1
|
Dissanayake D, Firouzabady A, Massumi M, de Paz Linares GA, Marshall C, Freeman SA, Laxer RM, Yeung RSM. Interleukin-1-mediated hyperinflammation in XIAP deficiency is associated with defective autophagy. Blood 2024; 144:1183-1192. [PMID: 38820590 DOI: 10.1182/blood.2023023707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Deficiency of X-linked inhibitor of apoptosis protein (XIAP) is a rare genetic condition that can present with recurrent episodes of hemophagocytic lymphohistiocytosis (HLH), though the exact mechanisms leading to this hyperinflammatory disorder are unclear. Understanding its biology is critical to developing targeted therapies for this potentially fatal disease. Here, we report on a novel multiexonic intragenic duplication leading to XIAP deficiency with recurrent HLH that demonstrated complete response to interleukin (IL)-1β blockade. We further demonstrate using both primary patient cells and genetically modified THP-1 monocyte cell lines that, contrary to what has previously been shown in mouse cells, XIAP-deficient human macrophages do not produce excess IL-1β when stimulated under standard conditions. Instead, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated hyperproduction of IL-1β is observed only when the XIAP-deficient cells are stimulated under autophagy-promoting conditions and this correlates with defective autophagic flux as measured by decreased accumulation of the early autophagy marker LC3-II. This work, therefore, highlights IL-1β blockade as a therapeutic option for patients with XIAP deficiency experiencing recurrent HLH and identifies a critical role for XIAP in promoting autophagy as a means of limiting IL-1β-mediated hyperinflammation during periods of cellular stress.
Collapse
Affiliation(s)
- Dilan Dissanayake
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Mohammad Massumi
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | | | - Christian Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ronald M Laxer
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rae S M Yeung
- Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Yoon M, Phan V, Podvin S, Mosier C, O’Donoghue AJ, Hook V. Distinct Cleavage Properties of Cathepsin B Compared to Cysteine Cathepsins Enable the Design and Validation of a Specific Substrate for Cathepsin B over a Broad pH Range. Biochemistry 2023; 62:2289-2300. [PMID: 37459182 PMCID: PMC10399199 DOI: 10.1021/acs.biochem.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.
Collapse
Affiliation(s)
- Michael
C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Von Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
3
|
Xie Z, Zhao M, Yan C, Kong W, Lan F, Zhao S, Yang Q, Bai Z, Qing H, Ni J. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis 2023; 14:255. [PMID: 37031185 PMCID: PMC10082344 DOI: 10.1038/s41419-023-05786-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future avenues for research.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Mengyuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Chengxiang Yan
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Zhantao Bai
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China.
- Yan'an Key Laboratory for Neural Immuno-Tumor and Stem Cell and Engineering and Technological Research Center for Natural Peptide Drugs, Yan'an, 716000, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
4
|
Matsuda T, Takimoto-Ito R, Lipsker D, Kambe N. Similarities and differences in autoinflammatory diseases with urticarial rash, cryopyrin-associated periodic syndrome and Schnitzler syndrome. Allergol Int 2023:S1323-8930(23)00009-6. [PMID: 36906447 DOI: 10.1016/j.alit.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
Cryopyrin-associated periodic syndromes (CAPS) and Schnitzler syndrome (SchS) are autoinflammatory diseases that present with urticaria-like rashes. CAPS is characterized by periodic or persistent systemic inflammation caused by the dysfunction of the NLRP3 gene. With the advent of IL-1-targeted therapies, the prognosis of CAPS has improved remarkably. SchS is considered an acquired form of autoinflammatory syndrome. Patients with SchS are adults of relatively older age. The pathogenesis of SchS remains unknown and is not associated with the NLRP3 gene. Previously, the p.L265P mutation in the MYD88 gene, which is frequently detected in Waldenström macroglobulinemia (WM) with IgM gammopathy, was identified in several cases of SchS. However, because persistent fever and fatigue are symptoms of WM that require therapeutic intervention, it is a challenge to determine whether these patients truly had SchS or whether advanced WM was misidentified as SchS. There are no established treatments for SchS. The treatment algorithm proposed with the diagnostic criteria is to use colchicine as first-line treatment, and systemic administration of steroids is not recommended due to concerns about side effects. In difficult-to-treat cases, treatment targeting IL-1 is recommended. If targeted IL-1 treatment does not improve symptoms, the diagnosis should be reconsidered. We hope that the efficacy of IL-1 therapy in clinical practice will serve as a stepping stone to elucidate the pathogenesis of SchS, focusing on its similarities and differences from CAPS.
