1
|
Nour-Eldine W, Joffre J, Zibara K, Esposito B, Giraud A, Zeboudj L, Vilar J, Terada M, Bruneval P, Vivier E, Ait-Oufella H, Mallat Z, Ugolini S, Tedgui A. Genetic Depletion or Hyperresponsiveness of Natural Killer Cells Do Not Affect Atherosclerosis Development. Circ Res 2018; 122:47-57. [DOI: 10.1161/circresaha.117.311743] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/12/2017] [Accepted: 10/17/2016] [Indexed: 01/20/2023]
Abstract
Rationale:
Chronic inflammation is central in the development of atherosclerosis. Both innate and adaptive immunities are involved. Although several studies have evaluated the functions of natural killer (NK) cells in experimental animal models of atherosclerosis, it is not yet clear whether NK cells behave as protective or proatherogenic effectors. One of the main caveats of previous studies was the lack of specificity in targeting loss or gain of function of NK cells.
Objectives:
We used 2 selective genetic approaches to investigate the role of NK cells in atherosclerosis: (1)
Ncr1
iCre/+
R26
lsl−
DTA/+
mice in which NK cells were depleted and (2)
Noé
mice in which NK cells are hyperresponsive.
Methods and Results:
No difference in atherosclerotic lesion size was found in
Ldlr
−/−
(low-density lipoprotein receptor null) mice transplanted with bone marrow (BM) cells from
Ncr1
iCre
R26R
lsl−
DTA
,
Noé
, or wild-type mice. Also, no difference was observed in plaque composition in terms of collagen content, macrophage infiltration, or the immune profile, although
Noé
chimera had more IFN (interferon)-γ–producing NK cells, compared with wild-type mice. Then, we investigated the NK-cell selectivity of anti–asialoganglioside M1 antiserum, which was previously used to conclude the proatherogenicity of NK cells. Anti–asialoganglioside M1 treatment decreased atherosclerosis in both
Ldlr
−/−
mice transplanted with
Ncr1
iCre
R26R
lsl−
DTA
or wild-type bone marrow, indicating that its antiatherogenic effects are unrelated to NK-cell depletion, but to CD8
+
T and NKT cells. Finally, to determine whether NK cells could contribute to the disease in conditions of pathological NK-cell overactivation, we treated irradiated
Ldlr
−/−
mice reconstituted with either wild-type or
Ncr1
iCre
R26R
lsl−
DTA
bone marrow with the viral mimic polyinosinic:polycytidylic acid and found a significant reduction of plaque size in NK-cell–deficient chimeric mice.
Conclusions:
Our findings, using state-of-the-art mouse models, demonstrate that NK cells have no direct effect on the natural development of hypercholesterolemia-induced atherosclerosis, but may play a role when an additional systemic NK-cell overactivation occurs.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Jérémie Joffre
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Kazem Zibara
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Bruno Esposito
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Andréas Giraud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Lynda Zeboudj
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - José Vilar
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Megumi Terada
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Patrick Bruneval
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Eric Vivier
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Sophie Ugolini
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| |
Collapse
|
2
|
Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A 2017; 114:E8440-E8447. [PMID: 28923946 DOI: 10.1073/pnas.1713064114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells express MHC class I (MHC-I)-specific receptors, such as Ly49A, that inhibit killing of cells expressing self-MHC-I. Self-MHC-I also "licenses" NK cells to become responsive to activating stimuli and regulates the surface level of NK-cell inhibitory receptors. However, the mechanisms of action resulting from these interactions of the Ly49s with their MHC-I ligands, particularly in vivo, have been controversial. Definitive studies could be derived from mice with targeted mutations in inhibitory Ly49s, but there are inherent challenges in specifically altering a single gene within a multigene family. Herein, we generated a knock-in mouse with a targeted mutation in the immunoreceptor tyrosine-based inhibitory motif (ITIM) of Ly49A that abolished the inhibitory function of Ly49A in cytotoxicity assays. This mutant Ly49A caused a licensing defect in NK cells, but the surface expression of Ly49A was unaltered. Moreover, NK cells that expressed this mutant Ly49A exhibited an altered inhibitory receptor repertoire. These results demonstrate that Ly49A ITIM signaling is critical for NK-cell effector inhibition, licensing, and receptor repertoire development.
