinical and hematological parameter is useful for risk stratification in AML patients.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Asma Chaudhary
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Afshan Syed Abbas
- Department of Zoology, University of Education, Lower Mall Campus, Lahore, Pakistan
| | - Zawar Hussain
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Naz Fatima
- Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Erum Zafar
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Wajiha Asif
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Umair Afzal
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Zoufishan Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Amjad Zafar
- Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
| | - Steve M Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samina Qamer
- Department of Zoology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Ball BJ, Hsu M, Devlin SM, Arcila M, Roshal M, Zhang Y, Famulare CA, Goldberg AD, Cai SF, Dunbar A, Epstein‐Peterson Z, Menghrajani KN, Glass JL, Taylor J, Viny AD, Giralt SS, Gyurkocza B, Shaffer BC, Tamari R, Levine RL, Tallman MS, Stein EM. The prognosis and durable clearance of RAS mutations in patients with acute myeloid leukemia receiving induction chemotherapy. Am J Hematol 2021; 96:E171-E175. [PMID: 33650111 DOI: 10.1002/ajh.26146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Brian J. Ball
- Department of Hematology and Hematopoietic Cell Transplantation City of Hope National Medical Center Duarte California
| | - Meier Hsu
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Sean M. Devlin
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Maria Arcila
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Mikhail Roshal
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Yanming Zhang
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Chris A. Famulare
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Aaron D. Goldberg
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Sheng F. Cai
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Andrew Dunbar
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | | | - Kamal N. Menghrajani
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Jacob L. Glass
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Justin Taylor
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Aaron D. Viny
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Sergio S. Giralt
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Boglarka Gyurkocza
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Brian C. Shaffer
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Roni Tamari
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Ross L. Levine
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Martin S. Tallman
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| | - Eytan M. Stein
- Division of Hematologic Malignancies Memorial Sloan Kettering Cancer Center New York New York
| |
Collapse
|
19
|
Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood 2021; 137:3259-3271. [PMID: 33512434 PMCID: PMC8351901 DOI: 10.1182/blood.2020009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kras−/−; NrasQ61R/+ mice develop early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. We identify Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras−/−; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Collapse
|
20
|
Khoury JD, Tashakori M, Yang H, Loghavi S, Wang Y, Wang J, Piya S, Borthakur G. Pan-RAF Inhibition Shows Anti-Leukemic Activity in RAS-Mutant Acute Myeloid Leukemia Cells and Potentiates the Effect of Sorafenib in Cells with FLT3 Mutation. Cancers (Basel) 2020; 12:cancers12123511. [PMID: 33255818 PMCID: PMC7761301 DOI: 10.3390/cancers12123511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary We demonstrate that the pan-RAF inhibitor LY3009120 induces apoptosis and inhibits proliferation in AML cells harboring RAS or FLT3 mutations through action on the RAS/RAF/MEK/ERK and the AKT/mTOR pathways. Notably, pan-RAF inhibition combined with Ara-C overcomes drug resistance mediated by bone marrow-derived mesenchymal stem cells. Furthermore, the combination of LY3009120 and tyrosine kinase inhibition with sorafenib appears to synergistically increase apoptosis in AML cells carrying FLT3-ITD mutation. Abstract RAF molecules play a critical role in cell signaling through their integral impact on the RAS/RAF/MEK/ERK signaling pathway, which is constitutively activated in a sizeable subset of acute myeloid leukemia (AML) patients. We evaluated the impact of pan-RAF inhibition using LY3009120 in AML cells harboring mutations upstream and downstream of RAF. LY3009120 had anti-proliferative and pro-apoptotic effects and suppressed pERK1/2 levels in leukemic cells with RAS and FLT3 mutations. Using reverse protein phase array analysis, we identified reductions in the expression/activation of cell signaling components downstream of RAF (activated p38) and cell cycle regulators (Wee1/cyclin B1, Cdc2/Cdk1, activated Rb, etc.). Notably, LY3009120 potentiated the effect of Ara-C on AML cells and overcame bone marrow mesenchymal stromal cell-mediated chemoresistance, with RAS-mutated cells showing a notable reduction in pAKT (Ser473). Furthermore, the combination of LY3009120 and sorafenib resulted in significantly higher levels of apoptosis in AML cells with heterozygous and hemizygous FLT3 mutations. In conclusion, pan-RAF inhibition in AML using LY3009120 results in anti-leukemic activity, and combination with Ara-C or sorafenib potentiates its effect.
Collapse
Affiliation(s)
- Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
- Correspondence: (J.D.K.); (G.B.)
| | - Mehrnoosh Tashakori
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
| | - Hong Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA; (M.T.); (H.Y.); (S.L.)
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.W.); (J.W.)
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.W.); (J.W.)
| | - Sujan Piya
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA;
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX 77030, USA;
- Correspondence: (J.D.K.); (G.B.)
| |
Collapse
|
21
|
Matsuo H, Yoshida K, Nakatani K, Harata Y, Higashitani M, Ito Y, Kamikubo Y, Shiozawa Y, Shiraishi Y, Chiba K, Tanaka H, Okada A, Nannya Y, Takeda J, Ueno H, Kiyokawa N, Tomizawa D, Taga T, Tawa A, Miyano S, Meggendorfer M, Haferlach C, Ogawa S, Adachi S. Fusion partner-specific mutation profiles and KRAS mutations as adverse prognostic factors in MLL-rearranged AML. Blood Adv 2020; 4:4623-4631. [PMID: 32991719 PMCID: PMC7556160 DOI: 10.1182/bloodadvances.2020002457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Mixed-lineage leukemia (MLL) gene rearrangements are among the most frequent chromosomal abnormalities in acute myeloid leukemia (AML). MLL fusion patterns are associated with the patient's prognosis; however, their relationship with driver mutations is unclear. We conducted sequence analyses of 338 genes in pediatric patients with MLL-rearranged (MLL-r) AML (n = 56; JPLSG AML-05 study) alongside data from the TARGET study's pediatric cohorts with MLL-r AML (n = 104), non-MLL-r AML (n = 581), and adult MLL-r AML (n = 81). KRAS mutations were most frequent in pediatric patients with high-risk MLL fusions (MLL-MLLLT10, MLL-MLLT4, and MLL-MLLT1). Pediatric patients with MLL-r AML (n = 160) and a KRAS mutation (KRAS-MT) had a significantly worse prognosis than those without a KRAS mutation (KRAS-WT) (5-year event-free survival [EFS]: 51.8% vs 18.3%, P < .0001; 5-year overall survival [OS]: 67.3% vs 44.3%, P = .003). The adverse prognostic impact of KRAS mutations was confirmed in adult MLL-r AML. KRAS mutations were associated with adverse prognoses in pediatric patients with both high-risk (MLLT10+MLLT4+MLLT1; n = 60) and intermediate-to-low-risk (MLLT3+ELL+others; n = 100) MLL fusions. The prognosis did not differ significantly between patients with non-MLL-r AML with KRAS-WT or KRAS-MT. Multivariate analysis showed the presence of a KRAS mutation to be an independent prognostic factor for EFS (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.59; P = .002) and OS (HR, 1.85; 95% CI, 1.01-3.31; P = .045) in MLL-r AML. The mutation is a distinct adverse prognostic factor in MLL-r AML, regardless of risk subgroup, and is potentially useful for accurate treatment stratification. This trial was registered at the UMIN (University Hospital Medical Information Network) Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm) as #UMIN000000511.
