1
|
Köhrer S, Dittrich T, Schorb M, Weinhold N, Haberbosch I, Börmel M, Pajor G, Goldschmidt H, Müller-Tidow C, Raab MS, John L, Seckinger A, Brobeil A, Dreger P, Tornóczky T, Pajor L, Hegenbart U, Schönland SO, Schwab Y, Krämer A. High-throughput electron tomography identifies centriole over-elongation as an early event in plasma cell disorders. Leukemia 2023; 37:2468-2478. [PMID: 37821581 PMCID: PMC10681902 DOI: 10.1038/s41375-023-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Plasma cell disorders are clonal outgrowths of pre-malignant or malignant plasma cells, characterized by extensive chromosomal aberrations. Centrosome abnormalities are a major driver of chromosomal instability in cancer but their origin, incidence, and composition in primary tumor cells is poorly understood. Using cutting-edge, semi-automated high-throughput electron tomography, we characterized at nanoscale 1386 centrioles in CD138pos plasma cells from eight healthy donors and 21 patients with plasma cell disorders, and 722 centrioles from different control populations. In plasma cells from healthy individuals, over-elongated centrioles accumulated with age. In plasma cell disorders, centriole over-elongation was notably frequent in early, pre-malignant disease stages, became less pronounced in overt multiple myeloma, and almost entirely disappeared in aggressive plasma cell leukemia. Centrioles in other types of patient-derived B cell neoplasms showed no over-elongation. In contrast to current belief, centriole length appears to be highly variable in long-lived, healthy plasma cells, and over-elongation and structural aberrations are common in this cell type. Our data suggest that structural centrosome aberrations accumulate with age in healthy CD138pos plasma cells and may thus play an important role in early aneuploidization as an oncogenic driver in plasma cell disorders.
Collapse
Affiliation(s)
- Sebastian Köhrer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tobias Dittrich
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Isabella Haberbosch
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mandy Börmel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gabor Pajor
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Pathology, University of Pécs Medical School and Clinic, Pécs, Hungary
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, GMMG-Studygroup at University of Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Marc S Raab
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Lukas John
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anja Seckinger
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinic, Pécs, Hungary
| | - László Pajor
- Department of Pathology, University of Pécs Medical School and Clinic, Pécs, Hungary
| | - Ute Hegenbart
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Stefan O Schönland
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
McAvera R, Quinn J, Murphy P, Glavey S. Genetic Abnormalities in Extramedullary Multiple Myeloma. Int J Mol Sci 2023; 24:11259. [PMID: 37511018 PMCID: PMC10379577 DOI: 10.3390/ijms241411259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Extramedullary multiple myeloma (or extramedullary disease, EMD) is an aggressive form of multiple myeloma (MM) that occurs when malignant plasma cells become independent of the bone marrow microenvironment. This may occur alongside MM diagnosis or in later stages of relapse and confers an extremely poor prognosis. In the era of novel agents and anti-myeloma therapies, the incidence of EMD is increasing, making this a more prevalent and challenging cohort of patients. Therefore, understanding the underlying mechanisms of bone marrow escape and EMD driver events is increasingly urgent. The role of genomics in MM has been studied extensively; however, much less is known about the genetic background of EMD. Recently there has been an increased focus on driver events for the establishment of distant EMD sites. Generally, high-risk cytogenetic abnormalities and gene signatures are associated with EMD, alongside mutations in RAS signalling pathways. More recently, changes in epigenetic regulation have also been documented, specifically the hypermethylation of DNA promoter regions. Therefore, the focus of this review is to summarize and discuss what is currently known about the genetic background of EMD in MM.
Collapse
Affiliation(s)
- Roisin McAvera
- Department of Pathology, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - John Quinn
- Department of Haematology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Philip Murphy
- Department of Haematology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
| | - Siobhan Glavey
- Department of Pathology, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
- Department of Haematology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
| |
Collapse
|
3
|
Centrosome Amplification Is a Potential Molecular Target in Paediatric Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 15:cancers15010154. [PMID: 36612150 PMCID: PMC9818390 DOI: 10.3390/cancers15010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, with most cases arising from fetal B cell precursor, termed B-ALL. Here, we use immunofluorescence analysis of B-ALL cells to identify centrosome amplification events that require the centrosome clustering pathway to successfully complete mitosis. Our data reveals that primary human B-ALL cells and immortal B-ALL cell lines from both human and mouse sources show defective bipolar spindle formation, abnormal mitotic progression, and cell death following treatment with centrosome clustering inhibitors (CCI). We demonstrate that CCI-refractory B-ALL cells exhibit markers for increased genomic instability, including DNA damage and micronuclei, as well as activation of the cyclic GMP-AMP synthase (cGAS)-nuclear factor kappa B (NF-κB) signalling pathway. Our analysis of cGAS knock-down B-ALL clones implicates cGAS in the sensitivity of B-ALL cells to CCI treatment. Due to its integral function and specificity to cancer cells, the centrosome clustering pathway presents a powerful molecular target for cancer treatment while mitigating the risk to healthy cells.
Collapse
|
4
|
Clinical Significance of TUBGCP4 Expression in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2022; 2022:9307468. [DOI: 10.1155/2022/9307468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
We aim to investigate the expression and clinical significance of the tubulin gamma complex-associated protein 4 (TUBGCP4) in hepatocellular carcinoma (HCC). The mRNA expression of TUBGCP4 in HCC tissues was analyzed using The Cancer Genome Atlas (TCGA) database. Paired HCC and adjacent nontumor tissues were obtained from HCC patients to measure the protein expression of TUBGCP4 by immunohistochemistry (IHC) and to analyze the relationship between TUBGCP4 protein expression and the clinicopathological characteristics and the prognosis of HCC patients. We found that TUBGCP4 mRNA expression was upregulated in HCC tissues from TCGA database. IHC analysis showed that TUBGCP4 was positively expressed in 61.25% (49/80) of HCC tissues and 77.5% (62/80) of adjacent nontumor tissues. The Chi-square analysis indicated that the positive rate of TUBGCP4 expression between HCC tissues and the adjacent nontumor tissues was statistically different (
). Furthermore, we found that TUBGCP4 protein expression was correlated with carbohydrate antigen (CA-199) levels of HCC patients (
). Further, survival analysis showed that the overall survival time and tumor-free survival time in the TUBGCP4 positive group were significantly higher than those of the negative group (
), indicating that the positive expression of TUBGCP4 was related to a better prognosis of HCC patients. COX model showed that TUBGCP4 was an independent prognostic factor for HCC patients. Our study indicates that TUBGCP4 protein expression is downregulated in HCC tissues and has a relationship with the prognosis of HCC patients.
Collapse
|
5
|
Huo XL, Wang SF, Yang Q, Yu XL, Gu T, Hua HX, Yang M, Bai LL, Zhang XL. Diagnostic and prognostic value of genomic instability-derived long non-coding RNA signature of endometrial cancer. Taiwan J Obstet Gynecol 2022; 61:96-101. [PMID: 35181055 DOI: 10.1016/j.tjog.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate whether genomic instability (GI)-derived long non-coding RNAs (lncRNAs) have a prognostic impact on the patients with endometrial cancer. MATERIAL AND METHODS Patients with Uterine Corpus Endometrial Carcinoma (UCEC) were selected from The Cancer Genome Atlas (TCGA) database. Systematic bioinformatics analyses were performed, including Pearson correlations, GO and KEGG enrichment analysis, bivariate and multiple logistic regression analysis, and Kaplan-Meier (KM) method. RESULTS A total of 552 UCEC samples were included in the study. The differentially expressed lncRNAs (DELs) were identified, including 79 down-regulated lncRNAs and 31 up-regulated lncRNAs. Bivariate logistic regression analysis showed that 19 GI-derived lncRNAs were prognostic factors. By further multivariate logistic regression analysis, AC005256.1 (estimated coefficient = -0.474), AC026336.3 (estimated coefficient = -0.030), AL161618.1 (estimated coefficient = -1.661), and BX322234.1 (estimated coefficient = 1.511) were used to construct a prognostic risk model. In the train set and test set, the risk model was shown to have both a high prognostic and a diagnostic value. CONCLUSION We developed a novel GI-derived 4-lncRNA signature for the diagnosis and prognosis of patients with endometrial cancer. These findings offered a novel perspective in the clinical management of endometrial cancer.
