1
|
Pham DDM, Guhan S, Tsao H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med J 2020; 61:562-571. [PMID: 32608199 PMCID: PMC7329741 DOI: 10.3349/ymj.2020.61.7.562] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Melanoma, originating from epidermal melanocytes, is a heterogeneous disease that has the highest mortality rate among all types of skin cancers. Numerous studies have revealed the cause of this cancer as related to various somatic driver mutations, including alterations in KIT-a proto-oncogene encoding for a transmembrane receptor tyrosine kinase. Although accounting for only 3% of all melanomas, mutations in c-KIT are mostly derived from acral, mucosal, and chronically sun-damaged melanomas. As an important factor for cell differentiation, proliferation, and survival, inhibition of c-KIT has been exploited for clinical trials in advanced melanoma. Here, apart from the molecular background of c-KIT and its cellular functions, we will review the wide distribution of alterations in KIT with a catalogue of more than 40 mutations reported in various articles and case studies. Additionally, we will summarize the association of KIT mutations with clinicopathologic features (age, sex, melanoma subtypes, anatomic location, etc.), and the differences of mutation rate among subgroups. Finally, several therapeutic trials of c-KIT inhibitors, including imatinib, dasatinib, nilotinib, and sunitinib, will be analyzed for their success rates and limitations in advanced melanoma treatment. These not only emphasize c-KIT as an attractive target for personalized melanoma therapy but also propose the requirement for additional investigational studies to develop novel therapeutic trials co-targeting c-KIT and other cytokines such as members of signaling pathways and immune systems.
Collapse
Affiliation(s)
- Duc Daniel M Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hensin Tsao
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sethumadhavan A, Mani M. Kit activates interleukin-4 receptor and effector signal transducer and activator of transcription 6 independent of its cognate ligand in mouse mast cells. Immunology 2020; 159:441-449. [PMID: 31957000 DOI: 10.1111/imm.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Signaling by Kit has been extensively studied in hematopoietic cells and is essential for the survival, proliferation and maintenance of hematopoietic stem and progenitor cells. In addition to the activation of intrinsic signaling pathways, Kit has been shown to interact with lineage-restricted type I cytokine receptors and produce cross signals, e.g. erythropoietin receptor, interleukin-7 receptor (IL-7R), IL-3R. Based on the earlier studies, we hypothesize that Kit activate other type I cytokine receptors in a cell-specific manner and execute cell-specific function. To investigate other Kit-activated receptors, we tested Kit and IL-4R cross-receptor activation in murine bone-marrow-derived mast cells, which express both Kit and IL-4R at the surface level. Kit upon activation by Kit ligand (KL), activated IL-4Rα, γC , and signal transducer and activator of transcription 6 independent of its cognate ligand IL-4. Though KL and IL-4 are individually mitogenic, combinations of KL and IL-4 synergistically promoted mast cell proliferation. Furthermore, inhibition of lipid raft formation by methyl-β-cyclodextrin resulted in loss of synergistic proliferation. Together the data suggest IL-4R as a novel Kit-activated receptor. Such cross-receptor activations are likely to be a universal mechanism of Kit signaling in hematopoiesis.