Collapse
Affiliation(s)
- Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kana Nakatani
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutarou Harata
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Moe Higashitani
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuri Ito
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akio Tawa
- Higashiosaka Aramoto Heiwa Clinic, Higashiosaka, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI ASHBi), Kyoto University, Kyoto, Japan; and
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene 2020; 39:6920-6934. [PMID: 32989257 PMCID: PMC7655557 DOI: 10.1038/s41388-020-01469-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in RAS genes, like KRASG12D or NRASG12D, trap Ras in the active state and cause myeloproliferative disorder and T cell leukemia (T-ALL) when induced in the bone marrow via Mx1CRE. The RAS exchange factor RASGRP1 is frequently overexpressed in T-ALL patients. In T-ALL cell lines overexpression of RASGRP1 increases flux through the RASGTP/RasGDP cycle. Here we expanded RASGRP1 expression surveys in pediatric T-ALL and generated a RoLoRiG mouse model crossed to Mx1CRE to determine the consequences of induced RASGRP1 overexpression in primary hematopoietic cells. RASGRP1-overexpressing, GFP-positive cells outcompeted wild type cells and dominated the peripheral blood compartment over time. RASGRP1 overexpression bestows gain-of-function colony formation properties to bone marrow progenitors in medium containing limited growth factors. RASGRP1 overexpression enhances baseline mTOR-S6 signaling in the bone marrow, but not in vitro cytokine-induced signals. In agreement with these mechanistic findings, hRASGRP1-ires-EGFP enhances fitness of stem- and progenitor- cells, but only in the context of native hematopoiesis. RASGRP1 overexpression is distinct from KRASG12D or NRASG12D, does not cause acute leukemia on its own, and leukemia virus insertion frequencies predict that RASGRP1 overexpression can effectively cooperate with lesions in many other genes to cause acute T cell leukemia.
Collapse
|
23
|
Huang HJ, Li B, Qin TJ, Xu ZF, Hu NB, Pan LJ, Qu SQ, Liu D, Zhang YD, Xiao ZJ. [Molecular features and prognostic value of RAS mutations in patients with myelodysplastic syndromes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:723-730. [PMID: 33113603 PMCID: PMC7595862 DOI: 10.3760/cma.j.issn.0253-2727.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/05/2022]
Abstract
Objective: To explore the molecular features and prognostic value of RAS mutations in patients with myelodysplastic syndromes (MDS) . Methods: 112-gene targeted sequencing was conducted to detect RAS mutations in 776 patients with newly diagnosed primary MDS from December 2011 to December 2018. The mutual exclusivity and co-occurrence in gene mutations and clonal architecture were explored. Moreover, the prognostic significance of RAS mutations in MDS was analyzed. Results: RAS gene mutations were found in 52 (6.7% ) cases, 38 (4.9% ) of whom harbored NRAS mutation, 18 (2.3% ) KRAS mutation, and 4 (0.5% ) both NRAS and KRAS mutations. All the NRAS mutations and 65% of the KRAS mutations were located in codons 12, 13, and 61. PTPN11, FLT3, U2AF1, RUNX1, WT1, ETV6, and NPM1 mutations were enriched in patients with RAS mutations (Q<0.05) . Around 80% of RAS mutations represented subclonal lesions in patients who harbored at least two different mutations. Patients with RAS mutations were more frequently diagnosed with MDS with excess blast (MDS-EB) (82.7% vs. 35.2% , P<0.001) and had higher levels of white blood cell count (4.33×10(9)/L vs. 2.71×10(9)/L, P<0.001) , neutrophil absolute count (2.13×10(9)/L vs. 1.12×10(9)/L, P<0.001) , and bone marrow blast percentage (7% vs. 2% , P<0.001) but lower levels of platelet count (48×10(9)/L vs. 62×10(9)/L, P=0.048) . RAS mutations were correlated with higher-risk categories in the Revised International Prognostic Scoring System (IPSS-R) (71.1% vs. 37.9% , P<0.001) . The median overall survival of patients with NRAS mutations was shorter than the others (P=0.011) , while the significance was lost in the multivariable model. Conclusion: RAS gene mutations always occurred in the late-stage MDS and co-occurred with other signal transduction- and transcription factor-related gene mutations. PTPN11, a RAS pathway-related gene, is an independent poor prognostic factor in MDS patients.
Collapse
Affiliation(s)
- H J Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - B Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - T J Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z F Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - N B Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L J Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S Q Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - D Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y D Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
24
|
Shaikh AF, Kakirde C, Dhamne C, Bhanshe P, Joshi S, Chaudhary S, Chatterjee G, Tembhare P, Prasad M, Roy Moulik N, Gokarn A, Bonda A, Nayak L, Punatkar S, Jain H, Bagal B, Shetty D, Sengar M, Narula G, Khattry N, Banavali S, Gujral S, P G S, Patkar N. Machine learning derived genomics driven prognostication for acute myeloid leukemia with RUNX1-RUNX1T1. Leuk Lymphoma 2020; 61:3154-3160. [PMID: 32757686 PMCID: PMC7116445 DOI: 10.1080/10428194.2020.1798951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Panel based next generation sequencing was performed on a discovery cohort of AML with RUNX1-RUNX1T1. Supervised machine learning identified NRAS mutation and absence of mutations in ASXL2, RAD21, KIT and FLT3 genes as well as a low mutation to be associated with favorable outcome. Based on this data patients were classified into favorable and poor genetic risk classes. Patients classified as poor genetic risk had a significantly lower overall survival (OS) and relapse free survival (RFS). We could validate these findings independently on a validation cohort (n=61). Patients in the poor genetic risk group were more likely to harbor measurable residual disease. Poor genetic risk emerged as an independent risk factor predictive of inferior outcome. Using an unbiased computational approach based we provide evidence for gene panel-based testing in AML with RUNX1-RUNX1T1 and a framework for integration of genomic markers toward clinical decision making in this heterogeneous disease entity.