Collapse
Affiliation(s)
- Tomoko Matsuda
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
| | - Riko Takimoto-Ito
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dan Lipsker
- Dermatology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
5
|
Murakawa S, Yoneda T, Hoshina T, Ishimura M, Kusuhara K. Case report: The altered rate of monocytic cell death in a patient of Muckle-Wells syndrome with atypical clinical course. Front Pediatr 2023; 11:1133097. [PMID: 36873639 PMCID: PMC9978417 DOI: 10.3389/fped.2023.1133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Muckle-Wells syndrome (MWS) is an autosomal dominant autoinflammatory disease recognized as the intermediate phenotype of cryopyrin-associated periodic syndrome (CAPS) caused by NLRP3 gene mutation. It often takes a long time before the diagnosis is made because the clinical presentation of MWS is variable. We report a pediatric case who had had persistently elevated serum C-reactive protein (CRP) level since infancy and was diagnosed with MWS by the development of sensorineural hearing loss in school age. The patient had no periodic symptoms of MWS until the development of sensorineural hearing loss. It is important to differentiate MWS in patients with persistent serum CRP elevation, even if no periodic symptoms, including fever, arthralgia, myalgia and rash, are observed. Furthermore, in this patient, lipopolysaccharide (LPS)-induced monocytic cell death occurred, but to a lesser degree than has been reported in patients with chronic infantile neurological cutaneous, and articular syndrome (CINCA). Because CINCA and MWS are phenotypic variants on the same clinical spectrum, this suggests that a further large-scale study is desired to investigate the association between degree of monocytic cell death and disease severity in CAPS patients.
Collapse
Affiliation(s)
- Saori Murakawa
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Toru Yoneda
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
6
|
Peng Z, Duan M, Zhao K, Tang Y, Liang F. RAB20 deficiency promotes the development of silicosis via NLRP3 inflammasome. Front Immunol 2022; 13:967299. [PMID: 36131930 PMCID: PMC9484360 DOI: 10.3389/fimmu.2022.967299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Silicosis is a worldwide serious occupational disease that is caused by inhalation of silica crystals. However, little is known about the pathogenesis mechanism of silicosis. We performed single-cell sequencing in bronchoalveolar lavage fluid (BALF) from mine workers with silicosis and their co-workers who did not develop silicosis, and found that the RAB20 deficiency in monocytes/macrophages was strongly linked to the development of silicosis. In the silicosis murine model, RAB20 knockout markedly enhanced the silica crystal-induced pulmonary interstitial fibrosis and respiratory dysfunction. Moreover, this process is strongly accompanied by IL-1β release and NLRP3 activation. In vitro, RAB20 knockout macrophages aggravated the crystalline silica-induced IL-1β release and NLRP3 inflammasome activation partly by increased ratio of crystalline silica/phagosomal areas/volumes to induce lysosomal injury. Thus, these findings provide novel molecular insights into the intricate mechanisms underlying lysosomal protein RAB20 that are necessary for environmental irritant-mediated innate immunity, and shed light on the future development of novel therapy target for the prevention of silicosis.
Collapse
Affiliation(s)
- Zhouyangfan Peng
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Mingwu Duan
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fang Liang,
| |
Collapse
|
7
|
Yoon MC, Hook V, O'Donoghue AJ. Cathepsin B Dipeptidyl Carboxypeptidase and Endopeptidase Activities Demonstrated across a Broad pH Range. Biochemistry 2022; 61:1904-1914. [PMID: 35981509 PMCID: PMC9454093 DOI: 10.1021/acs.biochem.2c00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cathepsin B is a lysosomal protease that participates
in protein
degradation. However, cathepsin B is also active under neutral pH
conditions of the cytosol, nuclei, and extracellular locations. The
dipeptidyl carboxypeptidase (DPCP) activity of cathepsin B, assayed
with the Abz-GIVR↓AK(Dnp)-OH substrate, has been reported to
display an acidic pH optimum. In contrast, the endopeptidase activity,
monitored with Z-RR-↓AMC, has a neutral pH optimum. These observations
raise the question of whether other substrates can demonstrate cathepsin
B DPCP activity at neutral pH and endopeptidase activity at acidic
pH. To address this question, global cleavage profiling of cathepsin
B with a diverse peptide library was conducted under acidic and neutral
pH conditions. Results revealed that cathepsin B has (1) major DPCP
activity and modest endopeptidase activity under both acidic and neutral
pH conditions and (2) distinct pH-dependent amino acid preferences
adjacent to cleavage sites for both DPCP and endopeptidase activities.
