1
|
Villain E, Chanson A, Mainka M, Kampschulte N, Le Faouder P, Bertrand-Michel J, Brandolini-Bulon M, Charbit B, Musvosvi M, Bilek N, Scriba TJ, Quintana-Murci L, Schebb NH, Duffy D, Gladine C. Integrated analysis of whole blood oxylipin and cytokine responses after bacterial, viral, and T cell stimulation reveals new immune networks. iScience 2023; 26:107422. [PMID: 37575177 PMCID: PMC10415927 DOI: 10.1016/j.isci.2023.107422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Oxylipins are major immunomodulating mediators, yet studies of inflammation focus mainly on cytokines. Here, using a standardized whole-blood stimulation system, we characterized the oxylipin-driven inflammatory responses to various stimuli and their relationships with cytokine responses. We performed a pilot study in 25 healthy individuals using 6 different stimuli: 2 bacterial stimuli (LPS and live BCG), 2 viral stimuli (vaccine-grade poly I:C and live H1N1 attenuated influenza), an enterotoxin superantigen and a Null control. All stimuli induced a strong production of oxylipins but most importantly, bacterial, viral, and T cell immune responses show distinct oxylipin signatures. Integration of the oxylipin and cytokine responses for each condition revealed new immune networks improving our understanding of inflammation regulation. Finally, the oxylipin responses and oxylipin-cytokine networks were compared in patients with active tuberculosis or with latent infection. This revealed different responses to BCG but not LPS stimulation highlighting new regulatory pathways for further investigations.
Collapse
Affiliation(s)
- Etienne Villain
- Institut Pasteur, Université Paris Cité, Translational Immunology Unit, Paris, France
| | - Aurélie Chanson
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Pauline Le Faouder
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Marion Brandolini-Bulon
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Université Clermont Auvergne, INRAE, UNH, Plateforme D’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bruno Charbit
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Collège de France, 75005 Paris, France
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Darragh Duffy
- Institut Pasteur, Université Paris Cité, Translational Immunology Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
2
|
Jiang S, Ma J, Ye S, Meaney C, Moore TE, Pan S, Gao C. Associations Among Disseminated Intravascular Coagulation, Thrombocytopenia Cytokines/Chemokines and Genetic Polymorphisms of Toll-Like Receptor 2/4 in Chinese Patients with Sepsis. J Inflamm Res 2022; 15:1-15. [PMID: 35018107 PMCID: PMC8742598 DOI: 10.2147/jir.s337559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives(s) Toll-like receptors (TLRs) on platelets have been extensively studied. Both TLR2 and TLR4 have been shown to augment platelet activation and alter its function from a hemostatic regulator to an immune sentinel. However, few studies have investigated the relationship between genetic polymorphisms in TLR2, TLR4 and platelets. We investigated whether genetic polymorphisms of TLR2 and TLR4 were related to thrombocytopenia and coagulation failure in Chinese patients with sepsis. Basic Methods Adult Chinese patients with sepsis in the intensive care unit of a university medical center were monitored for up to 28 days. Thrombocytopenia and disseminated intravascular coagulation (DIC), diagnosed using Japanese Association for Acute Medicine (JAAM) criteria, were observed as the primary outcomes. Single-nucleotide polymorphisms (SNPs) in TLR2 (rs111200466, rs5743708) and TLR4 (rs11536889, rs145801336, rs11536896, rs7869402) in patients with sepsis were detected by polymerase chain reaction. The data were analyzed using chi-square and rank sum tests. Results The genotype of TLR2 (rs111200466) (Del/Del) was associated with the initial DIC. The genotype of TLR4 (rs11536889) (C/C&C/G) was associated with initial DIC, DIC onset during hospitalization and platelet counts. Furthermore, both DIC and platelet counts were associated with cytokines and chemokines, especially the IL10. Conclusion Our results demonstrate that in Chinese sepsis patients, the rs111200466 SNP in TLR2 and rs11536889 SNP in TLR4 are associated with thrombocytopenia and DIC, with potential effects on the TLR4 pathways of platelets.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Shan Ye