Collapse
|
3
|
Shifrin NT, Kissiov DU, Ardolino M, Joncker NT, Raulet DH. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. THE JOURNAL OF IMMUNOLOGY 2016; 197:4127-4136. [PMID: 27798146 DOI: 10.4049/jimmunol.1402447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/21/2016] [Indexed: 01/13/2023]
Abstract
Many NK cells express inhibitory receptors that bind self-MHC class I (MHC I) molecules and prevent killing of self-cells, while enabling killing of MHC I-deficient cells. But tolerance also occurs for NK cells that lack inhibitory receptors for self-MHC I, and for all NK cells in MHC I-deficient animals. In both cases, NK cells are unresponsive to MHC I-deficient cells and hyporesponsive when stimulated through activating receptors, suggesting that hyporesponsiveness is responsible for self-tolerance. We generated irradiation chimeras, or carried out adoptive transfers, with wild-type (WT) and/or MHC I-deficient hematopoietic cells in WT or MHC I-deficient C57BL/6 host mice. Unexpectedly, in WT hosts, donor MHC I-deficient hematopoietic cells failed to induce hyporesponsiveness to activating receptor stimulation, but did induce tolerance to MHC I-deficient grafts. Therefore, these two properties of NK cells are separable. Both tolerance and hyporesponsiveness occurred when the host was MHC I deficient. Interestingly, infections of mice or exposure to inflammatory cytokines reversed the tolerance of NK cells that was induced by MHC I-deficient hematopoietic cells, but not the tolerance induced by MHC I-deficient nonhematopoietic cells. These data have implications for successful bone marrow transplantation, and suggest that tolerance induced by hematopoietic cells versus nonhematopoietic cells may be imposed by distinct mechanisms.
Collapse
Affiliation(s)
- Nataliya Tovbis Shifrin
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Djem U Kissiov
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michele Ardolino
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada and Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nathalie T Joncker
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Deauvieau F, Fenis A, Dalençon F, Burdin N, Vivier E, Kerdiles Y. Lessons from NK Cell Deficiencies in the Mouse. Curr Top Microbiol Immunol 2015; 395:173-90. [PMID: 26385768 DOI: 10.1007/82_2015_473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their discovery in the late 1970s, in vivo studies on mouse natural killer (NK) cell almost entirely relied on the use of depleting antibodies and were associated with significant limitations. More recently, large-scale gene-expression analyses allowed the identification of NKp46 as one of the best markers of NK cells across mammalian species. Since then, NKp46 has been shown to be expressed on other subsets of innate lymphoid cells (ILCs) such as the closely related ILC1 and the mucosa-associated NCR(+) ILC3. Based on this marker, several mouse models specifically targeting NKp46-expressing cell have recently been produced. Here, we review recent advances in the generation of models of deficiency in NKp46-expressing cells and their use to address the role of NK cells in immunity, notably on the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Florence Deauvieau
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aurore Fenis
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | | | - Nicolas Burdin
- SANOFI-Pasteur, Campus Merieux, 69280, Marcy l'Etoile, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, 13385, Marseille, France
| | - Yann Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
5
|
Mathias CB, Guernsey LA, Zammit D, Brammer C, Wu CA, Thrall RS, Aguila HL. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin Exp Allergy 2014; 44:589-601. [PMID: 24397722 DOI: 10.1111/cea.12271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/25/2013] [Accepted: 12/17/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural Killer (NK) cells have been implicated in the development of allergic airway inflammation. However, the in vivo role of NK cells has not been firmly established due to the lack of animal models with selective deficiencies in NK cells. OBJECTIVE To determine the specific contribution of NK cells in a murine model of allergic airway disease (AAD). METHODS The role of NK cells in AAD was studied using NK-deficient (NKD) mice, perforin(-/-) mice, and mice depleted of Ly49A/D/G(+) NK cell subsets in an ovalbumin-induced model of allergic airway disease (OVA-AAD). RESULTS Induction of OVA-AAD in C57BL/6 wild-type (WT) mice resulted in the expansion of airway NK cells and the development of pronounced airway eosinophilia. In the absence of NK cells or specific subsets of NK cells, either in NKD mice, or after the depletion of Ly49A/D/G(+) NK cells, the development of OVA-AAD was significantly impaired as seen by decreased airway inflammation and eosinophilia, decreased secretion of the Th2 cytokines IL-4, IL-5 and IL-13 and diminished OVA-specific antibody production. Furthermore, while OVA-exposure induced a dramatic expansion of dendritic cells (DCs) in WT mice, their induction was significantly attenuated in NKD mice. Development of OVA-AAD in perforin(-/-) mice suggested that the proinflammatory role of NK cells is not dependent on perforin-mediated cytotoxicity. Lastly, induction of allergic disease by OVA-specific CD4 T cells from WT but not NK-depleted or NKD mice in RAG(-/-) recipients, demonstrates that NK cells are essential for T cell priming. CONCLUSIONS AND CLINICAL RELEVANCE Our data demonstrate that conventional NK cells play an important and distinct role in the development of AAD. The presence of activated NK cells has been noted in patients with asthma. Understanding the mechanisms by which NK cells regulate allergic disease is therefore an important component of treatment approaches.
