1
|
Guo Y, Li X, Xie Y, Wang Y. What influences the activity of Degrader-Antibody conjugates (DACs). Eur J Med Chem 2024; 268:116216. [PMID: 38387330 DOI: 10.1016/j.ejmech.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xie
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
2
|
Tang H, Xiao Y, Qian L, Wang Z, Lu M, Yao N, Zhou T, Tian F, Cao L, Zheng P, Dong X. Mechanistic insights into the C-type lectin receptor CLEC12A-mediated immune recognition of monosodium urate crystal. J Biol Chem 2024; 300:105765. [PMID: 38367667 PMCID: PMC10959670 DOI: 10.1016/j.jbc.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.
Collapse
Affiliation(s)
- Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| | - Yuelong Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zibin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Lu
- Westlake laboratory, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ting Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Longxing Cao
- Westlake laboratory, Westlake University, Hangzhou, Zhejiang, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Xianchi Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China; Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Miller MH, Swaby LG, Vailoces VS, LaFratta M, Zhang Y, Zhu X, Hitchcock DJ, Jewett TJ, Zhang B, Tigno-Aranjuez JT. LMAN1 is a receptor for house dust mite allergens. Cell Rep 2023; 42:112208. [PMID: 36870056 PMCID: PMC10105285 DOI: 10.1016/j.celrep.2023.112208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Development of therapies with the potential to change the allergic asthmatic disease course will require the discovery of targets that play a central role during the initiation of an allergic response, such as those involved in the process of allergen recognition. We use a receptor glycocapture technique to screen for house dust mite (HDM) receptors and identify LMAN1 as a candidate. We verify the ability of LMAN1 to directly bind HDM allergens and demonstrate that LMAN1 is expressed on the surface of dendritic cells (DCs) and airway epithelial cells (AECs) in vivo. Overexpression of LMAN1 downregulates NF-κB signaling in response to inflammatory cytokines or HDM. HDM promotes binding of LMAN1 to the FcRγ and recruitment of SHP1. Last, peripheral DCs of asthmatic individuals show a significant reduction in the expression of LMAN1 compared with healthy controls. These findings have potential implications for the development of therapeutic interventions for atopic disease.
Collapse
Affiliation(s)
- Madelyn H Miller
- Biotechnology and Immunology Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lindsay G Swaby
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vanessa S Vailoces
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Maggie LaFratta
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yuan Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Xiang Zhu
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Dorilyn J Hitchcock
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Justine T Tigno-Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
4
|
Morse JW, Rios M, Ye J, Rios A, Zhang CC, Daver NG, DiNardo CD, Zhang N, An Z. Antibody therapies for the treatment of acute myeloid leukemia: exploring current and emerging therapeutic targets. Expert Opin Investig Drugs 2023; 32:107-125. [PMID: 36762937 PMCID: PMC10031751 DOI: 10.1080/13543784.2023.2179482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most common and deadly type of leukemia affecting adults. It is typically managed with rounds of non-targeted chemotherapy followed by hematopoietic stem cell transplants, but this is only possible in patients who can tolerate these harsh treatments and many are elderly and frail. With the identification of novel tumor-specific cell surface receptors, there is great conviction that targeted antibody therapies will soon become available for these patients. AREAS COVERED In this review, we describe the current landscape of known target receptors for monospecific and bispecific antibody-based therapeutics for AML. Here, we characterize each of the receptors and targeted antibody-based therapeutics in development, illustrating the rational design behind each therapeutic compound. We then discuss the bispecific antibodies in development and how they improve immune surveillance of AML. For each therapeutic, we also summarize the available pre-clinical and clinical data, including data from discontinued trials. EXPERT OPINION One antibody-based therapeutic has already been approved for AML treatment, the CD33-targeting antibody-drug conjugate, gemtuzumab ozogamicin. Many more are currently in pre-clinical and clinical studies. These antibody-based therapeutics can perform tumor-specific, elaborate cytotoxic functions and there is growing confidence they will soon lead to personalized, safe AML treatment options that induce durable remissions.
Collapse
Affiliation(s)
- Joshua W Morse
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Margarita Rios
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - John Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Adan Rios
- Division of Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Nishimura N, Tomiyasu N, Torigoe S, Mizuno S, Fukano H, Ishikawa E, Katano H, Hoshino Y, Matsuo K, Takahashi M, Izumi Y, Bamba T, Akashi K, Yamasaki S. Mycobacterial mycolic acids trigger inhibitory receptor Clec12A to suppress host immune responses. Tuberculosis (Edinb) 2023; 138:102294. [PMID: 36542980 DOI: 10.1016/j.tube.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.
Collapse
Affiliation(s)
- Naoya Nishimura
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shota Torigoe
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoru Mizuno
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, 565-0871, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan; Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
7
|
Vitry J, Paré G, Murru A, Charest-Morin X, Maaroufi H, McLeish KR, Naccache PH, Fernandes MJ. Regulation of the Expression, Oligomerisation and Signaling of the Inhibitory Receptor CLEC12A by Cysteine Residues in the Stalk Region. Int J Mol Sci 2021; 22:ijms221910207. [PMID: 34638548 PMCID: PMC8508511 DOI: 10.3390/ijms221910207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023] Open
Abstract
CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor’s expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.
Collapse
Affiliation(s)
- Julien Vitry
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Guillaume Paré
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Andréa Murru
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Xavier Charest-Morin
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Halim Maaroufi
- Institute of Integrative Biology and Systems, Laval University, Québec, QC G1V 0A6, Canada;
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40206, USA;
| | - Paul H. Naccache
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Maria J. Fernandes
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-418-656-4141 (ext. 46106)
| |
Collapse
|
8
|
Paré G, Vitry J, Merchant ML, Vaillancourt M, Murru A, Shen Y, Elowe S, Lahoud MH, Naccache PH, McLeish KR, Fernandes MJ. The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Front Immunol 2021; 12:650808. [PMID: 34234773 PMCID: PMC8256872 DOI: 10.3389/fimmu.2021.650808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.
Collapse
Affiliation(s)
- Guillaume Paré
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Julien Vitry
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Myriam Vaillancourt
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Andréa Murru
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Yunyun Shen
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada.,Reproduction, Mother and Youth Health Division, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul H Naccache
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Maria J Fernandes
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
9
|
Expression of the myeloid inhibitory receptor CLEC12A correlates with disease activity and cytokines in early rheumatoid arthritis. Sci Rep 2021; 11:11248. [PMID: 34045571 PMCID: PMC8160002 DOI: 10.1038/s41598-021-90631-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
The myeloid inhibitory receptor CLEC12A negatively regulates inflammation. Reduced CLEC12A expression enhances inflammation in CLEC12A knock-out mice with collagen antibody-induced arthritis. Moreover, CLEC12A internalisation augments human neutrophil activation. We thus postulated that CLEC12A expression on circulating myeloid cells of rheumatoid arthritis patients is associated with disease manifestations. Cell-surface, CLEC12A receptor expression was determined on circulating neutrophils and monocytes of eRA patients and of healthy donors. Generalized estimating equations model, Student’s t-test and Spearman’s correlations were performed to compare CLEC12A expression between groups and test its association with disease activity and clinical parameters. Plasma cytokines were measured by multiplex immunoassay. Patients with reduced neutrophil or monocyte CLEC12A expression at baseline and at 3 months have an increased simple disease activity index. Low baseline CLEC12A expression also correlates with a higher SDAI at 6 months. In contrast, positive correlations were observed between baseline CLEC12A expression and several cytokines. Moreover, neutrophil and monocyte CLEC12A expression is significantly higher in early rheumatoid arthritis patients at baseline than healthy controls. Circulating neutrophil and monocyte CLEC12A expression correlates with disease activity at baseline and is predictive of SDAI at later stages of the disease indicative of a regulatory role for CLEC12A in RA.