Collapse
Affiliation(s)
- Anam Fatima Shaikh
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Chinmayee Kakirde
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Chetan Dhamne
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Swapnali Joshi
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Shruti Chaudhary
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Gaurav Chatterjee
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Prashant Tembhare
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Maya Prasad
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Nirmalya Roy Moulik
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Anant Gokarn
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Avinash Bonda
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Lingaraj Nayak
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sachin Punatkar
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hasmukh Jain
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Bhausaheb Bagal
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Dhanalaxmi Shetty
- Deparment of Cytogenetics, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Manju Sengar
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Gaurav Narula
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Navin Khattry
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Shripad Banavali
- Homi Bhabha National Institute (HBNI), Mumbai, India.,Pediatric Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sumeet Gujral
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Subramanian P G
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil Patkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
25
|
Mutational spectrum and prognosis in NRAS-mutated acute myeloid leukemia. Sci Rep 2020; 10:12152. [PMID: 32699322 PMCID: PMC7376066 DOI: 10.1038/s41598-020-69194-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
The mutational spectrum and prognostic factors of NRAS-mutated (NRASmut) acute myeloid leukemia (AML) are largely unknown. We performed next-generation sequencing (NGS) in 1,149 cases of de novo AML and discovered 152 NRASmut AML (13%). Of the 152 NRASmut AML, 89% had at least one companion mutated gene. DNA methylation-related genes confer up to 62% incidence. TET2 had the highest mutation frequency (51%), followed by ASXL1 (17%), NPM1 (14%), CEBPA (13%), DNMT3A (13%), FLT3-ITD (11%), KIT (11%), IDH2 (9%), RUNX1 (8%), U2AF1 (7%) and SF3B1(5%). Multivariate analysis suggested that age ≥ 60 years and mutations in U2AF1 were independent factors related to failure to achieve complete remission after induction therapy. Age ≥ 60 years, non-M3 types and U2AF1 mutations were independent prognostic factors for poor overall survival. Age ≥ 60 years, non-M3 types and higher risk group were independent prognostic factors for poor event-free survival (EFS) while allogenic hematopoietic stem cell transplantation was an independent prognostic factor for good EFS. Our study provided new insights into the mutational spectrum and prognostic factors of NRASmut AML.
Collapse
|
26
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
27
|
Prieto-Conde MI, Jiménez C, García-Álvarez M, Ramos F, Medina A, Cuello R, Balanzategui A, Alonso JM, Sarasquete ME, Queizán JA, Alcoceba M, Bárez A, Puig N, Cantalapiedra A, Gutiérrez NC, García-Sanz R, González-Díaz M, Chillón MC. Identification of relapse-associated gene mutations by next-generation sequencing in low-risk acute myeloid leukaemia patients. Br J Haematol 2020; 189:718-730. [PMID: 32124426 DOI: 10.1111/bjh.16420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Recommended genetic categorization of acute myeloid leukaemias (AML) includes a favourable-risk category, but not all these patients have good prognosis. Here, we used next-generation sequencing to evaluate the mutational profile of 166 low-risk AML patients: 30 core-binding factor (CBF)-AMLs, 33 nucleophosmin (NPM1)-AMLs, 4 biCEBPα-AMLs and 101 acute promyelocytic leukaemias (APLs). Functional categories of mutated genes differed among subgroups. NPM1-AMLs showed frequent variations in DNA-methylation genes (DNMT3A, TET2, IDH1/2) (79%), although without prognostic impact. Within this group, splicing-gene mutations were an independent factor for relapse-free (RFS) and overall survival (OS). In CBF-AML, poor independent factors for RFS and OS were mutations in RAS pathway and cohesin genes, respectively. In APL, the mutational profile differed according to the risk groups. High-risk APLs showed a high mutation rate in cell-signalling genes (P = 0·002), highlighting an increased incidence of FLT3 internal tandem duplication (ITD) (65%, P < 0·0001). Remarkably, in low-risk APLs (n = 28), NRAS mutations were strongly correlated with a shorter five-year RFS (25% vs. 100%, P < 0·0001). Overall, a high number of mutations (≥3) was the worst prognostic factor RFS (HR = 2·6, P = 0·003). These results suggest that gene mutations may identify conventional low-risk AML patients with poor prognosis and might be useful for better risk stratification and treatment decisions.
Collapse
Affiliation(s)
- María Isabel Prieto-Conde
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - Cristina Jiménez
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - María García-Álvarez
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - Fernando Ramos
- Department of Hematology, Hospital Virgen Blanca de León, León, Spain
| | - Alejandro Medina
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - Rebeca Cuello
- Department of Hematology, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Ana Balanzategui
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - José M Alonso
- Department of Hematology, Hospital Río Carrión de Palencia, Palencia, Spain
| | - Maria Eugenia Sarasquete
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | | | - Miguel Alcoceba
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - Abelardo Bárez
- Department of Hematology, Hospital Nuestra Señora de Sonsoles de Ávila, Avila, Spain
| | - Noemí Puig
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | | | - Norma C Gutiérrez
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - Ramón García-Sanz
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - Marcos González-Díaz
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| | - María Carmen Chillón
- Department of Hematology, IBSAL, CIBERONC and Center for Cancer Research-IBMCC (USAL-CSIC), University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
28
|
Santos FPS, Getta B, Masarova L, Famulare C, Schulman J, Datoguia TS, Puga RD, Alves Paiva RDM, Arcila ME, Hamerschlak N, Kantarjian HM, Levine RL, Campregher PV, Rampal RK, Verstovsek S. Prognostic impact of RAS-pathway mutations in patients with myelofibrosis. Leukemia 2020; 34:799-810. [PMID: 31628430 PMCID: PMC7158221 DOI: 10.1038/s41375-019-0603-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022]
Abstract
RAS-pathway mutations are recurrent events in myeloid malignancies. However, there is limited data on the significance of RAS-pathway mutations in patients with myelofibrosis (MF). We analyzed next-generation sequencing data of 16 genes, including RAS-pathway genes, from 723 patients with primary and secondary MF across three international centers and evaluated their significance. N/KRAS variants were present in 6% of patients and were typically sub-clonal (median VAF = 20%) relative to other genes variants. RAS variants were associated with advanced MF features including leukocytosis (p = 0.02), high somatic mutation burden (p < 0.01) and the presence of established "molecular high-risk" (MHR) mutations. MF patients with N/KRAS mutations had shorter 3-year overall survival (OS) (34% vs 58%, p < 0.001) and higher incidence of acute myeloid leukemia at 3 years (18% vs 11%, p = 0.03). In a multivariate Cox model, RAS mutations were associated with decreased OS (HR 1.93, p < 0.001). We created a novel score to predict OS incorporating RAS mutations, and it predicted OS across training and validation cohorts. Patients with intermediate risk/high-risk DIPSS with RAS mutations who received ruxolitinib had a nonsignificant longer 2-year OS relative to those who did not receive ruxolitinib. These data demonstrate the importance of identifying RAS mutations in MF patients.