- Department of Internal Medicine, Shanghai Songnan Community Health Service Center, Shanghai, 200092, People's Republic of China
| | - Connor Meaney
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA
| | - Timothy Evan Moore
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
3
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
4
|
Xu J, Yi J, Zhang H, Feng F, Gu S, Weng L, Zhang J, Chen Y, An N, Liu Z, An Q, Yin W, Hu X. Platelets directly regulate DNA damage and division of Staphylococcus aureus. FASEB J 2018; 32:3707-3716. [PMID: 29430991 DOI: 10.1096/fj.201701190r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelets (PLTs) are classically used in the clinical setting to maintain hemostasis. Recent evidence supports important roles for PLTs in host inflammatory and immune responses, and PLT-rich plasma has been demonstrated to inhibit the growth of bacteria in vitro and in vivo; however, few studies have examined whether PLTs can inhibit bacterial growth directly, and related mechanisms have not been elucidated further. Accordingly, in this study, we evaluated the effects of PLTs on bacterial growth. We washed and purified PLTs from peripheral blood, then confirmed that PLTs significantly inhibited the growth of Staphylococcus aureus when cocultured in vitro. Moreover, PLTs damaged DNA and blocked cell division in S. aureus. During coculture, PLT-derived TGF-β1 was dramatically down-regulated compared with that in PLT culture alone, and the addition of TGF-β1 to the coculture system promoted the inhibition of PLTs on S. aureus. Analysis of a murine S. aureus infection model demonstrated that the depletion of PLTs exacerbated the severity of infection, whereas the transfusion of PLTs alleviated this infection. Our observations demonstrate that PLTs could directly inhibit the growth of S. aureus by damaging DNA and blockage cell division, and that PLT-derived TGF-β1 may play an important role in this machinery.-Xu, J., Yi, J., Zhang, H., Feng, F., Gu, S., Weng, L., Zhang, J., Chen, Y., An, N., Liu, Z., An, Q., Yin, W., Hu, X. Platelets directly regulate DNA damage and division of Staphylococcus aureus.
Collapse
Affiliation(s)
- Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Yi
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huijie Zhang
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shunli Gu
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lihong Weng
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jing Zhang
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Qunxing An
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
|
6
|
Toll-Like Receptor 4 Signalling and Its Impact on Platelet Function, Thrombosis, and Haemostasis. Mediators Inflamm 2017; 2017:9605894. [PMID: 29170605 PMCID: PMC5664350 DOI: 10.1155/2017/9605894] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Platelets are anucleated blood cells that participate in a wide range of physiological and pathological functions. Their major role is mediating haemostasis and thrombosis. In addition to these classic functions, platelets have emerged as important players in the innate immune system. In particular, they interact with leukocytes, secrete pro- and anti-inflammatory factors, and express a wide range of inflammatory receptors including Toll-like receptors (TLRs), for example, Toll-like receptor 4 (TLR4). TLR4, which is the most extensively studied TLR in nucleated cells, recognises lipopolysaccharides (LPS) that are compounds of the outer surface of Gram-negative bacteria. Unlike other TLRs, TLR4 is able to signal through both the MyD88-dependent and MyD88-independent signalling pathways. Notably, despite both pathways culminating in the activation of transcription factors, TLR4 has a prominent functional impact on platelet activity, haemostasis, and thrombosis. In this review, we summarise the current knowledge on TLR4 signalling in platelets, critically discuss its impact on platelet function, and highlight the open questions in this area.
Collapse
|
7
|
Abstract
Publisher's Note: This article has a companion Point by Brass et al. Publisher's Note: Join in the discussion of these articles at Blood Advances Community Conversations.
