1
|
Dupont S, Lebas H, Mavouna S, Pascal E, Perrot A, Cogo A, Bourrienne MC, Farkh C, Solo Nomenjanahary M, Ollivier V, Zemali F, Nieswandt B, Loyau S, Jandrot-Perrus M, Camerer E, Desilles JP, Mazighi M, Boulaftali Y, Ho-Tin-Noé B. Comparative Effects of Glenzocimab and Eptifibatide on Bleeding Severity in 2 Mouse Models of Intracranial Hemorrhage. J Am Heart Assoc 2025; 14:e034207. [PMID: 39818980 DOI: 10.1161/jaha.123.034207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Antiplatelet drugs represent potential candidates for protecting the penumbral microcirculation during cerebral ischemia and improving the benefits of arterial recanalization in ischemic stroke. Yet while the efficacy of such adjuvant strategies has been shown to be highly time dependent, antiplatelet therapy at the acute phase of ischemic stroke cannot be envisioned until the diagnosis of stroke and its ischemic nature have been confirmed because of the presumed risk of worsening bleeding in case of intracranial hemorrhage (ICH). Here, we investigated this risk for 2 antiplatelet drugs currently being tested in clinical trials for ischemic stroke, glenzocimab and eptifibatide, in 2 mouse models of ICH. METHODS AND RESULTS The severity of ICH was assessed in mice humanized for glycoprotein VI treated or not with glenzocimab or eptifibatide at effective dose, in a model of primary ICH caused by unilateral striatal injection of collagenase type VII, and in a model of hyperglycemia-induced hemorrhagic transformation of cerebral ischemia-reperfusion injury. Glenzocimab had no impact on bleeding severity in either model of ICH. Conversely, eptifibatide caused a significant increase in intracranial bleeding in both models, and a drastic increase in death after hyperglycemia-induced hemorrhagic transformation of cerebral ischemia-reperfusion injury. CONCLUSIONS Unlike eptifibatide, glenzocimab is safe in the setting of ICH. These results suggest that glenzocimab could be administered upon suspicion of ischemic stroke, before assessment of its ischemic nature, thus opening the way to hastening of treatment initiation.
Collapse
Affiliation(s)
- Sébastien Dupont
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Héloïse Lebas
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Sabrina Mavouna
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Eloïse Pascal
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Astride Perrot
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Adrien Cogo
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Marie-Charlotte Bourrienne
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Carine Farkh
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | | | - Véronique Ollivier
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Fatima Zemali
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg Würzburg Germany
| | - Stéphane Loyau
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Martine Jandrot-Perrus
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Eric Camerer
- Université Paris Cité, Inserm, PARCC Paris France
| | - Jean-Philippe Desilles
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
- Interventional Neuroradiology Department and Biological resources center Rothschild Foundation hospital Paris France
- Department of Neurology Hôpital Lariboisière, APHP Nord, FHU Neurovasc Paris France
| | - Mikael Mazighi
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
- Interventional Neuroradiology Department and Biological resources center Rothschild Foundation hospital Paris France
- Department of Neurology Hôpital Lariboisière, APHP Nord, FHU Neurovasc Paris France
- Institut Universitaire de France Paris France
| | - Yacine Boulaftali
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Benoît Ho-Tin-Noé
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| |
Collapse
|
2
|
Huang H, Hou J, Li M, Wei F, Liao Y, Xi B. Microplastics in the bloodstream can induce cerebral thrombosis by causing cell obstruction and lead to neurobehavioral abnormalities. SCIENCE ADVANCES 2025; 11:eadr8243. [PMID: 39841831 PMCID: PMC11753373 DOI: 10.1126/sciadv.adr8243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Human health is being threatened by environmental microplastic (MP) pollution. MPs were detected in the bloodstream and multiple tissues of humans, disrupting the regular physiological processes of organs. Nanoscale plastics can breach the blood-brain barrier, leading to neurotoxic effects. How MPs cause brain functional irregularities remains unclear. This work uses high-depth imaging techniques to investigate the MPs within the brain in vivo. We show that circulating MPs are phagocytosed and lead these cells to obstruction in the capillaries of the brain cortex. These blockages as thrombus formation cause reduced blood flow and neurological abnormalities in mice. Our data reveal a mechanism by which MPs disrupt tissue function indirectly through regulation of cell obstruction and interference with local blood circulation, rather than direct tissue penetration. This revelation offers a lens through which to comprehend the toxicological implications of MPs that invade the bloodstream.
Collapse
Affiliation(s)
- Haipeng Huang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mingxiao Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yilie Liao
- National University of Singapore, Lower Kent Ridge Road, Singapore, Singapore
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
3
|
Benson TW, Pike MM, Spuzzillo A, Hicks SM, Ali S, Pham M, Mix DS, Brunner SI, Wadding-Lee C, Conrad KA, Russell HM, Jennings C, Coughlin TM, Aggarwal A, Lyden S, Mani K, Björck M, Wanhainen A, Bhandari R, Lipworth-Elliot L, Robinson-Cohen C, Caputo FJ, Shim S, Quesada O, Tourdot B, Edwards TL, Tranter M, Gardiner EE, Mackman N, Cameron SJ, Owens AP. Soluble glycoprotein VI predicts abdominal aortic aneurysm growth rate and is a novel therapeutic target. Blood 2024; 144:1663-1678. [PMID: 38900973 PMCID: PMC11522893 DOI: 10.1182/blood.2023021655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024] Open
Abstract
ABSTRACT A common feature in patients with abdominal aortic aneurysms (AAAs) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA-associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation affects the pathogenesis of AAA. Using RNA sequencing, we identified that the platelet-associated transcripts are significantly enriched in the ILT compared with the adjacent aneurysm wall and healthy control aortas. We found that the platelet-specific receptor glycoprotein VI (GPVI) is among the top enriched genes in AAA ILT and is increased on the platelet surface of patients with AAAs. Examination of a specific indicator of platelet activity, soluble GPVI (sGPVI), in 2 independent cohorts of patients with AAAs is highly predictive of an AAA diagnosis and associates more strongly with aneurysm growth rate than D-dimer in humans. Finally, intervention with the anti-GPVI antibody (JAQ1) in mice with established aneurysms blunted the progression of AAA in 2 independent mouse models. In conclusion, we show that the levels of sGPVI in humans can predict a diagnosis of AAA and AAA growth rate, which may be critical in the identification of high-risk patients. We also identify GPVI as a novel platelet-specific AAA therapeutic target, with minimal risk of adverse bleeding complications, for which none currently exists.
Collapse
Affiliation(s)
- Tyler W. Benson
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mindy M. Pike
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Anthony Spuzzillo
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Sarah M. Hicks
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sidra Ali
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael Pham
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester School of Medicine, Rochester, NY
| | - Seth I. Brunner
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Caris Wadding-Lee
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Kelsey A. Conrad
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Hannah M. Russell
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Courtney Jennings
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Taylor M. Coughlin
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
- Departments of Internal Medicine and Pathology and Laboratory Medicine, Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH
| | - Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sean Lyden
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Martin Björck
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Rohan Bhandari
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Loren Lipworth-Elliot
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Francis J. Caputo
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sharon Shim
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Odayme Quesada
- Women’s Heart Center, The Christ Hospital Heart and Vascular Institute, Cincinnati, OH
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH
| | - Benjamin Tourdot
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Todd L. Edwards
- Division of Epidemiology, Vanderbilt Genetics Institute, Institute of Medicine and Public Health, Nashville, TN
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Scott J. Cameron
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Hematology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
4
|
Kiouptsi K, Casari M, Mandel J, Gao Z, Deppermann C. Intravital Imaging of Thrombosis Models in Mice. Hamostaseologie 2023; 43:348-359. [PMID: 37857297 DOI: 10.1055/a-2118-2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
5
|
Mangin PH, Gardiner EE, Ariëns RAS, Jandrot-Perrus M. Glycoprotein VI interplay with fibrin(ogen) in thrombosis. J Thromb Haemost 2023; 21:1703-1713. [PMID: 36990158 DOI: 10.1016/j.jtha.2023.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Platelets play a central role in the arrest of bleeding. The ability of platelets to engage with extracellular matrix proteins of the subendothelium has long been recognized as a pivotal platelet attribute, underpinning adequate hemostasis. The propensity of platelets to rapidly bind and functionally respond to collagen was one of the earliest documented events in platelet biology. The receptor primarily responsible for mediating platelet/collagen responses was identified as glycoprotein (GP) VI and successfully cloned in 1999. Since that time, this receptor has held the attention of many research groups, and through these efforts, we now have an excellent understanding of the roles of GPVI as a platelet- and megakaryocyte-specific adheso-signaling receptor in platelet biology. GPVI is considered a viable antithrombotic target, as data obtained from groups across the world is consistent with GPVI being less involved in physiological hemostatic processes but participating in arterial thrombosis. This review will highlight the key aspects of GPVI contributions to platelet biology and concentrate on the interaction with recently identified ligands, with a focus on fibrin and fibrinogen, discussing the role of these interactions in the growth and stability of thrombi. We will also discuss important therapeutic developments that target GPVI to modulate platelet function while minimizing bleeding outcomes.