Collapse
Affiliation(s)
- Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Hosokawa H, Rothenberg EV. Cytokines, Transcription Factors, and the Initiation of T-Cell Development. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028621. [PMID: 28716889 DOI: 10.1101/cshperspect.a028621] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multipotent blood progenitor cells migrate into the thymus and initiate the T-cell differentiation program. T-cell progenitor cells gradually acquire T-cell characteristics while shedding their multipotentiality for alternative fates. This process is supported by extracellular signaling molecules, including Notch ligands and cytokines, provided by the thymic microenvironment. T-cell development is associated with dynamic change of gene regulatory networks of transcription factors, which interact with these environmental signals. Together with Notch or pre-T-cell-receptor (TCR) signaling, cytokines always control proliferation, survival, and differentiation of early T cells, but little is known regarding their cross talk with transcription factors. However, recent results suggest ways that cytokines expressed in distinct intrathymic niches can specifically modulate key transcription factors. This review discusses how stage-specific roles of cytokines and transcription factors can jointly guide development of early T cells.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
4
|
Moraga I, Spangler JB, Mendoza JL, Gakovic M, Wehrman TS, Krutzik P, Garcia KC. Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. eLife 2017; 6:e22882. [PMID: 28498099 PMCID: PMC5429090 DOI: 10.7554/elife.22882] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Cytokine and growth-factor ligands typically signal through homo- or hetero-dimeric cell surface receptors via Janus Kinase (JAK/TYK), or Receptor Tyrosine Kinase (RTK)-mediated trans-phosphorylation. However, the number of receptor dimer pairings occurring in nature is limited to those driven by natural ligands encoded within our genome. We have engineered synthethic cytokines (synthekines) that drive formation of cytokine receptor dimer pairings that are not formed by endogenous cytokines and that are not found in nature, and which activate distinct signaling programs. We show that a wide range of non-natural cytokine receptor hetero-dimers are competent to elicit a signaling output. We engineered synthekine ligands that assembled IL-2Rβ/IL-4Rα or IL-4Rα/IFNAR2 receptor heterodimers, that do not occur naturally, triggering signaling and functional responses distinct from those activated by the endogenous cytokines IL-2, IL-4, and IFN. Furthermore, hybrid synthekine ligands that dimerized a JAK/STAT cytokine receptor with a receptor tyrosine kinase (RTK) also elicited a signaling response. Synthekines represent a new family of synthetic ligands with pre-defined receptors, but 'orphan' functions, that enable the full combinatorial scope of dimeric signaling receptors encoded within the human genome to be exploited for basic research and drug discovery.
Collapse
Affiliation(s)
- Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Jamie B Spangler
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Juan L Mendoza
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Milica Gakovic
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | | | | | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
5
|
Immunophenotyping with CD135 and CD117 predicts the FLT3, IL-7R and TLX3 gene mutations in childhood T-cell acute leukemia. Blood Cells Mol Dis 2016; 57:74-80. [DOI: 10.1016/j.bcmd.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
6
|
Abstract
PURPOSE OF REVIEW KIT tyrosine kinase receptor is essential for several tissue stem cells, especially for hematopoietic stem cells (HSCs). Moderately decreased KIT signaling is well known to cause anemia and defective HSC self-renewal, whereas gain-of-function mutations are infrequently found in leukemias. Thus, maintaining KIT signal strength is critically important for homeostasis. KIT signaling in HSCs involves effectors such as SHP2 and PTPN11. This review summarizes the recent developments on the novel mechanisms regulating or reinforcing KIT signal strength in HSCs and its perturbation in polycythemia vera. RECENT FINDINGS Stem cell leukemia (SCL) is a transcription factor that is essential for HSC development. Genetic experiments indicate that Kit, protein tyrosine phosphatase, nonreceptor type 11 (Ptpn11), or Scl control long-term HSC self-renewal, survival, and quiescence in adults. Kit is now shown to be centrally involved in two feedforward loops in HSCs, one with Ptpn11 and the other with Scl. SUMMARY Knowledge of the regulatory mechanisms that favor self-renewal divisions or a lineage determination process is central to the design of strategies to expand HSCs for the purpose of cell therapy. In addition, transcriptome and phosphoproteome analyses of erythroblasts in polycythemia vera identified lower SCL expression and hypophosphorylated KIT, suggesting that the KIT-SCL loop is relevant to the pathophysiology of human blood disorders as well.