Collapse
|
8
|
Abstract
Platelets are megakaryocyte-derived cellular fragments, which lack a nucleus and are the smallest circulating cells and are classically known to have a major role in supporting hemostasis. Apart from this well-established role, it is now becoming evident that platelets are also capable of conveying other important functions, such as during infection and inflammation. This paper will outline these nonhemostatic functions in two major sections termed "Platelets versus pathogens" and "Platelet-target cell communication". Platelets actively contribute to protection against invading pathogens and are capable of regulating immune functions in various target cells, all through sophisticated and efficient mechanisms. These relatively novel features will be highlighted, illustrating the multifunctional role of platelets in inflammation.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada; Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5579-87. [PMID: 26048965 DOI: 10.4049/jimmunol.1500259] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets are small cellular fragments with the primary physiological role of maintaining hemostasis. In addition to this well-described classical function, it is becoming increasingly clear that platelets have an intimate connection with infection and inflammation. This stems from several platelet characteristics, including their ability to bind infectious agents and secrete many immunomodulatory cytokines and chemokines, as well as their expression of receptors for various immune effector and regulatory functions, such as TLRs, which allow them to sense pathogen-associated molecular patterns. Furthermore, platelets contain RNA that can be nascently translated under different environmental stresses, and they are able to release membrane microparticles that can transport inflammatory cargo to inflammatory cells. Interestingly, acute infections can also result in platelet breakdown and thrombocytopenia. This report highlights these relatively new aspects of platelets and, thus, their nonhemostatic nature in an inflammatory setting.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada; and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
10
|
Mederle K, Meurer M, Castrop H, Höcherl K. Inhibition of COX-1 attenuates the formation of thromboxane A2 and ameliorates the acute decrease in glomerular filtration rate in endotoxemic mice. Am J Physiol Renal Physiol 2015; 309:F332-40. [DOI: 10.1152/ajprenal.00567.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Thromboxane (Tx) A2 has been suggested to be involved in the development of sepsis-induced acute kidney injury (AKI). Therefore, we investigated the impact of cyclooxygenase (COX)-1 and COX-2 activity on lipopolysaccharide (LPS)-induced renal TxA2 formation, and on endotoxemia-induced AKI in mice. Injection of LPS (3 mg/kg ip) decreased glomerular filtration rate (GFR) and the amount of thrombocytes to ∼50% of basal values after 4 h. Plasma and renocortical tissue levels of TxB2 were increased ∼10- and 1.7-fold in response to LPS, respectively. The COX-1 inhibitor SC-560 attenuated the LPS-induced fall in GFR and in platelet count to ∼75% of basal levels. Furthermore, SC-560 abolished the increase in plasma and renocortical tissue levels of TxB2 in response to LPS. The COX-2 inhibitor SC-236 further enhanced the LPS-induced decrease in GFR to ∼40% of basal values. SC-236 did not alter thrombocyte levels nor the LPS-induced increase in plasma and renocortical tissue levels of TxB2. Pretreatment with clopidogrel inhibited the LPS-induced drop in thrombocyte count, but did not attenuate the LPS-induced decrease in GFR and the increase in plasma TxB2 levels. This study demonstrates that endotoxemia-induced TxA2 formation depends on the activity of COX-1. Our study further indicates that the COX-1 inhibitor SC-560 has a protective effect on the decrease in renal function in response to endotoxin. Therefore, our data support a role for TxA2 in the development of AKI in response to LPS.
Collapse
Affiliation(s)
- Katharina Mederle
- Institute of Physiology, University of Regensburg, Regensburg, Germany; and
| | - Manuel Meurer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany; and
| | - Klaus Höcherl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Mediators Inflamm 2015; 2015:313842. [PMID: 25999666 PMCID: PMC4427128 DOI: 10.1155/2015/313842] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/22/2015] [Indexed: 01/15/2023] Open
Abstract
Dengue is an infectious disease caused by dengue virus (DENV). In general, dengue is a self-limiting acute febrile illness followed by a phase of critical defervescence, in which patients may improve or progress to a severe form. Severe illness is characterized by hemodynamic disturbances, increased vascular permeability, hypovolemia, hypotension, and shock. Thrombocytopenia and platelet dysfunction are common in both cases and are related to the clinical outcome. Different mechanisms have been hypothesized to explain DENV-associated thrombocytopenia, including the suppression of bone marrow and the peripheral destruction of platelets. Studies have shown DENV-infected hematopoietic progenitors or bone marrow stromal cells. Moreover, anti-platelet antibodies would be involved in peripheral platelet destruction as platelets interact with endothelial cells, immune cells, and/or DENV. It is not yet clear whether platelets play a role in the viral spread. Here, we focus on the mechanisms of thrombocytopenia and platelet dysfunction in DENV infection. Because platelets participate in the inflammatory and immune response by promoting cytokine, chemokine, and inflammatory mediator secretion, their relevance as "immune-like effector cells" will be discussed. Finally, an implication for platelets in plasma leakage will be also regarded, as thrombocytopenia is associated with clinical outcome and higher mortality.