Collapse
Affiliation(s)
- Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg F-67065 Strasbourg, France.
| | - Elizabeth E Gardiner
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Martine Jandrot-Perrus
- Université de Paris Institut National de la Santé et de la Recherche Médicale, UMR-S1148, Hôpital Bichat, Paris, France
| |
Collapse
|
6
|
Agbani EO, Hers I, Poole AW. Platelet procoagulant membrane dynamics: a key distinction between thrombosis and hemostasis? Blood Adv 2023; 7:1615-1619. [PMID: 36574232 PMCID: PMC10173732 DOI: 10.1182/bloodadvances.2022008122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ejaife O. Agbani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W. Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Beck S, Öftering P, Li R, Hemmen K, Nagy M, Wang Y, Zarpellon A, Schuhmann MK, Stoll G, Ruggeri ZM, Heinze KG, Heemskerk JW, Ruf W, Stegner D, Nieswandt B. Platelet glycoprotein V spatio-temporally controls fibrin formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:368-382. [PMID: 37206993 PMCID: PMC10195106 DOI: 10.1038/s44161-023-00254-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/15/2023] [Indexed: 05/21/2023]
Abstract
The activation of platelets and coagulation at vascular injury sites is crucial for haemostasis but can promote thrombosis and inflammation in vascular pathologies. Here, we delineate an unexpected spatio-temporal control mechanism of thrombin activity that is platelet orchestrated and locally limits excessive fibrin formation after initial haemostatic platelet deposition. During platelet activation, the abundant platelet glycoprotein (GP) V is cleaved by thrombin. We demonstrate with genetic and pharmacological approaches that thrombin-mediated shedding of GPV does not primarily regulate platelet activation in thrombus formation, but rather has a distinct function after platelet deposition and specifically limits thrombin-dependent generation of fibrin, a crucial mediator of vascular thrombo-inflammation. Genetic or pharmacologic defects in haemostatic platelet function are unexpectedly attenuated by specific blockade of GPV shedding, indicating that the spatio-temporal control of thrombin-dependent fibrin generation also represents a potential therapeutic target to improve haemostasis.
Collapse
Affiliation(s)
- Sarah Beck
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Patricia Öftering
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine; Atlanta, USA
| | - Katherina Hemmen
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Magdolna Nagy
- Department of Biochemistry, CARIM, Maastricht University; Maastricht, The Netherlands
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine; Atlanta, USA
| | | | | | - Guido Stoll
- University Hospital Würzburg, Department of Neurology, Würzburg, Germany
| | | | - Katrin G. Heinze
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Johan W.M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University; Maastricht, The Netherlands
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz; Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research; La Jolla, CA, USA
| | - David Stegner
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Bernhard Nieswandt
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| |
Collapse
|
8
|
Smith CW, Harbi MH, Garcia‐Quintanilla L, Rookes K, Brown H, Poulter NS, Watson SP, Nicolson PLR, Thomas MR. The Btk inhibitor AB-95-LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and platelet procoagulant activity. J Thromb Haemost 2022; 20:2939-2952. [PMID: 36239466 PMCID: PMC9827830 DOI: 10.1111/jth.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND New antithrombotic therapies with less effect on bleeding are needed for coronary artery disease. The Btk inhibitor ibrutinib blocks atherosclerotic plaque-mediated thrombus formation. However, it is associated with increased bleeding, possibly due to non-Btk-mediated effects. Btk-deficient patients do not have bleeding issues, suggesting selective Btk inhibition as a promising antithrombotic strategy. OBJECTIVES To compare the antithrombotic effects of the highly selective Btk inhibitor AB-95-LH34 (LH34) with ibrutinib. METHODS Glycoprotein VI and G-protein coupled receptor-mediated platelet function and signaling were analyzed in healthy human donor platelets by lumi-aggregometry, flow adhesion, and western blot following 1 h treatment with inhibitors in vitro. RESULTS LH34 showed similar inhibition of Btk-Y223 phosphorylation as ibrutinib, but had no off-target inhibition of Src-Y418 phosphorylation. Similar dose-dependent inhibition of aggregation to atherosclerotic plaque material was observed for both. However, in response to Horm collagen, which also binds integrin α2β1, LH34 exhibited less marked inhibition than ibrutinib. Both LH34 and ibrutinib inhibited platelet adhesion and aggregation to plaque material at arterial shear. Ibrutinib demonstrated the most potent effect, with complete blockade at high concentrations. Platelet activation (P-selectin) and procoagulant activity (phosphatidylserine exposure) in thrombi were inhibited by LH34 and completely blocked by ibrutinib at high concentrations. Furthermore, plaque-induced thrombin generation was reduced by higher concentrations of LH34 and ibrutinib. CONCLUSIONS LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and procoagulant platelet activity in vitro, with less off-target inhibition of Src than ibrutinib, suggesting it is a promising antiplatelet therapy with the potential for reduced bleeding side effects.
Collapse
Affiliation(s)
- Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Maan H. Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Pharmacology and Toxicology Department, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Lourdes Garcia‐Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Kieran Rookes
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Helena Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
9
|
Zhang Y, Trigani KT, Shankar KN, Crossen J, Liu Y, Sinno T, Diamond SL. Anti-GPVI Fab reveals distinct roles for GPVI signaling in the first platelet layer and subsequent layers during microfluidic clotting on collagen with or without tissue factor. Thromb Res 2022; 218:112-129. [PMID: 36037547 DOI: 10.1016/j.thromres.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
The collagen receptor glycoprotein VI (GPVI) drives strong platelet activation, however its role at later stages of clotting remains less clear. Controlled timing of addition of anti-human GPVI Fab (clone E12) with microfluidic venous whole blood flow over collagen (± lipidated tissue factor, TF) produced distinct effects on platelets, fibrin, P-selectin exposure, and phosphatidylserine (PS) exposure. On collagen alone, Fab present initially potently reduced platelet deposition on collagen, while Fab added 90 s after initial platelet deposition, stopped subsequent platelet accumulation (despite the absence of fibrin). With thrombin generation via TF, Fab added at either t = 0 or 90 s had no effect on platelet deposition. However, Fab added initially, but not at 90-s, blocked fibrin formation. Gly-Pro-Arg-Pro ablated fibrin formation without effect on platelet accumulation (regardless of Fab added at t = 0 or 90 s), indicating thrombin signaling can suffice over GPVI signaling. Still, Fab moderately reduced P-selectin exposure with thrombin present and fibrin absent. On collagen/TF, Fab present initially ablated PS exposure, but had no effect when added 30 to 90-s later. The thrombin generated via PS exposure had an important role in driving platelet deposition in the presence of Fab, since inhibition of PS via annexin V binding in the presence of Fab significantly inhibited platelet deposition. We conclude GPVI signaling in the first platelet layer on collagen dictates thrombin and fibrin production, but the role of GPVI at subsequent times after formation of the first monolayer is obscured by thrombin-induced signaling.
Collapse
Affiliation(s)
- Y Zhang
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K T Trigani
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K N Shankar
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Crossen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Y Liu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Development of a Carotid Artery Thrombolysis (iCAT) Stroke Model in Mice. Blood Adv 2022; 6:5449-5462. [PMID: 35767737 PMCID: PMC9631707 DOI: 10.1182/bloodadvances.2021006008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Development of a mouse carotid artery thrombolysis model of stroke. iCAT enables assessment of adjunctive antithrombotic therapies on arterial recanalization, cerebral perfusion, and stroke outcomes.
Recanalization with restored cerebral perfusion is the primary goal of thrombolytic therapy in acute ischemic stroke. The identification of adjunctive therapies that can be safely used to enhance thrombolysis in stroke remains an elusive goal. We report here the development of a mouse in situ carotid artery thrombolysis (iCAT) stroke model involving graded cerebral ischemia to induce unihemispheric infarction after thrombotic occlusion of the common carotid artery (CCA). Electrolytic-induced thrombotic occlusion of the left CCA enabled real-time assessment of recanalization and rethrombosis events after thrombolysis with recombinant tissue-type plasminogen activator (rtPA). Concurrent transient stenosis of the right CCA induced unihemispheric hypoperfusion and infarction in the left middle cerebral artery territory. Real-time assessment of thrombolysis revealed recanalization rates <30% in rtPA-treated animals with high rates of rethrombosis. Addition of the direct thrombin inhibitor argatroban increased recanalization rates to 50% and reduced rethrombosis. Paradoxically, this was associated with increased cerebral ischemia and stroke-related mortality (25%-42%). Serial analysis of carotid and cerebral blood flow showed that coadministration of argatroban with rtPA resulted in a marked increase in carotid artery embolization, leading to distal obstruction of the middle cerebral artery. Real-time imaging of carotid thrombi revealed that adjunctive anticoagulation destabilized platelet-rich thrombi at the vessel wall, leading to dislodgement of large platelet emboli. These studies confirm the benefits of anticoagulants in enhancing thrombolysis and large artery recanalization; however, at high levels of anticoagulation (∼3-fold prolongation of activated partial thromboplastin time), this effect is offset by increased incidence of carotid artery embolization and distal middle cerebral artery occlusion. The iCAT stroke model should provide important new insight into the effects of adjunctive antithrombotic agents on real-time thrombus dynamics during thrombolysis and their correlation with stroke outcomes.
Collapse
|
11
|
Ma S, Bai L, Liu P, She G, Deng XL, Song AQ, Du XJ, Lu Q. Pathogenetic Link of Cardiac Rupture and Left Ventricular Thrombus Following Acute Myocardial Infarction: A Joint Preclinical and Clinical Study. Front Cardiovasc Med 2022; 9:858720. [PMID: 35757352 PMCID: PMC9218188 DOI: 10.3389/fcvm.2022.858720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cardiac rupture (CR) and left ventricular thrombus (LVT) remain important complications of acute myocardial infarction (MI), and they are currently regarded as independent events. We explored the pathogenetic link between CR and LVT by investigating a murine model of MI with a high frequency of CR and in patients with acute MI. Methods MI was induced in mice, the onset of CR was monitored, and the hearts of mice with or without fatal CR were histologically examined. Between 2015 and 2022, from patients admitted due to acute MI, the data of patients with CR or LVT were retrospectively collected and compared to uncomplicated patients (control). Results A total of 75% of mice (n = 65) with MI developed CR 2–4 days after MI. A histological examination of CR hearts revealed the existence of platelet-rich intramural thrombi in the rupture tunnel, which was connected at the endocardial site to platelet-fibrin thrombi within an LVT. In CR or non-CR mouse hearts, LV blood clots often contained a portion of platelet-fibrin thrombi that adhered to the infarct wall. In non-CR hearts, sites of incomplete CR or erosion of the infarct wall were typically coated with platelet thrombi and dense inflammatory cells. Of 8,936 patients with acute MI, CR and LVT occurred in 102 (1.14%) and 130 (1.45%) patients, respectively, with three cases having both complications. CR accounted for 32.8% of in-hospital deaths. The majority of CR (95%) or LVT (63%, early LVT) occurred within 7 days. In comparison to the control or LVT-late groups, patients with CR or early LVT reported increased levels of cellular and biochemical markers for inflammation or cardiac injury. Conclusion CR and LVT after MI are potentially linked in their pathogenesis. LVT occurring early after MI may be triggered by a thrombo-inflammatory response following wall rupture or endocardial erosion.