Collapse
|
7
|
Feng ZC, Riopel M, Popell A, Wang R. A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia 2015; 58:654-65. [PMID: 25643653 DOI: 10.1007/s00125-015-3504-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
The interactions between c-Kit and its ligand, stem cell factor (SCF), play an important role in haematopoiesis, pigmentation and gametogenesis. c-Kit is also found in the pancreas, and recent studies have revealed that c-Kit marks a subpopulation of highly proliferative pancreatic endocrine cells that may harbour islet precursors. c-Kit governs and maintains pancreatic endocrine cell maturation and function via multiple signalling pathways. In this review we address the importance of c-Kit signalling within the pancreas, including its profound role in islet morphogenesis, islet vascularisation, and beta cell survival and function. We also discuss the impact of c-Kit signalling in pancreatic disease and the use of c-Kit as a potential target for the development of cell-based and novel drug therapies in the treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children's Health Research Institute, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | |
Collapse
|
8
|
Gandhapudi SK, Tan C, Marino JH, Taylor AA, Pack CC, Gaikwad J, Van De Wiele CJ, Wren JD, Teague TK. IL-18 acts in synergy with IL-7 to promote ex vivo expansion of T lymphoid progenitor cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3820-8. [PMID: 25780034 DOI: 10.4049/jimmunol.1301542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/13/2015] [Indexed: 11/19/2022]
Abstract
Although IL-18 has not previously been shown to promote T lymphopoiesis, results obtained via a novel data mining algorithm (global microarray meta-analysis) led us to explore a predicted role for this cytokine in T cell development. IL-18 is a member of the IL-1 cytokine family that has been extensively characterized as a mediator of inflammatory immune responses. To assess a potential role for IL-18 in T cell development, we sort-purified mouse bone marrow-derived common lymphoid progenitor cells, early thymic progenitors (ETPs), and double-negative 2 thymocytes and cultured these populations on OP9-Delta-like 4 stromal layers in the presence or absence of IL-18 and/or IL-7. After 1 wk of culture, IL-18 promoted proliferation and accelerated differentiation of ETPs to the double-negative 3 stage, similar in efficiency to IL-7. IL-18 showed synergy with IL-7 and enhanced proliferation of both the thymus-derived progenitor cells and the bone marrow-derived common lymphoid progenitor cells. The synergistic effect on the ETP population was further characterized and found to correlate with increased surface expression of c-Kit and IL-7 receptors on the IL-18-treated cells. In summary, we successfully validated the global microarray meta-analysis prediction that IL-18 affects T lymphopoiesis and demonstrated that IL-18 can positively impact bone marrow lymphopoiesis and T cell development, presumably via interaction with the c-Kit and IL-7 signaling axis.
Collapse
Affiliation(s)
- Siva K Gandhapudi
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104
| | - Chibing Tan
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104
| | - Julie H Marino
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104
| | - Ashlee A Taylor
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104
| | - Christopher C Pack
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104
| | - Joel Gaikwad
- Department of Biological Sciences, Oral Roberts University, Tulsa, OK 74171
| | - C Justin Van De Wiele
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135
| | - Jonathan D Wren
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104;
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74104; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74104; and Department of Biochemistry and Microbiology, Oklahoma State University Center for the Health Sciences, Tulsa, OK 74107
| |
Collapse
|
9
|
Shamloo A, Manchandia M, Ferreira M, Mani M, Nguyen C, Jahn T, Weinberg K, Heilshorn S. Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers. Integr Biol (Camb) 2014; 5:1076-85. [PMID: 23835699 DOI: 10.1039/c3ib40025e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Besides its cooperating effects on stem cell proliferation and survival, Kit ligand (KL) is a potent chemotactic protein. While transwell assays permit studies of the frequency of migrating cells, the lack of direct visualization precludes dynamic chemotaxis studies. In response, we utilize microfluidic chambers that enable direct observation of murine bone marrow-derived mast cells (BMMC) within stable KL gradients. Using this system, individual Kit+ BMMC were quantitatively analyzed for migration speed and directionality during KL-induced chemotaxis. Our results indicated a minimum activating threshold of ~3 ng ml(-1) for chemoattraction. Analysis of cells at KL concentrations below 3 ng ml(-1) revealed a paradoxical chemorepulsion, which has not been described previously. Unlike chemoattraction, which occurred continuously after an initial time lag, chemorepulsion occurred only during the first 90 minutes of observation. Both chemoattraction and chemorepulsion required the action of G-protein coupled receptors (GPCR), as treatment with pertussis toxin abrogated directed migration. These results differ from previous studies of GPCR-mediated chemotaxis, where chemorepulsion occurred at high ligand concentrations. These data indicate that Kit-mediated chemotaxis is more complex than previously understood, with the involvement of GPCRs in addition to the Kit receptor tyrosine kinase and the presence of both chemoattractive and chemorepellent phases.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4045, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lombaert IMA, Abrams SR, Li L, Eswarakumar VP, Sethi AJ, Witt RL, Hoffman MP. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Reports 2013; 1:604-19. [PMID: 24371813 PMCID: PMC3871401 DOI: 10.1016/j.stemcr.2013.10.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/14/2022] Open
Abstract
Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via separate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotrophic factors that support gland innervation, which maintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+ cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our findings provide a framework to direct regeneration of branched epithelial organs. Combined KIT and FGFR2b signaling amplifies FGFR2b-dependent transcription KIT/FGFR2b signaling during organogenesis expands distal KIT+ epithelial progenitors Distal progenitors communicate with proximal progenitors via the neuronal niche KIT+ progenitors maintain epithelial-neuronal communication during adult homeostasis
Collapse
Affiliation(s)
- Isabelle M A Lombaert
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaun R Abrams
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Li
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Veraragavan P Eswarakumar
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aditya J Sethi
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Witt
- Head & Neck Multidisciplinary Clinic, Helen F. Graham Cancer Center of Christiana Care, Newark, DE 19713, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
|
12
|
Huang Z, Ruan HB, Zhang ZD, Chen W, Lin Z, Zeng H, Gao X. Mutation in the first Ig-like domain of Kit leads to JAK2 activation and myeloproliferation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:122-32. [PMID: 24211109 DOI: 10.1016/j.ajpath.2013.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Myeloproliferative neoplasms constitute a group of hematopoietic neoplasms at the myeloid stem cell level. Although mutations in the receptor tyrosine kinase KIT have been identified in patients with myeloproliferative neoplasm, the functional causality is unknown because of a lack of animal models. Here, we describe a mouse strain harboring a point mutation in the first Ig-like domain of Kit. Intriguingly, the mutant mice develop a myeloproliferative disorder with typical loss-of-function phenotypes in other tissues. The mutant Kit is incompletely N-glycosylated, shows compromised receptor dimerization, and down-regulates Akt and extracellular signal-regulating kinase 1/2 signaling. However, the mutation increases the association of Kit to Janus kinase (JAK)2 and hence the activation of JAK2. The β common receptor of the gp140 family interacts and synergizes with Kit to promote JAK2 phosphorylation, which is further enhanced by the Kit mutation. Inhibition of JAK2 suppresses the proliferation of hematopoietic progenitors in vitro and partially rescues myeloproliferation in mice. Our data suggest that overactivation of JAK2 leads to myeloproliferation in Kit mutant mice and provide mechanistic insights for the diagnosis and treatment of myeloproliferative neoplasms in humans.
Collapse
Affiliation(s)
- Zan Huang
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hai-Bin Ruan
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zeng-Di Zhang
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiqian Chen
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China; Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoyu Lin
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hu Zeng
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiang Gao
- MOE Key Lab of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Combined Effects of Interleukin-7 and Stem Cell Factor Administration on Lymphopoiesis after Murine Bone Marrow Transplantation. Biol Blood Marrow Transplant 2011; 17:48-60. [DOI: 10.1016/j.bbmt.2010.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022]
|
15
|
The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood 2010; 115:3899-906. [PMID: 20200353 DOI: 10.1182/blood-2009-10-247411] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Members of the Toll/interleukin-1 receptor (TIR) family are of importance for host defense and inflammation. Here we report that the TIR-family member interleukin-33R (IL-33R) cross-activates the receptor tyrosine kinase c-Kit in human and murine mast cells. The IL-33R-induced activation of signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase B (PKB), and Jun NH(2)-terminal kinase 1 (JNK1) depends on c-Kit and is required to elicit optimal effector functions. Costimulation with the c-Kit ligand stem cell factor (SCF) is necessary for IL-33-induced cytokine production in primary mast cells. The structural basis for this cross-activation is the complex formation between c-Kit, IL-33R, and IL-1R accessory protein (IL-1RAcP). We found that c-Kit and IL-1RAcP interact constitutively and that IL-33R joins this complex upon ligand binding. Our findings support a model in which signals from seemingly disparate receptors are integrated for full cellular responses.
Collapse
|
16
|
FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells. Blood 2009; 113:3453-60. [PMID: 19188666 DOI: 10.1182/blood-2008-08-174060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Originally cloned from hematopoietic stem cell (HSC) populations and its ligand being extensively used to promote ex vivo HSC expansion, the FMS-like tyrosine kinase 3 (FLT3; also called FLK2) receptor and its ligand (FL) were expected to emerge as an important physiologic regulator of HSC maintenance and expansion. However, the role of FLT3 receptor and ligand in HSC regulation remains unclear and disputed. Herein, using Fl-deficient mice, we establish for the first time that HSC expansion in fetal liver and after transplantation is FL independent. Because previous findings in Flk2(-/-) mice were compatible with an important role of FLT3 receptor in HSC regulation and because alternative ligands might potentially interact directly or indirectly with FLT3 receptor, we here also characterized HSCs in Flk2(-/-) mice. Advanced phenotypic as well as functional evaluation of Flk2(-/-) HSCs showed that the FLT3 receptor is dispensable for HSC steady-state maintenance and expansion after transplantation. Taken together, these studies show that the FLT3 receptor and ligand are not critical regulators of mouse HSCs, neither in steady state nor during fetal or posttransplantation expansion.