Collapse
|
10
|
Nguyen HP, Lin F, Yi D, Xie Y, Dinh J, Xue P, Sul HS. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev Cell 2021; 56:1437-1451.e3. [PMID: 33878347 PMCID: PMC8137669 DOI: 10.1016/j.devcel.2021.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue mass and adiposity change throughout the lifespan. During aging, while visceral adipose tissue (VAT) tends to increase, peripheral subcutaneous adipose tissue (SAT) decreases significantly. Unlike VAT, which is linked to metabolic diseases, including type 2 diabetes, SAT has beneficial effects. However, the molecular details behind the aging-associated loss of SAT remain unclear. Here, by comparing scRNA-seq of total stromal vascular cells of SAT from young and aging mice, we identify an aging-dependent regulatory cell (ARC) population that emerges only in SAT of aged mice and humans. ARCs express adipose progenitor markers but lack adipogenic capacity; they secrete high levels of pro-inflammatory chemokines, including Ccl6, to inhibit proliferation and differentiation of neighboring adipose precursors. We also found Pu.1 to be a driving factor for ARC development. We identify an ARC population and its capacity to inhibit differentiation of neighboring adipose precursors, correlating with aging-associated loss of SAT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Frances Lin
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle Yi
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Xie
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennie Dinh
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pengya Xue
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
12
|
C-Type Lectin-Like Molecule-1 as a Biomarker for Diagnosis and Prognosis in Acute Myeloid Leukemia: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6643948. [PMID: 33778076 PMCID: PMC7979301 DOI: 10.1155/2021/6643948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
Objective AML is a heterogeneous disease both in genomic and proteomic backgrounds, and variable outcomes may appear in the same cytogenetic risk group. Therefore, it is still necessary to identify new antigens that contribute to diagnostic information and to refine the current risk stratification. Methods The expression of C-type lectin-like molecule-1 (CLL-1) in AML blasts was examined in 52 patients with newly diagnosed or relapsed/refractory AML and was compared with two other classic markers CD33 and CD34 in AML, in order to assess the value of CLL-1 as an independent biomarker or in combination with other markers for diagnosis in AML. Subsequently, the value of CLL-1 as a biomarker for prognosis was assessed in this malignant tumor. Results The results showed that CLL-1 was expressed on the cell surface of the majority of AML blasts (78.8%) and also expressed on leukemic stem cells in varying degree but absent on normal hematopoietic stem cells. Notably, CLL-1 was able to complement the classic markers CD33 or CD34. After dividing the cases into CLL-1high and CLL-1low groups according to cutoff 59.0%, we discovered that event-free survival and overall survival (OS) of the CLL-1low group were significantly lower than that of the CLL-1high group, and low CLL-1 expression seems to be independently associated with shorter OS. Conclusions These preliminary observations identified CLL-1 as a biomarker for diagnosis and prognosis of AML.
Collapse
|
13
|
Venugopal S, Daver N, Ravandi F. An Update on the Clinical Evaluation of Antibody-Based Therapeutics in Acute Myeloid Leukemia. Curr Hematol Malig Rep 2021; 16:89-96. [PMID: 33630233 DOI: 10.1007/s11899-021-00612-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The advent of several targeted agents has revolutionized the treatment of acute myeloid leukemia (AML) in recent times; however, majority of patients are still not cured. In the ongoing quest for rationally targeted treatment strategies in AML, scientific endeavors have focused on identifying new antigen targets on the leukemic cells for therapeutic exploitation including strategies to directly deliver toxins into the leukemic blasts as well as strategies that harness host immunity to favorably impact clinical outcomes. Gemtuzumab ozogamicin, a CD33 directed antibody-drug conjugate, has provided the proof of concept for the potential efficacy of monoclonal antibody-based therapies in AML. This article provides an overview of immunologically relevant antigen targets expressed on the leukemic cells and synopsizes the clinical results evaluating targeted antibody-based therapeutic approach in AML. RECENT FINDINGS AML blasts and leukemic stem cells express several antigens, including CD33, CD47, CD70, CD123, and CLEC12A. The past several years have seen the burgeoning of cell-specific immunotherapy concepts, including checkpoint inhibitors, antibody-toxin conjugates, and bispecific antibodies in the treatment of AML. The first-in-class anti-CD47 antibody magrolimab and anti-CD70 antibody cusatuzumab in combination with hypomethylating agent (HMA) azacitidine, in newly diagnosed AML, and flotetuzumab, a bispecific DART® (dual-affinity retargeting) antibody to CD3ε and CD123 as salvage option in relapsed/refractory AML appear promising. The development of antibody-based immunotherapeutic approach in AML has been encouraging. Ongoing research will define the choice of an appropriate complementary therapeutic agent in antibody-based combination therapy, and whether one or more than one antigen should be simultaneously targeted. Further studies will likely refine the role of antibody-based therapy in post hematopoietic cell transplant setting.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Ackun-Farmmer MA, Alatise KL, Cross G, Benoit DSW. Ligand Density Controls C-Type Lectin-Like Molecule-1 Receptor-Specific Uptake of Polymer Nanoparticles. ADVANCED BIOSYSTEMS 2020; 4:e2000172. [PMID: 33073549 PMCID: PMC7959326 DOI: 10.1002/adbi.202000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Indexed: 01/13/2023]
Abstract
The newest generation of drug delivery systems (DDSs) exploits ligands to mediate specific targeting of cells and/or tissues. However, studies investigating the link between ligand density and nanoparticle (NP) uptake are limited to a small number of ligand-receptor systems. C-type lectin-like molecule-1 (CLL1) is uniquely expressed on myeloid cells, which enables the development of receptors specifically targeting treat various diseases. This study aims to investigate how NPs with different CLL1 targeting peptide density impact cellular uptake. To this end, poly(styrene-alt-maleic anhydride)-b-poly(styrene) NPs are functionalized with cyclized CLL1 binding peptides (cCBP) ranging from 240 ± 12 to 31 000 ± 940 peptides per NP. Unexpectedly, the percentage of cells with internalized NPs is decreased for all cCBP-NP designs regardless of ligand density compared to unmodified NPs. Internalization through CLL1 receptor-mediated processes is further investigated without confounding the effects of NP size and surface charge. Interestingly, high density cCBP-NPs (>7000 cCBP per NP) uptake is dominated by CLL1 receptor-mediated processes while low density cCBP-NPs (≈200 cCBP per NP) and untargeted NP occurred through non-specific clathrin and caveolin-mediated endocytosis. Altogether, these studies show that ligand density and uptake mechanism should be carefully investigated for specific ligand-receptor systems for the design of targeted DDSs to achieve effective drug delivery.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
| | - Kharimat L Alatise
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
| | - Griffin Cross
- Washington University in St. Louis, Biomedical/Medical Engineering, St. Louis, MO, USA
| | - Danielle S W Benoit
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
- University of Rochester, Materials Science Program, Rochester, NY, USA