Collapse
Affiliation(s)
- Shan Ma
- Department of Internal Medicine-Cardiovascular, Cardiovascular Hospital, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ling Bai
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ping Liu
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - An-Qi Song
- Department of Internal Medicine-Cardiovascular, Cardiovascular Hospital, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- *Correspondence: Xiao-Jun Du,
| | - Qun Lu
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Qun Lu,
| |
Collapse
|
12
|
Carminita E, Crescence L, Panicot-Dubois L, Dubois C. Role of Neutrophils and NETs in Animal Models of Thrombosis. Int J Mol Sci 2022; 23:ijms23031411. [PMID: 35163333 PMCID: PMC8836215 DOI: 10.3390/ijms23031411] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Thrombosis is one of the major causes of mortality worldwide. Notably, it is not only implicated in cardiovascular diseases, such as myocardial infarction (MI), stroke, and pulmonary embolism (PE), but also in cancers. Understanding the cellular and molecular mechanisms involved in platelet thrombus formation is a major challenge for scientists today. For this purpose, new imaging technologies (such as confocal intravital microscopy, electron microscopy, holotomography, etc.) coupled with animal models of thrombosis (mouse, rat, rabbit, etc.) allow a better overview of this complex physiopathological process. Each of the cellular components is known to participate, including the subendothelial matrix, the endothelium, platelets, circulating cells, and, notably, neutrophils. Initially known as immune cells, neutrophils have been considered to be part of the landscape of thrombosis for more than a decade. They participate in this biological process through their expression of tissue factor (TF) and protein disulfide isomerase (PDI). Moreover, highly activated neutrophils are described as being able to release their DNA and thus form chromatin networks known as “neutrophil extracellular traps” (NETs). Initially, described as “dead sacrifices for a good cause” that prevent the dissemination of bacteria in the body, NETs have also been studied in several human pathologies, such as cardiovascular and respiratory diseases. Many articles suggest that they are involved in platelet thrombus formation and the activation of the coagulation cascade. This review presents the models of thrombosis in which neutrophils and NETs are involved and describes their mechanisms of action. We have even highlighted the medical diagnostic advances related to this research.
Collapse
Affiliation(s)
- Estelle Carminita
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
- Correspondence:
| | - Christophe Dubois
- Aix Marseille Univ, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (E.C.); (L.C.); (C.D.)
- Aix Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| |
Collapse
|
13
|
Zhang W, Li J, Liang J, Qi X, Tian J, Liu J. Coagulation in Lymphatic System. Front Cardiovasc Med 2021; 8:762648. [PMID: 34901222 PMCID: PMC8652051 DOI: 10.3389/fcvm.2021.762648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The lymphatic system maintains homeostasis of the internal environment between the cells in tissues and the blood circulation. The coagulation state of lymph is determined by conditions of coagulation factors and lymphatic vessels. Internal obliteration, external compression or abnormally increased lymphatic pressure may predispose to localized lymphatic coagulation. In physiological conditions, an imbalance of antithrombin and thrombokinase reduces lymphatic thrombosis. However, the release of factor X by lymphatic endothelium injury may trigger coagulation casacade, causing blockage of lymphatic vessels and lymphedema. Heterogeneity of lymphatic vessels in various tissues may lead to distinct levels and patterns of coagulation in specific lymphatic vessels. The quantitative and qualitative measurement of clotting characteristic reveals longer time for clotting to occur in the lymph than in the blood. Cancer, infections, amyloidosis and lymph node dissection may trigger thrombosis in the lymphatic vessels. In contrast to venous or arterial thrombosis, lymphatic thrombosis has rarely been reported, and its actual prevalence is likely underestimated. In this review, we summarize the mechanisms of coagulation in lymphatic system, and discuss the lymphatic thrombosis-related diseases.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Medical Research Center, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiang Li
- Qeeloo Medical College, Shandong University, Jinan, China
| | - Jiangjiu Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiumei Qi
- Department of Education, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated With Shandong First Medical University, Jinan, China
| | - Jinghui Tian
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ju Liu
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Medical Research Center, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
14
|
Chen C, Rawat D, Samikannu B, Bender M, Preissner KT, Linn T. Platelet glycoprotein VI-dependent thrombus stabilization is essential for the intraportal engraftment of pancreatic islets. Am J Transplant 2021; 21:2079-2089. [PMID: 33099857 DOI: 10.1111/ajt.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 01/25/2023]
Abstract
Platelet activation and thrombus formation have been implicated to be detrimental for intraportal pancreatic islet transplants. The platelet-specific collagen receptor glycoprotein VI (GPVI) plays a key role in thrombosis through cellular activation and the subsequent release of secondary mediators. In aggregometry and in a microfluidic dynamic assay system modeling flow in the portal vein, pancreatic islets promoted platelet aggregation and triggered thrombus formation, respectively. While platelet GPVI deficiency did not affect the initiation of these events, it was found to destabilize platelet aggregates and thrombi in this process. Interestingly, while no major difference was detected in early thrombus formation after intraportal islet transplantation, genetic GPVI deficiency or acute anti-GPVI treatment led to an inferior graft survival and function in both syngeneic mouse islet transplantation and xenogeneic human islet transplantation models. These results demonstrate that platelet GPVI signaling is indispensable in stable thrombus formation induced by pancreatic islets. GPVI deficiency resulted in thrombus destabilization and inferior islet engraftment indicating that thrombus formation is necessary for a successful intraportal islet transplantation in which platelets are active modulators.
Collapse
Affiliation(s)
- Chunguang Chen
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Divya Rawat
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Balaji Samikannu
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany.,Cell and Developmental Biology, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Markus Bender
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
15
|
Montenont E, Bhatlekar S, Jacob S, Kosaka Y, Manne BK, Lee O, Parra-Izquierdo I, Tugolukova E, Tolley ND, Rondina MT, Bray PF, Rowley JW. CRISPR-edited megakaryocytes for rapid screening of platelet gene functions. Blood Adv 2021; 5:2362-2374. [PMID: 33944898 PMCID: PMC8114553 DOI: 10.1182/bloodadvances.2020004112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/07/2023] Open
Abstract
Human anucleate platelets cannot be directly modified using traditional genetic approaches. Instead, studies of platelet gene function depend on alternative models. Megakaryocytes (the nucleated precursor to platelets) are the nearest cell to platelets in origin, structure, and function. However, achieving consistent genetic modifications in primary megakaryocytes has been challenging, and the functional effects of induced gene deletions on human megakaryocytes for even well-characterized platelet genes (eg, ITGA2B) are unknown. Here we present a rapid and systematic approach to screen genes for platelet functions in CD34+ cell-derived megakaryocytes called CRIMSON (CRISPR-edited megakaryocytes for rapid screening of platelet gene functions). By using CRISPR/Cas9, we achieved efficient nonviral gene editing of a panel of platelet genes in megakaryocytes without compromising megakaryopoiesis. Gene editing induced loss of protein in up to 95% of cells for platelet function genes GP6, RASGRP2, and ITGA2B; for the immune receptor component B2M; and for COMMD7, which was previously associated with cardiovascular disease and platelet function. Gene deletions affected several select responses to platelet agonists in megakaryocytes in a manner largely consistent with those expected for platelets. Deletion of B2M did not significantly affect platelet-like responses, whereas deletion of ITGA2B abolished agonist-induced integrin activation and spreading on fibrinogen without affecting the translocation of P-selectin. Deletion of GP6 abrogated responses to collagen receptor agonists but not thrombin. Deletion of RASGRP2 impaired functional responses to adenosine 5'-diphosphate (ADP), thrombin, and collagen receptor agonists. Deletion of COMMD7 significantly impaired multiple responses to platelet agonists. Together, our data recommend CRIMSON for rapid evaluation of platelet gene phenotype associations.
Collapse
Affiliation(s)
- Emilie Montenont
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Seema Bhatlekar
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Shancy Jacob
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Yasuhiro Kosaka
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Bhanu K Manne
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Olivia Lee
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | | | - Emilia Tugolukova
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Neal D Tolley
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
- George E. Wahlen Department of Veterans Affairs Medical Center
- Department of Internal Medicine and Geriatric Research and Education Clinical Center, and
- Department of Pathology, The University of Utah, Salt Lake City, UT
| | - Paul F Bray
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
| | - Jesse W Rowley
- Molecular Medicine Program, The University of Utah, Salt Lake City, UT
- Department of Internal Medicine
| |
Collapse
|
16
|
Griffin MT, Ashworth K, Hill N, von Behren J, Di Paola J, Ku DN. Negatively charged nanoparticles of multiple materials inhibit shear-induced platelet accumulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102405. [PMID: 33932591 DOI: 10.1016/j.nano.2021.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/21/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Platelet accumulation by VWF under high shear rates at the site of atherosclerotic plaque rupture leads to myocardial infarction and stroke. Current anti-platelet therapies remain ineffective for a large percentage of the population, while presenting significant risks for bleeding. We explore a novel way to inhibit arterial thrombus formation. Theoretically, a negative charge may influence the tertiary structure of VWF to favor the globular configuration by biophysical means without the use of platelet inactivating drugs. We tested this hypothesis experimentally for charged nanoparticles (CNPs) to inhibit thrombus formation in a microfluidic thrombosis assay (MTA). Several different CNPs demonstrated the ability to retard thrombotic occlusion in the MTA. A preliminary study in mice shows that thrombus stability is weaker with CNP administration and bleeding times are not markedly prolonged. The CNPs tested here show promise as a new class of antithrombotic therapies that act by biophysical means rather than biochemical pathways.