The pH-dependent cleavage preferences were utilized to design a new
Abz-GnVR↓AK(Dnp)-OH DPCP substrate,
with norleucine (n) at the P3 position, having improved DPCP activity
of cathepsin B at neutral pH compared to the original Abz-GIVR↓AK(Dnp)-OH
substrate. The new Z-VR-AMC and Z-ER-AMC substrates displayed improved
endopeptidase activity at acidic pH compared to the original Z-RR-AMC.
These findings illustrate the new concept that cathepsin B possesses
DPCP and endopeptidase activities at both acidic and neutral pH values.
These results advance understanding of the pH-dependent cleavage properties
of the dual DPCP and endopeptidase activities of cathepsin B that
function under different cellular pH conditions.
Collapse
Affiliation(s)
- Michael C Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States.,Department of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Yang M, Wang WX. Differential cascading cellular and subcellular toxicity induced by two sizes of nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154593. [PMID: 35304139 DOI: 10.1016/j.scitotenv.2022.154593] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) can be potentially accumulated by living organisms, but how they interact with cells at the cellular or subcellular level in the physiological environment is still largely unknown. In this study, time-resolved flow cytometry coupled with confocal imaging as well as other biomolecular approaches were used to investigate the cellular and subcellular responses to amine-modified polystyrene NPs of two different sizes (100 nm and 1000 nm). We first demonstrated that the two sizes of NPs displayed contrasting cytotoxicity to embryonic zebrafish fibroblast cell lines ZF4. Using the fluorescent-labeled NPs, the differentially internalized patterns between the two-sized NPs in a time-resolved manner were observed. Confocal images showed that the two sizes of NPs were deposited in lysosomes but could escape through lysosomal rupture, as evidenced by the induction of lysosomal acidification (for 1000 nm) and alkalization (for 100 nm) as well as permeabilization. Subsequent deposition of 100-NPs in the cytosol induced loss of mitochondrial membrane potential and significant reactive oxygen species production, and finally stimulated the activation of caspases, disrupted the mitochondrial mitophagy, leading to irreversible cell death. In contrast, 1000-NPs toxicity in ZF4 cells did not involve lysosomal permeabilization and loss of mitochondrial membrane potential. Lysosomal deposition of such larger sized nanoplastics mainly induced lysosome acidification, activated the autophagy as well as disrupted the integrity of cell membrane, but at the same time provoked the activation of caspases and finally triggered the apoptosis. Our study demonstrated a complicated relationship among lysosome damage, autophagy activation, and apoptosis, leading to contrasting toxicity of NPs of different sizes.
Collapse
Affiliation(s)
- Meng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
9
|
Nishitani-Isa M, Mukai K, Honda Y, Nihira H, Tanaka T, Shibata H, Kodama K, Hiejima E, Izawa K, Kawasaki Y, Osawa M, Katata Y, Onodera S, Watanabe T, Uchida T, Kure S, Takita J, Ohara O, Saito MK, Nishikomori R, Taguchi T, Sasahara Y, Yasumi T. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J Exp Med 2022; 219:213184. [PMID: 35482294 PMCID: PMC9059393 DOI: 10.1084/jem.20211889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in the C-terminal region of the CDC42 gene cause severe neonatal-onset autoinflammation. Effectiveness of IL-1β–blocking therapy indicates that the pathology involves abnormal inflammasome activation; however, the mechanism underlying autoinflammation remains to be elucidated. Using induced-pluripotent stem cells established from patients carrying CDC42R186C, we found that patient-derived cells secreted larger amounts of IL-1β in response to pyrin-activating stimuli. Aberrant palmitoylation and localization of CDC42R186C protein to the Golgi apparatus promoted pyrin inflammasome assembly downstream of pyrin dephosphorylation. Aberrant subcellular localization was the common pathological feature shared by CDC42 C-terminal variants with inflammatory phenotypes, including CDC42*192C*24 that also localizes to the Golgi apparatus. Furthermore, the level of pyrin inflammasome overactivation paralleled that of mutant protein accumulation in the Golgi apparatus, but not that of the mutant GTPase activity. These results reveal an unexpected association between CDC42 subcellular localization and pyrin inflammasome activation that could pave the way for elucidating the mechanism of pyrin inflammasome formation.