Collapse
Affiliation(s)
- C B Mathias
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA; Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Miller J, Sack B, Baldwin M, Vaughan A, Kappe S. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages. Cell Rep 2014; 7:436-447. [DOI: 10.1016/j.celrep.2014.03.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/07/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023] Open
|
7
|
Selathurai A, Deswaerte V, Kanellakis P, Tipping P, Toh BH, Bobik A, Kyaw T. Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res 2014; 102:128-37. [DOI: 10.1093/cvr/cvu016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Ballas ZK, Buchta CM, Rosean TR, Heusel JW, Shey MR. Role of NK cell subsets in organ-specific murine melanoma metastasis. PLoS One 2013; 8:e65599. [PMID: 23776508 PMCID: PMC3679158 DOI: 10.1371/journal.pone.0065599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/25/2013] [Indexed: 01/19/2023] Open
Abstract
Tumor metastasis plays a major role in the morbidity and mortality of cancer patients. Among solid tumors that undergo metastasis, there is often a predilection to metastasize to a particular organ with, for example, prostate cancer preferentially metastasizing to bones and colon cancer preferentially metastasizing to the liver. Although many factors are thought to be important in establishing permissiveness for metastasis, the reasons for organ-specific predilection of each tumor are not understood. Using a B16 murine melanoma model, we tested the hypothesis that organ-specific NK cell subsets play a critical role in organ-specific metastasis of this tumor. Melanoma cells, given intravenously, readily colonized the lungs but not the liver. NK cell depletion (either iatrogenically or by using genetically targeted mice) resulted in substantial hepatic metastasis. Analysis of NK cell subsets, defined by the differential expression of a combination of CD27 and CD11b, indicated a significant difference in the distribution of NK cell subsets in the lung and liver with the mature subset being dominant in the lung and the immature subset being dominant in the liver. Several experimental approaches, including adoptive transfer, clearly indicated that the immature hepatic NK cell subset, CD27+ CD11b–, was protective against liver metastasis; this subset mediated its protection by a perforin-dependent cytotoxic mechanism. In contrast, the more mature NK cell subsets were more efficient at reducing pulmonary tumor load. These data indicate that organ-specific immune responses may play a pivotal role in determining the permissiveness of a given organ for the establishment of a metastatic niche.
Collapse
Affiliation(s)
- Zuhair K. Ballas
- Iowa City VA Medical Center and the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (ZKB); (MRS)
| | - Claire M. Buchta
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Timothy R. Rosean
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Jonathan W. Heusel
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Michael R. Shey
- Iowa City VA Medical Center and the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (ZKB); (MRS)
| |
Collapse
|
9
|
Clinthorne JF, Beli E, Duriancik DM, Gardner EM. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. THE JOURNAL OF IMMUNOLOGY 2012; 190:712-22. [PMID: 23241894 DOI: 10.4049/jimmunol.1201837] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells are a heterogenous population of innate lymphocytes with diverse functional attributes critical for early protection from viral infections. We have previously reported a decrease in influenza-induced NK cell cytotoxicity in 6-mo-old C57BL/6 calorically restricted (CR) mice. In the current study, we extend our findings on the influence of CR on NK cell phenotype and function in the absence of infection. We demonstrate that reduced mature NK cell subsets result in increased frequencies of CD127(+) NK cells in CR mice, skewing the function of the total NK cell pool. NK cells from CR mice produced TNF-α and GM-CSF at a higher level, whereas IFN-γ production was impaired following IL-2 plus IL-12 or anti-NK1.1 stimulation. NK cells from CR mice were highly responsive to stimulation with YAC-1 cells such that CD27(-)CD11b(+) NK cells from CR mice produced granzyme B and degranulated at a higher frequency than CD27(-)CD11b(+) NK cells from ad libitum fed mice. CR has been shown to be a potent dietary intervention, yet the mechanisms by which the CR increases life span have yet to be fully understood. To our knowledge, these findings are the first in-depth analysis of the effects of caloric intake on NK cell phenotype and function and provide important implications regarding potential ways in which CR alters NK cell function prior to infection or cancer.