Collapse
Affiliation(s)
- Michael T Griffin
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Katrina Ashworth
- University of Colorado, Anschutz Medical Campus, Pediatrics Hematology, Oncology, Aurora, CO; Washington University School of Medicine, St. Louis, MO
| | - Nathaniel Hill
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Jaydra von Behren
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | | | - David N Ku
- GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA; Parker H Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
17
|
Harbi MH, Smith CW, Nicolson PLR, Watson SP, Thomas MR. Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets 2020; 32:29-41. [PMID: 33307909 DOI: 10.1080/09537104.2020.1849600] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases.
Collapse
Affiliation(s)
- Maan H Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK.,Sandwell and West Birmingham NHS Trust , Birmingham, UK
| |
Collapse
|
18
|
Ahmed MU, Kaneva V, Loyau S, Nechipurenko D, Receveur N, Le Bris M, Janus-Bell E, Didelot M, Rauch A, Susen S, Chakfé N, Lanza F, Gardiner EE, Andrews RK, Panteleev M, Gachet C, Jandrot-Perrus M, Mangin PH. Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin. Arterioscler Thromb Vasc Biol 2020; 40:2127-2142. [PMID: 32698684 DOI: 10.1161/atvbaha.120.314301] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Atherothrombosis occurs upon rupture of an atherosclerotic plaque and leads to the formation of a mural thrombus. Computational fluid dynamics and numerical models indicated that the mechanical stress applied to a thrombus increases dramatically as a thrombus grows, and that strong inter-platelet interactions are essential to maintain its stability. We investigated whether GPVI (glycoprotein VI)-mediated platelet activation helps to maintain thrombus stability by using real-time video-microscopy. Approach and Results: We showed that GPVI blockade with 2 distinct Fab fragments promoted efficient disaggregation of human thrombi preformed on collagen or on human atherosclerotic plaque material in the absence of thrombin. ACT017-induced disaggregation was achieved under arterial blood flow conditions, and its effect increased with wall shear rate. GPVI regulated platelet activation within a growing thrombus as evidenced by the loss in thrombus contraction when GPVI was blocked, and the absence of the disaggregating effect of an anti-GPVI agent when the thrombi were fully activated with soluble agonists. The GPVI-dependent thrombus stabilizing effect was further supported by the fact that inhibition of any of the 4 key immunoreceptor tyrosine-based motif signalling molecules, src-kinases, Syk, PI3Kβ, or phospholipase C, resulted in kinetics of thrombus disaggregation similar to ACT017. The absence of ACT017-induced disaggregation of thrombi from 2 afibrinogenemic patients suggests that the role of GPVI requires interaction with fibrinogen. Finally, platelet disaggregation of fibrin-rich thrombi was also promoted by ACT017 in combination with r-tPA (recombinant tissue plasminogen activator). CONCLUSIONS This work identifies an unrecognized role for GPVI in maintaining thrombus stability and suggests that targeting GPVI could dissolve platelet aggregates with a poor fibrin content.
Collapse
Affiliation(s)
- Muhammad Usman Ahmed
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Valeria Kaneva
- Faculty of Physics, Moscow State University, Russia (V.K., D.N., M.P.).,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Russia (V.K., D.N., M.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Russia (V.K., D.M., M.P.)
| | - Stéphane Loyau
- Université de Paris, INSERM, Hôpital Bichat, UMR-S1148, France (S.L., M.J.-P.)
| | - Dmitry Nechipurenko
- Faculty of Physics, Moscow State University, Russia (V.K., D.N., M.P.).,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Russia (V.K., D.N., M.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Russia (V.K., D.M., M.P.)
| | - Nicolas Receveur
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Marion Le Bris
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Emily Janus-Bell
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Mélusine Didelot
- CHU Lille, Université de Lille, INSERM UMR-SU1011-EGID, Institut Pasteur de Lille, France (M.D., A.R., S.S.)
| | - Antoine Rauch
- CHU Lille, Université de Lille, INSERM UMR-SU1011-EGID, Institut Pasteur de Lille, France (M.D., A.R., S.S.)
| | - Sophie Susen
- CHU Lille, Université de Lille, INSERM UMR-SU1011-EGID, Institut Pasteur de Lille, France (M.D., A.R., S.S.)
| | - Nabil Chakfé
- Université de Strasbourg, Department of Vascular Surgery and Kidney Transplantation, France (N.C.)
| | - François Lanza
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Elizabeth E Gardiner
- The Australian National University, The John Curtin School of Medical Research, ACRF Department of Cancer Biology and Therapeutics, Canberra, Australia (E.E.G.)
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Australia (R.K.A.)
| | - Mikhail Panteleev
- Faculty of Physics, Moscow State University, Russia (V.K., D.N., M.P.).,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Russia (V.K., D.N., M.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Russia (V.K., D.M., M.P.)
| | - Christian Gachet
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Martine Jandrot-Perrus
- Université de Paris, INSERM, Hôpital Bichat, UMR-S1148, France (S.L., M.J.-P.).,Acticor Biotech, France (M.J.-P.)
| | - Pierre H Mangin
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| |
Collapse
|
19
|
Abstract
: Mycophenolate mofetil (MMF) raises platelet counts in patients with primary immune thrombocytopenia. However, studies indicate that MMF inhibits collagen-induced platelet aggregation, potentially increasing bleeding risk following MMF therapy. The study evaluates the in-vitro effect of MMF on platelet function. Blood samples (n = 6) from healthy donors were incubated with vehicle, MMF or mycophenolic acid (MPA) at clinically relevant concentrations. Platelet aggregation was measured with flow cytometry and 96-well light transmission aggregometry (LTA). Using flow cytometry, we measured the expression of platelet CD49b, CD42b, CD42a, CD61 and CD41. Platelet activation was measured as the expression of P-selectin and the active form of the GPIIb/IIIa receptor following agonist stimulation. Agonists were: ADP, thrombin receptor-activating peptide, collagen, collagen-related peptide and U46619. The Platelet Function Analyzer-200 was used to measure global platelet function. MMF and MPA did not change platelet aggregation regardless of the agonist used. An exception was a significant, but minor decrease in collagen-induced platelet aggregation in samples with MMF (6 ± 3%, P = 0.02) and MPA (8 ± 4%, P = 0.01) compared with vehicle (22 ± 11%). However, this was not observed using the lesser sensitive LTA method. Compared with vehicle, MPA led to a significantly lower relative disposition of the surface collagen-receptor GPVI (7.8 ± 1.8 versus 8.8 ± 2.1 mean fluorescence intensity, P < 0.001). In all other platelet-related tests, neither MMF nor MPA showed any effect. In conclusion, MMF and MPA only had a minor effect on collagen-induced platelet aggregation, with MPA reducing the relative disposition of surface GPVI receptors.
Collapse
|
20
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
21
|
Le Chapelain O, Jadoui S, Boulaftali Y, Ho-Tin-Noé B. The reversed passive Arthus reaction as a model for investigating the mechanisms of inflammation-associated hemostasis. Platelets 2020; 31:455-460. [PMID: 32105152 DOI: 10.1080/09537104.2020.1732325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, accumulating evidence has indicated that platelets continuously repair vascular damage at sites of inflammation and/or infection. Studies in mouse models of inflammation have highlighted the fact that the mechanisms underlying bleeding prevention by platelets in inflamed organs can substantially differ from those supporting primary hemostasis following tail tip transection or thrombus formation in models of thrombosis. As a consequence, exploration of the hemostatic function of platelets in inflammation, as well as assessment of the risk of inflammation-induced bleeding associated with a platelet deficit and/or the use of anti-thrombotic drugs, require the use of dedicated experimental models. In the present review, we present the pros and cons of the cutaneous reversed passive Arthus reaction, a model of inflammation which has been instrumental in studying how inflammation causes vascular injury and how platelets continuously intervene to repair it. The limitations and common issues encountered when working with mouse models of inflammation for investigating platelet functions in inflammation are also discussed.
Collapse
Affiliation(s)
| | - Soumaya Jadoui
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France
| | | | | |
Collapse
|
22
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
23
|
Crawley JTB, Zalli A, Monkman JH, Petri A, Lane DA, Ahnstrӧm J, Salles‐Crawley II. Defective fibrin deposition and thrombus stability in Bambi -/- mice are mediated by elevated anticoagulant function. J Thromb Haemost 2019; 17:1935-1949. [PMID: 31351019 PMCID: PMC6899896 DOI: 10.1111/jth.14593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bone morphogenetic and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein related to the type I transforming growth factor- β (TGF-β) receptor family that is present on both platelets and endothelial cells (ECs). Bambi-deficient mice exhibit reduced hemostatic function and thrombus stability characterized by an increased embolization. OBJECTIVE We aimed to delineate how BAMBI influences endothelial function and thrombus stability. METHODS Bambi-deficient mice were subjected to the laser-induced thrombosis model where platelet and fibrin accumulation was evaluated. Expression of thrombomodulin and tissue factor pathway inhibitor (TFPI) was also assessed in these mice. RESULTS Thrombus instability in Bambi-/- mice was associated with a profound defect in fibrin deposition. Injection of hirudin into Bambi+/+ mice prior to thrombus formation recapitulated the Bambi-/- thrombus instability phenotype. In contrast, hirudin had no additional effect upon thrombus formation in Bambi-/- mice. Deletion of Bambi in ECs resulted in mice with defective thrombus stability caused by decreased fibrin accumulation. Increased levels of the anticoagulant proteins TFPI and thrombomodulin were detected in Bambi-/- mouse lung homogenates. Endothelial cells isolated from Bambi-/- mouse lungs exhibited enhanced ability to activate protein C due to elevated thrombomodulin levels. Blocking thrombomodulin and TFPI in vivo fully restored fibrin accumulation and thrombus stability in Bambi-/- mice. CONCLUSIONS We demonstrate that endothelial BAMBI influences fibrin generation and thrombus stability by modulating thrombomodulin and TFPI anticoagulant function of the endothelium; we also highlight the importance of these anticoagulant proteins in the laser-induced thrombosis model.