Collapse
Affiliation(s)
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirofumi Shibata
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kumi Kodama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eitaro Hiejima
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yu Katata
- Department of Neonatology, Miyagi Children's Hospital, Sendai, Japan
| | - Sachiko Onodera
- Department of Neonatology, Miyagi Children's Hospital, Sendai, Japan
| | - Tatsuya Watanabe
- Department of Neonatology, Miyagi Children's Hospital, Sendai, Japan
| | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Kano N, Ong GH, Ori D, Kawai T. Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Front Cell Infect Microbiol 2022; 12:910654. [PMID: 35734577 PMCID: PMC9207338 DOI: 10.3389/fcimb.2022.910654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pattern recognition receptors (PRRs) play critical roles in recognizing pathogen-derived nucleic acids and inducing innate immune responses, such as inflammation and type I interferon production. PRRs that recognize nucleic acids include members of endosomal Toll-like receptors, cytosolic retinoic acid inducible gene I-like receptors, cyclic GMP–AMP synthase, absent in melanoma 2-like receptors, and nucleotide binding oligomerization domain-like receptors. Aberrant recognition of self-derived nucleic acids by these PRRs or unexpected activation of downstream signaling pathways results in the constitutive production of type I interferons and inflammatory cytokines, which lead to the development of autoimmune or autoinflammatory diseases. In this review, we focus on the nucleic acid-sensing machinery and its pathophysiological roles in various inflammatory diseases.
Collapse
|
11
|
Tanaka T, Shiba T, Honda Y, Izawa K, Yasumi T, Saito MK, Nishikomori R. Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Front Immunol 2022; 13:870535. [PMID: 35603217 PMCID: PMC9120581 DOI: 10.3389/fimmu.2022.870535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of autoinflammation, first proposed in 1999, refers to a seemingly unprovoked episode of sterile inflammation manifesting as unexplained fever, skin rashes, and arthralgia. Autoinflammatory diseases are caused mainly by hereditary abnormalities of innate immunity, without the production of autoantibodies or autoreactive T cells. The revolutionary discovery of induced pluripotent stem cells (iPSCs), whereby a patient’s somatic cells can be reprogrammed into an embryonic pluripotent state by forced expression of a defined set of transcription factors, has the transformative potential to enable in vitro disease modeling and drug candidate screening, as well as to provide a resource for cell replacement therapy. Recent reports demonstrate that recapitulating a disease phenotype in vitro is feasible for numerous monogenic diseases, including autoinflammatory diseases. In this review, we provide a comprehensive overview of current advances in research into autoinflammatory diseases involving iPSC-derived monocytes/macrophages. This review may aid in the planning of new studies of autoinflammatory diseases.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Japanese Red Cross Otsu Hospital, Otsu, Japan
- *Correspondence: Takayuki Tanaka,
| | - Takeshi Shiba
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
12
|
Yoon MC, Christy MP, Phan VV, Gerwick WH, Hook G, O'Donoghue AJ, Hook V. Molecular Features of CA-074 pH-Dependent Inhibition of Cathepsin B. Biochemistry 2022; 61:228-238. [PMID: 35119840 DOI: 10.1021/acs.biochem.1c00684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CA-074 is a selective inhibitor of cathepsin B, a lysosomal cysteine protease. CA-074 has been utilized in numerous studies to demonstrate the role of this protease in cellular and physiological functions. Cathepsin B in numerous human disease mechanisms involves its translocation from acidic lysosomes of pH 4.6 to neutral pH 7.2 of cellular locations, including the cytosol and extracellular environment. To gain in-depth knowledge of CA-074 inhibition under these different pH conditions, this study evaluated the molecular features, potency, and selectivity of CA-074 for cathepsin B inhibition under acidic and neutral pH conditions. This study demonstrated that CA-074 is most effective at inhibiting cathepsin B at an acidic pH of 4.6 with nM potency, which was more than 100-fold more potent than its inhibition at a neutral pH of 7.2. The pH-dependent inhibition of CA-074 was abolished by methylation of its C-terminal proline, indicating the requirement for the free C-terminal carboxyl group for pH-dependent inhibition. Under these acidic and neutral pH conditions, CA-074 maintained its specificity for cathepsin B over other cysteine cathepsins, displayed irreversible inhibition, and inhibited diverse cleavages of peptide substrates of cathepsin B assessed by profiling mass spectrometry. Molecular docking suggested that pH-dependent ionic interactions of the C-terminal carboxylate of CA-074 occur with His110 and His111 residues in the S2' subsite of the enzyme at pH 4.6, but these interactions differ at pH 7.2. While high levels of CA-074 or CA-074Me (converted by cellular esterases to CA-074) are used in biological studies to inhibit cathepsin B at both acidic and neutral pH locations, it is possible that adjusted levels of CA-074 or CA-074Me may be explored to differentially affect cathepsin B activity at these different pH values. Overall, the results of this study demonstrate the molecular, kinetic, and protease specificity features of CA-074 pH-dependent inhibition of cathepsin B.