Collapse
Affiliation(s)
- Xin-Long Huo
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China.
| | - Shu-Fang Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Xiao-Lin Yu
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Tao Gu
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Hai-Xia Hua
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Mo Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Li-Li Bai
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Xiao-Lu Zhang
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| |
Collapse
|
6
|
Genomic characterization of functional high-risk multiple myeloma patients. Blood Cancer J 2022; 12:24. [PMID: 35102139 PMCID: PMC8803925 DOI: 10.1038/s41408-021-00576-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) patients with suboptimal response to induction therapy or early relapse, classified as the functional high-risk (FHR) patients, have been shown to have poor outcomes. We evaluated newly-diagnosed MM patients in the CoMMpass dataset and divided them into three groups: genomic high-risk (GHR) group for patients with t(4;14) or t(14;16) or complete loss of functional TP53 (bi-allelic deletion of TP53 or mono-allelic deletion of 17p13 (del17p13) and TP53 mutation) or 1q21 gain and International Staging System (ISS) stage 3; FHR group for patients who had no markers of GHR group but were refractory to induction therapy or had early relapse within 12 months; and standard-risk (SR) group for patients who did not fulfill any of the criteria for GHR or FHR. FHR patients had the worst survival. FHR patients are characterized by increased mutations affecting the IL-6/JAK/STAT3 pathway, and a gene expression profile associated with aberrant mitosis and DNA damage response. This is also corroborated by the association with the mutational signature associated with abnormal DNA damage response. We have also developed a machine learning based classifier that can identify most of these patients at diagnosis.
Collapse
|
7
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
8
|
Coding variants in the PCNT and CEP295 genes contribute to breast cancer risk in Chinese women. Pathol Res Pract 2021; 225:153581. [PMID: 34418690 DOI: 10.1016/j.prp.2021.153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Centrioles play pivotal roles in the assembly of centrosomes, their dysfunction is associated with multiple inherited diseases or cancers. To date, few studies have focused on the associations between coding single nucleotide polymorphisms (SNPs) in the centriole duplication cycle genes and the risk of breast cancer in Chinese women. METHODS Twenty-one SNPs were selected from the coding regions of 10 critical centriole genes. The associations between the selected SNPs and breast cancer susceptibility were assessed in a case-control study of Chinese women, which included 1032 cases and 1063 controls. Potential biological functions in the influence of protein stability and the profile of expression quantitative trait loci (eQTL) of the identified SNPs were further evaluated using in silico databases. RESULTS Multivariate logistic regression analyses revealed that a missense SNP rs7279204 in PCNT was significantly associated with an increased risk of breast cancer (additive model: adjusted OR=1.19, 95% CI: 1.02-1.38), while a missense SNP rs77922978 in CEP295 was significantly associated with a decreased risk of breast cancer (additive model: adjusted OR=0.74, 95% CI: 0.56-0.97). Stratification analyses suggested that rs7279204 and rs77922978 exhibited different effects among later first live birth, ER-negative and PR-negative women (P<0.05). Moreover, rs77922978 showed significant differences for ER and PR status strata (heterogeneity test P=0.028, P=0.046). In addition, bioinformatic analyses indicated that the two variants may possess potential functions of reducing the protein stability of their host genes. Further eQTL analysis showed that the rs7279204 was not only correlated with the expression of its host gene PCNT, but also correlated with the expression of its nearby genes, implying its potential roles in regulation of some cancer susceptibility genes. CONCLUSIONS The SNPs rs7279204 and rs77922978 within the coding region of the PCNT and CEP295 genes may contribute to the susceptibility of breast cancer in Han Chinese population.
Collapse
|
9
|
Semrad TJ, Kim EJ, Gong IY, Li T, Christensen S, Arora M, Riess JW, Gandara DR, Kelly K. Phase 1 study of alisertib (MLN8237) and weekly irinotecan in adults with advanced solid tumors. Cancer Chemother Pharmacol 2021; 88:335-341. [PMID: 33993383 DOI: 10.1007/s00280-021-04293-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Aurora kinases are overexpressed or amplified in numerous malignancies. This study was designed to determine the safety and tolerability of the Aurora A kinase inhibitor alisertib (MLN8237) when combined with weekly irinotecan. METHODS In this single-center phase 1 study, adult patients with refractory advanced solid tumors received 100 mg/m2 irinotecan intravenously on day 1 and 8 of a 21-day cycle. Alisertib at planned escalating dose levels of 20-60 mg was administered orally twice per day on days 1-3 and 8-10. Patients homozygous for UGT1A1*28 were excluded. The primary objective was the safety of alisertib when combined with irinotecan to determine the maximum tolerated dose (MTD). Secondary objectives included overall response rate by RECIST and pharmacokinetics in a planned expansion cohort of patients with colorectal cancer treated at the MTD. RESULTS A total of 17 patients enrolled at three dose levels. Dose-limiting toxicities included diarrhea, dehydration, and neutropenia. The MTD of alisertib combined with weekly irinotecan was 20 mg twice per day on days 1-3 and 8-10. One fatal cardiac arrest at the highest dose level tested was deemed possibly related to drug treatment. One partial response in 11 efficacy evaluable patients (9%) occurred in a patient with small cell lung cancer. The study was terminated prior to the planned expansion in patients with colorectal cancer. CONCLUSION In contrast to prior results in a pediatric population, adult patients did not tolerate alisertib combined with irinotecan at clinically meaningful doses due to hematologic and gastrointestinal toxicities. The study was registered with ClinicalTrials.gov under study number NCT01923337 on Aug 15, 2013.
Collapse
Affiliation(s)
- Thomas J Semrad
- Gene Upshaw Memorial Tahoe Forest Cancer Center, 10121 Pine Avenue, Truckee, CA, USA.
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA.
| | - Edward J Kim
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - I-Yeh Gong
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Kaiser Permanente, Sacramento, CA, USA
| | - Tianhong Li
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Scott Christensen
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Mili Arora
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jonathan W Riess
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - David R Gandara
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Karen Kelly
- Division of Hematology/Oncology, University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
10
|
Mittal K, Kaur J, Jaczko M, Wei G, Toss MS, Rakha EA, Janssen EAM, Søiland H, Kucuk O, Reid MD, Gupta MV, Aneja R. Centrosome amplification: a quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev 2021; 40:319-339. [PMID: 33106971 PMCID: PMC7897259 DOI: 10.1007/s10555-020-09937-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Numerical and/or structural centrosome amplification (CA) is a hallmark of cancers that is often associated with the aberrant tumor karyotypes and poor clinical outcomes. Mechanistically, CA compromises mitotic fidelity and leads to chromosome instability (CIN), which underlies tumor initiation and progression. Recent technological advances in microscopy and image analysis platforms have enabled better-than-ever detection and quantification of centrosomal aberrancies in cancer. Numerous studies have thenceforth correlated the presence and the degree of CA with indicators of poor prognosis such as higher tumor grade and ability to recur and metastasize. We have pioneered a novel semi-automated pipeline that integrates immunofluorescence confocal microscopy with digital image analysis to yield a quantitative centrosome amplification score (CAS), which is a summation of the severity and frequency of structural and numerical centrosome aberrations in tumor samples. Recent studies in breast cancer show that CA increases across the disease progression continuum, while normal breast tissue exhibited the lowest CA, followed by cancer-adjacent apparently normal, ductal carcinoma in situ and invasive tumors, which showed the highest CA. This finding strengthens the notion that CA could be evolutionarily favored and can promote tumor progression and metastasis. In this review, we discuss the prevalence, extent, and severity of CA in various solid cancer types, the utility of quantifying amplified centrosomes as an independent prognostic marker. We also highlight the clinical feasibility of a CA-based risk score for predicting recurrence, metastasis, and overall prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Meghan Jaczko
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Guanhao Wei
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Michael S Toss
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Omer Kucuk
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University Hospital, Atlanta, GA, USA
| | | | | | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
12
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
13
|
Saitoh T, Oda T. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers (Basel) 2021; 13:504. [PMID: 33525741 PMCID: PMC7865954 DOI: 10.3390/cancers13030504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.
Collapse
Affiliation(s)
- Takayuki Saitoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan;
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Extramedullary disease (EMD) is a rare but recognized manifestation of multiple myeloma (MM), characterized by involvement of several organs including skin, liver, lymphatic system, pleura, and central nervous system. The incidence is about 3-5% in newly diagnosed MM patients, but has been reported in up to 20% patients in the relapsed MM setting. RECENT FINDINGS Presence of EMD has been associated with more aggressive phenotype of MM, elevated serum lactate dehydrogenase (LDH) enzyme, and high-risk cytogenetics [deletion 17p, translocation (4;14), translocation (14;16)]. There are several hypotheses of how EMD occurs, including factors leading to bone marrow emancipation and hematogenous spread. The treatment schema usually follows that of high-risk MM. The current review summarizes the disease characterization data, along with available data on clinical activity of available anti-MM agents for this entity.
Collapse
Affiliation(s)
- Megan H Jagosky
- Plasma Cell Disorders, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute/Atrium Health UNC School of Medicine, Charlotte, NC, USA
| | - Saad Z Usmani
- Plasma Cell Disorders, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute/Atrium Health UNC School of Medicine, Charlotte, NC, USA.
| |
Collapse
|
15
|
Genome instability in multiple myeloma. Leukemia 2020; 34:2887-2897. [PMID: 32651540 DOI: 10.1038/s41375-020-0921-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by clonal proliferation of plasma cells and a heterogenous genomic landscape. Copy number and structural changes due to chromosomal instability (CIN) are common features of MM. In this review, we describe how primary and secondary genetic events caused by CIN can contribute to increased instability across the genome of malignant plasma cells; with a focus on specific driver genomic events, and how they interfere with cell-cycle checkpoints, to prompt accelerated proliferation. We also provide insight into other forms of CIN, such as chromothripsis and chromoplexy. We evaluate how the tumor microenvironment can contribute to a further increase in chromosomal instability in myeloma cells. Lastly, we highlight the role of certain mutational signatures in leading to high mutation rate and genome instability in certain MM patients. We suggest that assessing CIN in MM and its precursors states may help improve predicting the risk of progression to symptomatic disease and relapse and identifying future therapeutic targets.