- University of Rochester, Department of Chemical Engineering, Rochester, NY, USA
| |
Collapse
|
15
|
Effendi WI, Nagano T, Hasan H, Yudhawati R. Immunoregulatory Property of C-Type Lectin-Like Receptors in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 21:E3665. [PMID: 32455964 PMCID: PMC7279300 DOI: 10.3390/ijms21103665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The innate immune system identifies exogenous threats or endogenous stress through germline-encoded receptors called pattern recognition receptors (PRRs) that initiate consecutive downstream signaling pathways to control immune responses. However, the contribution of the immune system and inflammation to fibrosing interstitial lung diseases (ILD) remains poorly understood. Immunoreceptor tyrosine-based motif-bearing C-type lectin-like receptors (CTLRs) may interact with various immune cells during tissue injury and wound repair processes. Dectin-1 is a CTLR with dominant mechanisms manifested through its intracellular signaling cascades, which regulate fibrosis-promoting properties through gene transcription and cytokine activation. Additionally, immune impairment in ILD facilitates microbiome colonization; hence, Dectin-1 is the master protector in host pulmonary defense against fungal invasion. Recent progress in determining the signaling pathways that control the balance of fibrosis has implicated immunoreceptor tyrosine-based motif-bearing CTLRs as being involved, either directly or indirectly, in the pathogenesis of fibrosing ILD.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Helmia Hasan
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| |
Collapse
|
16
|
Álvarez B, Nieto-Pelegrín E, Martínez de la Riva P, Toki D, Poderoso T, Revilla C, Uenishi H, Ezquerra A, Domínguez J. Characterization of the Porcine CLEC12A and Analysis of Its Expression on Blood Dendritic Cell Subsets. Front Immunol 2020; 11:863. [PMID: 32477350 PMCID: PMC7237735 DOI: 10.3389/fimmu.2020.00863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
CLEC12A has been proposed as a suitable target for delivering antigen to dendritic cells (DCs) to enhance vaccine efficacy both in human and mouse. In this study, we have characterized the porcine homolog of CLEC12A (poCLEC12A). Using new monoclonal antibodies (mAb), raised against its ectodomain, poCLEC12A was found to be expressed on alveolar macrophages, blood conventional type 1 and type 2 DCs and plasmacytoid DCs, but not on monocytes, T cells, B cells or NK cells, in contrast to its human and murine homologs. Western blot analysis showed that in alveolar macrophages this receptor is expressed both as a monomer and a dimer. After binding to DCs, anti- poCLEC12A mAb was efficiently internalized. No significant changes were observed in TNFα or IFNα secretion by plasmacytoid DCs stimulated with either CpGs (ODN2216) or polyinosinic-polycytidylic acid (poly I:C), upon incubation with mAb. These results provide the basis for future investigations aimed to assess the ability of anti-poCLEC12A mAbs to improve vaccine efficacy by targeting antigen to DCs.
Collapse
Affiliation(s)
- Belén Álvarez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Elvira Nieto-Pelegrín
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Paloma Martínez de la Riva
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Daisuke Toki
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, Tsukuba, Japan
| | - Teresa Poderoso
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Concepción Revilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Angel Ezquerra
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
17
|
Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol 2020; 11:251. [PMID: 32133013 PMCID: PMC7040094 DOI: 10.3389/fimmu.2020.00251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.
Collapse
Affiliation(s)
- Marion Drouin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Javier Saenz
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
18
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Morsink LM, Walter RB. Novel monoclonal antibody-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol 2019; 32:116-126. [PMID: 31203993 DOI: 10.1016/j.beha.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
There has been long-standing interest in using monoclonal antibodies to improve outcomes of people with acute myeloid leukemia (AML). While several candidate therapeutics have failed at various stages of clinical testing, improved survival of some patients receiving the CD33 antibody-drug conjugate gemtuzumab ozogamicin has provided first evidence that monoclonal antibodies have a role in the armamentarium against AML. Over the last several years, work to improve the success of monoclonal antibody-based therapies in AML has focused on the identification and exploration of new antigen targets as much as on the development of novel treatment formats such as use of unconjugated engineered monoclonal antibodies and conjugated antibodies, delivering highly potent small molecule drugs or radionuclides to AML cells. Here, we will provide a brief overview of current efforts with such investigational monoclonal antibody-based therapeutics.
Collapse
Affiliation(s)
- Linde M Morsink
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Ma H, Padmanabhan IS, Parmar S, Gong Y. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol 2019; 12:41. [PMID: 31014360 PMCID: PMC6480870 DOI: 10.1186/s13045-019-0726-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Despite major scientific discoveries and novel therapies over the past four decades, the treatment outcomes of acute myeloid leukemia (AML), especially in the adult patient population remain dismal. In the past few years, an increasing number of targets such as CD33, CD123, CLL-1, CD47, CD70, and TIM3, have been developed for immunotherapy of AML. Among them, CLL-1 has attracted the researchers’ attention due to its high expression in AML while being absent in normal hematopoietic stem cell. Accumulating evidence have demonstrated CLL-1 is an ideal target for AML. In this paper, we will review the expression of CLL-1 on normal cells and AML, the value of CLL-1 in diagnosis and follow-up, and targeting CLL-1 therapy-based antibody and chimeric antigen receptor T cell therapy as well as providing an overview of CLL-1 as a target for AML.
Collapse
Affiliation(s)
- Hongbing Ma
- Hematology Department, West China Hospital, Sichuan University, Chengdu, China
| | | | - Simrit Parmar
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Texas University, Houston, USA.
| | - Yuping Gong
- Hematology Department, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Liu G, Yin S, Li P, Han Y, Zheng Y, Zhang Y, Liu S, Li J, Guo Z, Tao Y, An H, Xu S, Yu Y. mKLRL1 regulates the maturation of dendritic cells and plays important roles in immune tolerance. Am J Transl Res 2019; 11:300-313. [PMID: 30787988 PMCID: PMC6357304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
KLRL1 is a member of C-type lectin-like receptors (CLEC) and preferentially expressed on the surface of immune cells. We have previously illustrated its inhibitory role in Natural killer (NK) cells. Though cloned from dendritic cells (DCs), its role in DCs has not been fully identified. Here, we found that mKLRL1 markedly decreased during DC maturation; mKLRL1-modifed DCs showed enhanced phagocytic capability and reduced ability to induce T cell proliferation, which mimics immature DCs. Further investigation revealed that IL-10 was indispensable for mKLRL1 to suppress DC maturation. And p38 activation was responsible for preferential IL-10 production. Pretreatment with mKLRL1-modified DCs protected mice from subsequently EAE induction, indicating a role in immune tolerance. Taken together, our results have revealed an inhibitory role of KLRL1 in mouse DCs.