Collapse
Affiliation(s)
- Fabio P S Santos
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Bartlomiej Getta
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Schulman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarcila S Datoguia
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Renato D Puga
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson Hamerschlak
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paulo Vidal Campregher
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raajit K Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Ney GM, Anderson B, Bender J, Kumar-Sinha C, Wu YM, Vats P, Cieslik M, Robinson DR, Li Q, Chinnaiyan AM, Mody R. Mutations predictive of hyperactive Ras signaling correlate with inferior survival across high-risk pediatric acute leukemia. Transl Pediatr 2020; 9:43-50. [PMID: 32154134 PMCID: PMC7036640 DOI: 10.21037/tp.2019.12.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer remains the number one cause of disease-related mortality in children, and despite advances in the molecular understanding of leukemia and targeted therapies, refractory leukemia remains a leading cause of death. It therefore is essential to further define features, e.g., FLT3 alterations and KMT2A rearrangements, associated with inferior survival early to augment or alter therapeutic strategies to improve outcomes. METHODS To gain insights into the genetic drivers predictive of aggressive clinical behavior among pediatric leukemia patients, we performed comprehensive integrative clinical sequencing (ICS), including paired tumor/normal DNA sequencing and RNA-seq, for pediatric patients who presented at our institution over a period of five years with acute lymphoblastic or myelogenous leukemia (ALL and AML; n=43) and high-risk clinical features (high white blood cell count, extramedullary disease, or refractory and/or relapsed disease). RESULTS We found that RAS- and Ras-pathway aberrations, including N-RAS, NF1 and PTPN11, are frequent somatic mutations and, importantly, associated with decreased event free and overall survival (OS) (P=0.04, median event free survival 22.8 vs. 5.6 months; P=0.04, median OS 124 vs. 22.5 months). CONCLUSIONS We thus propose that hyperactive Ras signaling confers inferior survival in high-risk pediatric acute leukemia and that Ras pathways should be molecularly characterized to inform clinical decision making and to identify patients for experimental clinical trials and RAS-targeted therapy.
Collapse
Affiliation(s)
- Gina M Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bailey Anderson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Bender
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Chandan Kumar-Sinha
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi-Mi Wu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Pankaj Vats
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R Robinson
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The current review aims to highlight the frequency of RAS mutations in pediatric leukemias and solid tumors and to propose strategies for targeting oncogenic RAS in pediatric cancers. RECENT FINDINGS The three RAS genes (HRAS, NRAS, and KRAS) comprise the most frequently mutated oncogene family in human cancer. RAS mutations are commonly observed in three of the leading causes of cancer death in the United States, namely lung cancer, pancreatic cancer, and colorectal cancer. The association of RAS mutations with these aggressive malignancies inspired the creation of the National Cancer Institute RAS initiative and spurred intense efforts to develop strategies to inhibit oncogenic RAS, with much recent success. RAS mutations are frequently observed in pediatric cancers; however, recent advances in anti-RAS drug development have yet to translate into pediatric clinical trials. SUMMARY We find that RAS is mutated in common and rare pediatric malignancies and that oncogenic RAS confers a functional dependency in these cancers. Many strategies for targeting RAS are being pursued for malignancies that primarily affect adults and there is a clear need for inclusion of pediatric patients in clinical trials of these agents.
Collapse
|
31
|
Beghini A. Core Binding Factor Leukemia: Chromatin Remodeling Moves Towards Oncogenic Transcription. Cancers (Basel) 2019; 11:E1973. [PMID: 31817911 PMCID: PMC6966602 DOI: 10.3390/cancers11121973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in adults, is a heterogeneous malignant clonal disorder arising from multipotent hematopoietic progenitor cells characterized by genetic and concerted epigenetic aberrations. Core binding factor-Leukemia (CBFL) is characterized by the recurrent reciprocal translocations t(8;21)(q22;q22) or inv(16)(p13;q22) that, expressing the distinctive RUNX1-RUNX1T1 (also known as Acute myeloid leukemia1-eight twenty-one, AML1-ETO or RUNX1/ETO) or CBFB-MYH11 (also known as CBFβ-ΣMMHX) translocation product respectively, disrupt the essential hematopoietic function of the CBF. In the past decade, remarkable progress has been achieved in understanding the structure, three-dimensional (3D) chromosomal topology, and disease-inducing genetic and epigenetic abnormalities of the fusion proteins that arise from disruption of the CBF subunit alpha and beta genes. Although CBFLs have a relatively good prognosis compared to other leukemia subtypes, 40-50% of patients still relapse, requiring intensive chemotherapy and allogenic hematopoietic cell transplantation (alloHCT). To provide a rationale for the CBFL-associated altered hematopoietic development, in this review, we summarize the current understanding on the various molecular mechanisms, including dysregulation of Wnt/β-catenin signaling as an early event that triggers the translocations, playing a pivotal role in the pathophysiology of CBFL. Translation of these findings into the clinical setting is just beginning by improvement in risk stratification, MRD assessment, and development of targeted therapies.
Collapse
|
32
|
Azrakhsh NA, Mensah-Glanowska P, Sand K, Kittang AO. Targeting Immune Signaling Pathways in Clonal Hematopoiesis. Curr Med Chem 2019; 26:5262-5277. [PMID: 30907306 DOI: 10.2174/0929867326666190325100636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myeloid neoplasms are a diverse group of malignant diseases with different entities and numerous patho-clinical features. They arise from mutated clones of hematopoietic stem- and progenitor cells which expand by outperforming their normal counterparts. The intracellular signaling profile of cancer cells is the sum of genetic, epigenetic and microenvironmental influences, and the multiple interconnections between different signaling pathways make pharmacological targeting complicated. OBJECTIVE To present an overview of known somatic mutations in myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) and the inflammatory signaling pathways affected by them, as well as current efforts to therapeutically modulate this aberrant inflammatory signaling. METHODS In this review, we extensively reviewed and compiled salient information with ClinicalTrials.gov as our source on ongoing studies, and PubMed as our authentic bibliographic source, using a focused review question. RESULTS Mutations affecting immune signal transduction are present to varying extents in clonal myeloid diseases. While MPN are dominated by a few common mutations, a multitude of different genes can be mutated in MDS and AML. Mutations can also occur in asymptomatic persons, a finding called clonal hematopoiesis of indeterminate potential (CHIP). Mutations in FLT3, JAK, STAT, CBL and RAS can lead to aberrant immune signaling. Protein kinase inhibitors are entering the clinic and are extensively investigated in clinical trials in MPN, MDS and AML. CONCLUSION In summary, this article summarizes recent research on aberrant inflammatory signaling in clonal myeloid diseases and the clinical therapeutic potential of modulation of signal transduction and effector proteins in the affected pathways.