Collapse
|
16
|
Alagpulinsa DA, Szalat RE, Poznansky MC, Shmookler Reis RJ. Genomic Instability in Multiple Myeloma. Trends Cancer 2020; 6:858-873. [PMID: 32487486 DOI: 10.1016/j.trecan.2020.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Genomic instability (GIN), an increased tendency to acquire genomic alterations, is a cancer hallmark. However, its frequency, underlying causes, and disease relevance vary across different cancers. Multiple myeloma (MM), a plasma cell malignancy, evolves through premalignant phases characterized by genomic abnormalities. Next-generation sequencing (NGS) methods are deconstructing the genomic landscape of MM across the continuum of its development, inextricably linking malignant transformation and disease progression with increasing acquisition of genomic alterations, and illuminating the mechanisms that generate these alterations. Although GIN drives disease evolution, it also creates vulnerabilities such as dependencies on 'superfluous' repair mechanisms and the induction of tumor-specific antigens that can be targeted. We review the mechanisms of GIN in MM, the associated vulnerabilities, and therapeutic targeting strategies.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Raphael E Szalat
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
17
|
Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020; 28:910-921.e4. [PMID: 32433990 DOI: 10.1016/j.str.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility. The molecular mechanisms of these functions of FAM46C remain elusive. We report the crystal structure of FAM46C to provide the basis for its poly(A) polymerase activity and rationalize mutations associated with multiple myeloma. In addition, we found that FAM46C interacts directly with the serine/threonine kinase Plk4, the master regulator of centrosome duplication. We present the structure of FAM46C in complex with the Cryptic Polo-Box 1-2 domains of Plk4. Our structure-based mutational analyses show that the interaction with Plk4 recruits FAM46C to centrosomes. Our data suggest that Plk4-mediated localization of FAM46C enables its regulation of centrosome structure and functions, which may underlie the roles for FAM46C in cell proliferation and sperm development.
Collapse
|
18
|
Beksac M, Balli S, Akcora Yildiz D. Drug Targeting of Genomic Instability in Multiple Myeloma. Front Genet 2020; 11:228. [PMID: 32373151 PMCID: PMC7179656 DOI: 10.3389/fgene.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic instability can be observed at both chromosomal and chromatin levels. Instability at the macro level includes centrosome abnormalities (CA) resulting in numerical as well as structural chromosomal changes, whereas instability at the micro level is characterized by defects in DNA repair pathways resulting in microsatellite instability (MIN) or mutations. Genomic instability occurs during carcinogenesis without impairing survival and growth, though the precise mechanisms remain unclear. Solid tumors arising from most cells of epithelial origin are characterized by genomic instability which renders them resistant to chemotherapy and radiotherapy. This instability is also observed in 25% of myeloma patients and has been shown to be highly prognostic, independently of the international staging system (ISS). However, a biomarker of aberrant DNA repair and loss of heterozygosity (LOH), was only observed at a frequency of 5% in newly diagnosed patients. Several new molecules targeting the pathways involved in genomic instability are under development and some have already entered clinical trials. Poly(ADP-ribose) polymerase-1 (PARP) inhibitors have been FDA-approved for the treatment of breast cancer type 1 susceptibility protein (BRCA1)-mutated metastatic breast cancer, as well as ovarian and lung cancer. Topoisomerase inhibitors and epigenetic histone modification-targeting inhibitors, such as HDAC (Histone Deacetylase) inhibitors which are novel agents that can target genomic instability. Several of the small molecule inhibitors targeting chromosomal level instability such as PARP, Akt, Aurora kinase, cyclin dependent kinase or spindle kinase inhibitors have been tested in mouse models and early phase I/II trials. ATM, ATR kinase inhibitors and DNA helicase inhibitors are also promising novel agents. However, most of these drugs are not effective as single agents but appear to act synergistically with DNA damaging agents such as radiotherapy, platinum derivatives, immunomodulators, and proteasome inhibitors. In this review, new drugs targeting genomic instability and their mechanisms of action will be discussed.
Collapse
Affiliation(s)
- Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Sevinc Balli
- Kars Selim Public Hospital, Internal Medicine, Kars, Turkey
| | - Dilara Akcora Yildiz
- Department of Biology, Science & Art Faculty, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
19
|
DMITROVSKY ETHAN, KAWAKAMI MASANORI, LIU XI, FREEMANTLE SARAHJ, KURIE JONATHANM. TRIGGERING ANAPHASE CATASTROPHE TO COMBAT ANEUPLOID CANCERS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:82-94. [PMID: 32675848 PMCID: PMC7358487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer cells are genetically unstable and often have supernumerary centrosomes. When supernumerary centrosome clustering is inhibited at mitosis, multipolar cell division is forced, triggering apoptosis in daughter cells. This proapoptotic pathway is called anaphase catastrophe. Cyclin-dependent kinase 1 (CDK1) or CDK2 inhibitors can antagonize centrosome clustering and cause anaphase catastrophe to occur in lung cancer and other types of cancer. The centrosome protein CP110, a CDK1 and CDK2 phosphorylation substrate, engages anaphase catastrophe. Intriguingly, CP110 is downregulated by the KRAS oncoprotein, enhancing sensitivity of KRAS-driven cancers to CDK2 inhibitors. Anaphase catastrophe eradicates aneuploid cancer cells while relatively sparing normal diploid cells with two centrosomes. This therapeutic window discriminates between normal and neoplastic cells and can be exploited in the cancer clinic. The work reviewed here establishes that pharmacologically-induced anaphase catastrophe is useful to combat aneuploid cancers, especially when the KRAS oncoprotein is activated. This addresses an unmet medical need in oncology.
Collapse
|
20
|
de Almeida BP, Vieira AF, Paredes J, Bettencourt-Dias M, Barbosa-Morais NL. Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput Biol 2019; 15:e1006832. [PMID: 30856170 PMCID: PMC6411098 DOI: 10.1371/journal.pcbi.1006832] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumours and a promising target for cancer therapy. However, CA's pan-cancer prevalence, molecular role in tumourigenesis and therapeutic value in the clinical setting are still largely unexplored. Here, we used a transcriptomic signature (CA20) to characterise the landscape of CA-associated gene expression in 9,721 tumours from The Cancer Genome Atlas (TCGA). CA20 is upregulated in cancer and associated with distinct clinical and molecular features of breast cancer, consistently with our experimental CA quantification in patient samples. Moreover, we show that CA20 upregulation is positively associated with genomic instability, alteration of specific chromosomal arms and C>T mutations, and we propose novel molecular players associated with CA in cancer. Finally, high CA20 is associated with poor prognosis and, by integrating drug sensitivity with drug perturbation profiles in cell lines, we identify candidate compounds for selectively targeting cancer cells exhibiting transcriptomic evidence for CA.
Collapse
Affiliation(s)
- Bernardo P. de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - André F. Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | | | - Nuno L. Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Samo AA, Li J, Zhou M, Sun Y, Yang Y, Zhang Y, Li J, van Duin M, Lu X, Fan X. MCL1 gene co-expression module stratifies multiple myeloma and predicts response to proteasome inhibitor-based therapy. Genes Chromosomes Cancer 2018; 57:420-429. [PMID: 29696703 DOI: 10.1002/gcc.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic cancer, characterized by abnormal accumulation of plasma cells in the bone marrow. The extensive biological and clinical heterogeneity of MM hinders effective treatment and etiology research. Several molecular classification systems of prognostic impact have been proposed, but they do not predict the response to treatment nor do they correlate to plasma cell development pathways. Here we describe the classification of MM into two distinct subtypes based on the expression levels of a gene module coexpressed with MCL1 (MCL1-M), a regulator of plasma cell survival. The classification system enabled prediction of the prognosis and the response to bortezomib-based therapy. Moreover, the two MM subtypes were associated with two different plasma cell differentiation pathways (enrichment of a preplasmablast signature versus aberrant expression of B cell genes). 1q gain, harboring 63 of the 87 MCL1-M members including MCL1, was found in about 80% of the MM with upregulated MCL1-M expression. Clonal analysis showed that 1q gain tended to occur as an early clonal event. Members of MCL1-M captured both MM cell-intrinsically acting signals and the signals regulating the interaction between MM cells with bone marrow microenvironment. MCL1-M members were co-expressed in mouse germinal center B cells. Together, these findings indicate that MCL1-M may play previously inadequately recognized, initiating role in the pathogenesis of MM. Our findings suggest that MCL1-M signature-based molecular clustering of MM constitutes a solid framework toward understanding the etiology of this disease and establishing personalized care. Article Summary: A pathogenic mechanism-guided molecular classification would facilitate treatment decision and etiology research of multiple myeloma. On the basis of the expression levels of a gene module coexpressed with MCL1, we have established a classification scheme assigning multiple myeloma into two subtypes with distinct prognosis, treatment responses and pathogenic backgrounds.