Collapse
Affiliation(s)
- Jonathan F Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
10
|
Bezman NA, Chakraborty T, Bender T, Lanier LL. miR-150 regulates the development of NK and iNKT cells. J Exp Med 2011; 208:2717-31. [PMID: 22124110 PMCID: PMC3244033 DOI: 10.1084/jem.20111386] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/31/2011] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) and invariant NK T (iNKT) cells are critical in host defense against pathogens and for the initiation of adaptive immune responses. miRNAs play important roles in NK and iNKT cell development, maturation, and function, but the roles of specific miRNAs are unclear. We show that modulation of miR-150 expression levels has a differential effect on NK and iNKT cell development. Mice with a targeted deletion of miR-150 have an impaired, cell lineage-intrinsic defect in their ability to generate mature NK cells. Conversely, a gain-of-function miR-150 transgene promotes the development of NK cells, which display a more mature phenotype and are more responsive to activation. In contrast, overexpression of miR-150 results in a substantial reduction of iNKT cells in the thymus and in the peripheral lymphoid organs. The transcription factor c-Myb has been shown to be a direct target of miR-150. Our finding of increased NK cell and decreased iNKT cell frequencies in Myb heterozygous bone marrow chimeras suggests that miR-150 differentially controls the development of NK and iNKT cell lineages by targeting c-Myb.
Collapse
Affiliation(s)
- Natalie A. Bezman
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Tirtha Chakraborty
- Immune Disease Institute and Department of Pathology, Harvard Medical School, MA 02115
| | - Timothy Bender
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
11
|
The role of natural killer cells in sepsis. J Biomed Biotechnol 2011; 2011:986491. [PMID: 21629707 PMCID: PMC3100670 DOI: 10.1155/2011/986491] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/16/2011] [Indexed: 01/20/2023] Open
Abstract
Severe sepsis and septic shock are still deadly conditions urging to develop novel therapies. A better understanding of the complex modifications of the immune system of septic patients is needed for the development of innovative immunointerventions. Natural killer (NK) cells are characterized as CD3−NKp46+CD56+ cells that can be cytotoxic and/or produce high amounts of cytokines such as IFN-γ. NK cells are also engaged in crosstalks with other immune cells, such as dendritic cells, macrophages, and neutrophils. During the early stage of septic shock, NK cells may play a key role in the promotion of the systemic inflammation, as suggested in mice models. Alternatively, at a later stage, NK cells-acquired dysfunction could favor nosocomial infections and mortality. Standardized biological tools defining patients' NK cell status during the different stages of sepsis are mandatory to guide potential immuno-interventions. Herein, we review the potential role of NK cells during severe sepsis and septic shock.