Collapse
Affiliation(s)
- Michael C Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Mitchell P Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Von V Phan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037-5149, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States.,Department of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0021, United States
| |
Collapse
|
13
|
Lan Z, Chen L, Feng J, Xie Z, Liu Z, Wang F, Liu P, Yue X, Du L, Zhao Y, Yang P, Luo J, Zhu Z, Hu X, Cao L, Lu P, Sah R, Lavine K, Kim B, Hu H. Mechanosensitive TRPV4 is required for crystal-induced inflammation. Ann Rheum Dis 2021; 80:1604-1614. [PMID: 34663597 DOI: 10.1136/annrheumdis-2021-220295] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1β which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.
Collapse
Affiliation(s)
- Zhou Lan
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA.,School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Lvyi Chen
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA .,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Jing Feng
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Zili Xie
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Zhiyong Liu
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Peng Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Xueping Yue
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Lixia Du
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Yonghui Zhao
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Pu Yang
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Jialie Luo
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Zhe Zhu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Xueming Hu
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Liang Cao
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Ping Lu
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Kory Lavine
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Brian Kim
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA.,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA .,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| |
Collapse
|
14
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
15
|
Yoon MC, Solania A, Jiang Z, Christy MP, Podvin S, Mosier C, Lietz CB, Ito G, Gerwick WH, Wolan DW, Hook G, O’Donoghue AJ, Hook V. Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. ACS Chem Biol 2021; 16:1628-1643. [PMID: 34416110 DOI: 10.1021/acschembio.1c00138] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.
Collapse
Affiliation(s)
- Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mitchell P. Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Nie W, Lan T, Yuan X, Luo M, Shen G, Yu J, Wei X. Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation. Cell Biol Toxicol 2021; 38:591-609. [PMID: 34170461 DOI: 10.1007/s10565-021-09620-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.
Collapse
Affiliation(s)
- Wen Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayun Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
17
|
Nishiyama M, Li HJ, Okafuji I, Fujisawa A, Ehara M, Kambe N, Furukawa F, Kanazawa N. Sustained Surface ICAM-1 Expression and Transient PDGF-B Production by Phorbol Myristate Acetate-Activated THP-1 Cells Harboring Blau Syndrome-Associated NOD2 Mutations. CHILDREN-BASEL 2021; 8:children8050335. [PMID: 33923123 PMCID: PMC8145400 DOI: 10.3390/children8050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022]
Abstract
Objectives: Blau syndrome is a distinct class of autoinflammatory syndrome presenting with early-onset systemic granulomatosis. Blau syndrome-causing NOD2 mutations located in the central nucleotide-oligomerization domain induce ligand-independent basal NF-κB activation in an in vitro reporter assay. However, the precise role of this signaling on granuloma formation has not yet been clarified. Methods: Blau syndrome-causing NOD2 mutations were introduced into human monocytic THP-1 cells, and their morphological and molecular changes from parental cells were analyzed. Identified molecules with altered expression were examined in the patient’s lesional skin by immunostaining. Results: Although the production of proinflammatory cytokines was not altered without stimulation, mutant NOD2-expressing THP-1 cells attached persistently to the culture plate after stimulation with phorbol myristate acetate. Sustained surface ICAM-1 expression was observed in association with this phenomenon, but neither persistent ICAM-1 mRNA expression nor impaired ADAM17 mRNA expression was revealed. However, the transient induction of PDGF-B mRNA expression was specifically observed in stimulated THP-1 derivatives. In the granulomatous skin lesion of a Blau syndrome patient, ICAM-1 and PDGF-B were positively immunostained in NOD2-expressing giant cells. Conclusions: Sustained surface ICAM-1 expression and transient PDGF-B production by newly differentiating macrophages harboring mutant NOD2 might play a role in granuloma formation in Blau syndrome.