Collapse
Affiliation(s)
- Ayaz Ali Samo
- School of Life Sciences, Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Jiuyi Li
- School of Life Sciences, Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Min Zhou
- Department of Hematology, Changzhou No. 3 People's Hospital, Changzhou, China
| | - Yingyu Sun
- School of Life Sciences, Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Yuan Yang
- School of Life Sciences, Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Yunqiu Zhang
- School of Life Sciences, Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| | - Jing Li
- School of Life Sciences, Yichuang Biotechnology Industry Research Institute, Beijing Yizhuang Biomedical Park, Daxing District, Beijing, China
| | - Mark van Duin
- Department of Hematology, Erasmus MC Cancer Center, Rotterdam, The Netherlands
| | - Xuzhang Lu
- Department of Hematology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaolong Fan
- School of Life Sciences, Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Soekojo CY, de Mel S, Ooi M, Yan B, Chng WJ. Potential Clinical Application of Genomics in Multiple Myeloma. Int J Mol Sci 2018; 19:ijms19061721. [PMID: 29890777 PMCID: PMC6032230 DOI: 10.3390/ijms19061721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma is a heterogeneous disease with different characteristics, and genetic aberrations play important roles in this heterogeneity. Studies have shown that these genetic aberrations are crucial in prognostication and response assessment; recent efforts have focused on their possible therapeutic implications. Despite many emerging studies being published, the best way to incorporate these results into clinical practice remains unclear. In this review paper we describe the different genomic techniques available, including the latest advancements, and discuss the potential clinical application of genomics in multiple myeloma.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Sanjay de Mel
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Melissa Ooi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Benedict Yan
- Department of Laboratory Medicine, National University Hospital, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore,14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
23
|
Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat Commun 2018; 9:1258. [PMID: 29593297 PMCID: PMC5871873 DOI: 10.1038/s41467-018-03641-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosomes are the major microtubule organising centres of animal cells. Deregulation in their number occurs in cancer and was shown to trigger tumorigenesis in mice. However, the incidence, consequence and origins of this abnormality are poorly understood. Here, we screened the NCI-60 panel of human cancer cell lines to systematically analyse centriole number and structure. Our screen shows that centriole amplification is widespread in cancer cell lines and highly prevalent in aggressive breast carcinomas. Moreover, we identify another recurrent feature of cancer cells: centriole size deregulation. Further experiments demonstrate that severe centriole over-elongation can promote amplification through both centriole fragmentation and ectopic procentriole formation. Furthermore, we show that overly long centrioles form over-active centrosomes that nucleate more microtubules, a known cause of invasiveness, and perturb chromosome segregation. Our screen establishes centriole amplification and size deregulation as recurrent features of cancer cells and identifies novel causes and consequences of those abnormalities. Cancer cells are characterised by abnormalities in the number of centrosomes and this phenotype is linked with tumorigenesis. Here the authors report centriole length deregulation in a subset of cancer cell lines and suggest a link with subsequent alterations in centriole numbers and chromosomal instability.
Collapse
|
24
|
Kawakami M, Mustachio LM, Liu X, Dmitrovsky E. Engaging Anaphase Catastrophe Mechanisms to Eradicate Aneuploid Cancers. Mol Cancer Ther 2018; 17:724-731. [PMID: 29559545 DOI: 10.1158/1535-7163.mct-17-1108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/16/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
Cancer cells often have supernumerary centrosomes that promote genomic instability, a pathognomonic feature of cancer. During mitosis, cancer cells with supernumerary centrosomes undergo bipolar cell division by clustering centrosomes into two poles. When supernumerary centrosome clustering is antagonized, cancer cells are forced to undergo multipolar division leading to death of daughter cells. This proapoptotic pathway, called anaphase catastrophe, preferentially eliminates aneuploid cancer cells and malignant tumors in engineered mouse models. Anaphase catastrophe occurs through the loss or inhibition of the centrosomal protein CP110, a direct cyclin-dependent kinase 1 (CDK1) and CDK2 target. Intriguingly, CP110 is repressed by the KRAS oncoprotein. This sensitizes KRAS-driven lung cancers (an unmet medical need) to respond to CDK2 inhibitors. Anaphase catastrophe-inducing agents like CDK1 and CDK2 antagonists are lethal to cancer cells with supernumerary centrosomes, but can relatively spare normal cells with two centrosomes. This mechanism is proposed to provide a therapeutic window in the cancer clinic following treatment with a CDK1 or CDK2 inhibitor. Taken together, anaphase catastrophe is a clinically tractable mechanism that promotes death of neoplastic tumors with aneuploidy, a hallmark of cancer. Mol Cancer Ther; 17(4); 724-31. ©2018 AACR.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa Maria Mustachio
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
25
|
Denu RA, Shabbir M, Nihal M, Singh CK, Longley BJ, Burkard ME, Ahmad N. Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Mol Cancer Res 2018; 16:517-527. [PMID: 29330283 DOI: 10.1158/1541-7786.mcr-17-0197] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) is common in cancer and can arise by centriole overduplication or by cell doubling events, including the failure of cell division and cell-cell fusion. To assess the relative contributions of these two mechanisms, the number of centrosomes with mature/mother centrioles was examined by immunofluorescence in a tissue microarray of human melanomas and benign nevi (n = 79 and 17, respectively). The centrosomal protein 170 (CEP170) was used to identify centrosomes with mature centrioles; this is expected to be present in most centrosomes with cell doubling, but on fewer centrosomes with overduplication. Using this method, it was determined that the majority of CA in melanoma can be attributed to centriole overduplication rather than cell doubling events. As Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication, the hypothesis that PLK4 overexpression contributes to centriole overduplication was evaluated. PLK4 is significantly overexpressed in melanoma compared with benign nevi and in a panel of human melanoma cell lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL-28) compared with normal human melanocytes. Interestingly, although PLK4 expression did not correlate with CA in most cases, treatment of melanoma cells with a selective small-molecule PLK4 inhibitor (centrinone B) significantly decreased cell proliferation. The antiproliferative effects of centrinone B were also accompanied by induction of apoptosis.Implications: This study demonstrates that centriole overduplication is the predominant mechanism leading to centrosome amplification in melanoma and that PLK4 should be further evaluated as a potential therapeutic target for melanoma treatment. Mol Cancer Res; 16(3); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Maria Shabbir
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Minakshi Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Chandra K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
26
|
Wang W, Zhang Y, Chen R, Tian Z, Zhai Y, Janz S, Gu C, Yang Y. Chromosomal instability and acquired drug resistance in multiple myeloma. Oncotarget 2017; 8:78234-78244. [PMID: 29100463 PMCID: PMC5652852 DOI: 10.18632/oncotarget.20829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal instability (CIN) is an important hallmark of human cancer. CIN not only contributes to all stages of tumor development (initiation, promotion and progression) but also drives, in large measure, the acquisition of drug resistance by cancer cells. Although CIN is a cornerstone of the complex mutational architecture that underlies neoplastic cell development and tumor heterogeneity and has been tightly associated with treatment responses and survival of cancer patients, it may be one of the least understood features of the malignant phenotype in terms of genetic pathways and molecular mechanisms. Here we review new insights into the type of CIN seen in multiple myeloma (MM), a blood cancer of terminally differentiated, immunoglobulin-producing B-lymphocytes called plasma cells that remains incurable in the great majority of cases. We will consider bona fide myeloma CIN genes, methods for measuring CIN in myeloma cells, and novel approaches to CIN-targeted treatments of patients with myeloma. The new findings generate optimism that enhanced understanding of CIN will lead to the design and testing of new therapeutic strategies to overcome drug resistance in MM in the not-so-distant future.