Collapse
Affiliation(s)
- James T. B. Crawley
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Argita Zalli
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - James H. Monkman
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Anastasis Petri
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - David A. Lane
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Josefin Ahnstrӧm
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | | |
Collapse
|
24
|
Abstract
The ferric chloride models of arterial thrombosis are useful tools with which to investigate the cellular and molecular mechanisms that contribute to arterial thrombosis. Recent insights have, however, revealed the complex and multifaceted mechanism by which ferric chloride induces thrombus formation. Here, we discuss the strengths and weaknesses of the ferric chloride models of arterial thrombosis. Particular focus is given to the phenotypes of different knockout mice in the ferric chloride models and how these compare to other models with independent modes of initiation. Further, we discuss the relevance of the ferric chloride models to the human pathology of atherothrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| |
Collapse
|
25
|
Coppin L, Sokal E, Stéphenne X. Thrombogenic Risk Induced by Intravascular Mesenchymal Stem Cell Therapy: Current Status and Future Perspectives. Cells 2019; 8:cells8101160. [PMID: 31569696 PMCID: PMC6829440 DOI: 10.3390/cells8101160] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently studied and used in numerous clinical trials. Nevertheless, some concerns have been raised regarding the safety of these infusions and the thrombogenic risk they induce. MSCs express procoagulant activity (PCA) linked to the expression of tissue factor (TF) that, when in contact with blood, initiates coagulation. Some even describe a dual activation of both the coagulation and the complement pathway, called Instant Blood-Mediated Inflammatory Reaction (IBMIR), explaining the disappointing results and low engraftment rates in clinical trials. However, nowadays, different approaches to modulate the PCA of MSCs and thus control the thrombogenic risk after cell infusion are being studied. This review summarizes both in vitro and in vivo studies on the PCA of MSC of various origins. It further emphasizes the crucial role of TF linked to the PCA of MSCs. Furthermore, optimization of MSC therapy protocols using different methods to control the PCA of MSCs are described.
Collapse
Affiliation(s)
- Louise Coppin
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Etienne Sokal
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Xavier Stéphenne
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
26
|
Sashindranath M, Sturgeon SA, French S, Craenmehr DDD, Selan C, Freddi S, Johnson C, Cody SH, Nesbitt WS, Hamilton JR, Nandurkar HH. The mode of anesthesia influences outcome in mouse models of arterial thrombosis. Res Pract Thromb Haemost 2019; 3:197-206. [PMID: 31011704 PMCID: PMC6462741 DOI: 10.1002/rth2.12184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/22/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Arterial thrombosis models are important for preclinical evaluation of antithrombotics but how anesthetic protocol can influence experimental results is not studied. OBJECTIVES We studied how three most commonly used rodent anesthetics affect the induction of thrombosis and thrombus resolution with antiplatelet agent integrilin (Eptifibatide). METHODS The Folts, electrolytic, and FeCl3 models of carotid artery thrombosis were evaluated. The extent of blood flow reduction required to elicit cyclic flow reductions (CFR) was examined in the Folts model. The occlusion time and stability following electrolytic or FeCl3 injury was assessed. The efficacy of Eptifibatide was studied in each cohort and clot composition following FeCl3 application was assessed histologically. RESULTS Isoflurane and ketamine-xylazine (ket-x) elicited higher basal blood flow velocities. For reliable CFR in the Folts model, a higher degree of blood flow reduction was required under ket-x and isoflurane. For the FeCl3 and electrolytic models, injury severity had to be increased in mice under ket-x anesthesia to achieve rapid occlusion. FeCl3-injured artery sections from ket-x and isoflurane-treated mice showed vessel dilatation and clots that were more fibrin/red-cell rich compared to pentobarbitone. Integrilin led to cycle abolishment for all three Folts-injury cohorts but for the electrolytic model a 2.5-fold higher dose was required to restore blood flow under pentobarbitone. Integrilin after FeCl3 arterial injury was partially ineffective in isoflurane-treated mice. CONCLUSIONS Anesthesia impacts rodent carotid artery occlusion experiments and alters integrilin efficacy. It is important to consider anesthetic protocols in animal experiments involving pharmacological agents for treatment of atherothrombosis.
Collapse
Affiliation(s)
- Maithili Sashindranath
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Sharelle A. Sturgeon
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Shauna French
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Daphne D. D. Craenmehr
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Carly Selan
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Susanna Freddi
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Chad Johnson
- Monash Micro ImagingMonash UniversityMelbourneVic.Australia
- Burnet InstituteMelbourneVic.Australia
| | | | - Warwick S. Nesbitt
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
- School of EngineeringRMIT UniversityMelbourneVICAustralia
| | - Justin R. Hamilton
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| | - Harshal H. Nandurkar
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityAlfred HospitalMelbourneVic.Australia
| |
Collapse
|
27
|
Mouse venous thrombosis upon silencing of anticoagulants depends on tissue factor and platelets, not FXII or neutrophils. Blood 2019; 133:2090-2099. [PMID: 30898865 DOI: 10.1182/blood-2018-06-853762] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue factor, coagulation factor XII, platelets, and neutrophils are implicated as important players in the pathophysiology of (experimental) venous thrombosis (VT). Their role became evident in mouse models in which surgical handlings were required to provoke VT. Combined inhibition of the natural anticoagulants antithrombin (Serpinc1) and protein C (Proc) using small interfering RNA without additional triggers also results in a venous thrombotic phenotype in mice, most notably with vessel occlusion in large veins of the head. VT is fatal but is fully rescued by thrombin inhibition. In the present study, we used this VT mouse model to investigate the involvement of tissue factor, coagulation factor XII, platelets, and neutrophils. Antibody-mediated inhibition of tissue factor reduced the clinical features of VT, the coagulopathy in the head, and fibrin deposition in the liver. In contrast, genetic deficiency in, and small interfering RNA-mediated depletion of, coagulation factor XII did not alter VT onset, severity, or thrombus morphology. Antibody-mediated depletion of platelets fully abrogated coagulopathy in the head and liver fibrin deposition. Although neutrophils were abundant in thrombotic lesions, depletion of circulating Ly6G-positive neutrophils did not affect onset, severity, thrombus morphology, or liver fibrin deposition. In conclusion, VT after inhibition of antithrombin and protein C is dependent on the presence of tissue factor and platelets but not on coagulation factor XII and circulating neutrophils. This study shows that distinct procoagulant pathways operate in mouse VT, dependent on the triggering stimulus.
Collapse
|
28
|
Baaten CCFMJ, Meacham S, de Witt SM, Feijge MAH, Adams DJ, Akkerman JWN, Cosemans JMEM, Grassi L, Jupe S, Kostadima M, Mattheij NJA, Prins MH, Ramirez-Solis R, Soehnlein O, Swieringa F, Weber C, White JK, Ouwehand WH, Heemskerk JWM. A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood 2018; 132:e35-e46. [PMID: 30275110 PMCID: PMC6293874 DOI: 10.1182/blood-2018-02-831982] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stuart Meacham
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marion A H Feijge
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - David J Adams
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jan-Willem N Akkerman
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Steve Jupe
- EMBL-European Bioinformatics Institute, Cambridge, United Kingdom
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin H Prins
- Department of Clinical Epidemiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Tomaiuolo M, Brass LF, Stalker TJ. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin 2018; 6:1-12. [PMID: 27886814 DOI: 10.1016/j.iccl.2016.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemostasis requires tightly regulated interaction of the coagulation system, platelets, blood cells, and vessel wall components at a site of vascular injury. Dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is robust. Studies have elucidated the major molecular signaling pathways responsible for platelet activation and aggregation. Antithrombotic agents targeting these pathways are in clinical use. This review summarizes research examining mechanisms by which these multiple platelet signaling pathways are integrated at a site of vascular injury to produce an optimal hemostatic response.
Collapse
Affiliation(s)
- Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Song TJ, Kwon I, Piao H, Lee JE, Han KR, Chang Y, Oh HJ, Choi HJ, Lee KY, Kim YJ, Han KH, Heo JH. Increased Thrombogenicity in Chronic Renal Failure in a Rat Model Induced by 5/6 Ablation/Infarction. Yonsei Med J 2018; 59:754-759. [PMID: 29978612 PMCID: PMC6037604 DOI: 10.3349/ymj.2018.59.6.754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Abnormalities in hemostasis and coagulation have been suggested in chronic renal failure (CRF). In this study, we compared processes of thrombus formation between rats with CRF and those with normal kidney function. MATERIALS AND METHODS CRF was induced by 5/6 ablation/infarction of the kidneys in Sprague-Dawley rats, and surviving rats after 4 weeks were used. Ferric chloride (FeCl₃)-induced thrombosis in the carotid artery was induced to assess thrombus formation. Whole blood clot formation was evaluated using rotational thromboelastometry (ROTEM). Platelet aggregation was assessed with impedance platelet aggregometry. RESULTS FeCl₃-induced thrombus formation was initiated faster in the CRF group than in the control group (13.2±1.1 sec vs. 17.8±1.0 sec, p=0.027). On histological examination, the maximal diameters of thrombi were larger in the CRF group than in the control group (394.2±201.1 μm vs. 114.0±145.1 μm, p=0.039). In extrinsic pathway ROTEM, the CRF group showed faster clot initiation (clotting time, 59.0±7.3 sec vs. 72.8±5.0 sec, p=0.032) and increased clot growth kinetics (α angle, 84.8±0.2° vs. 82.0±0.6°, p=0.008), compared to the control group. Maximal platelet aggregation rate was higher in the CRF group than in the control group (58.2±0.2% vs. 44.6±1.2%, p=0.006). CONCLUSION Our study demonstrated that thrombogenicity is increased in rats with CRF. An activated extrinsic coagulation pathway may play an important role in increasing thrombogenicity in CRF.