Collapse
|
12
|
Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet Toll-like receptor 4. Blood 2015; 125:3164-72. [PMID: 25700433 DOI: 10.1182/blood-2014-10-608653] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022] Open
Abstract
Cellular fibronectin containing extra domain A (Fn-EDA+), which is produced in response to tissue injury in several disease states, has prothrombotic activity and is known to interact with Toll-like-receptor 4 (TLR4). The underlying mechanism and cell types involved in mediating the prothrombotic effect of Fn-EDA+ still remain unknown. Using intravital microscopy, we evaluated susceptibility to carotid artery thrombosis after FeCl3-induced injury in mice expressing Fn lacking EDA (Fn-EDA(-/-) mice) or Fn containing EDA (Fn-EDA(+/+) mice). Fn-EDA(-/-) mice exhibited prolonged times to first thrombus formation and complete occlusion and a significant decrease in the rate of thrombus growth (P < .05 vs Fn-EDA(+/+) mice). Genetic deletion of TLR4 reversed the accelerated thrombosis in Fn-EDA(+/+) mice (P < .05) but had no effect in Fn-EDA(-/-) mice. Bone marrow transplantation experiments revealed that TLR4 expressed on hematopoietic cells contributes to accelerated thrombosis in Fn-EDA(+/+) mice. In vitro studies showed that cellular Fn-EDA+ interacts with platelet TLR4 and promotes agonist-induced platelet aggregation. Finally, Fn-EDA(+/+) mice specifically lacking platelet TLR4 exhibited prolonged times to first thrombus formation and complete occlusion (P < .05 vs Fn-EDA(+/+) mice containing platelet TLR4). We conclude that platelet TLR4 contributes to the prothrombotic effect of cellular Fn-EDA+, suggesting another link between thrombosis and innate immunity.
Collapse
|
13
|
Kuklev DV, Hankin JA, Uhlson CL, Hong YH, Murphy RC, Smith WL. Major urinary metabolites of 6-keto-prostaglandin F2α in mice. J Lipid Res 2013; 54:1906-14. [PMID: 23644380 DOI: 10.1194/jlr.m037192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Western diets are enriched in omega-6 vs. omega-3 fatty acids, and a shift in this balance toward omega-3 fatty acids may have health benefits. There is limited information about the catabolism of 3-series prostaglandins (PG) formed from eicosapentaenoic acid (EPA), a fish oil omega-3 fatty acid that becomes elevated in tissues following fish oil consumption. Quantification of appropriate urinary 3-series PG metabolites could be used for noninvasive measurement of omega-3 fatty acid tone. Here we describe the preparation of tritium- and deuterium-labeled 6-keto-PGF2α and their use in identifying urinary metabolites in mice using LC-MS/MS. The major 6-keto-PGF2α urinary metabolites included dinor-6-keto-PGF2α (~10%) and dinor-13,14-dihydro-6,15-diketo-PGF1α (~10%). These metabolites can arise only from the enzymatic conversion of EPA to the 3-series PGH endoperoxide by cyclooxygenases, then PGI3 by prostacyclin synthase and, finally, nonenzymatic hydrolysis to 6-keto-PGF2α. The 6-keto-PGF derivatives are not formed by free radical mechanisms that generate isoprostanes, and thus, these metabolites provide an unbiased marker for utilization of EPA by cyclooxygenases.
Collapse
Affiliation(s)
- Dmitry V Kuklev
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Thrombosis is the most frequent cause of mortality worldwide and is closely linked to haemostasis, which is the biological mechanism that stops bleeding after the injury of blood vessels. Indeed, both processes share the core pathways of blood coagulation and platelet activation. Here, we summarize recent work suggesting that thrombosis under certain circumstances has a major physiological role in immune defence, and we introduce the term immunothrombosis to describe this process. Immunothrombosis designates an innate immune response induced by the formation of thrombi inside blood vessels, in particular in microvessels. Immunothrombosis is supported by immune cells and by specific thrombosis-related molecules and generates an intravascular scaffold that facilitates the recognition, containment and destruction of pathogens, thereby protecting host integrity without inducing major collateral damage to the host. However, if uncontrolled, immunothrombosis is a major biological process fostering the pathologies associated with thrombosis.