Collapse
Affiliation(s)
- Wang Wang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ruini Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhidan Tian
- Department of Pathology, Nanjing First Hospital, Nanjing, 210006, China
| | - Yongpin Zhai
- Department of Hematology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242, USA
| | - Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
27
|
van Beers EH, van Vliet MH, Kuiper R, de Best L, Anderson KC, Chari A, Jagannath S, Jakubowiak A, Kumar SK, Levy JB, Auclair D, Lonial S, Reece D, Richardson P, Siegel DS, Stewart AK, Trudel S, Vij R, Zimmerman TM, Fonseca R. Prognostic Validation of SKY92 and Its Combination With ISS in an Independent Cohort of Patients With Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:555-562. [DOI: 10.1016/j.clml.2017.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
28
|
Zhou X, Nemunaitis J, Pant S, Bauer TM, Patel M, Sarantopoulos J, Craig Lockhart A, Goodman D, Huebner D, Mould DR, Venkatakrishnan K. Effect of alisertib, an investigational aurora a kinase inhibitor on the QTc interval in patients with advanced malignancies. Invest New Drugs 2017; 36:240-247. [PMID: 28819760 PMCID: PMC5869873 DOI: 10.1007/s10637-017-0498-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023]
Abstract
Aims A primary objective of this study was to investigate the effect of single and multiple doses of alisertib, an investigational Aurora A kinase inhibitor, on the QTc interval in patients with advanced malignancies. The dose regimen used was the maximum tolerated dose which was also the recommended phase 3 dose (50 mg twice daily [BID] for 7 days in 21-day cycles). Methods Patients received a single dose of alisertib (50 mg) on Day 1, and multiple doses of alisertib (50 mg BID) on Days 4 through to the morning of Day 10 of the first cycle of treatment. Triplicate ECGs were collected at intervals over 10 to 24 h via Holter recorders on Days −1 (baseline), 1 and 10. Changes from time-matched baseline values were calculated for various ECG parameters including QTc, heart rate, PR and QRS intervals. Alisertib pharmacokinetics were also assessed during the study, and an exposure-QTc analysis was conducted. Results Fifty patients were included in the QTc analysis. The upper bounds of the 95% confidence intervals for changes from time-matched baseline QTcF and QTcI values were <5 ms across all study days, time points and correction methods. Alisertib did not produce clinically relevant effects on heart rate, PR or QRS intervals. There was no evidence of a concentration-QTc effect relationship. Conclusions Alisertib does not cause QTc prolongation and can be concluded to not have any clinically relevant effects on cardiac repolarization or ECG parameters at the single agent maximum tolerated dose of 50 mg BID.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Quantitative Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA.
| | | | - Shubham Pant
- Oklahoma University Medical Center, Oklahoma City, OK, USA
| | - Todd M Bauer
- Sarah Cannon Research Institute, Sarasota, FL, USA
| | | | - John Sarantopoulos
- Institute for Drug Development, Cancer Therapy and Research Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | | | | | - Dirk Huebner
- Quantitative Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | | | - Karthik Venkatakrishnan
- Quantitative Clinical Pharmacology, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| |
Collapse
|
29
|
Kiss KP, Varga G, Mikala G, Balassa K, Bors A, Kovy P, Meggyesi N, Kozma A, Csacsovszki O, Remenyi P, Valyi-Nagy I, Tordai A, Masszi T, Andrikovics H. The adverse effect of FOPNL genomic variant is reversed by bortezomib-based treatment protocols in multiple myeloma. Leuk Lymphoma 2017; 59:710-716. [PMID: 28691553 DOI: 10.1080/10428194.2017.1346250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factor receptor 1 oncogene partner N-terminal like gene (FOPNL) rs72773978 polymorphism was identified as an adverse prognostic factor in multiple myeloma (MM). We aimed to investigate the associations of rs72773978 with clinical characteristics and treatment outcome in 373 Hungarian MM patients. In our cohort, FOPNL polymorphism showed differential prognostic effect that depended on the treatment applied. Among patients treated with non-proteasome inhibitor (PI)-based therapy, carriership of the minor allele was significantly associated with adverse overall survival (p=.022). In contrast, the adverse effect was overcome by the application of PI-containing treatment (p=.048). Multivariate analyses revealed the independent adverse effect of rs72773978 on survival in the non-PI-treated group (p=.045), but not in PI treatment (OS: p=.093). We confirmed the adverse prognostic effect of rs72773978 associated with non-PI-based treatment regimens. Our results point to the importance of genotypic prognostic information associated with complex clinical background MM.
Collapse
Affiliation(s)
- Katalin Piroska Kiss
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Gergely Varga
- b 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Gabor Mikala
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Katalin Balassa
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Andras Bors
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Petra Kovy
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Nora Meggyesi
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Andras Kozma
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Otto Csacsovszki
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Peter Remenyi
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Istvan Valyi-Nagy
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Attila Tordai
- d Department of Pathophysiology , Semmelweis University , Budapest , Hungary
| | - Tamas Masszi
- b 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Hajnalka Andrikovics
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| |
Collapse
|
30
|
Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 2017; 7:262. [PMID: 28325915 PMCID: PMC5428291 DOI: 10.1038/s41598-017-00363-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
Centrosome amplification (CA) is a hallmark of cancer, observable in ≥75% of breast tumors. CA drives aggressive cellular phenotypes such as chromosomal instability (CIN) and invasiveness. Thus, assessment of CA may offer insights into the prognosis of breast cancer and identify patients who might benefit from centrosome declustering agents. However, it remains unclear whether CA is correlated with clinical outcomes after adjusting for confounding factors. To gain insights, we developed a signature, “CA20”, comprising centrosome structural genes and genes whose dysregulation is implicated in inducing CA. We found that CA20 was a significant independent predictor of worse survival in two large independent datasets after adjusting for potentially confounding factors. In multivariable analyses including both CA20 and CIN25 (a gene expression-based score that correlates with aneuploidy and has prognostic value in many types of cancer), only CA20 was significant, suggesting CA20 captures the risk-predictive information of CIN25 and offers information beyond it. CA20 correlated strongly with CIN25, so a high CA20 score may reflect tumors with high CIN and potentially other aggressive features that may require more aggressive treatment. Finally, we identified processes and pathways differing between CA20-low and high groups that may be valuable therapeutic targets.
Collapse
|
31
|
Abstract
The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Harold I Saavedra
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
32
|
Qin Y, Zhang S, Deng S, An G, Qin X, Li F, Xu Y, Hao M, Yang Y, Zhou W, Chang H, Qiu L. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia 2016; 31:1123-1135. [PMID: 27857131 DOI: 10.1038/leu.2016.325] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/26/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Aberrant microRNAs (miRNAs) expression has been shown to be involved in the pathogenesis of MM. In this study, we further demonstrated that miR-137 was significantly downregulated in MM and negatively correlated with clinical prognosis. Moreover, we described the epigenetic regulation of miR-137 and its association with progression-free survival in MM patients. Furthermore, overexpression of miR-137 in MM cell line (miR-137 OE) increased its sensitivity to bortezomib and eprirubicin in vitro. Also, some high-risk genetic abnormalities in MM, including deletion of chromosome 1p22.2, 14q or 17p13, and gain of chromosome 1p22.2 were detected in NCI-H929 empty vector (NCI-H929 EV) treated cells but not in the NCI-H929 miR-137 overexpression (NCI-H929 miR-137 OE) cells. Luciferase reporter assays demonstrated that miR-137 targeted AURKA. Ectopic expression of miR-137 strongly reduced the expression of AURKA and p-ATM/Chk2 in MM cells, and increased the expression of p53, and p21. Importantly, miR-137 overexpression together with bortezomib treatment significantly inhibited tumor growth in MM xenograft model. Taken together, this study demonstrates that miR-137 is epigenetically silenced in MM, and overexpression of miR-137 could reduce drug resistance and overcome chromosomal instability of the MM cells via affecting the apoptosis and DNA damage pathways.
Collapse
Affiliation(s)
- Y Qin
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Department of Diagnostics, College of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - S Zhang
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - S Deng
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - G An
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - X Qin
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - F Li
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Y Xu
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - M Hao
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Y Yang
- Division of Molecular and Cellular Biology, Department of Laboratory Hematology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - W Zhou
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - H Chang
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.,Division of Molecular and Cellular Biology, Department of Laboratory Hematology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - L Qiu
- Department of Lymphoma and Myeloma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
33
|
Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma. Leukemia 2016; 31:637-644. [PMID: 27694925 DOI: 10.1038/leu.2016.253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hyperhaploid clones (24-34 chromosomes) were identified in 33 patients with multiple myeloma (MM), demonstrating a novel numerical cytogenetic subgroup. Strikingly, all hyperhaploid karyotypes were found to harbor monosomy 17p, the single most important risk stratification lesion in MM. A catastrophic loss of nearly a haploid set of chromosomes results in disomies of chromosomes 3, 5, 7, 9, 11, 15, 18, 19 and 21, the same basic set of odd-numbered chromosomes found in trisomy in hyperdiploid myeloma. All other autosomes are found in monosomy, resulting in additional clinically relevant monosomies of 1p, 6q, 13q and 16q. Hypotriploid subclones (58-68 chromosomes) were also identified in 11 of the 33 patients and represent a duplication of the hyperhaploid clone. Analysis of clones utilizing interphase fluorescence in situ hybridization (iFISH), metaphase FISH and spectral karyotyping identified either monosomy 17 or del17p in all patients. Amplification of 1q21 was identified in eight patients, demonstrating an additional high-risk marker. Importantly, our findings indicate that current iFISH strategies may be uninformative or ambiguous in the detection of these clones, suggesting this patient subgroup maybe underreported. Overall survival for patients with hyperhaploid clones was poor, with a 5-year survival rate of 23.1%. These findings identify a distinct numerical subgroup with cytogenetically defined high-risk disease.