Collapse
Affiliation(s)
- Guoyan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Shulei Yin
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Ping Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Yanmei Han
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yi Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Shuxun Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Jiangyan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Ziyi Guo
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Yijie Tao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Huazhang An
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
22
|
Morsink LM, Walter RB, Ossenkoppele GJ. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev 2018; 34:26-33. [PMID: 30401586 DOI: 10.1016/j.blre.2018.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/17/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
CLEC12A has recently been identified as an antigen, expressed on leukemic stem cells and leukemic blasts. Given the fact that this expression profile seems stable throughout diagnosis, treatment and relapse on leukemic blasts and leukemic stem cells, CLEC12A can be considered a highly potent and reliable marker for the detection of measurable residual disease and therefore applicable for risk stratification and prognostication in AML. Low CLEC12A expression on leukemic blasts seems to be independently associated with lower likelihood of achieving complete remission after 1 cycle of induction chemotherapy, shorter event free survival, as well as overall survival, indicating potential prognostic properties of CLEC12A expression itself. Lack of expression on the normal hematopoietic stem and progenitor cells, in contrast to CD123 and CD33, might result in less toxicity regarding cytopenias, making CLEC12A an interesting target for innovating immunotherapies, including monoclonal and bispecific antibodies, antibody-drug conjugates and CAR-T cells therapy.
Collapse
Affiliation(s)
- Linde M Morsink
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Fernandes MJ, Naccache PH. The Role of Inhibitory Receptors in Monosodium Urate Crystal-Induced Inflammation. Front Immunol 2018; 9:1883. [PMID: 30177932 PMCID: PMC6109781 DOI: 10.3389/fimmu.2018.01883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Inhibitory receptors are key regulators of immune responses. Aberrant inhibitory receptor function can either lead to an exacerbated or defective immune response. Several regulatory mechanisms involved in the inflammatory reaction induced by monosodium urate crystals (MSU) during acute gout have been identified. One of these mechanisms involves inhibitory receptors. The engagement of the inhibitory receptors Clec12A and SIRL-1 has opposing effects on the responses of neutrophils to MSU. We review the general concepts of inhibitory receptor biology and apply them to understand and compare the modulation of MSU-induced inflammation by Clec12A and SIRL-1. We also discuss gaps in our knowledge of the contribution of inhibitory receptors to the pathogenesis of gout and propose future avenues of research.
Collapse
Affiliation(s)
- Maria J Fernandes
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Paul H Naccache
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
24
|
Targeting the Mincle and TLR3 receptor using the dual agonist cationic adjuvant formulation 9 (CAF09) induces humoral and polyfunctional memory T cell responses in calves. PLoS One 2018; 13:e0201253. [PMID: 30063728 PMCID: PMC6067743 DOI: 10.1371/journal.pone.0201253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
There is a need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium avium subsp. paratuberculosis in a number of species. One of the main challenges for vaccine development is the lack of safe adjuvants that induce protective immune responses. Cationic Adjuvant Formulation 01 (CAF01)—an adjuvant based on trehalose dibehenate (TDB) and targeting the Mincle receptor—has entered human trials based on promising pre-clinical results in a number of species. However, in cattle CAF01 only induces weak systemic immune responses. In this study, we tested the ability of three pattern recognition receptors, either alone or in combination, to activate bovine monocytes and macrophages. We found that addition of the TLR3 agonist, polyinosinic:polycytidylic acid (Poly(I:C)) to either one of the Mincle receptor agonists, TDB or monomycoloyl glycerol (MMG), enhanced monocyte activation, and calves vaccinated with CAF09 containing MMG and Poly(I:C) had increased cell-mediated and humoral immune response compared to CAF01 vaccinated animals. In contrast to the highly reactogenic Montanide ISA 61 VG, CAF09-primed T cells maintained a higher frequency of polyfunctional CD4+ T cells (IFN-γ+ TNF-α+ IL-2+). In conclusion, CAF09 supports the development of antibodies along with a high-quality cell-mediated immune response and is a promising alternative to oil-in-water adjuvant in cattle and other ruminants.
Collapse
|
25
|
Bermejo-Jambrina M, Eder J, Helgers LC, Hertoghs N, Nijmeijer BM, Stunnenberg M, Geijtenbeek TBH. C-Type Lectin Receptors in Antiviral Immunity and Viral Escape. Front Immunol 2018; 9:590. [PMID: 29632536 PMCID: PMC5879224 DOI: 10.3389/fimmu.2018.00590] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/09/2018] [Indexed: 02/01/2023] Open
Abstract
C-type lectin receptors (CLRs) are important pattern recognition receptors involved in recognition and induction of adaptive immunity to pathogens. Certain CLRs play an important role in viral infections as they efficiently interact with viruses. However, it has become clear that deadly viruses subvert the function of CLRs to escape antiviral immunity and promote infection. In particular, viruses target CLRs to suppress or modulate type I interferons that play a central role in the innate and adaptive defense against viruses. In this review, we discuss the function of CLRs in binding to enveloped viruses like HIV-1 and Dengue virus, and how uptake and signaling cascades have decisive effects on the outcome of infection.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Eder
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leanne C Helgers
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Hertoghs
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bernadien M Nijmeijer
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Stunnenberg
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Chiffoleau E. C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol 2018; 9:227. [PMID: 29497419 PMCID: PMC5818397 DOI: 10.3389/fimmu.2018.00227] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023] Open
Abstract
Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,IHU Cesti, Nantes, France.,Labex Immunotherapy Graft Oncology (IGO), Nantes, France
| |
Collapse
|
27
|
Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells. Glycoconj J 2018; 35:191-203. [DOI: 10.1007/s10719-017-9811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 02/04/2023]
|
28
|
Wang J, Chen S, Xiao W, Li W, Wang L, Yang S, Wang W, Xu L, Liao S, Liu W, Wang Y, Liu N, Zhang J, Xia X, Kang T, Chen G, Cai X, Yang H, Zhang X, Lu Y, Zhou P. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol 2018; 11:7. [PMID: 29316944 PMCID: PMC5761206 DOI: 10.1186/s13045-017-0553-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. Methods We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. Results The CLL-1 CAR-T cells specifically lysed CLL-1+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. Conclusions CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. Electronic supplementary material The online version of this article (10.1186/s13045-017-0553-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinghua Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Wei Xiao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Liang Wang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Shuo Yang
- Department of Hematology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weida Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Liping Xu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shuangye Liao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenjian Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yang Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Nawei Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Gong Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xiuyu Cai
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Han Yang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xing Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yue Lu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
29
|
van Dinther D, Stolk DA, van de Ven R, van Kooyk Y, de Gruijl TD, den Haan JMM. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. J Leukoc Biol 2017; 102:1017-1034. [PMID: 28729358 PMCID: PMC5597514 DOI: 10.1189/jlb.5mr0217-059rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
There is a growing understanding of why certain patients do or do not respond to checkpoint inhibition therapy. This opens new opportunities to reconsider and redevelop vaccine strategies to prime an anticancer immune response. Combination of such vaccines with checkpoint inhibitors will both provide the fuel and release the brake for an efficient anticancer response. Here, we discuss vaccine strategies that use C-type lectin receptor (CLR) targeting of APCs, such as dendritic cells and macrophages. APCs are a necessity for the priming of antigen-specific cytotoxic and helper T cells. Because CLRs are natural carbohydrate-recognition receptors highly expressed by multiple subsets of APCs and involved in uptake and processing of Ags for presentation, these receptors seem particularly interesting for targeting purposes.