Collapse
Affiliation(s)
| | - Patrycja Mensah-Glanowska
- Department of Hematology, Jagiellonian University Medical College / University Hospital, Krakow, Poland
| | - Kristoffer Sand
- Clinic of Medicine and Rehabilitation, More and Romsdal Hospital Trust, Alesund, Norway
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Section for Hematology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
33
|
Cremer A, Ellegast JM, Alexe G, Frank ES, Ross L, Chu SH, Pikman Y, Robichaud A, Goodale A, Häupl B, Mohr S, Rao AV, Walker AR, Blachly JS, Piccioni F, Armstrong SA, Byrd JC, Oellerich T, Stegmaier K. Resistance Mechanisms to SYK Inhibition in Acute Myeloid Leukemia. Cancer Discov 2019; 10:214-231. [PMID: 31771968 DOI: 10.1158/2159-8290.cd-19-0209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Spleen tyrosine kinase (SYK) is a nonmutated therapeutic target in acute myeloid leukemia (AML). Attempts to exploit SYK therapeutically in AML have shown promising results in combination with chemotherapy, likely reflecting induced mechanisms of resistance to single-agent treatment in vivo. We conducted a genome-scale open reading frame (ORF) resistance screen and identified activation of the RAS-MAPK-ERK pathway as one major mechanism of resistance to SYK inhibitors. This finding was validated in AML cell lines with innate and acquired resistance to SYK inhibitors. Furthermore, patients with AML with select mutations activating these pathways displayed early resistance to SYK inhibition. To circumvent SYK inhibitor therapy resistance in AML, we demonstrate that a MEK and SYK inhibitor combination is synergistic in vitro and in vivo. Our data provide justification for use of ORF screening to identify resistance mechanisms to kinase inhibitor therapy in AML lacking distinct mutations and to direct novel combination-based strategies to abrogate these. SIGNIFICANCE: The integration of functional genomic screening with the study of mechanisms of intrinsic and acquired resistance in model systems and human patients identified resistance to SYK inhibitors through MAPK signaling in AML. The dual targeting of SYK and the MAPK pathway offers a combinatorial strategy to overcome this resistance.This article is highlighted in the In This Issue feature, p. 161.
Collapse
Affiliation(s)
- Anjali Cremer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Elizabeth S Frank
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - S Haihua Chu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amy Goodale
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Björn Häupl
- University Hospital Frankfurt, Department of Hematology/Oncology, Frankfurt/Main, Germany.,German Cancer Consortium/German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Mohr
- University Hospital Frankfurt, Department of Hematology/Oncology, Frankfurt/Main, Germany
| | - Arati V Rao
- Gilead Sciences Inc., Foster City, California
| | - Alison R Walker
- Department of Internal Medicine, Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Department of Internal Medicine, Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John C Byrd
- Department of Internal Medicine, Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Thomas Oellerich
- University Hospital Frankfurt, Department of Hematology/Oncology, Frankfurt/Main, Germany. .,German Cancer Consortium/German Cancer Research Center, Heidelberg, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts. .,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
34
|
Anyanwu NCJ, Ella EE, Aminu M, Kazeem HM. Detection of NRAS G12D and NRAS G13C mutant genes among apparently healthy and haematologic malignant individuals in Federal Capital Territory, Nigeria. J Immunoassay Immunochem 2019; 40:605-616. [PMID: 31538838 DOI: 10.1080/15321819.2019.1668407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rat Sarcoma gene mutations is an important aspect in the management of hematologic malignancies globally. Unfortunately, this is not the trend in West Africa, including Nigeria. This study was aimed at detecting NRAS G12D and NRAS G13C mutant genes among apparently healthy and haematologic malignant individuals, and to explore their association with some clinical and demographic factors as well as disease status and progression. A total of 200 cfDNAs, 100 each from haematologic malignant patients and blood donors, respectively, were analyzed for the presence of NRAS gene mutations in codons 12 and 13. These mutations were tested using multiplex allele-specific PCR (AS-PCR). The mutations were detected by selective amplification using mutation-specific synthetic oligonucleotides. NRAS G12D and NRAS G13C mutations were 20.0% and 10.0%, respectively. In 17.5% of the 100 haemapoietic cancer patients, NRAS G12D mutant genes were seen while 7.5% of NRAS G13C mutation was found. Both mutant genes were observed in five healthy blood donors each. This result confirms the existence of NRAS mutations in Nigerian haemapoietic cancer patients and the preponderance of G-A transitions over G-T transversions. Mutant NRAS genes were associated with the types and stages of cancer, highlighting probable connection between mutation and increased susceptibility as well as quick progression of hematologic malignancies in the population studied. The result also highlighted higher risk of susceptibility/progression associated with leukemia than other hematopoietic cancers. We recommend more studies on NRAS mutation specifically targeted at improved diagnosis and prognostic therapy. The role of RAS mutation should be explored in other aside blood cancers in the Nigerian population.
Collapse
Affiliation(s)
- N C J Anyanwu
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria.,Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - E E Ella
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - M Aminu
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - H M Kazeem
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
35
|
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes (Basel) 2019; 10:E614. [PMID: 31412687 PMCID: PMC6722578 DOI: 10.3390/genes10080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Hala Skayneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Batoul Jishi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maguy Hamieh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
36
|
Ologbenla A, Hu M, Hajizadeh M. Socioeconomic status and incidence of pediatric leukemia in Canada: 1992-2010. Cancer Epidemiol 2019; 61:14-22. [PMID: 31103934 DOI: 10.1016/j.canep.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Leukemia is the most common cancer among Canadian children, representing about a third of pediatric cancers in Canada and is responsible for about one-third of pediatric cancer deaths. Understanding the effect of socioeconomic status (SES) on pediatric leukemia incidence provides valuable information for cancer control and interventions in Canada. METHODS Using a linked data from the Canadian Cancer Registry (CCR), Canadian Census of Population (CCP) and National Household Survey (NHS) we aimed to quantify socioeconomic inequalities in the incidence of pediatric leukemia from 1992 to 2010. We used the concentration index (C) approach to quantify income- and education-related inequalities in the incidence of pediatric leukemia over time. RESULTS Though there were fluctuations in incidence over the study period, our results showed that the total incidence of pediatric leukemia in Canada was generally consistent from 1992 to 2010. Incidence rate of 47 per 1,000,000 as at 1992 rose to 57 per 1,000,000 in 2010. The estimated values of the C over the study period failed to show any significant association between pediatric leukemia incidence and household income or education status. CONCLUSIONS Although pediatric leukemia incidence is not rising significantly, it is not reducing significantly either. The incidence of pediatric leukemia showed no significant association with socioeconomic status. Future cancer control interventions should focus more on mitigating risk factors that are independent of socioeconomic status.
Collapse
Affiliation(s)
| | - Min Hu
- School of Health Administration, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
37
|
Yao J, Zhong L, Zhong P, Liu D, Yuan Z, Liu J, Yao S, Zhao Y, Chen M, Li L, Liu L, Liu B. RAS-Responsive Element-Binding Protein 1 Blocks the Granulocytic Differentiation of Myeloid Leukemia Cells. Oncol Res 2019; 27:809-818. [PMID: 30982491 PMCID: PMC7848438 DOI: 10.3727/096504018x15451301487729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RAS-responsive element-binding protein 1 (RREB1) is a transcription factor that is implicated in RAS signaling and multiple tumors. However, the role of RREB1 in acute myeloid leukemia has not been studied. We found that RREB1 is overexpressed in AML patients and myeloid leukemia cell lines (NB4 and HL-60), and RREB1 expression was significantly decreased during granulocytic differentiation of myeloid leukemia cells induced by all-trans retinoic acid (ATRA). Then we performed a RREB1 knockdown assay in NB4 and HL-60 cells; the results showed that knockdown of RREB1 upregulated expression of CD11b, CEBPβ, and microRNA-145 (miR-145), which hinted that knockdown of RREB1 enhanced granulocytic differentiation of myeloid leukemia cells. In addition, inhibitor of miR-145 can offset the enhanced effect on granulocytic differentiation mediated by downregulation of RREB1. These collective findings demonstrated that RREB1 blocks granulocytic differentiation of myeloid leukemia cells by inhibiting the expression of miR-145 and downstream targets of the RAS signal pathway. These may provide a promising therapeutic target for AML patients.