Collapse
|
34
|
Kryukov F, Nemec P, Radova L, Kryukova E, Okubote S, Minarik J, Stefanikova Z, Pour L, Hajek R. Centrosome associated genes pattern for risk sub-stratification in multiple myeloma. J Transl Med 2016; 14:150. [PMID: 27234807 PMCID: PMC4884414 DOI: 10.1186/s12967-016-0906-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/13/2016] [Indexed: 01/22/2023] Open
Abstract
Background The genome of multiple myeloma (MM) cells is extremely unstable, characterized by a complex combination of structure and numerical abnormalities. It seems that there are several “myeloma subgroups” which differ in expression profile, clinical manifestations, prognoses and treatment response. In our previous work, the list of 35 candidate genes with a known role in carcinogenesis and associated with centrosome structure/function was used as a display of molecular heterogeneity with an impact in myeloma pathogenesis. The current study was devoted to establish a risk stratification model based on the aforementioned candidate genes. Methods A total of 151 patients were included in this study. CD138+ cells were separated by magnetic-activated cell sorting (MACS). Gene expression profiling (GEP) and Interphase FISH with cytoplasmic immunoglobulin light chain staining (cIg FISH) were performed on plasma cells (PCs). All statistical analyses were performed using freeware R and its additional packages. Training and validation cohort includes 73 and 78 patients, respectively. Results We have finally established a model that includes 12 selected genes (centrosome associated gene pattern, CAGP) which appears to be an independent prognostic factor for MM stratification. We have shown that the new CAGP model can sub-stratify prognosis in patients without TP53 loss as well as in IMWG high risk patients’ group. Conclusions We assume that newly established risk stratification model complements the current prognostic panel used in multiple myeloma and refines the classification of patients in relation to the disease risks. This approach can be used independently as well as in combination with other factors. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0906-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fedor Kryukov
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Dvořákova 7, 702 00, Ostrava, Czech Republic. .,Department of Haematooncology, University Hospital Ostrava, 17.listopadu 1790, 708 52, Ostrava-Poruba, Czech Republic.
| | - Pavel Nemec
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Radova
- The Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Elena Kryukova
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Dvořákova 7, 702 00, Ostrava, Czech Republic.,Department of Haematooncology, University Hospital Ostrava, 17.listopadu 1790, 708 52, Ostrava-Poruba, Czech Republic
| | - Samuel Okubote
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiri Minarik
- Department of Internal Medicine, University Hospital Olomouc, I.P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Zdena Stefanikova
- Department of Hematology and Blood Transfusion, University Hospital Bratislava, Antolská 11, 851 07, Bratislava, Slovak Republic
| | - Ludek Pour
- Department of Clinical Hematology, University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Roman Hajek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Dvořákova 7, 702 00, Ostrava, Czech Republic.,Department of Haematooncology, University Hospital Ostrava, 17.listopadu 1790, 708 52, Ostrava-Poruba, Czech Republic
| |
Collapse
|
35
|
Hermansen NEU, Borup R, Andersen MK, Vangsted AJ, Clausen NT, Kristensen DL, Nielsen FC, Gimsing P. Gene expression risk signatures maintain prognostic power in multiple myeloma despite microarray probe set translation. Int J Lab Hematol 2016; 38:298-307. [DOI: 10.1111/ijlh.12486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
Affiliation(s)
- N. E. U. Hermansen
- Multiple Myeloma Research Laboratory; Department of Haematology; Rigshospitalet; Copenhagen Denmark
- Department of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
| | - R. Borup
- Centre for Genomic Medicine; The Diagnostic Centre; Rigshospitalet; Copenhagen Denmark
| | - M. K. Andersen
- Cytogenetic Laboratory; Department of Clinical Genetics; Rigshospitalet; Copenhagen Denmark
| | - A. J. Vangsted
- Department of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
- Department of Haematology; Roskilde Hospital; Roskilde Denmark
| | - N. T. Clausen
- Department of Haematology; Herlev Hospital; Herlev Denmark
| | - D. L. Kristensen
- Department of Oncology and Haematology; Naestved Hospital; Naestved Denmark
| | - F. C. Nielsen
- Department of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
- Centre for Genomic Medicine; The Diagnostic Centre; Rigshospitalet; Copenhagen Denmark
| | - P. Gimsing
- Multiple Myeloma Research Laboratory; Department of Haematology; Rigshospitalet; Copenhagen Denmark
- Department of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
36
|
Waheed S, Zhu H, Waheed MA, Kumar M, Barlogie B. Muscular Relapse in a Patient With Multiple Myeloma. J Clin Oncol 2015; 33:e125-9. [PMID: 24778395 DOI: 10.1200/jco.2013.51.6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sarah Waheed
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Hongyun Zhu
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Manoj Kumar
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
37
|
Kryukova E, Kryukov F, Hajek R. Centrosome amplification and clonal evolution in multiple myeloma: Short review. Crit Rev Oncol Hematol 2015; 98:116-21. [PMID: 26589397 DOI: 10.1016/j.critrevonc.2015.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is composed of an array of multiple clones, each potentially associated with different clinical behavior. Previous studies focused on clinical implication of centrosome amplification (CA) in MM show contradictory results. It seems that the role of CA as well as CA formation in MM differ from other malignancies. This has brought about a question about the role of CA positive clone which is--is it going to be a more aggressive clone evolutionally arising under pressure of negative conditions or can CA serve as a marker of cell abnormality and lead to cell death and further elimination of this damaged subpopulation? This current review is devoted to the discussion of the existence of MM subclones with centrosome amplification (CA), its evolutionary behaviour within intraclonal heterogeneity as well as its potential impact on the disease progression and MM treatment.
Collapse
Affiliation(s)
- Elena Kryukova
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, Czech Republic
| | - Fedor Kryukov
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, Czech Republic.
| | - Roman Hajek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, Czech Republic
| |
Collapse
|
38
|
Ziv E, Dean E, Hu D, Martino A, Serie D, Curtin K, Campa D, Aftab B, Bracci P, Buda G, Zhao Y, Caswell-Jin J, Diasio R, Dumontet C, Dudziński M, Fejerman L, Greenberg A, Huntsman S, Jamroziak K, Jurczyszyn A, Kumar S, Atanackovic D, Glenn M, Cannon-Albright LA, Jones B, Lee A, Marques H, Martin T, Martinez-Lopez J, Rajkumar V, Sainz J, Vangsted AJ, Wątek M, Wolf J, Slager S, Camp NJ, Canzian F, Vachon C. Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat Commun 2015; 6:7539. [PMID: 26198393 PMCID: PMC4656791 DOI: 10.1038/ncomms8539] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
Here we perform the first genome-wide association study (GWAS) of multiple myeloma (MM) survival. In a meta-analysis of 306 MM patients treated at UCSF and 239 patients treated at the Mayo clinic, we find a significant association between SNPs near the gene FOPNL on chromosome 16p13 and survival (rs72773978; P=6 × 10(-10)). Patients with the minor allele are at increased risk for mortality (HR: 2.65; 95% CI: 1.94-3.58) relative to patients homozygous for the major allele. We replicate the association in the IMMEnSE cohort including 772 patients, and a University of Utah cohort including 318 patients (rs72773978 P=0.044). Using publicly available data, we find that the minor allele was associated with increased expression of FOPNL and increased expression of FOPNL was associated with higher expression of centrosomal genes and with shorter survival. Polymorphisms at the FOPNL locus are associated with survival among MM patients.
Collapse
Affiliation(s)
- Elad Ziv
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Eric Dean
- Sutter Medical Center of Santa Rosa, Santa Rosa, California
| | - Donglei Hu
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alessandro Martino
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Serie
- Division of Biomedical Statistics and Informatics. Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Karen Curtin
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniele Campa
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Blake Aftab
- Department of Medicine, Division of Hematology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Gabriele Buda
- Department of Oncology, Transplants and Advanced Technologies, Section of Hematology, Pisa University Hospital, Pisa, Italy
| | - Yi Zhao
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jennifer Caswell-Jin
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Robert Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN
| | - Charles Dumontet
- INSERM UMR 1052 / CNRS 5286, Laboratoire de Cytologie Analytique, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, Lyon, France
| | - Marek Dudziński
- Department of Hematology, Rzeszow Regional Hospital, Rzeszow, Poland
| | - Laura Fejerman
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alexandra Greenberg
- Center for Translational Science Activities, Mayo Clinic, Rochester, MN, USA Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, USA
| | - Scott Huntsman
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | | | - Artur Jurczyszyn
- Department of Hematology, Cracow University Hospital, Cracow, Poland
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Djordje Atanackovic
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Martha Glenn
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa A. Cannon-Albright
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brandt Jones
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adam Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Thomas Martin
- Department of Medicine, Division of Hematology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Joaquin Martinez-Lopez
- Hematology Service, CRIS facility for Hematological research, Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, Granada, Spain; Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Annette Juul Vangsted
- Department of Hematology, Righospitalet and Roskilde Hospital, Copenhagen University, Denmark
| | - Marzena Wątek
- Department of Hematology, Holycross Cancer Center, Kielce, Poland
| | - Jeffrey Wolf
- Department of Medicine, Division of Hematology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Susan Slager
- Division of Biomedical Statistics and Informatics. Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nicola J Camp
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Celine Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
39
|
Ward A, Sivakumar G, Kanjeekal S, Hamm C, Labute BC, Shum D, Hudson JW. The deregulated promoter methylation of the Polo-like kinases as a potential biomarker in hematological malignancies. Leuk Lymphoma 2015; 56:2123-33. [PMID: 25347426 DOI: 10.3109/10428194.2014.971407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Deregulation of Polo-like kinase (PLK) transcription via promoter methylation results in perturbations at the protein level, which has been associated with oncogenesis. Our objective was to further characterize the methylation profile for PLK1-4 in bone marrow aspirates displaying blood neoplasms as well as in cells grown in vitro. Clinically, we have determined that more than 70% of lymphoma and myelodysplastic syndrome (MDS)/leukemia bone marrow extracts display a hypermethylated PLK4 promoter region in comparison to the normal. Decreased PLK4 protein expression due to promoter hypermethylation was negatively correlated with JAK2 overexpression, a common occurrence in hematological malignancies. In vitro examination of the PLKs under biologically relevant condition of 5% O2 revealed that the highly conserved PLKs respond to lower oxygen tension at both the DNA and the protein level. These findings suggest that PLK promoter methylation status correlates with disease and tumorigenesis in blood neoplasms and could serve as a biomarker.