Collapse
|
15
|
|
16
|
Boger MS, Bian A, Shintani A, Milne GL, Morrow JD, Erdem H, Mitchell V, Haas DW, Hulgan T. Sex differences in urinary biomarkers of vascular and endothelial function in HIV-infected persons receiving antiretroviral therapy. Antivir Ther 2011; 17:485-93. [PMID: 22293574 DOI: 10.3851/imp1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) risk can be underestimated in HIV-infected patients receiving antiretroviral therapy (ART). Novel CVD risk markers in this population are needed. We hypothesized that eicosanoid metabolite production is increased with metabolic complications of ART. Our objective was to determine relationships between urine eicosanoids and traditional CVD risk factors in a cohort of HIV-infected persons receiving ART. METHODS Cross-sectional analysis of 107 individuals from a prospective cohort study with urine eicosanoids (isoprostane [15-F(2t)-IsoP], prostaglandin-E metabolite [PGE-M], thromboxane metabolite [11dTxB(2)], prostacyclin metabolite [PGI-M]) determined by gas or liquid chromatography-mass spectrometry. RESULTS 15-F(2t)-IsoP was higher (P=0.003), 11dTxB(2) tended to be higher (P=0.07) and PGE-M was lower (P=0.003) in females than in males. The overall median Framingham score was 4 (IQR 1-7). In multivariable analyses adjusting for age, CD4(+) T-cells, smoking status, non-steroidal anti-inflammatory drug use, aspirin use and body mass index (BMI), associations included: higher 15-F(2t)-IsoP with female sex (P=0.004) and current smoking (P=0.04), lower PGE-M with female sex (P=0.005) and higher BMI (P=0.03), higher 11dTxB(2) with increasing age (P=0.02) and current smoking (P=0.04), lower 11dTxB(2) with higher BMI (P=0.02), and higher PGI-M with current smoking (P=0.04). CONCLUSIONS In this pilot study of predominantly virologically suppressed HIV-infected individuals on ART, there were sex-specific differences in urinary eicosanoids, with females having more risk-associated parameters despite a low Framingham score. Eicosanoids might be useful CVD biomarkers in ART-treated, HIV-infected patients. Future studies should examine eicosanoids while assessing effects of specific ART regimens and targeted interventions on CVD outcomes.
Collapse
Affiliation(s)
- Michael S Boger
- Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Bagarolli RA, Saad MJA, Saad STO. Toll-like receptor 4 and inducible nitric oxide synthase gene polymorphisms are associated with Type 2 diabetes. J Diabetes Complications 2010; 24:192-8. [PMID: 19395279 DOI: 10.1016/j.jdiacomp.2009.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/07/2009] [Accepted: 03/20/2009] [Indexed: 01/21/2023]
Abstract
BACKGROUND The toll-like receptor 4 (TLR4) and inducible nitric oxide synthase are proteins from the innate immune system that, when activated, can induce insulin resistance. Polymorphisms in these genes, TLR4 and NOS2, respectively, could affect the immune response, as well as the prevalence of Type 2 diabetes (T2DM). OBJECTIVE The aim of the present study was to investigate the contribution of four polymorphisms (two from TLR4 and two from NOS2) to susceptibility to T2DM in a southeast Brazilian population. DESIGN A total of 211 patients with T2DM and 200 unrelated controls were genotyped for the Asp299Gly and Thr399Ile polymorphisms of the TLR4 gene and for the insertion (I)/deletion (D) AAAT and (CCTTT)n polymorphisms of the NOS2 promoter gene. RESULTS With regard to the NOS2 promoter region, the data showed that the I allele of the I/D AAAT polymorphism was more prevalent in the T2DM group and that the L/L genotype of the (CCTTT)n polymorphism was also more frequent in the same group. In contrast, the 299Gly allele and the 399Ile allele from the Asp299Gly and Thr399Ile TLR4 gene polymorphisms, respectively, were associated with protection of T2DM. It is believed that the persistence of these genetic variations in human populations may be indicative of a selective advantage in the face of different environmental pressures. CONCLUSIONS Genetic variations in the NOS2 gene promoter and TLR4 coding sequence may lead to deleterious and protective effects, respectively, arising from altered function of the innate immune system in patients with T2DM.