Collapse
Affiliation(s)
- Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Dorian A Stolk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
30
|
Wang YY, Chen WL, Weng XQ, Sheng Y, Wu J, Hao J, Liu ZY, Zhu YM, Chen B, Xiong SM, Chen Y, Chen QS, Sun HP, Li JM, Wang J. Low CLL-1 Expression Is a Novel Adverse Predictor in 123 Patients with De Novo CD34 + Acute Myeloid Leukemia. Stem Cells Dev 2017; 26:1460-1467. [PMID: 28810819 DOI: 10.1089/scd.2016.0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent reports state that C-type lectin-like molecule-1 (CLL-1) in acute myeloid leukemia (AML) is expressed primarily on myeloid cells, but there is still no investigation about its prognostic significance on leukemic blast compartment. Hence, this study aimed to evaluate the prognostic value of CLL-1 in 123 patients with de novo CD34+ Non-M3 AML. Multiparameter flow cytometry was used to assess the expression of CLL-1 on immature compartment in AML and control groups. We found that CLL-1 expression level on blast compartment was closely linked to clinical characteristics, treatment response, and survival outcome of patients. Decreased expression of CLL-1 was observed on immature compartment from AML patients as compared with controls (62.6% vs. 86.5%, P < 0.05). Logistic model exhibited that CLL-1low independently predicted low complete remission rate with an odds ratio of 4.57 (2.53-6.61, P < 0.05). Additionally, CLL-1 expression level at diagnosis was inversely correlated to the residual blast cells (residual leukemia cell) after induction chemotherapy (r = -0.423, P < 0.05). Furthermore, multivariate Cox regression model demonstrated that CLL-1low was still an independent adverse predictor (P < 0.05 for event-free survival, P < 0.05 for overall survival). Notably, CLL-1low was able to discriminate poor survival patients from intermediate- and favorable-risk groups. Taken together, CLL-1 is a novel prognostic predictor that could be exploited to supplement the current AML prognostic risk stratification system, and potentially optimize the clinical management of AML.
Collapse
Affiliation(s)
- Yan-Yu Wang
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Department of Hematology, Bei Zhan Hospital , Shanghai, China
- 3 Department of Hematology, The Central Hospital of Xu Hui District , Shanghai, China
| | - Wen-Lian Chen
- 4 University of Hawaii Cancer Center , Honolulu, Hawaii
| | - Xiang-Qin Weng
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yan Sheng
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jing Wu
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jie Hao
- 2 Department of Hematology, Bei Zhan Hospital , Shanghai, China
| | - Zhan-Yun Liu
- 2 Department of Hematology, Bei Zhan Hospital , Shanghai, China
| | - Yong-Mei Zhu
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Bing Chen
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Shu-Min Xiong
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yu Chen
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Qiu-Sheng Chen
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Hui-Ping Sun
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jun-Min Li
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Jin Wang
- 1 State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
31
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
32
|
Toft-Petersen M, Stidsholt Roug A, Plesner T, Ebbesen L, Brown GD, Nederby L. The CLEC12A receptor marks human basophils: Potential implications for minimal residual disease detection in acute myeloid leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:520-526. [PMID: 28718199 DOI: 10.1002/cyto.b.21540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022]
Abstract
BACKGROUND The transmembrane receptor C-type lectin domain family 12, member A (CLEC12A) is known to be highly expressed on monocytes and neutrophils and is a reliable leukemia associated marker in acute myeloid leukemia. Consequently, detailed knowledge of the various normal cell types expressing this receptor is essential. We have observed CLEC12A to be expressed on CD45lowSSClowCD14-CD123+ basophils in peripheral blood (PB) and in this study, we aimed at verifying this observation and further delineate the CD45lowSSClowCD14-CD123 + CLEC12A+ subpopulation. METHODS We analyzed PB from 20 diagnostic chronic myeloid leukemia (CML) samples and eight healthy donors in a six-color multicolor flowcytometry (FCM) based assay. Furthermore, we performed fluorescence activated cell sorting on one CML sample to morphologically confirm the CD45lowSSClowCD14-CD123 + CLEC12A+ subset to be highly enriched for basophils. Finally, to further delineate the CD45lowSSClowCD14-CD123 + CLEC12A+ subpopulation in normal PB, we examined three healthy donors in a 10-color FCM assay enabling further separation of the cell subset into basophils and dendritic cells. RESULTS The CLEC12A receptor is expressed on basophils. CONCLUSIONS Identification and enumeration of basophils is of high relevance in diagnostic hematology and immunology. We here show that CLEC12A in a simple FCM assay consistently marks basophils. Importantly, as basophils are characterized by a CD45lowSSClow profile similar to the "blast-gate" used for the evaluation of hematological disorders, awareness of minor normal CLEC12A+ subpopulations is crucial when using CLEC12A as a minimal residual disease marker in myeloid malignancies. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | | | - Trine Plesner
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark.,Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lene Ebbesen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Gordon D Brown
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Line Nederby
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| |
Collapse
|
33
|
Sagar D, Singh NP, Ginwala R, Huang X, Philip R, Nagarkatti M, Nagarkatti P, Neumann K, Ruland J, Andrews AM, Ramirez SH, Khan ZK, Jain P. Antibody blockade of CLEC12A delays EAE onset and attenuates disease severity by impairing myeloid cell CNS infiltration and restoring positive immunity. Sci Rep 2017; 7:2707. [PMID: 28578388 PMCID: PMC5457463 DOI: 10.1038/s41598-017-03027-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanism of dendritic cells (DCs) recruitment across the blood brain barrier (BBB) during neuroinflammation has been the least explored amongst all leukocytes. For cells of myeloid origin, while integrins function at the level of adhesion, the importance of lectins remains unknown. Here, we identified functions of one C-type lectin receptor, CLEC12A, in facilitating DC binding and transmigration across the BBB in response to CCL2 chemotaxis. To test function of CLEC12A in an animal model of multiple sclerosis (MS), we administered blocking antibody to CLEC12A that significantly ameliorated disease scores in MOG35–55-induced progressive, as well as PLP138–151-induced relapsing-remitting experimental autoimmune encephalomyelitis (EAE) mice. The decline in both progression and relapse of EAE occurred as a result of reduced demyelination and myeloid cell infiltration into the CNS tissue. DC numbers were restored in the spleen of C57BL/6 and peripheral blood of SJL/J mice along with a decreased TH17 phenotype within CD4+ T-cells. The effects of CLEC12A blocking were further validated using CLEC12A knockout (KO) animals wherein EAE disease induction was delayed and reduced disease severity was observed. These studies reveal the utility of a DC-specific mechanism in designing new therapeutics for MS.