Collapse
Affiliation(s)
- Juanjuan Yao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Pengqiang Zhong
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Dongdong Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Junmei Liu
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Shifei Yao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Yi Zhao
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Min Chen
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lianwen Li
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong Chuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
38
|
Evolution of a chemosensitive core-binding factor AML into an aggressive leukemia with eosinophilic differentiation. Blood Adv 2019; 2:1517-1521. [PMID: 29950292 DOI: 10.1182/bloodadvances.2018016675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022] Open
Abstract
Key Points
Core-binding factor AML can evolve from good-risk disease into aggressive disease through the gain of additional genomic aberrations. In this unique case, an AML patient died of hypereosinophilic syndrome with solid organ infiltration of differentiated eosinophils.
Collapse
|
39
|
Niparuck P, Limsuwanachot N, Pukiat S, Chantrathammachart P, Rerkamnuaychoke B, Magmuang S, Phusanti S, Boonyawat K, Puavilai T, Angchaisuksiri P, Ungkanont A, Chuncharunee S. Cytogenetics and FLT3-ITD mutation predict clinical outcomes in non transplant patients with acute myeloid leukemia. Exp Hematol Oncol 2019; 8:3. [PMID: 30729065 PMCID: PMC6354374 DOI: 10.1186/s40164-019-0127-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
Background Cytogenetic abnormalities and mutated genes indicate the role of consolidation therapy with hematopoietic stem cell transplantation (HSCT) or chemotherapy in acute myeloid leukemia (AML). In this study, we conducted a retrospective study in adult AML patients with newly diagnosed with de novo AML who did not undergo HSCT, to study long term relapse free survival (RFS) and overall survival (OS) after consolidation chemotherapy. Methods We recruited 141 consecutive AML patients during January 2010–June 2017, the patients received induction chemotherapy with standard dose Ara-C and Idarubicin (7 + 3 or 5 + 2 regimen) followed by intermediate (IDAC) or high dose Ara-c (HiDAC) consolidation therapy. Results Normal karyotype, complex, favorable, intermediate and adverse chromosomal aberrations were found in 59%, 16%, 5%, 14% and 6%, respectively. Mutated NPM1, FLT3-ITD and CEBPA genes in CN-AML were seen in 33%, 18% and 19%, respectively. A 5 year follow up, 5y-RFS was 16% and 5y-OS was 14% in the whole study population. 5y-RFS and 5y-OS in patients completed 4 cycles of consolidation therapy were 25% and 40%, respectively. Adverse cytogenetic risk and mutated FLT3-ITD were significantly associated with poor RFS (9 and 15 months, respectively) and OS (14 and 16 months, respectively), whereas patients with mutant NPM1 had favorable outcomes (RFS/OS = 51/63 months). Patients receiving 4 cycles of consolidation therapy had significantly impacts on median RFS and OS compared with those treated with 1 or 2 cycles; 15 versus 11 months (p = 0.006) and 31 versus 15 months (p < 0.001), respectively. Conclusions Cytogenetic and mutation tests for FLT3-ITD, NPM1 and CEBPA genes were meaningful for predicting outcomes in adult AML patients. Adverse cytogenetic abnormalities and FLT3-ITD mutation showed dismal RFS and OS.
Collapse
Affiliation(s)
- Pimjai Niparuck
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nittaya Limsuwanachot
- Human Genetics Laboratory, Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sulada Pukiat
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pichika Chantrathammachart
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Human Genetics Laboratory, Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sutada Magmuang
- Human Genetics Laboratory, Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sithakom Phusanti
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,3Department of Medicine, Chakri Naruebodindra Medical Institute, Mahidol University, Bangkok, Thailand
| | - Kochawan Boonyawat
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teeraya Puavilai
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pantep Angchaisuksiri
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Artit Ungkanont
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,3Department of Medicine, Chakri Naruebodindra Medical Institute, Mahidol University, Bangkok, Thailand
| | - Suporn Chuncharunee
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Zhang P, He F, Bai J, Yamamoto S, Chen S, Zhang L, Sheng M, Zhang L, Guo Y, Man N, Yang H, Wang S, Cheng T, Nimer SD, Zhou Y, Xu M, Wang QF, Yang FC. Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. J Clin Invest 2018; 128:5383-5398. [PMID: 30226831 DOI: 10.1172/jci121366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
ASXL1 is frequently mutated in myeloid malignancies and is known to co-occur with other gene mutations. However, the molecular mechanisms underlying the leukemogenesis associated with ASXL1 and cooperating mutations remain to be elucidated. Here, we report that Asxl1 loss cooperated with haploinsufficiency of Nf1, a negative regulator of the RAS signaling pathway, to accelerate the development of myeloid leukemia in mice. Loss of Asxl1 and Nf1 in hematopoietic stem and progenitor cells resulted in a gain-of-function transcriptional activation of multiple pathways such as MYC, NRAS, and BRD4 that are critical for leukemogenesis. The hyperactive MYC and BRD9 transcription programs were correlated with elevated H3K4 trimethylation at the promoter regions of genes involving these pathways. Furthermore, pharmacological inhibition of both the MAPK pathway and BET bromodomain prevented leukemia initiation and inhibited disease progression in Asxl1Δ/Δ Nf1Δ/Δ mice. Concomitant mutations of ASXL1 and RAS pathway genes were associated with aggressive progression of myeloid malignancies in patients. This study sheds light on the effect of cooperation between epigenetic alterations and signaling pathways on accelerating the progression of myeloid malignancies and provides a rational therapeutic strategy for the treatment of myeloid malignancies with ASXL1 and RAS pathway gene mutations.