Collapse
Affiliation(s)
- Renata A Bagarolli
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Agbeko RS, Holloway JW, Allen ML, Ye S, Fidler KJ, Pappachan J, Goldman A, Pontefract D, Deanfield J, Klein NJ, Peters MJ. Genetic polymorphisms in the endotoxin receptor may influence platelet count as part of the acute phase response in critically ill children. Intensive Care Med 2010; 36:1023-32. [PMID: 20237756 DOI: 10.1007/s00134-010-1857-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
PURPOSE To determine if common polymorphisms in the endotoxin recognition complex influence the acute phase response as determined by the development of the systemic inflammatory response syndrome (SIRS) and platelet count on admission. METHODS This was a prospective observational cohort study. Paediatric intensive care patients (n = 913) were genotyped for common functional polymorphisms in the endotoxin recognition complex, including Toll-like receptor 4 (TLR4). We also selected potentially confounding polymorphisms in other genes of the innate immune system. SIRS was defined by age-specific consensus criteria. Platelet counts were recorded on admission. RESULTS The development of SIRS was primarily determined by the nature of the insult, but carriers of TLR4 variant alleles had lower platelet counts than children with wild-type genotype [mean +/- standard error of the mean (SEM) 143 +/- 7 vs. 175 +/- 4; p = 0.0001)--independent of other innate immune system polymorphisms. These findings were validated using a patient cohort of 1,170 adults with coronary artery disease. Carriers of TLR4 polymorphisms with a history of myocardial infarction (n = 573) had lower platelet counts than those with the wild-type genotype (217 +/- 7 vs. 237 +/- 2.8; p = 0.021). CONCLUSIONS Our results show that TLR4 variant alleles are associated with lower platelet counts across a range of ages and precipitating insults but that they do not influence the incidence of SIRS. This result may reflect redundancy and 'robustness' in the pathways leading to SIRS or the lack of specificity of this endpoint. Platelet count may vary with TLR4 genotype because it may be sufficiently sensitive and more linearly related to inflammation than other markers or, alternatively, there may be a direct TLR4-mediated platelet effect.
Collapse
Affiliation(s)
- Rachel S Agbeko
- Paediatric Intensive Care Unit and Cardiac Critical Care Unit, Great Ormond Street Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Infections, antigen-presenting cells, T cells, and immune tolerance: their role in the pathogenesis of immune thrombocytopenia. Hematol Oncol Clin North Am 2010; 23:1177-92. [PMID: 19932427 DOI: 10.1016/j.hoc.2009.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the last 20 years, many publications have shed new light on the complex immunopathogenesis of immune thrombocytopenic purpura. They are associated with 3 interrelated areas of environmental autoimmunity, for example, infectious influences, antigen-presenting cell (APC) function, and T-cell abnormalities, particularly tolerance induction. This article highlights the recent literature and argues that infectious agents and platelets can significantly modulate APCs, which create an environment that dysregulates autoreactive T cells, leading to the production of autoantibodies.
Collapse
|
21
|
Abstract
Although platelets are best known as primary mediators of hemostasis, this function intimately associates them with inflammatory processes, and it has been increasingly recognized that platelets play an active role in both innate and adaptive immunity. For example, platelet adhesive interactions with leukocytes and endothelial cells via P-selectin can lead to several pro-inflammatory events, including leukocyte rolling and activation, production of cytokine cascades, and recruitment of the leukocytes to sites of tissue damage. Superimposed on this, platelets express immunologically-related molecules such as CD40L and Toll-like receptors that have been shown to functionally modulate innate immunity. Furthermore, platelets themselves can interact with microorganisms, and several viruses have been shown to cross-react immunologically with platelet antigens. This review discusses the central role that platelets play in inflammation, linking them with varied pathological conditions, such as atherosclerosis, sepsis, and immune thrombocytopenic purpura, and suggests that platelets also act as primary mediators of our innate defences.