Collapse
Affiliation(s)
- Mizuho Nishiyama
- Department of Dermatology, School of Medicine, Wakayama Medical University, Wakayama 641-0012, Japan; (M.N.); (H.-j.L.); (F.F.)
| | - Hong-jin Li
- Department of Dermatology, School of Medicine, Wakayama Medical University, Wakayama 641-0012, Japan; (M.N.); (H.-j.L.); (F.F.)
| | - Ikuo Okafuji
- Department of Pediatrics, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan;
| | - Akihiko Fujisawa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (A.F.); (N.K.)
| | - Mizue Ehara
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Naotomo Kambe
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (A.F.); (N.K.)
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Fukumi Furukawa
- Department of Dermatology, School of Medicine, Wakayama Medical University, Wakayama 641-0012, Japan; (M.N.); (H.-j.L.); (F.F.)
| | - Nobuo Kanazawa
- Department of Dermatology, School of Medicine, Wakayama Medical University, Wakayama 641-0012, Japan; (M.N.); (H.-j.L.); (F.F.)
- Department of Dermatology, School of Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
- Correspondence:
| |
Collapse
|
18
|
Brevilin A inhibits NLRP3 inflammasome activation in vivo and in vitro by acting on the upstream of NLRP3-induced ASC oligomerization. Mol Immunol 2021; 135:116-126. [PMID: 33892379 DOI: 10.1016/j.molimm.2021.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/12/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Brevilin A (BA), is a natural biologically active ingredient derived from Centipeda minima with several reports of anti-cancer, while its anti-inflammatory activity is rarely reported. Current studies have found the dysregulated activation of NLRP3 inflammasome cause a variety of inflammatory diseases. Targeting the NLRP3 inflammasome contributes to the treatment of NLRP3-induced diseases. Here, we found that BA significantly attenuates the activation of caspase-1 and the subsequent secretion of the interleukin-1β (IL-1β) in mouse macrophages and human THP-1 cells, showing the inhibitory effect of BA on the NLRP3 inflammasome activation. Moreover, BA specifically inhibits NLRs inflammasomes activation triggered by multi-stimuli, but it has no effect on the AIM2 inflammasome activation, indicating that BA is a specific inhibitor of the NLRs inflammasomes. Research on the mechanism found BA inhibits NLRP3 inflammasome activation by blocking the upstream of ASC oligomerization. Importantly, in vivo experiments showed that BA markedly reduces the secretion of IL-1β to suppress NLRP3 inflammasome in the LPS-induced inflammation and MSU-challenged peritonitis model. In conclusion, our experiments show that BA is an effective NLRP3 inflammasome inhibitor and can be regarded as a drug candidate for NLRP3 inflammasome-driven diseases.
Collapse
|
19
|
Riera Romo M. Cell death as part of innate immunity: Cause or consequence? Immunology 2021; 163:399-415. [PMID: 33682112 DOI: 10.1111/imm.13325] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Regulated or programmed cell death plays a critical role in the development and tissue organization and function. In addition, it is intrinsically connected with immunity and host defence. An increasing cellular and molecular findings cause a change in the concept of cell death, revealing an expanding network of regulated cell death modalities and their biochemical programmes. Likewise, recent evidences demonstrate the interconnection between cell death pathways and how they are involved in different immune mechanisms. This work provides an overview of the main cell death programmes and their implication in innate immunity not only as an immunogenic/inflammatory process, but also as an active defence strategy during immune response and at the same time as a regulatory mechanism.