Collapse
|
12
|
Lawson VJ, Maurice D, Silk JD, Cerundolo V, Weston K. Aberrant Selection and Function of Invariant NKT Cells in the Absence of AP-1 Transcription Factor Fra-2. THE JOURNAL OF IMMUNOLOGY 2009; 183:2575-84. [DOI: 10.4049/jimmunol.0803577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Sobolev O, Stern P, Lacy-Hulbert A, Hynes RO. Natural killer cells require selectins for suppression of subcutaneous tumors. Cancer Res 2009; 69:2531-9. [PMID: 19258505 DOI: 10.1158/0008-5472.can-08-3126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Natural killer (NK) cells recognize and destroy cancer cells through a variety of mechanisms. They may also modulate the adaptive immune response to cancer by interacting with dendritic cells and T cells. Although NK cells play an important role in tumor suppression, little is known about the mechanisms of their recruitment to tumors. Previously it has been shown that subcutaneous tumor growth is enhanced in mice lacking selectins, a family of cell adhesion molecules that mediate the first step of immune cell entry into tissue from the blood. Here we show that NK cell recruitment to tumors is defective in selectin-deficient mice. In vivo NK cell depletion, either pharmacologic or genetic, leads to enhanced subcutaneous tumor growth, similar to the phenotype observed in the selectin-deficient animals. We also show that although NK cells from selectin-deficient mice appear developmentally normal and are functional in in vitro assays, their in vivo function is impaired. This study reveals a role for selectins in NK cell recruitment to tumors and in regulation of effective tumor immunity.
Collapse
Affiliation(s)
- Olga Sobolev
- Howard Hughes Medical Institute, David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
14
|
Distal-less homeobox transcription factors regulate development and maturation of natural killer cells. Proc Natl Acad Sci U S A 2008; 105:10877-82. [PMID: 18664585 DOI: 10.1073/pnas.0805205105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells constitute a subpopulation of lymphocytes that develop from precursors in the bone marrow (BM), but the transcriptional regulation of their development and maturation is only beginning to be understood, in part due to their relatively rare abundance, especially of developmental subsets. Using a mouse model in which NK cells are arrested at an immature stage of development, and a gene expression profiling approach, we uncovered transient normal NK cell expression of a homeobox transcription factor (TF) family, called Distal-less (Dlx), which had been primarily implicated in murine CNS, craniofacial, limb, and skin development. Our studies demonstrate that Dlx1, Dlx2, and Dlx3 are transiently expressed in immature Mac-1(lo) NK cells within the BM, with Dlx3 being the predominantly expressed member. These genes are expressed in a temporally regulated pattern with overlapping waves of expression, and they display functional redundancy. Expression is extinguished in fully mature splenic NK cells, and persistent expression of Dlx genes leads to functionally immature NK cells arrested at the Mac-1(lo) stage. Whereas conventional splenic NK cells develop but are arrested at an immature stage, there appears to be a complete failure to develop CD127(+) thymic NK cells when Dlx genes are persistently expressed. We also observed that T and B cells fail to develop in the context of persistent Dlx1 expression. Thus, these studies indicate that Dlx TFs play a functional role in lymphocyte development.
Collapse
|
15
|
French AR, Kim S, Fehniger TA, Pratt JR, Yang L, Song YJ, Caligiuri MA, Yokoyama WM. Chronic lymphocytosis of functionally immature natural killer cells. J Allergy Clin Immunol 2007; 120:924-31. [PMID: 17604094 DOI: 10.1016/j.jaci.2007.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 05/11/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The development of natural killer (NK) cells in the bone marrow is not well characterized. We recently described a mouse (referred to as an NK cell-deficient [NKD] mouse) with a selective deficiency in NK cells caused by the insertion of a transgene construct into the genetic locus for the basic leucine zipper transcription factor ATF-2. NK cells in this mouse were both phenotypically and functionally immature and accumulated in the bone marrow at a stage at which constitutive NK cell proliferation occurs in wild-type mice. OBJECTIVE We hypothesized that excess IL-15 could potentially overcome this developmental block, allowing normal emigration of mature NK cells from the bone marrow to the periphery. METHODS Double-transgenic mice were generated by crossing the NKD mice with transgenic mice overexpressing IL-15. RESULTS The double-transgenic mice had a dramatic accumulation of phenotypically immature NK cells in the bone marrow and subsequently in the blood, liver, and spleen. NK cells from these double-transgenic mice manifested functional deficits similar to those observed in NK cells from NKD mice, as assessed by decreased cytokine production and cytotoxicity. CONCLUSION Rather than bypass the observed developmental defect in NKD mice, excess IL-15 drove a massive accumulation of phenotypically and functionally immature NK cells in the bone marrow and periphery. CLINICAL IMPLICATIONS We propose that these double-transgenic mice will serve as a murine model of chronic NK cell lymphocytosis in human patients.