Collapse
Affiliation(s)
- John W Semple
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | |
Collapse
|
22
|
The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes. Thromb Res 2009; 125:205-9. [PMID: 19945154 DOI: 10.1016/j.thromres.2009.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 12/17/2022]
Abstract
Platelets have been extensively studied as hemostatic regulators, stopping uncontrolled flow of blood from an injured vessel and allowing for repair. However, multiple studies have shown that platelets can interact with bacterial proteins, particularly seen during sepsis and inflammation. Immune cells recognize pathogens through Toll-like Receptors (TLRs). These same receptors allow platelets to recognize bacterial proteins and regulate platelet immunity and function. This review examines the TLRs expressed on platelets and megakaryocytes and how these receptors affect the function of these cells. Through TLRs, platelets go beyond hemostatic regulation and play a pivotal role in inflammation and infection.
Collapse
|
23
|
Innate immune signals in atherosclerosis. Clin Immunol 2009; 134:5-24. [PMID: 19740706 DOI: 10.1016/j.clim.2009.07.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic disease characterised by lipid retention and inflammation in the arterial intima. Innate immune mechanisms are central to atherogenesis, involving activation of pattern-recognition receptors (PRRs) and induction of inflammatory processes. In a complex tissue, such as the atherosclerotic lesion, innate signals can originate from several sources and promote atherogenesis through ligation of PRRs. The receptors recognise conserved molecular patterns on pathogens and endogenous products of tissue injury and inflammation. Activation of PRRs might affect several aspects of atherosclerosis by acting on lesion resident cells. Scavenger receptors mediate antigen uptake and clearance of lipoproteins, thereby promoting foam cell formation. Signalling receptors, such as Toll-like receptors (TLRs), lead to induction of pro-inflammatory cytokines and antigen-specific immune responses. In this review we describe the innate mechanisms present in the plaque. We focus on TLRs, their cross-talk with other PRRs, and how their signalling cascades influence inflammation within the atherosclerotic lesion.
Collapse
|
24
|
Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104:346-54. [PMID: 19106411 PMCID: PMC2732983 DOI: 10.1161/circresaha.108.185785] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells of the innate immune system use Toll-like receptors (TLRs) to initiate the proinflammatory response to microbial infection. Recent studies have shown acute infections are associated with a transient increase in the risk of vascular thrombotic events. Although platelets play a central role in acute thrombosis and accumulating evidence demonstrates their role in inflammation and innate immunity, investigations into the expression and functionality of platelet TLRs have been limited. In the present study, we demonstrate that human platelets express TLR2, TLR1, and TLR6. Incubation of isolated platelets with Pam(3)CSK4, a synthetic TLR2/TLR1 agonist, directly induced platelet aggregation and adhesion to collagen. These functional responses were inhibited in TLR2-deficient mice and, in human platelets, by pretreatment with TLR2-blocking antibody. Stimulation of platelet TLR2 also increased P-selectin surface expression, activation of integrin alpha(IIb)beta(3), generation of reactive oxygen species, and, in human whole blood, formation of platelet-neutrophil heterotypic aggregates. TLR2 stimulation also activated the phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway in platelets, and inhibition of PI3-K significantly reduced Pam(3)CSK4-induced platelet responses. In vivo challenge with live Porphyromonas gingivalis, a Gram-negative pathogenic bacterium that uses TLR2 for innate immune signaling, also induced significant formation of platelet-neutrophil aggregates in wild-type but not TLR2-deficient mice. Together, these data provide the first demonstration that human platelets express functional TLR2 capable of recognizing bacterial components and activating the platelet thrombotic and/or inflammatory pathways. This work substantiates the role of platelets in the immune and inflammatory response and suggests a mechanism by which bacteria could directly activate platelets.