Collapse
Affiliation(s)
- Tae Jin Song
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Il Kwon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Honglim Piao
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jee Eun Lee
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kyeo Rye Han
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yoonkyung Chang
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyung Jung Oh
- Ewha Institute of Convergence Medicine, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Yul Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Jae Kim
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ki Hwan Han
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Induruwa I, Moroi M, Bonna A, Malcor J, Howes J, Warburton EA, Farndale RW, Jung SM. Platelet collagen receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J Thromb Haemost 2018; 16:389-404. [PMID: 29210180 PMCID: PMC5838801 DOI: 10.1111/jth.13919] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 01/01/2023]
Abstract
Essentials Glycoprotein VI (GPVI) binds collagen, starting thrombogenesis, and fibrin, stabilizing thrombi. GPVI-dimers, not monomers, recognize immobilized fibrinogen and fibrin through their D-domains. Collagen, D-fragment and D-dimer may share a common or proximate binding site(s) on GPVI-dimer. GPVI-dimer-fibrin interaction supports spreading, activation and adhesion involving αIIbβ3. SUMMARY Background Platelet collagen receptor Glycoprotein VI (GPVI) binds collagen, initiating thrombogenesis, and stabilizes thrombi by binding fibrin. Objectives To determine if GPVI-dimer, GPVI-monomer, or both bind to fibrinogen substrates, and which region common to these substrates contains the interaction site. Methods Recombinant GPVI monomeric extracellular domain (GPVIex ) or dimeric Fc-fusion protein (GPVI-Fc2 ) binding to immobilized fibrinogen derivatives was measured by ELISA, including competition assays involving collagenous substrates and fibrinogen derivatives. Flow adhesion was performed with normal or Glanzmann thrombasthenic (GT) platelets over immobilized fibrinogen, with or without anti-GPVI-dimer or anti-αIIbβ3. Results Under static conditions, GPVIex did not bind to any fibrinogen substrate. GPVI-Fc2 exhibited specific, saturable binding to both D-fragment and D-dimer, which was inhibited by mFab-F (anti-GPVI-dimer), but showed low binding to fibrinogen and fibrin under our conditions. GPVI-Fc2 binding to D-fragment or D-dimer was abrogated by collagen type III, Horm collagen or CRP-XL (crosslinked collagen-related peptide), suggesting proximity between the D-domain and collagen binding sites on GPVI-dimer. Under low shear, adhesion of normal platelets to D-fragment, D-dimer, fibrinogen and fibrin was inhibited by mFab-F (inhibitor of GPVI-dimer) and abolished by Eptifibatide (inhibitor of αIIbβ3), suggesting that both receptors contribute to thrombus formation on these substrates, but αIIbβ3 makes a greater contribution. Notably, thrombasthenic platelets showed limited adhesion to fibrinogen substrates under flow, which was further reduced by mFab-F, supporting some independent GPVI-dimer involvement in this interaction. Conclusion Only dimeric GPVI interacts with fibrinogen D-domain, at a site proximate to its collagen binding site, to support platelet adhesion/activation/aggregate formation on immobilized fibrinogen and polymerized fibrin.
Collapse
Affiliation(s)
- I. Induruwa
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - M. Moroi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - A. Bonna
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - J.‐D. Malcor
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - J.‐M. Howes
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - E. A. Warburton
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - R. W. Farndale
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - S. M. Jung
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
32
|
Abstract
Antiplatelet drugs, such as aspirin, P2Y12 antagonists, and glycoprotein (GP) IIb/IIIa inhibitors, have proved to be successful in reducing the morbidity and mortality associated with arterial thrombosis. These agents are, therefore, the cornerstone of therapy for patients with acute coronary syndromes. However, these drugs all carry an inherent risk of bleeding, which is associated with adverse cardiovascular outcomes and mortality. Thus, the potential benefits of more potent, conventional antiplatelet drugs are likely be offset by the increased risk of bleeding. Data from experiments in vivo have highlighted potentially important differences between haemostasis and thrombosis, raising the prospect of developing new antiplatelet drugs that are not associated with bleeding. Indeed, in preclinical studies, several novel antiplatelet therapies that seem to inhibit thrombosis while maintaining haemostasis have been identified. These agents include inhibitors of phosphatidylinositol 3-kinase-β (PI3Kβ), protein disulfide-isomerase, activated GPIIb/IIIa, GPIIb/IIIa outside-in signalling, protease-activated receptors, and platelet GPVI-mediated adhesion pathways. In this Review, we discuss how a therapeutic ceiling has been reached with existing antiplatelet drugs, whereby increased potency is offset by elevated bleeding risk. The latest advances in our understanding of thrombus formation have informed the development of new antiplatelet drugs that are potentially safer than currently available therapies.
Collapse
|
33
|
Hechler B, Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 2017; 105 Suppl 1:S3-12. [DOI: 10.1160/ths10-11-0730] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryArterial thrombosis occurs at sites of erosion or rupture of atherosclerotic vascular lesions. To better study the pathophysiology of this complex phenomenon, there is a need for animal models of localised thrombosis at sites of atherosclerotic lesions with closer resemblance to the human pathology as compared to commonly used thrombosis models in healthy vessels. In the present study, we describe and compare a new model of thrombosis induced by atherosclerotic plaque rupture in the carotid artery from ApoE-/- mice using a suture needle to a milder model of ultrasound-induced plaque injury. Needle injury induces atherosclerotic plaque rupture with exposure of plaque material and formation of a thrombus that is larger, nearly occlusive and more stable as compared to that formed by application of ultrasounds. These two models have common features such as the concomitant involvement of platelet activation, thrombin generation and fibrin formation, which translates into sensitivity toward both antiplatelet drugs and anticoagulants. On the other hand, they display differences with respect to the role of the platelet collagen receptor GPVI, the plaque rupture model being less sensitive to its inhibition as compared to the ultrasound-induced injury, which may be related to the amount of thrombin generated. These models represent an improvement as compared to models in healthy vessels and may help identify specific plaque triggers of thrombosis. They should therefore be useful to evaluate new antithrombotic targets.
Collapse
|
34
|
Jagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circ Res 2017; 118:1363-79. [PMID: 27126647 DOI: 10.1161/circresaha.115.306823] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event.
Collapse
Affiliation(s)
- Pudur Jagadeeswaran
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.).
| | - Brian C Cooley
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Peter L Gross
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Nigel Mackman
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| |
Collapse
|
35
|
Welsh JD, Poventud-Fuentes I, Sampietro S, Diamond SL, Stalker TJ, Brass LF. Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature. J Thromb Haemost 2017; 15:526-537. [PMID: 27992950 PMCID: PMC5334252 DOI: 10.1111/jth.13600] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Essentials Methods were developed to image the hemostatic response in mouse femoral arteries in real time. Penetrating injuries produced thrombi consisting primarily of platelets. Similar to arterioles, a core-shell architecture of platelet activation occurs in the femoral artery. Differences from arterioles included slower platelet activation and reduced thrombin dependence. SUMMARY Background Intravital studies performed in the mouse microcirculation show that hemostatic thrombi formed after penetrating injuries develop a characteristic architecture in which a core of fully activated, densely packed platelets is overlaid with a shell of less activated platelets. Objective Large differences in hemodynamics and vessel wall biology distinguish arteries from arterioles. Here we asked whether these differences affect the hemostatic response and alter the impact of anticoagulants and antiplatelet agents. Methods Approaches previously developed for intravital imaging in the mouse microcirculation were adapted to the femoral artery, enabling real-time fluorescence imaging despite the markedly thicker vessel wall. Results Arterial thrombi initiated by penetrating injuries developed the core-and-shell architecture previously observed in the microcirculation. However, although platelet accumulation was greater in arterial thrombi, the kinetics of platelet activation were slower. Inhibiting platelet ADP P2Y12 receptors destabilized the shell and reduced thrombus size without affecting the core. Inhibiting thrombin with hirudin suppressed fibrin accumulation, but had little impact on thrombus size. Removing the platelet collagen receptor, glycoprotein VI, had no effect. Conclusions These results (i) demonstrate the feasibility of performing high-speed fluorescence imaging in larger vessels and (ii) highlight differences as well as similarities in the hemostatic response in the macro- and microcirculation. Similarities include the overall core-and-shell architecture. Differences include the slower kinetics of platelet activation and a smaller contribution from thrombin, which may be due in part to the greater thickness of the arterial wall and the correspondingly greater separation of tissue factor from the vessel lumen.
Collapse
Affiliation(s)
- John D. Welsh
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | | | - Sara Sampietro
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Timothy J. Stalker
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
| | - Lawrence F. Brass
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function. Nat Commun 2016; 7:12862. [PMID: 27670677 PMCID: PMC5052641 DOI: 10.1038/ncomms12862] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. Platelets express negatively charged phosphatidylserine (PS) on their plasma membrane when propagating coagulation within a developing thrombus. Here the authors show that an adaptor protein 14-3-3 regulates mitochondrial function and PS exposure and thus platelet procoagulant activity, promising a new therapy to reduce thrombosis.
Collapse
|
37
|
Saito MS, Lourenço AL, Kang HC, Rodrigues CR, Cabral LM, Castro HC, Satlher PC. New approaches in tail-bleeding assay in mice: improving an important method for designing new anti-thrombotic agents. Int J Exp Pathol 2016; 97:285-92. [PMID: 27377432 PMCID: PMC4960579 DOI: 10.1111/iep.12182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
This report describes a modified, simple, low-cost and more sensitive method to determine bleeding patterns and haemoglobin concentration in a tail-bleeding assay using BALB/c mice and tail tip amputation. The cut tail was immersed in Drabkin's reagent to promote erythrocyte lysis and haemoglobin release, which was monitored over 30 min. The operator was blinded to individual conditions of the mice, which were treated with either saline (NaCl 0.15m), DMSO (0.5%) or clinical anti-thrombotic drugs. Our experimental protocols showed good reproducibility and repeatability of results when using Drabkin's reagent than water. Thus, the use of Drabkin's reagent offered a simple and low-cost method to observe and quantify the bleeding and rebleeding episodes. We also observed the bleeding pattern and total haemoglobin loss using untreated animals or those under anti-coagulant therapy in order to validate the new Drabkin method and thus confirm that it is a useful protocol to quantify haemoglobin concentrations in tail-bleeding assay. This modified method provided a more accurate results for bleeding patterns in mice and for identifying new anti-thrombotic drugs.