Collapse
Affiliation(s)
- Alejandra Ward
- Department of Biology, University of Windsor , Windsor, ON , Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma. Leukemia 2015; 29:1713-20. [PMID: 25753926 PMCID: PMC4530205 DOI: 10.1038/leu.2015.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 02/05/2023]
Abstract
As part of Total Therapy (TT) 3b, baseline marrow aspirates were subjected to two-color flow cytometry of nuclear DNA content and cytoplasmic immunoglobulin (DNA/CIG) as well as plasma cell gene expression profiling (GEP). DNA/CIG-derived parameters, GEP and standard clinical variables were examined for their effects on overall survival (OS) and progression-free survival (PFS). Among DNA/CIG parameters, the percentage of the light chain-restricted (LCR) cells and their cytoplasmic immunoglobulin index (CIg) were linked to poor outcome. In the absence of GEP data, low CIg <2.8, albumin <3.5 g/dl and age ⩾65 years were significantly associated with inferior OS and PFS. When GEP information was included, low CIg survived the model along with GEP70-defined high risk and low albumin. Low CIg was linked to beta-2-microglobulin >5.5 mg/l, a percentage of LCR cells exceeding 50%, C-reactive protein ⩾8 mg/l and GEP-derived high centrosome index. Further analysis revealed an association of low CIg with 12 gene probes implicated in cell cycle regulation, differentiation and drug transportation from which a risk score was developed in TT3b that held prognostic significance also in TT3a, TT2 and HOVON trials, thus validating its general applicability. Low CIg is a powerful new prognostic variable and has identified potentially drug-able targets.
Collapse
|
41
|
Abstract
Multiple myeloma evolves clinically from monoclonal gammopathy of undetermined significance through smoldering disease, active myeloma with end organ damage to a preterminal phase of extramedullary disease and marrow collapse. The molecular equivalents of such clinical observation can now be defined as genetically dormant, genetic crisis and genetic chaos (popularly termed malignant myeloma). Patients may present for the first time in any one of these stages. Not surprisingly, clinical outcomes for multiple myeloma are variable and the prospects for therapeutic responsiveness are defined by the stage at presentation. We describe here a genetically driven definition of high- and low-risk myeloma and offer guidelines for the adoption of routine diagnostic testing. We define high-risk disease as the presence of t(4;14), t(14;16), deletion 17p13 by FISH or the presence of hypodiploidy or deletion of chromosome 13 by conventional cytogenetics. By default, other patients are not considered high risk. Thus, as a minimum, we recommend routine testing for t(4;14) and 17p13 deletion by FISH and conventional cytogenetics. This classification will identify multiple myeloma patients at high genetic risk for early progression after conventional therapies.
Collapse
|
42
|
Chung TH, Mulligan G, Fonseca R, Chng WJ. A novel measure of chromosome instability can account for prognostic difference in multiple myeloma. PLoS One 2013; 8:e66361. [PMID: 23840451 PMCID: PMC3688789 DOI: 10.1371/journal.pone.0066361] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/04/2013] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is characterized by complex genetic abnormalities whose complexity signifies varying degree of chromosomal instability (CIN). In this study, we introduced a novel CIN measure, chromosome instability genome event count (CINGEC), which considered both copy number aberrations and interstitial breakpoints from high-resolution genome-wide assays. When assessed in two aCGH MM datasets, higher CINGEC was associated with poor survival. We then derived a CINGEC-associated gene expression profile (GEP) signature, CINGECS, using a dataset that has both aCGH and GEP. Genes in CINGECS were mainly involved in DNA damage responses besides in aneuploidy and other generic oncogenic processes contrary to other CIN associated GEP signatures. Finally, we confirmed its survival association in three GEP datasets that encompassed newly diagnosed patients treated with transplant-based protocol with or without novel agents for induction as well as relapsed patients treated with bortezomib. Furthermore, CINGECS was independent of many GEP-based prognostic signatures. In conclusion, our novel CIN measure has definite biological and clinical significance in myeloma.
Collapse
Affiliation(s)
- Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - George Mulligan
- Millenium: The Takeda Oncology, Cambridge, Massachusetts, United States of America
| | - Rafael Fonseca
- Mayo Clinic Comprehensive Cancer Center, Scottsdale, Arizona, United States of America
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Van Wier S, Braggio E, Baker A, Ahmann G, Levy J, Carpten JD, Fonseca R. Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma. Haematologica 2013; 98:1586-92. [PMID: 23716545 DOI: 10.3324/haematol.2012.081083] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma can be categorized into hyperdiploid or non-hyperdiploid myeloma based on the number of chromosomes found in the tumor clone. Among the non-hyperdiploid myelomas, the hypodiploid subtype has the most aggressive clinical phenotype, but the genetic differences between groups are not completely defined. In order to understand the genetic background of hypodiploid multiple myeloma better, we compared the genomic (array-based comparative genomic hybridization) and transcriptomic (gene expression profiling) background of 49 patients with hypodiploid myeloma with 50 other non-hyperdiploid and 125 hyperdiploid myeloma patients. There were significant chromosomal and gene expression differences between hyperdiploid patients and non-hyperdiploid and hypodiploid patients. Non-hyperdiploid and hypodiploid patients shared most of the chromosomal abnormalities; nevertheless a subset of these abnormalities, such as monosomies 13, 14 and 22, was markedly increased in hypodiploid patients. Furthermore, deletions of 1p, 12p, 16q and 17p, all associated with poor outcome or progression in multiple myeloma, were significantly enriched in hypodiploid patients. Molecular risk-stratification indices reinforce the worse prognosis associated with hypodiploid multiple myeloma compared with non-hyperdiploid multiple myeloma. Gene expression profiling clustered hypodiploid and non-hyperdiploid subgroups closer than hyperdiploid myeloma but also highlighted the up-regulation of CCND2, WHSC1/MMSET and FGFR3 in the hypodiploid subtype. In summary, hypodiploid multiple myeloma is genetically similar to non-hyperdiploid multiple myeloma but characterized by a higher prevalence of genetic alterations associated with poor outcome and disease progression. It is provocative to hypothesize that hypodiploid multiple myeloma is an advanced stage of non-hyperdiploid multiple myeloma.
Collapse
|
44
|
Leonard MK, Hill NT, Bubulya PA, Kadakia MP. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle 2013; 12:1406-15. [PMID: 23574721 PMCID: PMC3674068 DOI: 10.4161/cc.24516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022] Open
Abstract
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.