Collapse
Affiliation(s)
- Mario Riera Romo
- Radiology Department, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Rapid Flow Cytometry-Based Assay for the Functional Classification of MEFV Variants. J Clin Immunol 2021; 41:1187-1197. [PMID: 33733382 DOI: 10.1007/s10875-021-01021-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/09/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Pathogenic MEFV variants cause pyrin-associated autoinflammatory diseases (PAADs), which include familial Mediterranean fever (FMF), FMF-like disease, and pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). The diagnosis of PAADs is established by clinical phenotypic and genetic analyses. However, the pathogenicity of most MEFV variants remains controversial, as they have not been functionally evaluated. This study aimed to establish and validate a new functional assay to evaluate the pathogenicity of MEFV variants. METHODS We transfected THP-1 monocytes with 32 MEFV variants and analyzed their effects on cell death with or without stimulation with Clostridium difficile toxin A (TcdA) or UCN-01. These variants were classified using hierarchical cluster analysis. Macrophages were obtained from three healthy controls and two patients with a novel homozygous MEFVP257L variant, for comparison of IL-1β secretion using a cell-based assay and a novel THP-1-based assay. RESULTS Disease-associated MEFV variants induced variable degrees of spontaneous or TcdA/UCN-01-induced cell death in THP-1. Cell death was caspase-1 dependent and was accompanied by ASC speck formation and IL-1β secretion, indicating that pathogenic MEFV variants induced abnormal pyrin inflammasome activation and subsequent pyroptotic cell deaths in this assay. The MEFV variants (n = 32) exhibiting distinct response signatures were classified into 6 clusters, which showed a good correlation with the clinical phenotypes. Regarding the pathogenicity of MEFVP257L variants, the results were consistent between the cell-based assay and the THP-1-based assay. CONCLUSION Our assay facilitates a rapid and comprehensive assessment of the pathogenicity of MEFV variants and contributes to a refined definition of PAAD subtypes.
Collapse
|
21
|
Nishikomori R, Izawa K, Kambe N, Ohara O, Yasumi T. Low-frequency mosaicism in cryopyrin-associated periodic fever syndrome: mosaicism in systemic autoinflammatory diseases. Int Immunol 2020; 31:649-655. [PMID: 31185077 DOI: 10.1093/intimm/dxz047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
Autoinflammatory disease is an 'inborn error of immunity', resulting in systemic inflammation. Cryopyrin-associated periodic syndrome (CAPS) is a prototypical autoinflammatory disease caused by gain-of-function mutations in the NLRP3 (NLR family pyrin domain containing 3) gene; these mutations activate the NLRP3 inflammasome, resulting in overproduction of IL-1β. The first case of CAPS caused by somatic NLRP3 mosaicism was reported in 2005 after identification of variant small peaks by Sanger sequencing. An international collaborative study revealed that the majority of mutation-negative CAPS cases are due to low-level NLRP3 mosaicism, suggesting that central nervous system involvement in somatic mosaicism patients is milder than in genotype-matched heterozygous patients. Recent advances in next-generation sequencing have expanded the number of NLRP3 somatic mosaicism cases and identified a new entity called 'late-onset CAPS with myeloid-specific NLRP3 mosaicism'; however, no mosaic-specific clinical features have been identified/confirmed yet. With respect to NLRP3 mosaicism in CAPS, a prospective longitudinal study on the variant genotype, its allele frequency and its tissue distribution (along with a comprehensive clinical phenotype) would provide better understanding of NLRP3 mosaicism, resulting in more appropriate patient care and genetic counseling.
Collapse
Affiliation(s)
- Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotomo Kambe
- Department of Dermatology, Kansai Medical University, Hirakata, Japan
| | - Osamu Ohara
- Deparment of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Dodo K, Kuboki E, Shimizu T, Imamura R, Magarisawa M, Takahashi M, Tokuhiro T, Yotsumoto S, Asano K, Nakao S, Terayama N, Suda T, Tanaka M, Sodeoka M. Development of a Water-Soluble Indolylmaleimide Derivative IM-93 Showing Dual Inhibition of Ferroptosis and NETosis. ACS Med Chem Lett 2019; 10:1272-1278. [PMID: 31531196 PMCID: PMC6746101 DOI: 10.1021/acsmedchemlett.9b00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
![]()
The
indolylmaleimide (IM) derivative IM-17 shows inhibitory
activity against oxidative-stress-induced necrotic cell death and
cardioprotective activity in rat ischemia-reperfusion injury models.