Collapse
Affiliation(s)
- Max Seidy Saito
- Laboratório de Antibióticos Bioquímica Ensino e Modelagem Molecular (LABiEMol) - Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia (PPG-UFF) - Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - André Luiz Lourenço
- Laboratório de Antibióticos Bioquímica Ensino e Modelagem Molecular (LABiEMol) - Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia (PPG-UFF) - Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hye Chung Kang
- Programa de Pós-Graduação em Patologia (PPG-UFF) - Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Carla Castro
- Laboratório de Antibióticos Bioquímica Ensino e Modelagem Molecular (LABiEMol) - Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Plínio Cunha Satlher
- Laboratório de Antibióticos Bioquímica Ensino e Modelagem Molecular (LABiEMol) - Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Tang C, Wang Y, Lei D, Huang L, Wang G, Chi Q, Zheng Y, Gachet C, Mangin PH, Zhu L. Standardization of a well-controlled in vivo mouse model of thrombus formation induced by mechanical injury. Thromb Res 2016; 141:49-57. [PMID: 26967532 DOI: 10.1016/j.thromres.2016.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Vascular plug formation by mechanical injury that exposes abundant extracellular matrix is an ideal model to mimic thrombus formation. The objective of this study was to standardize our previously established in vivo mouse model of thrombus formation induced by mechanical injury. RESULTS The mechanical injury was exerted by pinching the abdominal aorta with hemostatic forceps for either 15 (moderate injury) or 60 (severe injury) seconds. Thrombus formation was monitored for 20min in real time using a fluorescent microscope coupled to a CCD camera. In the moderate injury, thrombus formation peaked at approximately 1min after injury and resolved within 3min, with the mean AUC (area under the curve) of 165.2±17.29mm(2), whereas a larger thrombus was observed upon the severe injury, with the mean AUC of 600.5±37.77mm(2). Using scanning electron microscopy and HE staining, a complete deformation of the endothelium in the moderate injury model and the exposure of the media in the severe injury model were observed. The model was also evaluate for its application on the effects of antithrombotic drugs targeting GP IIb-IIIa (eptifibatide), ADP receptor P2Y1 (MRS2500) and P2Y12 (clopidogrel), and thrombin (hirudin) on thrombus formation. CONCLUSIONS We have improved a vascular injury model with optimal reproducibility and feasibility that allows evaluating the effect of anti-thrombotic drugs on thrombus formation in vivo.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Hematology Center, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.
| | - Yinyan Wang
- Cyrus Tang Hematology Center, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Lu Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Qingjia Chi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Yiming Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Christian Gachet
- Unité Mixte de Recherche (UMR) S949, Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération de médecine translationelle (FMTS) de Strasbourg, Université de Strasbourg, Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
| | - Pierre H Mangin
- Unité Mixte de Recherche (UMR) S949, Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération de médecine translationelle (FMTS) de Strasbourg, Université de Strasbourg, Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
| | - Li Zhu
- Cyrus Tang Hematology Center, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Role of platelets, neutrophils, and factor XII in spontaneous venous thrombosis in mice. Blood 2016; 127:2630-7. [PMID: 26932804 DOI: 10.1182/blood-2015-10-672766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Recently, platelets, neutrophils, and factor XII (FXII) have been implicated as important players in the pathophysiology of venous thrombosis. Their role became evident in mouse models in which surgical handling was used to provoke thrombosis. Inhibiting anticoagulation in mice by using small interfering RNA (siRNA) targeting Serpinc1 and Proc also results in a thrombotic phenotype, which is spontaneous (no additional triggers) and reproducibly results in clots in the large veins of the head and fibrin deposition in the liver. This thrombotic phenotype is fatal but can be fully rescued by thrombin inhibition. The mouse model was used in this study to investigate the role of platelets, neutrophils, and FXII. After administration of siRNAs targeting Serpinc1 and Proc, antibody-mediated depletion of platelets fully abrogated the clinical features as well as microscopic aspects in the head. This was corroborated by strongly reduced fibrin deposition in the liver. Whereas neutrophils were abundant in siRNA-triggered thrombotic lesions, antibody-mediated depletion of circulating Ly6G-positive neutrophils did not affect onset, severity, or thrombus morphology. In addition, absence of circulating neutrophils did not affect quantitative liver fibrin deposition. Remarkably, siRNA-mediated depletion of plasma FXII accelerated the onset of the clinical phenotype; mice were affected with more severe thrombotic lesions. To summarize, in this study, onset and severity of the thrombotic phenotype are dependent on the presence of platelets but not circulating neutrophils. Unexpectedly, FXII has a protective effect. This study challenges the proposed roles of neutrophils and FXII in venous thrombosis pathophysiology.
Collapse
|
40
|
Schaff M, Gachet C, Mangin PH. [Anti-platelets without a bleeding risk: novel targets and strategies]. Biol Aujourdhui 2016; 209:211-28. [PMID: 26820829 DOI: 10.1051/jbio/2015023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/29/2023]
Abstract
Anti-platelet agents such as aspirin, clopidogrel and antagonists of integrin αIIbβ3 allowed to efficiently reduce morbidity and mortality associated with arterial thrombosis. A major limit of these drugs is that they increase the risk of bleeding. During the last few years, several innovative anti-thrombotic strategies with a potentially low bleeding risk were proposed. These approaches target the collagen receptor glycoprotein (GP) VI, the GPIb/von Willebrand factor axis, the thrombin receptor PAR-1, the activated form of integrin αIIbβ3 or the ADP receptor P2Y1. While an antagonist of PAR-1 was recently marketed, the clinical proofs of the efficiency and safety of the other agents remain to be established. This review evaluates these new anti-platelet approaches toward safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Mathieu Schaff
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australie
| | - Christian Gachet
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR_S949, INSERM, Etablissement Français du Sang (EFS)-Alsace, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Abstract
In this issue of Blood, Liang and colleagues demonstrate that cartilage oligomeric matrix protein (COMP) acts as a major endogenous plasma- and platelet-derived inhibitor of thrombin activity in vitro and in vivo.
Collapse
|
42
|
Ivanciu L, Stalker TJ. Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 2015; 13:1949-59. [PMID: 26386264 PMCID: PMC5847271 DOI: 10.1111/jth.13145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
Abstract
The hemostatic response requires the tightly regulated interaction of the coagulation system, platelets, other blood cells and components of the vessel wall at a site of vascular injury. The dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is overly robust. Extensive studies over the past decade have sought to unravel the regulatory mechanisms that coordinate the multiple biochemical and cellular responses in time and space to ensure that an optimal response to vascular damage is achieved. These studies have relied in part on advances in in vivo imaging techniques in animal models, allowing for the direct visualization of various molecular and cellular events in real time during the hemostatic response. This review summarizes knowledge gained with these in vivo imaging and other approaches that provides new insights into the spatiotemporal regulation of coagulation and platelet activation at a site of vascular injury.
Collapse
Affiliation(s)
- L Ivanciu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Abstract
Rho GTPases are critical for platelet function. Although the roles of RhoA, Rac and Cdc42 are characterized, platelets express other Rho GTPases, whose activities are less well understood. This review summarizes our understanding of the roles of platelet Rho GTPases and focuses particularly on the functions of Rif and RhoG. In human platelets, Rif interacts with cytoskeleton regulators including formins mDia1 and mDia3, whereas RhoG binds SNARE-complex proteins and cytoskeletal regulators ELMO and DOCK1. Knockout mouse studies suggest that Rif plays no critical functions in platelets, likely due to functional overlap with other Rho GTPases. In contrast, RhoG is essential for normal granule secretion downstream of the collagen receptor GPVI. The central defect in RhoG-/- platelets is reduced dense granule secretion, which impedes integrin activation and aggregation and limits platelet recruitment to growing thrombi under shear, translating into reduced thrombus formation in vivo. Potential avenues for future work on Rho GTPases in platelets are also highlighted, including identification of the key regulator for platelet filopodia formation and investigation of the role of the many Rho GTPase regulators in platelet function in both health and disease.