Collapse
Affiliation(s)
- Anthony R French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Hu Z, Barney KA, Degen JL. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 2007; 110:133-41. [PMID: 17371949 PMCID: PMC1896107 DOI: 10.1182/blood-2007-01-065995] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tumor cell-associated tissue factor (TF) is a powerful determinant of metastatic potential. TF may increase metastasis by supporting thrombin-mediated proteolysis, through intracellular signaling events mediated by the TF cytoplasmic domain, through TF/fVIIa/fXa-mediated activation of protease-activated receptors, or through a combination of these processes. To better define the relationship between tumor cell-associated TF and circulating hemostatic factors in malignancy, we generated a set of C57Bl/6-derived tumor lines genetically lacking TF, expressing wild-type murine TF, or expressing a mutant TF lacking the cytoplasmic domain. Comparison of the metastatic potential of these cells in immunocompetent mice with genetic deficits in prothrombin, platelet function, or fibrinogen revealed that TF supports metastasis through mechanisms independent of the cytoplasmic domain, but dependent on each of these distal hemostatic factors. TF was neither required for primary tumor growth nor necessary for initial localization of embolized tumor cells within the lungs. Rather, tumor cell fate studies indicated TF supports metastasis by increasing the survival of micrometastases. One mechanism linking TF to metastasis is through a fibrin(ogen)-dependent and platelet-dependent restriction in natural killer cell-mediated clearance of micrometastases. However, TF also supported the early success of micrometastases through an additional mechanism independent of natural killer cells, but coupled to circulating prothrombin.
Collapse
Affiliation(s)
- Joseph S Palumbo
- Divisions of Hematology, Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Walzer T, Bléry M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, André P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagné F, Vivier E. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 2007; 104:3384-9. [PMID: 17360655 PMCID: PMC1805551 DOI: 10.1073/pnas.0609692104] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells contribute to a variety of innate immune responses to viruses, tumors and allogeneic cells. However, our understanding of NK cell biology is severely limited by the lack of consensus phenotypic definition of these cells across species, by the lack of specific marker to visualize them in situ, and by the lack of a genetic model where NK cells may be selectively ablated. NKp46/CD335 is an Ig-like superfamily cell surface receptor involved in human NK cell activation. In addition to human, we show here that NKp46 is expressed by NK cells in all mouse strains analyzed, as well as in three common monkey species, prompting a unifying phenotypic definition of NK cells across species based on NKp46 cell surface expression. Mouse NKp46 triggers NK cell effector function and allows the detection of NK cells in situ. NKp46 expression parallels cell engagement into NK differentiation programs because it is detected on all NK cells from the immature CD122(+)NK1.1(+)DX5(-) stage and on a minute fraction of NK-like T cells, but not on CD1d-restricted NKT cells. Moreover, human NKp46 promoter drives NK cell selective expression both in vitro and in vivo. Using NKp46 promoter, we generated transgenic mice expressing EGFP and the diphtheria toxin (DT) receptor in NK cells. DT injection in these mice leads to a complete and selective NK cell ablation. This model paves a way for the in vivo characterization and preclinical assessment of NK cell biological function.
Collapse
Affiliation(s)
- Thierry Walzer
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | | | - Julie Chaix
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | | | - Lionel Chasson
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | - Scott H. Robbins
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | - Sébastien Jaeger
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | | | | | - Laurent Daniel
- Assistance Publique–Hôpitaux de Marseille, Hôpital de la Timone, 13005 Marseille, France
| | | | | | - Marc Dalod
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | - Jean Imbert
- **Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 599, Centre de Recherche en Cancérologie de Marseille, 13009 Marseille, France
| | - Michel Pierres
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6102, 13288 Marseille, France
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16000 Genova, Italy; and
| | | | - Eric Vivier
- *Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, 13288 Marseille, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 631, Marseille, France
- Assistance Publique–Hôpitaux de Marseille, Hôpital de la Conception, 13005 Marseille, France
| |
Collapse
|
18
|
Parker AK, Parker S, Yokoyama WM, Corbett JA, Buller RML. Induction of natural killer cell responses by ectromelia virus controls infection. J Virol 2007; 81:4070-9. [PMID: 17287257 PMCID: PMC1866162 DOI: 10.1128/jvi.02061-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.
Collapse
Affiliation(s)
- April Keim Parker
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|