Collapse
|
17
|
KIT associated intracellular tyrosines play an essential role in EpoR co-signaling. Cell Signal 2008; 20:1513-20. [PMID: 18538998 DOI: 10.1016/j.cellsig.2008.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/20/2008] [Accepted: 04/07/2008] [Indexed: 02/04/2023]
Abstract
KIT and erythropoietin receptor (EpoR) mediated co-signaling is essential for normal erythroid cell expansion, however the intracellular signals that contribute to cooperative signaling are poorly understood. Here, we examined the role of intracellular tyrosine residues in KIT and EpoR cooperation by co-expressing tyrosine (Y) to phenylalanine (F) and deletion mutants of KIT and EpoR in 32D cells. Of the four EpoR mutants examined, only EpoR-Y343 induced proliferation to near wildtype EpoR levels. A modest increase in the growth was also observed in 32D cells expressing the EpoR-Y343F; however neither EpoR-W282R nor EpoR-F8 showed any increase in growth over baseline. Biochemical analysis revealed that EpoR-Y343 induced the activation of Stat5, PI-3Kinase/Akt and MAP kinase Erk1/2 to near wildtype EpoR levels, while the remaining mutants failed to activate any of these signals. Interestingly, none of the EpoR mutants cooperated with WT KIT, although EpoR-Y343 showed a modest increase in co-signaling. Loss of seven tyrosine residues in KIT (KIT-F7) completely abrogated EpoR induced co-signaling. Restoring the Src kinase binding sites in KIT-F7 alone or together with the PI3Kinase binding site restored KIT induced signals as well as co-signals with WT EpoR, although restoring the Src kinase binding sites along with the PLC-gamma binding site repressed both KIT induced signaling as well as co-signaling with WT EpoR. Taken together, these results suggest that KIT and EpoR mediated co-signaling requires intracellular tyrosine residues and tyrosine residues that bind Src kinases in the KIT receptor appear to be sufficient for restoring both KIT signaling as well as co-signaling with EpoR. In contrast, restoration of the PLC-gamma binding site in the context of Src binding sites appears to antagonize the positive signals induced via the Src kinase binding sites in the KIT receptor.
Collapse
|
18
|
Jensen CT, Böiers C, Kharazi S, Lübking A, Rydén T, Sigvardsson M, Sitnicka E, Jacobsen SEW. Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development. Blood 2008; 111:2083-90. [PMID: 18039955 DOI: 10.1182/blood-2007-08-108563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although several cytokines have been demonstrated to be critical regulators of development of multiple blood cell lineages, it remains disputed to what degree they act through instructive or permissive mechanisms. Signaling through the FMS-like tyrosine kinase 3 (FLT3) receptor and the hematopoietin IL-7 receptor alpha (IL-7Ralpha) has been demonstrated to be of critical importance for sustained thymopoiesis. Signaling triggered by IL-7 and thymic stromal lymphopoietin (TSLP) is dependent on IL-7Ralpha, and both ligands have been implicated in T-cell development. However, we demonstrate that, whereas thymopoiesis is abolished in adult mice doubly deficient in IL-7 and FLT3 ligand (FLT3L), TSLP does not play a key role in IL-7-independent or FLT3L-independent T lymphopoiesis. Furthermore, whereas previous studies implicated that the role of other cytokine tyrosine kinase receptors in T lymphopoiesis might not involve permissive actions, we demonstrate that ectopic expression of BCL2 is sufficient not only to partially correct the T-cell phenotype of Flt3l(-/-) mice but also to rescue the virtually complete loss of all discernable stages of early T lymphopoiesis in Flt3l(-/-)Il7r(-/-) mice. These findings implicate a permissive role of cytokine receptors of the hematopoietin and tyrosine kinase families in early T lymphopoiesis.
Collapse
Affiliation(s)
- Christina T Jensen
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|