Collapse
|
44
|
Swieringa F, Kuijpers MJE, Lamers MME, van der Meijden PEJ, Heemskerk JWM. Rate-limiting roles of the tenase complex of factors VIII and IX in platelet procoagulant activity and formation of platelet-fibrin thrombi under flow. Haematologica 2015; 100:748-56. [PMID: 25769543 DOI: 10.3324/haematol.2014.116863] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/10/2015] [Indexed: 11/09/2022] Open
Abstract
The importance of factor Xa generation in thrombus formation has not been studied extensively so far. Here, we used mice deficient in either factor VIII or factor IX to determine the role of platelet-stimulated tenase activity in the formation of platelet-fibrin thrombi on collagen. With tissue factor present, deficiency in factor VIII or IX markedly suppressed thrombus growth, fibrin formation and platelet procoagulant activity (phosphatidylserine exposure). In either case, residual fibrin formation was eliminated in the absence of tissue factor. Effects of factor deficiencies were antagonized by supplementation of the missing coagulation factor. In wild-type thrombi generated under flow, phosphatidylserine-exposing platelets bound (activated) factor IX and factor X, whereas factor VIII preferentially co-localized at sites of von Willebrand factor binding. Furthermore, proteolytic activity of the generated activated factor X and thrombin was confined to the sites of phosphatidylserine exposure. With blood from a hemophilia A or B patient, the formation of platelet-fibrin thrombi was greatly delayed and reduced, even in the presence of high concentrations of tissue factor. A direct activated factor X inhibitor, rivaroxaban, added to human blood, suppressed both thrombin and fibrin formation. Together, these data point to a potent enforcement loop in thrombus formation due to factor X activation, subsequent thrombin and fibrin generation, causing activated factor X-mediated stimulation of platelet phosphatidylserine exposure. This implies that the factor VIII/factor IX-dependent stimulation of platelet procoagulant activity is a limiting factor for fibrin formation under flow conditions, even at high tissue factor concentrations.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Moniek M E Lamers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| |
Collapse
|
45
|
CEA a thrombus CAM: CEACAM2, a twin of CEACAM1? Blood 2015; 124:2323-4. [PMID: 25301335 DOI: 10.1182/blood-2014-08-594101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Alshahrani et al demonstrate that carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) is expressed on platelets and negatively regulates the collagen receptor glycoprotein (GP)VI-FcRγ chain and C-type lectin-like receptor 2 (CLEC-2)-mediated platelet activation.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Several decades of work by many investigators have elucidated the major signaling pathways responsible for platelet activation. Still to be fully understood is how these pathways are integrated into a single network and how changing conditions within a growing thrombus affect that network. In this review we will consider some of the recent studies that address these issues and describe a model that provides insights into platelet activation as it occurs in vivo. RECENT FINDINGS Genetic and pharmacologic studies performed in vivo have demonstrated that platelet activation during hemostasis and thrombosis is heterogeneous. Those studies indicate that distinct platelet activation pathways are not merely redundant, but are coordinated in time and space to achieve an optimal response. This coordination is achieved at least in part by the evolving distribution of platelet agonists and changes in solute transport within a hemostatic plug. SUMMARY Studies examining the coordination of platelet signaling in time and space continue to increase our understanding of hemostasis and thrombosis. In addition to helping to decipher platelet biology, the results have implications for the understanding of new and existing antiplatelet agents and their potential risks.
Collapse
|
47
|
Marjoram RJ, Li Z, He L, Tollefsen DM, Kunicki TJ, Dickeson SK, Santoro SA, Zutter MM. α2β1 integrin, GPVI receptor, and common FcRγ chain on mouse platelets mediate distinct responses to collagen in models of thrombosis. PLoS One 2014; 9:e114035. [PMID: 25415203 PMCID: PMC4240667 DOI: 10.1371/journal.pone.0114035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
Objective Platelets express the α2β1 integrin and the glycoprotein VI (GPVI)/FcRγ complex, both collagen receptors. Understanding platelet-collagen receptor function has been enhanced through use of genetically modified mouse models. Previous studies of GPVI/FcRγ-mediated collagen-induced platelet activation were perfomed with mice in which the FcRγ subunit was genetically deleted (FcRγ−/−) or the complex was depleted. The development of α2β1−/− and GPVI−/− mice permits side-by-side comparison to address contributions of these collagen receptors in vivo and in vitro. Approach and Results To understand the different roles played by the α2β1 integrin, the GPVI receptor or FcRγ subunit in collagen-stimulated hemostasis and thrombosis, we compared α2β1−/−, FcRγ−/−, and GPVI−/− mice in models of endothelial injury and intravascular thrombosis in vivo and their platelets in collagen-stimulated activation in vitro. We demonstrate that both the α2β1 integrin and the GPVI receptor, but not the FcRγ subunit influence carotid artery occlusion in vivo. In contrast, the GPVI receptor and the FcRγ chain, but not the α2β1 integrin, play similar roles in intravascular thrombosis in response to soluble Type I collagen. FcRγ−/− platelets showed less attenuation of tyrosine phosphorylation of several proteins including RhoGDI when compared to GPVI−/− and wild type platelets. The difference between FcRγ−/− and GPVI−/− platelet phosphotyrosine levels correlated with the in vivo thrombosis findings. Conclusion Our data demonstrate that genetic deletion of GPVI receptor, FcRγ chain, or the α2β1 integrin changes the thrombotic potentials of these platelets to collagen dependent on the stimulus mechanism. The data suggest that the FcRγ chain may provide a dominant negative effect through modulating signaling pathways in platelets involving several tyrosine phosphorylated proteins such as RhoGDI. In addition, these findings suggest a more complex signaling network downstream of the platelet collagen receptors than previously appreciated.
Collapse
Affiliation(s)
- Robin J. Marjoram
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Zhengzhi Li
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Li He
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Douglas M. Tollefsen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Thomas J. Kunicki
- Children's Hospital of Orange County, Orange, CA, United States of America
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Samuel A. Santoro
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mary M. Zutter
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
48
|
Bynagari-Settipalli YS, Cornelissen I, Palmer D, Duong D, Concengco C, Ware J, Coughlin SR. Redundancy and interaction of thrombin- and collagen-mediated platelet activation in tail bleeding and carotid thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:2563-9. [PMID: 25278288 DOI: 10.1161/atvbaha.114.304244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Current antiplatelet strategies to prevent myocardial infarction and stroke are limited by bleeding risk. A better understanding of the roles of distinct platelet-activating pathways is needed. We determined whether platelet activation by 2 key primary activators, thrombin and collagen, plays distinct, redundant, or interacting roles in tail bleeding and carotid thrombosis in mice. APPROACH AND RESULTS Platelets from mice deficient for the thrombin receptor protease-activated receptor-4 (Par4) and the collagen receptor glycoprotein VI protein (GPVI) lack responses to thrombin and collagen, respectively. We examined tail bleeding and FeCl3-induced carotid artery occlusion in mice lacking Par4, GPVI, or both. We also examined a series of Par mutants with increasing impairment of thrombin signaling in platelets. Ablation of thrombin signaling alone by Par4 deficiency increased blood loss in the tail bleeding assay and impaired occlusive thrombus formation in the carotid occlusion assay. GPVI deficiency alone had no effect. Superimposing GPVI deficiency on Par4 deficiency markedly increased effect size in both assays. In contrast to complete ablation of thrombin signaling, 9- and 19-fold increases in EC50 for thrombin-induced platelet activation had only modest effects. CONCLUSIONS The observation that loss of Par4 uncovered large effects of GPVI deficiency implies that Par4 and GPVI made independent, partially redundant contributions to occlusive thrombus formation in the carotid and to hemostatic clot formation in the tail under the experimental conditions examined. At face value, these results suggest that thrombin- and collagen-induced platelet activation can play partially redundant roles, despite important differences in how these agonists are made available to platelets.
Collapse
Affiliation(s)
- Yamini S Bynagari-Settipalli
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Ivo Cornelissen
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Daniel Palmer
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Daniel Duong
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Cherry Concengco
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Jerry Ware
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.)
| | - Shaun R Coughlin
- From the Cardiovascular Research Institute, University of California, San Francisco (Y.S.B.-S., I.C., D.P., D.D., C.C., S.R.C.); and Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock (J.W.).
| |
Collapse
|
49
|
Analysis of the role of von Willebrand factor, platelet glycoprotein VI-, and α2β1-mediated collagen binding in thrombus formation. Blood 2014; 124:1799-807. [PMID: 25051961 DOI: 10.1182/blood-2013-09-521484] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rare missense mutations in the von Willebrand factor (VWF) A3 domain that disrupt collagen binding have been found in patients with a mild bleeding phenotype. However, the analysis of these aberrant VWF-collagen interactions has been limited. Here, we have developed mouse models of collagen-binding mutants and analyzed the function of the A3 domain using comprehensive in vitro and in vivo approaches. Five loss-of-function (p.S1731T, p.W1745C, p.S1783A, p.H1786D, A3 deletion) and 1 gain-of-function (p.L1757A) variants were generated in the mouse VWF complementary DNA. The results of these various assays were consistent, although the magnitude of the effects were different: the gain-of-function (p.L1757A) variant showed consistent enhanced collagen binding whereas the loss-of-function mutants showed variable degrees of functional deficit. We further analyzed the impact of direct platelet-collagen binding by blocking glycoprotein VI (GPVI) and integrin α2β1 in our ferric chloride murine thrombosis model. The inhibition of GPVI demonstrated a comparable functional defect in thrombosis formation to the VWF(-/-) mice whereas α2β1 inhibition demonstrated a milder bleeding phenotype. Furthermore, a delayed and markedly reduced thrombogenic response was still evident in VWF(-/-), GPVI, and α2β1 blocked animals, suggesting that alternative primary hemostatic mechanisms can partially rescue the bleeding phenotype associated with these defects.
Collapse
|
50
|
Stegner D, Haining EJ, Nieswandt B. Targeting glycoprotein VI and the immunoreceptor tyrosine-based activation motif signaling pathway. Arterioscler Thromb Vasc Biol 2014; 34:1615-20. [PMID: 24925975 DOI: 10.1161/atvbaha.114.303408] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronary artery thrombosis and ischemic stroke are often initiated by the disruption of an atherosclerotic plaque and consequent intravascular platelet activation. Thus, antiplatelet drugs are central in the treatment and prevention of the initial, and subsequent, vascular events. However, novel pharmacological targets for platelet inhibition remain an important goal of cardiovascular research because of the negative effect of existing antiplatelet drugs on primary hemostasis. One promising target is the platelet collagen receptor glycoprotein VI. Blockade or antibody-mediated depletion of this receptor in circulating platelets is beneficial in experimental models of thrombosis and thrombo-inflammatory diseases, such as stroke, without impairing hemostasis. In this review, we summarize the importance of glycoprotein VI and (hem)immunoreceptor tyrosine-based activation motif signaling in hemostasis, thrombosis, and thrombo-inflammatory processes and discuss the targeting strategies currently under development for inhibiting glycoprotein VI and its signaling.
Collapse
Affiliation(s)
- David Stegner
- From the Department of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Elizabeth J Haining
- From the Department of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- From the Department of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|