Collapse
Affiliation(s)
- Peng Zhang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shohei Yamamoto
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Sheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suyun Wang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
41
|
Grewal RK, Chetty M, Abayomi EA, Tomuleasa C, Fromm JR. Use of flow cytometry in the phenotypic diagnosis of hodgkin's lymphoma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:116-127. [PMID: 30350336 DOI: 10.1002/cyto.b.21724] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
Abstract
Hodgkin's lymphoma (HL) has a unique immunophenotype derived from immunohistochemistry (positive for CD15, CD30, and Pax-5; negative for CD3, CD20 in most cases, and CD45). The knowledge gained over recent years enables better diagnosis, prognosis, and treatment of HL. Flow cytometry as a tool for the diagnosis of classic HL has not been useful in the past due to the difficulty in isolating Reed-Sternberg cells as they are admixed in a rich inflammatory background which consists mainly of T cells, B cells, eosinophils, histiocytes, and plasma cells. However, in the recent past, several studies have tried to identify Reed-Sternberg cells using flow cytometry on fine needle aspiration or tissue biopsy of lymph nodes to confirm or supplement immunohistochemistry staining in diagnosis. Newer and more sensitive tools such as flow cytometry can be used for diagnosis, technology that may have been difficult in the past for diagnosis of this lymphoma subtype. Using flow cytometry, diagnosis is faster and could lead to point-of-care technology especially where we have typical immunophenotype signatures. © 2018 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Ravnit-Kaur Grewal
- MBCHB South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Manogari Chetty
- Department of Oral and Molecular Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
| | | | - Ciprian Tomuleasa
- Department of Hematology/Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy-Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Jonathan R Fromm
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene 2018; 38:1534-1543. [PMID: 30323311 PMCID: PMC6372471 DOI: 10.1038/s41388-018-0528-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Mutations leading to constitutive RAS activation contribute in myeloid leukemogenesis. RAS mutations in myeloid cells are accompanied by excessive formation of reactive oxygen species (ROS), but the source of ROS and their role for the initiation and progression of leukemia have not been clearly defined. To determine the role of NOX2-derived ROS in RAS-driven leukemia, double transgenic LSL-KrasG12D × Mx1-Cre mice expressing oncogenic KRAS in hematopoietic cells (M-KrasG12D) were treated with Nα-methyl-histamine (NMH) that targeted the production of NOX2-derived ROS in leukemic cells by agonist activity at histamine H2 receptors. M-KrasG12D mice developed myeloid leukemia comprising mature CD11b+Gr1+ myeloid cells that produced NOX2-derived ROS. Treatment of M-KrasG12D mice with NMH delayed the development of myeloproliferative disease and prolonged survival. In addition, NMH-treated M-KrasG12D mice showed reduction of intracellular ROS along with reduced DNA oxidation and reduced occurence of double-stranded DNA breaks in myeloid cells. The in vivo expansion of leukemia was markedly reduced in triple transgenic mice where KRAS was expressed in hematopoietic cells of animals with genetic NOX2 deficiency (Nox2−/− × LSL-KrasG12D × Mx1-Cre). Treatment with NMH did not alter in vivo expansion of leukemia in these NOX2-deficient transgenic mice. We propose that NOX2-derived ROS may contribute to the progression of KRAS-induced leukemia and that strategies to target NOX2 merit further evaluation in RAS-mutated hematopoietic cancer.
Collapse
|
43
|
RAS mutations in acute myeloid leukaemia patients: A review and meta-analysis. Clin Chim Acta 2018; 489:254-260. [PMID: 30194935 DOI: 10.1016/j.cca.2018.08.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
Abstract
RAS oncogene mutations frequently occur in acute myeloid leukaemia (AML), but the prognostic significance of RAS mutations in AML is inconclusive. We searched the databases of PubMed, Web of Science, EMBASE, and Cochrane from 1990 to 2018. In this study, 24 eligible studies were included, and the meta-analysis was conducted with the Comprehensive Meta-Analysis Version 2 software program. The row hazard ratio (HR) was adjusted and re-evaluated when publication bias existed after detecting all the heterogeneities. A combined analysis showed that RAS mutations were not associated with a poor prognosis in general AML patients (HR: 0.96, 95% CI: 0.78-1.19, p = 0.70). To further verify the results, a subgroup analysis was conducted. Interestingly, in the analysis of age bracket, children with RAS mutations had an unfavourable survival (HR: 1.35, 95% CI: 1.05-1.75, p = 0.02) of AML, but the adults did not (HR: 0.87, 95% CI: 0.70-1.09, p = 0.21). Further analysis of the subgroup of children indicated that patients with NRAS mutations had an adverse prognosis (HR: 1.55, 95% CI: 1.13-2.12, p = 0.007), but not those with KRAS mutations (HR: 1.51, 95% CI: 0.34-6.73, p = 0.59). In conclusion, this study revealed that RAS mutations did not influence the over survival for adults with AML. However, NRAS mutations may be a key prognostic marker related with poor survival for children with AML.
Collapse
|
44
|
The Cellular p53 Inhibitor MDM2 and the Growth Factor Receptor FLT3 as Biomarkers for Treatment Responses to the MDM2-Inhibitor Idasanutlin and the MEK1 Inhibitor Cobimetinib in Acute Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10060170. [PMID: 29857559 PMCID: PMC6025168 DOI: 10.3390/cancers10060170] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor protein p53 is inactivated in a large variety of cancer cells. Cellular p53 inhibitors like the mouse double minute 2 homolog (MDM2) commonly suppress the p53 function in acute myeloid leukemia (AML). Moreover, fms like tyrosine kinase 3 (FLT3) growth factor signaling pathways including the mitogen-activated kinase (MAPK) cascade (RAS-RAF-MEK-ERK) are highly active in AML cells. Consequently, the combined administration of MDM2 and MEK inhibitors may present a promising anti-leukemic treatment strategy. Here we assessed the MDM2 antagonist idasanutlin and the MEK1 inhibitor cobimetinib as single agents and in combination in a variety of AML cell lines and primary AML blast cells for their ability to induce apoptosis and cell death. AML cell lines and blast cells comprised all major AML subtypes based on the mutational status of TP53, FLT3 and NPM1 genes. We observed a considerably varying anti-leukemic efficacy of idasanutlin and cobimetinib. AML cells with high sensitivity to the single compounds as well as to the combined treatment emerged with normal karyotype, wild-type TP53 and elevated FLT3 and MDM2 protein levels. Our data indicate that AML cells with normal karyotype (NK) and wild-type status of TP53 with elevated FLT3 and MDM2 expression emerge to be most sensitive to the combined treatment with cobimetinib and idasanutlin. FLT3 and MDM2 are biomarkers for treatment response to idasanutlin and cobimetinib in AML.
Collapse
|
45
|
Dutta D, Chong NS, Lim SH. Endogenous volatile organic compounds in acute myeloid leukemia: origins and potential clinical applications. J Breath Res 2018; 12:034002. [PMID: 29463782 DOI: 10.1088/1752-7163/aab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Not unlike many cancer types, acute myeloid leukemia (AML) exhibits many metabolic changes and reprogramming, causing changes in lipid metabolism. Some of the distinct molecular abnormalities associated with AML also modify the metabolic changes. Both processes result in changes in the production of endogenous volatile organic compounds (VOCs). The increasing availability of highly sensitive methods for detecting trace chemicals provides the opportunity to investigate the role of patient-specific VOC finger-prints as biomarkers for detecting early relapse or minimal residual disease in AML. Since VOC production is reliant on metabolic activities, when combined with currently available methods, VOC analysis may identify within a group of patients with flow cytometric or molecular evidence of residual disease those most at risk for disease relapse.