Collapse
Affiliation(s)
- Divya Sagar
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaofang Huang
- Immunotope Inc., Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - Ramila Philip
- Immunotope Inc., Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA.,William Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Konstantin Neumann
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Hirsch I, Janovec V, Stranska R, Bendriss-Vermare N. Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells. Front Immunol 2017; 8:394. [PMID: 28439271 PMCID: PMC5383719 DOI: 10.3389/fimmu.2017.00394] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023] Open
Abstract
The innate immune cells sense microbial infection and self-ligands by pathogen recognition receptors (PRRs), such as toll-like receptors (TLRs) and regulatory receptors (RRs), associated with immunoreceptor tyrosine-based activation motif (ITAM). Rapid activation and concerted action of PRRs signaling and feedback inhibitory mechanisms must be engaged to ensure the host defense functions and to prevent cytotoxicity associated with excessive activation. ITAM-associated RRs can generate stimulatory or, paradoxically, inhibitory signals. The network of ITAM-associated RR, together with TLR-signaling pathways, are responsible for immunogenic or tolerogenic responses of macrophages and dendritic cells to their microenvironment. In macrophages, TLR4 signaling is inhibited by low-avidity ligation of ITAM-associated receptors, while high-avidity ligation of ITAM-associated receptors results in potentiation of TLR4 signaling together with resistance to extracellular cytokine microenvironment signals. In contrast to macrophages, TLR7/9 signaling in plasmacytoid DCs (pDCs) is inhibited by high-avidity ligation of ITAM-associated RR, while low-avidity ligation does not show any effect. Surprisingly, interference of ITAM-associated receptor signaling with TLR pathways has not been reported in conventional dendritic cells. Here, we present an overview of molecular mechanisms acting at the crossroads of TLR and ITAM-signaling pathways and address the question of how the high-avidity engagement of the ITAM-associated receptors in pDCs inhibits TLR7/9 signaling. Cellular context and spatiotemporal engagement of ITAM- and TLR-signaling pathways are responsible for different outcomes of macrophage versus pDC activation. While the cross-regulation of cytokine and TLR signaling, together with antigen presentation, are the principal functions of ITAM-associated RR in macrophages, the major role of these receptors in pDCs seems to be related to inhibition of cytokine production and reestablishment of a tolerogenic state following pDC activation. Pharmacologic targeting of TLR and ITAM signaling could be an attractive new therapeutic approach for treatment of chronic infections, cancer, and autoimmune and inflammatory diseases related to pDCs.
Collapse
Affiliation(s)
- Ivan Hirsch
- Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Molecular Genetics, ASCR, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, ASCR, Prague, Czech Republic.,Cancer Research Center Marseille, INSERM U 1068, CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Vaclav Janovec
- Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Molecular Genetics, ASCR, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, ASCR, Prague, Czech Republic
| | - Ruzena Stranska
- Cancer Research Center Marseille, INSERM U 1068, CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Nathalie Bendriss-Vermare
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
35
|
Mikulak J, Di Vito C, Zaghi E, Mavilio D. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates. Front Immunol 2017; 8:314. [PMID: 28386256 PMCID: PMC5362603 DOI: 10.3389/fimmu.2017.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
36
|
Hutten TJA, Thordardottir S, Fredrix H, Janssen L, Woestenenk R, Tel J, Joosten B, Cambi A, Heemskerk MHM, Franssen GM, Boerman OC, Bakker LBH, Jansen JH, Schaap N, Dolstra H, Hobo W. CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:2715-25. [DOI: 10.4049/jimmunol.1600011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/31/2016] [Indexed: 01/19/2023]
|
37
|
Hang L, Blum AM, Kumar S, Urban JF, Mitreva M, Geary TG, Jardim A, Stevenson MM, Lowell CA, Weinstock JV. Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2948-57. [PMID: 27559049 DOI: 10.4049/jimmunol.1600063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Helminthic infections modulate host immunity and may protect people in less-developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from H. polygyrus bakeri-infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk(-/-) mice were powerful inhibitors of murine colitis, suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors, many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for C-type lectin (CLEC) 7A, CLEC9A, CLEC12A, and CLEC4N. H. polygyrus bakeri infection downmodulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that H. polygyrus bakeri decreases dectin-1 expression on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, downmodulation of Syk expression and phosphorylation in intestinal DCs could be important mechanisms through which helminths induce regulatory DCs that limit colitis.
Collapse
Affiliation(s)
- Long Hang
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Arthur M Blum
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Sangeeta Kumar
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Joseph F Urban
- Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Makedonka Mitreva
- Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Mary M Stevenson
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Joel V Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111;
| |
Collapse
|
38
|
Macrophage-Targeting Gene Delivery Using a Micelle Composed of Mannose-Modified Lipid with Triazole Ring and Dioleoyl Trimethylammonium Propane. BIOMED RESEARCH INTERNATIONAL 2015; 2015:350580. [PMID: 26509149 PMCID: PMC4609769 DOI: 10.1155/2015/350580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Gene carriers with cell specific ligand molecules are needed for the treatment of several diseases. Mannose is known to be recognized and incorporated into the cells through mannose recognition lectins that are exclusively expressed on macrophages. In this study, we synthesized two types of mannose-modified lipids with different stereoisomer (α-mannose and β-mannose). To make a complex with plasmid DNA (pDNA), termed “lipoplex,” we prepared a two-component micelle made from cationic lipid; dioleoyltrimethylammoniumpropane (DOTAP); and mannose-modified lipid (D/α-Man or D/β-Man). The prepared D/α-Man lipoplexes were able to bind to one of the α-mannose lectins concanavalin A (ConA) immobilized on gold substrate in the quartz-crystal microbalance sensor cell. D/β-Man lipoplexes did not show any frequency changes. These results indicate that the mannose residues were exposed on the lipoplexes, leading to not only the binding to ConA but also the prevention of nonspecific interactions with proteins. Both lipoplexes showed high transfection efficiencies to RAW264.7 cells which have several kinds of mannose lectins. This delivery system to macrophages may overcome the problems for gene therapy and may be used for the treatment of immune diseases involved in macrophages.