Collapse
Affiliation(s)
- Mary K. Leonard
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| | - Natasha T. Hill
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| | - Paula A. Bubulya
- Department of Biological Sciences; Wright State University; Dayton, OH USA
| | - Madhavi P. Kadakia
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| |
Collapse
|
45
|
Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med 2013; 11:77. [PMID: 23522059 PMCID: PMC3615957 DOI: 10.1186/1479-5876-11-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/10/2013] [Indexed: 12/04/2022] Open
Abstract
Background Multiple myeloma (MM) is a low proliferative tumor of postgerminal center plasma cell (PC). Centrosome amplification (CA) is supposed to be one of the mechanisms leading to chromosomal instability. Also, CA is associated with deregulation of cell cycle, mitosis, DNA repair and proliferation. The aim of our study was to evaluate the prognostic significance and possible role of CA in pathogenesis and analysis of mitotic genes as mitotic disruption markers. Design and methods A total of 173 patients were evaluated for this study. CD138+ cells were separated by MACS. Immunofluorescent labeling of centrin was used for evaluation of centrosome amplification in PCs. Interphase FISH with cytoplasmic immunoglobulin light chain staining (cIg FISH) and qRT-PCR were performed on PCs. Results Based on the immunofluorescent staining results, all patients were divided into two groups: CA positive (38.2%) and CA negative (61.8%). Among the newly diagnosed patients, worse overall survival was indicated in the CA negative group (44/74) in comparison to the CA positive group (30/74) (P = 0.019). Gene expression was significantly down-regulated in the CA positive group in comparison to CA negative in the following genes: AURKB, PLK4, TUBG1 (P < 0.05). Gene expression was significantly down-regulated in newly diagnosed in comparison to relapsed patients in the following genes: AURKA, AURKB, CCNB1, CCNB2, CETN2, HMMR, PLK4, PCNT, and TACC3 (P < 0.05). Conclusions Our findings indicate better prognosis for CA positive newly diagnosed patients. Considering revealed clinical and gene expression heterogeneity between CA negative and CA positive patients, there is a possibility to characterize centrosome amplification as a notable event in multiple myeloma pathogenesis.
Collapse
|
46
|
Nara M, Teshima K, Watanabe A, Ito M, Iwamoto K, Kitabayashi A, Kume M, Hatano Y, Takahashi N, Iida S, Sawada K, Tagawa H. Bortezomib reduces the tumorigenicity of multiple myeloma via downregulation of upregulated targets in clonogenic side population cells. PLoS One 2013; 8:e56954. [PMID: 23469177 PMCID: PMC3587640 DOI: 10.1371/journal.pone.0056954] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
Side population (SP) cells in cancers, including multiple myeloma, exhibit tumor-initiating characteristics. In the present study, we isolated SP cells from human myeloma cell lines and primary tumors to detect potential therapeutic targets specifically expressed in SP cells. We found that SP cells from myeloma cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11) express CD138 and that non-SP cells include a CD138-negative population. Serial transplantation of SP and non-SP cells into NOD/Shi-scid IL-2γnul mice revealed that clonogenic myeloma SP cells are highly tumorigenic and possess a capacity for self-renewal. Gene expression analysis showed that SP cells from five MM cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11, JJN3) express genes involved in the cell cycle and mitosis (e.g., CCNB1, CDC25C, CDC2, BIRC5, CENPE, SKA1, AURKB, KIFs, TOP2A, ASPM), polycomb (e.g., EZH2, EPC1) and ubiquitin-proteasome (e.g., UBE2D3, UBE3C, PSMA5) more strongly than do non-SP cells. Moreover, CCNB1, AURKB, EZH2 and PSMA5 were also upregulated in the SPs from eight primary myeloma samples. On that basis, we used an aurora kinase inhibitor (VX-680) and a proteasome inhibitor (bortezomib) with RPMI 8226 and AMO1 cells to determine whether these agents could be used to selectively target the myeloma SP. We found that both these drugs reduced the SP fraction, though bortezomib did so more effectively than VX-680 due to its ability to reduce levels of both phospho-histone H3 (p-hist. H3) and EZH2; VX-680 reduced only p-hist. H3. This is the first report to show that certain oncogenes are specifically expressed in the myeloma SP, and that bortezomib effectively downregulates expression of their products. Our approach may be useful for screening new agents with which to target a cell population possessing strong tumor initiating potential in multiple myeloma.
Collapse
Affiliation(s)
- Miho Nara
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuaki Teshima
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Atsushi Watanabe
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mitsugu Ito
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Keiko Iwamoto
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Atsushi Kitabayashi
- Department of Internal Medicine, Akita Kumiai General Hospital, Akita, Japan
| | - Masaaki Kume
- Department of Internal Medicine, Hiraka General Hospital, Yokote, Japan
| | - Yoshiaki Hatano
- Department of Internal Medicine, Yamamoto Kumiai General Hospital, Noshiro, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shinsuke Iida
- Department of Medical Oncology and Immunology, Nagoya City University School of Medical Science, Nagoya, Japan
| | - Kenichi Sawada
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
- * E-mail:
| |
Collapse
|
47
|
Kryukov F, Nemec P, Dementyeva E, Kubiczkova L, Ihnatova I, Budinska E, Jarkovsky J, Sevcikova S, Kuglik P, Hajek R. Molecular heterogeneity and centrosome-associated genes in multiple myeloma. Leuk Lymphoma 2013; 54:1982-8. [DOI: 10.3109/10428194.2013.764416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Chung TH, Chng WJ. Clinical utility and implementation of gene-expression profiling in myeloma: current status and challenges. Int J Hematol Oncol 2012. [DOI: 10.2217/ijh.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Multiple myeloma, a neoplasm of terminally differentiated plasma cell, is the second most frequent hematological malignancy after non-Hodgkin’s lymphoma. Gene-expression profiling is a powerful and sensitive tool that can detect global transcriptional changes in cells. This technology has been applied in myeloma studies in the last decade in diverse areas such as understanding molecular pathogenesis, role of microenvironment, molecular heterogeneity, prognosis prediction and identification of novel therapeutic targets. In this review, we will briefly retrace the achievements and consider the future perspectives of gene-expression profiling in multiple myeloma research.
Collapse
Affiliation(s)
- Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology–Oncology, National University Cancer Institute of Singapore, National University Health System, NUHS Tower Block, Level 7, 1E Lower Kent Ridge Road, Singapore 119228, Singapore
| |
Collapse
|
49
|
Raab MS, Breitkreutz I, Anderhub S, Rønnest MH, Leber B, Larsen TO, Weiz L, Konotop G, Hayden PJ, Podar K, Fruehauf J, Nissen F, Mier W, Haberkorn U, Ho AD, Goldschmidt H, Anderson KC, Clausen MH, Krämer A. GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res 2012; 72:5374-85. [PMID: 22942257 DOI: 10.1158/0008-5472.can-12-2026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In contrast to normal cells, malignant cells are frequently aneuploid and contain multiple centrosomes. To allow for bipolar mitotic division, supernumerary centrosomes are clustered into two functional spindle poles in many cancer cells. Recently, we have shown that griseofulvin forces tumor cells with supernumerary centrosomes to undergo multipolar mitoses resulting in apoptotic cell death. Here, we describe the characterization of the novel small molecule GF-15, a derivative of griseofulvin, as a potent inhibitor of centrosomal clustering in malignant cells. At concentrations where GF-15 had no significant impact on tubulin polymerization, spindle tension was markedly reduced in mitotic cells upon exposure to GF-15. Moreover, isogenic cells with conditional centrosome amplification were more sensitive to GF-15 than parental controls. In a wide array of tumor cell lines, mean inhibitory concentrations (IC(50)) for proliferation and survival were in the range of 1 to 5 μmol/L and were associated with apoptotic cell death. Importantly, treatment of mouse xenograft models of human colon cancer and multiple myeloma resulted in tumor growth inhibition and significantly prolonged survival. These results show the in vitro and in vivo antitumor efficacy of a prototype small molecule inhibitor of centrosomal clustering and strongly support the further evaluation of this new class of molecules.
Collapse
Affiliation(s)
- Marc S Raab
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Waheed S, Mitchell A, Usmani S, Epstein J, Yaccoby S, Nair B, van Hemert R, Angtuaco E, Brown T, Bartel T, McDonald J, Anaissie E, van Rhee F, Crowley J, Barlogie B. Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica 2012; 98:71-8. [PMID: 22733020 DOI: 10.3324/haematol.2012.066555] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma causes major morbidity resulting from osteolytic lesions that can be detected by metastatic bone surveys. Magnetic resonance imaging and positron emission tomography can detect bone marrow focal lesions long before development of osteolytic lesions. Using data from patients enrolled in Total Therapy 3 for newly diagnosed myeloma (n=303), we analyzed associations of these imaging techniques with baseline standard laboratory variables assessed before initiating treatment. Of 270 patients with complete imaging data, 245 also had gene expression profiling data. Osteolytic lesions detected on metastatic bone surveys correlated with focal lesions detected by magnetic resonance imaging and positron emission tomography, although, in two-way comparisons, focal lesion counts based on both magnetic resonance imaging and positron emission tomography tended to be greater than those based on metastatic bone survey. Higher numbers of focal lesions detected by magnetic resonance imaging and positron emission tomography were positively linked to high serum concentrations of C-reactive protein, gene-expression-profiling-defined high risk, and the proliferation molecular subgroup. Positron emission tomography focal lesion maximum standardized unit values were significantly correlated with gene-expression-profiling-defined high risk and higher numbers of focal lesions detected by positron emission tomography. Interestingly, four genes associated with high-risk disease (related to cell cycle and metabolism) were linked to counts of focal lesions detected by magnetic resonance imaging and positron emission tomography. Collectively, our results demonstrate significant associations of all three imaging techniques with tumor burden and, especially, disease aggressiveness captured by gene-expression-profiling-risk designation. (Clinicaltrials.gov identifier: NCT00081939).
Collapse
Affiliation(s)
- Sarah Waheed
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|