Collapse
Affiliation(s)
- Price Blair
- Whitaker Cardiovascular Institute, Evans Department of Medicine, Boston, MA 02118-2526, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 2008; 141:84-91. [PMID: 18279456 DOI: 10.1111/j.1365-2141.2008.06999.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood platelets link the processes of haemostasis and inflammation. This study examined the immunomodulatory factors released by platelets after Toll-Like Receptor 4 (TLR4) engagement on their surfaces. Monoclonal anti-human FcgammaRII Ab (IV.3)-treated human platelets were cultured with TLR4 ligands in the presence or absence of blocking monoclonal antibody to human TLR4. The release of sCD62p, epidermal growth factor (EGF), transforming growth factor beta (TGFbeta), interleukin (IL)-8, platelet activating factor 4 (PAF4), platelet-derived growth factor, alpha, beta polypeptide (PDGF-AB), Angiogenin, RANTES (regulated upon activation, normal T-cell expressed, and presumably secreted) and sCD40L were measured by specific enzyme-linked immunosorbent assay. TLR4 ligand [Escherichia coli lipopolysaccharide (LPS)] bound platelet TLR4, which differentially modulates the release of cytokines by platelets. It was noted that (i) sCD62p, IL-8, EGF and TGFbeta release were each independent of platelet activation after TLR4 engagement; (ii) RANTES, Angiogenin and PDGF-AB concentration were weaker in platelet supernatant after TLR4 engagement; (iii) sCD40L and PAF4 are present in large concentration in the releaseate of platelets stimulated by TLR4 ligand. The effects of LPS from E. coli on the modulation of secretory factors were attenuated by preincubation of platelets with an anti-TLR4 monoclonal antibody, consistent with the immunomodulation being specifically mediated by the TLR4 receptor. We propose that platelets adapt the subsequent responses, with polarized cytokine secretion, after TLR4 involvement.
Collapse
|
26
|
Speletas M, Liadaki K, Kalala F, Daiou C, Katodritou E, Mandala E, Korantzis I, Ritis K, Zintzaras E, Germenis AE. TLR4 single nucleotide polymorphisms and thrombosis risk in patients with myeloproliferative disorders. Thromb Res 2007; 122:27-32. [PMID: 17999935 DOI: 10.1016/j.thromres.2007.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 11/28/2022]
Affiliation(s)
- M Speletas
- Department of Immunology and Histocompatibility, School of Medicine, University Hospital of Thessaly, Larissa, 41110 Larissa, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Capone ML, Tacconelli S, Di Francesco L, Sacchetti A, Sciulli MG, Patrignani P. Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat 2006; 82:85-94. [PMID: 17164136 DOI: 10.1016/j.prostaglandins.2006.05.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 12/29/2022]
Abstract
We provide comprehensive knowledge on the differential regulation of expression and catalysis of cyclooxygenase (COX)-1 and COX-2 in health and disease which represents an essential requirement to read out the clinical consequences of selective and nonselective inhibition of COX-isozymes in humans. Furthermore, we describe the pharmacodynamic and pharmacokinetic characteristics of major traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) and coxibs (selective COX-2 inhibitors) which play a prime role in their efficacy and toxicity. Important information derived from our pharmacological studies has clarified that nonselective COX inhibitors should be considered the tNSAIDs with a balanced inhibitory effect on both COX-isozymes (exemplified by ibuprofen and naproxen). In contrast, the tNSAIDs meloxicam, nimesulide and diclofenac (which are from 18- to 29-fold more potent towards COX-2 in vitro) and coxibs (i.e. celecoxib, valdecoxib, rofecoxib, etoricoxib and lumiracoxib, which are from 30- to 433-fold more potent towards COX-2 in vitro) should be comprised into the cluster of COX-2 inhibitors. However, the dose and frequency of administration together with individual responses will drive the degree of COX-2 inhibition and selectivity achieved in vivo. The results of clinical pharmacology of COX inhibitors support the concept that the inhibition of platelet COX-1 may translate into an increased incidence of serious upper gastrointestinal bleeding but this effect on platelet COX-1 may mitigate the cardiovascular hazard associated with the profound inhibition of COX-2-dependent prostacyclin (PGI2).
Collapse
Affiliation(s)
- Marta L Capone
- Department of Medicine and Center of Excellence on Aging, G. d'Annunzio University, School of Medicine, and Gabriele d'Annunzio Foundation, Via dei Vestini, 31, 66013 Chieti, Italy
| | | | | | | | | | | |
Collapse
|