Collapse
|
39
|
Redelinghuys P, Whitehead L, Augello A, Drummond RA, Levesque JM, Vautier S, Reid DM, Kerscher B, Taylor JA, Nigrovic PA, Wright J, Murray GI, Willment JA, Hocking LJ, Fernandes MJG, De Bari C, Mcinnes IB, Brown GD. MICL controls inflammation in rheumatoid arthritis. Ann Rheum Dis 2015; 75:1386-91. [PMID: 26275430 PMCID: PMC4941174 DOI: 10.1136/annrheumdis-2014-206644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 07/24/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Myeloid inhibitory C-type lectin-like receptor (MICL, Clec12A) is a C-type lectin receptor (CLR) expressed predominantly by myeloid cells. Previous studies have suggested that MICL is involved in controlling inflammation. OBJECTIVE To determine the role of this CLR in inflammatory pathology using Clec12A(-/-) mice. METHODS Clec12A(-/-) mice were generated commercially and primarily characterised using the collagen antibody-induced arthritis (CAIA) model. Mechanisms and progress of disease were characterised by clinical scoring, histology, flow cytometry, irradiation bone-marrow chimera generation, administration of blocking antibodies and in vivo imaging. Characterisation of MICL in patients with rheumatoid arthritis (RA) was determined by immunohistochemistry and single nucleotide polymorphism analysis. Anti-MICL antibodies were detected in patient serum by ELISA and dot-blot analysis. RESULTS MICL-deficient animals did not present with pan-immune dysfunction, but exhibited markedly exacerbated inflammation during CAIA, owing to the inappropriate activation of myeloid cells. Polymorphisms of MICL were not associated with disease in patients with RA, but this CLR was the target of autoantibodies in a subset of patients with RA. In wild-type mice the administration of such antibodies recapitulated the Clec12A(-/-) phenotype. CONCLUSIONS MICL plays an essential role in regulating inflammation during arthritis and is an autoantigen in a subset of patients with RA. These data suggest an entirely new mechanism underlying RA pathogenesis, whereby the threshold of myeloid cell activation can be modulated by autoantibodies that bind to cell membrane-expressed inhibitory receptors.
Collapse
Affiliation(s)
| | - Lauren Whitehead
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrea Augello
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Jean-Michel Levesque
- Faculty of Medicine, Department of Microbiology, Infectious Diseases, and Immunology, Laval University, Quebec, Canada
| | - Simon Vautier
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Julie A Taylor
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John Wright
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Graeme I Murray
- Division of Applied Medicine, Department of Pathology, University of Aberdeen, Aberdeen, UK
| | - Janet A Willment
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Lynne J Hocking
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Maria J G Fernandes
- Faculty of Medicine, Department of Microbiology, Infectious Diseases, and Immunology, Laval University, Quebec, Canada
| | - Cosimo De Bari
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Iain B Mcinnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gordon D Brown
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
40
|
Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 2015; 11:e1004643. [PMID: 25659141 PMCID: PMC4450068 DOI: 10.1371/journal.ppat.1004643] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.
Collapse
|
41
|
CD244 is expressed on dendritic cells and regulates their functions. Immunol Cell Biol 2015; 93:581-90. [PMID: 25643613 DOI: 10.1038/icb.2014.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 12/28/2022]
Abstract
Signaling lymphocytic activation molecule (SLAM) receptors have an important role in the development of immune responses because of their roles, for exampe, in NK cell cytotoxicity and cytokine production by NK, T cells and myeloid cells. The SLAM receptor CD244 (2B4, SLAMf4) is expressed on a variety of immune cell types but most of its functions have been examined on NK and T cells. In the present study, we investigated expression and function of CD244 in murine subsets of dendritic cells (DCs). We report that all subsets of murine DCs examined expressed CD244, although the expression levels of CD244 varied between subsets. Splenic and resident mesenteric lymph node (MLN) DCs from CD244(-/-) mice expressed lower levels of CD86 and MHC class II compared with wild-type mice. Upon Toll-like receptor (TLR) stimulation, no differences in surface expression of these molecules were observed between DCs from CD244(-/-) and wild-type mice. However, splenic DCs from CD244(-/-) mice upon stimulation with TLR binding ligands lipopolysaccharide (LPS) and CpG produced significantly higher levels of pro-inflammatory cytokines. In addition, DCs from CD244(-/-) mice elicited increased NK cell activation in vitro. These data add CD244 to a growing list of immuno-modulatory receptors found on DCs.
Collapse
|
42
|
Plato A, Willment JA, Brown GD. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int Rev Immunol 2013; 32:134-56. [PMID: 23570314 PMCID: PMC3634610 DOI: 10.3109/08830185.2013.777065] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.
Collapse
Affiliation(s)
- Anthony Plato
- Aberdeen Fungal Group, Section of Immunology and Infection, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
43
|
Targeting antigens to dendritic cell receptors for vaccine development. JOURNAL OF DRUG DELIVERY 2013; 2013:869718. [PMID: 24228179 PMCID: PMC3817681 DOI: 10.1155/2013/869718] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed.
Collapse
|
44
|
Gagné V, Marois L, Levesque JM, Galarneau H, Lahoud MH, Caminschi I, Naccache PH, Tessier P, Fernandes MJG. Modulation of monosodium urate crystal-induced responses in neutrophils by the myeloid inhibitory C-type lectin-like receptor: potential therapeutic implications. Arthritis Res Ther 2013; 15:R73. [PMID: 23837669 PMCID: PMC3978892 DOI: 10.1186/ar4250] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 07/09/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Monosodium urate crystals (MSU), the etiological agent of gout, are one of the most potent proinflammatory stimuli for neutrophils. The modulation of MSU-induced neutrophil activation by inhibitory receptors remains poorly characterized. The expression of the myeloid inhibitory C-type lectin-like receptor (MICL) in neutrophils is downregulated by several proinflammatory stimuli, suggestive of a role for this receptor in neutrophil function. We thus investigated the potential role of MICL in MSU-induced neutrophil activation. METHODS The expression of MICL was monitored in human neutrophils by flow cytometry and Western blot analysis after stimulation with MSU. Protein tyrosine phosphorylation was also assessed by Western blot analysis and the production of IL-1 and IL-8 by enzyme-linked immunosorbent assay. Changes in the concentration of cytoplasmic free calcium were monitored with the Fura-2-acetoxymethyl ester calcium indicator. MICL expression was modulated with an anti-MICL antibody in neutrophils and siRNA in the PLB-985 neutrophil-like cell line. RESULTS MSU induced the downregulation of MICL expression in neutrophils. A diminution in the expression of MICL induced by antibody cross-linking or siRNA enhanced the MSU-dependent increase in cytoplasmic calcium levels, protein tyrosine phosphorylation and IL-8 but not IL-1 production. Pretreatment of neutrophils with colchicine inhibited the MSU-induced downregulation of MICL expression. CONCLUSIONS Our findings strongly suggest that MICL acts as an inhibitory receptor in human neutrophils since the downregulation of MICL expression enhances MSU-induced neutrophil activation. Since MSU downregulates the expression of MICL, MICL may play a pathogenic role in gout by enhancing neutrophil effector functions. In support of this notion, colchicine counteracts the MSU-induced loss of MICL expression. Our findings thus also provide further insight into the potential molecular mechanisms behind the anti-inflammatory properties of this drug.