Collapse
Affiliation(s)
- Dibyendu Dutta
- Department of Professional Sciences, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | | | | |
Collapse
|
46
|
Wandler A, Shannon K. Mechanistic and Preclinical Insights from Mouse Models of Hematologic Cancer Characterized by Hyperactive Ras. Cold Spring Harb Perspect Med 2018; 8:a031526. [PMID: 28778967 PMCID: PMC5880163 DOI: 10.1101/cshperspect.a031526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RAS genes are mutated in 5%-40% of a spectrum of myeloid and lymphoid cancers with NRAS affected 2-3 times more often than KRAS Genomic analysis indicates that RAS mutations generally occur as secondary events in leukemogenesis, but are integral to the disease phenotype. The tractable nature of the hematopoietic system has facilitated generating accurate mouse models of hematologic malignancies characterized by hyperactive Ras signaling. These strains provide robust platforms for addressing how oncogenic Ras expression perturbs proliferation, differentiation, and self-renewal programs in stem and progenitor cell populations, for testing potential therapies, and for investigating mechanisms of drug response and resistance. This review summarizes recent insights from key studies in mouse models of hematologic cancer that are broadly relevant for understanding Ras biology and for ongoing efforts to implement rational therapeutic strategies for cancers with oncogenic RAS mutations.
Collapse
Affiliation(s)
- Anica Wandler
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| | - Kevin Shannon
- Department of Pediatrics, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
- Comprehensive Cancer Center, Helen Diller Family Cancer Research Building, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
47
|
Rocca S, Carrà G, Poggio P, Morotti A, Brancaccio M. Targeting few to help hundreds: JAK, MAPK and ROCK pathways as druggable targets in atypical chronic myeloid leukemia. Mol Cancer 2018; 17:40. [PMID: 29455651 PMCID: PMC5817721 DOI: 10.1186/s12943-018-0774-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Atypical Chronic Myeloid Leukemia (aCML) is a myeloproliferative neoplasm characterized by neutrophilic leukocytosis and dysgranulopoiesis. From a genetic point of view, aCML shows a heterogeneous mutational landscape with mutations affecting signal transduction proteins but also broad genetic modifiers and chromatin remodelers, making difficult to understand the molecular mechanisms causing the onset of the disease. The JAK-STAT, MAPK and ROCK pathways are known to be responsible for myeloproliferation in physiological conditions and to be aberrantly activated in myeloproliferative diseases. Furthermore, experimental evidences suggest the efficacy of inhibitors targeting these pathways in repressing myeloproliferation, opening the way to deep clinical investigations. However, the activation status of these pathways is rarely analyzed when genetic mutations do not occur in a component of the signaling cascade. Given that mutations in functionally unrelated genes give rise to the same pathology, it is tempting to speculate that alteration in the few signaling pathways mentioned above might be a common feature of pathological myeloproliferation. If so, targeted therapy would be an option to be considered for aCML patients.
Collapse
Affiliation(s)
- Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy.
| |
Collapse
|
48
|
Li H, Yu X, Liu X, Hu P, Shen L, Zhou Y, Zhu Y, Li Z, Hui H, Guo Q, Xu J. Wogonoside induces depalmitoylation and translocation of PLSCR1 and N-RAS in primary acute myeloid leukaemia cells. J Cell Mol Med 2018; 22:2117-2130. [PMID: 29377576 PMCID: PMC5867108 DOI: 10.1111/jcmm.13481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) comprises a range of disparate genetic subtypes, involving complex gene mutations and specific molecular alterations. Post‐translational modifications of specific proteins influence their translocation, stability, aggregation and even leading disease progression. Therapies that target to post‐translational modification of specific proteins in cancer cells represent a novel treatment strategy. Non‐homogenous subcellular distribution of PLSCR1 is involved in the primary AML cell differentiation. However, the nuclear translocation mechanism of PLSCR1 remains poorly understood. Here, we leveraged the observation that nuclear translocation of PLSCR1 could be induced during wogonoside treatment in some primary AML cells, despite their genetic heterogeneity that contributed to the depalmitoylation of PLSCR1 via acyl protein thioesterase 1 (APT‐1), an enzyme catalysing protein depalmitoylation. Besides, we found a similar phenomenon on another AML‐related protein, N‐RAS. Wogonoside inhibited the palmitoylation of small GTPase N‐RAS and enhanced its trafficking into Golgi complex, leading to the inactivation of N‐RAS/RAF1 pathway in some primary AML cells. Taken together, our findings provide new insight into the mechanism of wogonoside‐induced nuclear translocation of PLSCR1 and illuminate the influence of N‐RAS depalmitoylation on its Golgi trafficking and RAF1 signalling inactivation in AML.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Le Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
49
|
Aziz H, Ping CY, Alias H, Ab Mutalib NS, Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol 2017; 8:897. [PMID: 29270125 PMCID: PMC5725465 DOI: 10.3389/fphar.2017.00897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
It is believed that there are key differences in the genomic profile between adult and childhood acute myeloid leukemia (AML). Relapse is the significant contributor of mortality in patients with AML and remains as the leading cause of cancer death among children, posing great challenges in the treatment of AML. The knowledge about the genomic lesions in childhood AML is still premature as most genomic events defined in children were derived from adult cohorts. However, the emerging technologies of next generation sequencing have narrowed the gap of knowledge in the biology of AML by the detection of gene mutations for each sub-type which have led to the improvement in terms of prognostication as well as the use of targeted therapies. In this review, we describe the recent understanding of the genomic landscape including the prevalence of mutation, prognostic impact, and targeted therapies that will provide an insight into the pathogenesis of AML relapse in both adult and childhood cases.
Collapse
Affiliation(s)
- Habsah Aziz
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chow Y Ping
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamidah Alias
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Guinn BA, Mohamedali A, Mills KI, Czepulkowski B, Schmitt M, Greiner J. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia. Biomark Insights 2017. [DOI: 10.1177/117727190700200015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukemia associated antigens (LAAs) are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL) cloning, serological analysis of recombinant cDNA expression libraries (SEREX) and mass spectrometry (MS). In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs), serial analysis of gene expression (SAGE) and 2-dimensional gel electrophoresis (2-DE) have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML). It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel) and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.
Collapse
Affiliation(s)
- Barbara-ann Guinn
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Azim Mohamedali
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Ken I. Mills
- Department of Haematology, University Hospital of Wales, Heath Park, Cardiff, CF4 4XN, U.K
| | - Barbara Czepulkowski
- Department of Haematological Medicine, King's College London School of Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU
| | - Michael Schmitt
- Third Clinic for Internal Medicine, University of Ulm, Germany
| | - Jochen Greiner
- Third Clinic for Internal Medicine, University of Ulm, Germany
| |
Collapse
|