Collapse
|
45
|
Bloem K, Vuist IM, van der Plas AJ, Knippels LMJ, Garssen J, García-Vallejo JJ, van Vliet SJ, van Kooyk Y. Ligand binding and signaling of dendritic cell immunoreceptor (DCIR) is modulated by the glycosylation of the carbohydrate recognition domain. PLoS One 2013; 8:e66266. [PMID: 23776650 PMCID: PMC3679074 DOI: 10.1371/journal.pone.0066266] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
C-type lectins are innate receptors expressed on antigen-presenting cells that are involved in the recognition of glycosylated pathogens and self-glycoproteins. Upon ligand binding, internalization and/or signaling often occur. Little is known on the glycan specificity and ligands of the Dendritic Cell Immunoreceptor (DCIR), the only classical C-type lectin that contains an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM). Here we show that purified DCIR binds the glycan structures Lewisb and Man3. Interestingly, binding could not be detected when DCIR was expressed on cells. Since DCIR has an N-glycosylation site inside its carbohydrate recognition domain (CRD), we investigated the effect of this glycan in ligand recognition. Removing or truncating the glycans present on purified DCIR increased the affinity for DCIR-binding glycans. Nevertheless, altering the glycosylation status of the DCIR expressing cell or mutating the N-glycosylation site of DCIR itself did not increase glycan binding. In contrast, cis and trans interactions with glycans induced DCIR mediated signaling, resulting in a decreased phosphorylation of the ITIM sequence. These results show that glycan binding to DCIR is influenced by the glycosylation of the CRD region in DCIR and that interaction with its ligands result in signaling via its ITIM motif.
Collapse
Affiliation(s)
- Karien Bloem
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- Danone Research, Centre for Specialized Nutrition, Wageningen, The Netherlands
| | - Ilona M. Vuist
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arend-Jan van der Plas
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Léon M. J. Knippels
- Danone Research, Centre for Specialized Nutrition, Wageningen, The Netherlands
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Danone Research, Centre for Specialized Nutrition, Wageningen, The Netherlands
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Juan J. García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Michou L, Cornélis F, Levesque JM, Bombardieri S, Balsa A, Westhovens R, Barrera P, Alves H, van de Putte L, Migliorini P, Bardin T, Petit-Teixeira E, Fernandes MJ. A genetic association study of the CLEC12A gene in rheumatoid arthritis. Joint Bone Spine 2012; 79:451-6. [DOI: 10.1016/j.jbspin.2011.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/17/2011] [Indexed: 12/14/2022]
|
47
|
Varchetta S, Brunetta E, Roberto A, Mikulak J, Hudspeth KL, Mondelli MU, Mavilio D. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PLoS One 2012; 7:e45821. [PMID: 23029261 PMCID: PMC3461047 DOI: 10.1371/journal.pone.0045821] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022] Open
Abstract
Sialic acid binding immunoglobulin-like lectin-7 (Siglec-7) is a trans-membrane receptor carrying immunoreceptor tyrosine based inhibitory motifs (ITIMs) and delivering inhibitory signals upon ligation with sialylated glycans. This inhibitory function can be also targeted by several pathogens that have evolved to express sialic acids on their surface to escape host immune responses. Here, we demonstrate that cross-linking of Siglec-7 by a specific monoclonal antibody (mAb) induces a remarkably high production of IL-6, IL-1α, CCL4/MIP-1β, IL-8 and TNF-α. Among the three immune cell subsets known to constitutively express Siglec-7, the production of these pro-inflammatory cytokines and chemokines selectively occurs in monocytes and not in Natural Killer or T lymphocytes. This Siglec-7-mediated activating function is associated with the phosphorylation of the extracellular signal-regulated kinase (ERK) pathway. The present study also shows that sialic acid-free Zymosan yeast particles are able to bind Siglec-7 on monocytes and that this interaction mimics the ability of the anti Siglec-7 mAb to induce the production of pro-inflammatory mediators. Indeed, blocking or silencing Siglec-7 in primary monocytes greatly reduced the production of inflammatory cytokines and chemokines in response to Zymosan, thus confirming that Siglec-7 participates in generating a monocyte-mediated inflammatory outcome following pathogen recognition. The presence of an activating form of Siglec-7 in monocytes provides the host with a new and alternative mechanism to encounter pathogens not expressing sialylated glycans.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Candida albicans/immunology
- Candida albicans/physiology
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Cytokines/metabolism
- Escherichia coli/immunology
- Escherichia coli/physiology
- Extracellular Signal-Regulated MAP Kinases
- Gene Expression
- Gene Expression Regulation/immunology
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Lectins/chemistry
- Lectins/genetics
- Lectins/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- MAP Kinase Signaling System
- Phosphorylation
- Primary Cell Culture
- Protein Binding
- Protein Processing, Post-Translational
- Sialic Acid Binding Immunoglobulin-like Lectins
- Zymosan/chemistry
- Zymosan/immunology
- Zymosan/metabolism
Collapse
Affiliation(s)
- Stefania Varchetta
- Department of Infectious Diseases, Research Laboratories, IRCCS, Fondazione San Matteo and University of Pavia, Pavia, Italy
| | - Enrico Brunetta
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Kelly L. Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mario U. Mondelli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS, Istituto Clinico Humanitas, Rozzano, Milano, Italy
- * E-mail:
| |
Collapse
|
48
|
Xie J. The C-type lectin-like receptors of Dectin-1 cluster in natural killer gene complex. Glycoconj J 2012; 29:273-84. [DOI: 10.1007/s10719-012-9419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 11/30/2022]
|
49
|
Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY, Cho SN, Kim YJ. Neutrophils Promote Mycobacterial Trehalose Dimycolate-Induced Lung Inflammation via the Mincle Pathway. PLoS Pathog 2012; 8:e1002614. [PMID: 22496642 PMCID: PMC3320589 DOI: 10.1371/journal.ppat.1002614] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Trehalose 6,6'-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle⁻/⁻ mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Animals
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- CD18 Antigens/genetics
- CD18 Antigens/immunology
- CD18 Antigens/metabolism
- Cord Factors/adverse effects
- Cord Factors/chemistry
- Cord Factors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Granuloma, Respiratory Tract/chemically induced
- Granuloma, Respiratory Tract/genetics
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/metabolism
- Granuloma, Respiratory Tract/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Mycobacterium tuberculosis/chemistry
- Mycobacterium tuberculosis/metabolism
- Neutrophil Infiltration/drug effects
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Pneumonia/chemically induced
- Pneumonia/genetics
- Pneumonia/immunology
- Pneumonia/metabolism
- Pneumonia/pathology
- Protein Kinases/genetics
- Protein Kinases/immunology
- Protein Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Toll-Like Receptor 2/metabolism
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Jing Yan
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myeong Sup Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Bo-Young Jeon
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Integrated Omics for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
50
|
Abstract
Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.
Collapse
Affiliation(s)
- David Sancho
- Department of Vascular Biology and Inflammation, CNIC, Centro Nacional de Investigaciones Cardiovasculares, E-28029, Madrid, Spain.
| | | |
Collapse
|