In order to develop a more potent derivative, we conducted a detailed
structure–activity relationship study of IM derivatives and
identified IM-93 as the most potent derivative with good
water solubility. IM-93 inhibited ferroptosis and NETosis,
but not necroptosis or pyroptosis. In contrast, ferrostatin-1 (Fer-1),
a ferroptosis inhibitor, did not inhibit NETosis, although the accompanying
lipid peroxidation was partially inhibited by Fer-1, as well as by IM-93. Thus, IM derivatives have a unique activity profile
and appear to be promising candidates for in vivo application.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Sodeoka Live Cell Chemistry Project, ERATO, JST, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Erika Kuboki
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo 192-0392, Japan
| | - Tadashi Shimizu
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Ryu Imamura
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Megumi Magarisawa
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo 192-0392, Japan
| | - Masahiro Takahashi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Takuto Tokuhiro
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo 192-0392, Japan
| | - Satoshi Yotsumoto
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo 192-0392, Japan
| | - Kenichi Asano
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo 192-0392, Japan
| | - Shuhei Nakao
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Naoki Terayama
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo 192-0392, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Sodeoka Live Cell Chemistry Project, ERATO, JST, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
23
|
Ono H, Ohta R, Kawasaki Y, Niwa A, Takada H, Nakahata T, Ohga S, Saito MK. Lysosomal membrane permeabilization causes secretion of IL-1β in human vascular smooth muscle cells. Inflamm Res 2018; 67:879-889. [PMID: 30136196 PMCID: PMC6133165 DOI: 10.1007/s00011-018-1178-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Objective IL-1β secretion by the inflammasome is strictly controlled and requires two sequential signals: a priming signal and an activating signal. Lysosomal membrane permeabilization (LMP) plays a critical role in the regulation of NLRP3 inflammasome, and generally acts as an activating signal. However, the role of LMP controlling NLRP3 inflammasome activation in human vascular smooth muscle cells (hVSMCs) is not well defined. Methods LMP was induced in hVSMCs by Leu-Leu-O-methyl ester. Cathepsin B was inhibited by CA-074 Me. Cytokine release, mRNA, and protein were quantified by enzyme-linked immunosorbent assay, quantitative PCR, and Western blot, respectively. NF-κB activity was analyzed by immunostaining of the NF-κB p65 nuclear translocation and using the dual-luciferase reporter assay system. Results LMP had both priming and activating roles, causing an upregulation of proIL-1β and NLRP3 and the secretion of mature IL-1β from unprimed hVSMCs. LMP activated the canonical NF-κB pathway. The priming effect of LMP was inhibited by CA-074 Me, indicating an upstream role of cathepsin B. Conclusions These data support a novel role of LMP as a single stimulus for the secretion of IL-1β from hVSMCs, implying the possibility that hVSMCs are an important initiator of the sterile inflammatory response caused by lysosomal disintegration.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryo Ohta
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Hidetoshi Takada
- Department of Perinatal and Pediatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
24
|
Lunova M, Prokhorov A, Jirsa M, Hof M, Olżyńska A, Jurkiewicz P, Kubinová Š, Lunov O, Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci Rep 2017; 7:16049. [PMID: 29167516 PMCID: PMC5700114 DOI: 10.1038/s41598-017-16447-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization and biodegradability. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH2), but not amino- or hydroxyl-functionalized silica particles, trigger cell death in hepatocellular carcinoma Huh7 cells. Importantly, biodegradability of nanoparticles plays a crucial role in regulation of essential cellular processes. Thus, biodegradable silica nanoparticles having the same shape, size and surface functionalization showed opposite cellular effects in comparison with similar polystyrene nanoparticles. At the molecular level, PS-NH2 obstruct and amino-functionalized silica nanoparticles (Si-NH2) activate the mTOR signalling in Huh7 and HepG2 cells. PS-NH2 induced time-dependent lysosomal destabilization associated with damage of the mitochondrial membrane. Solely in PS-NH2-treated cells, permeabilization of lysosomes preceded cell death. Contrary, Si-NH2 nanoparticles enhanced proliferation of HuH7 and HepG2 cells. Our findings demonstrate complex cellular responses to functionalized nanoparticles and suggest that nanoparticles can be used to control activation of mTOR signaling with subsequent influence on proliferation and viability of HuH7 cells. The data provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrey Prokhorov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Orlowski GM, Sharma S, Colbert JD, Bogyo M, Robertson SA, Kataoka H, Chan FK, Rock KL. Frontline Science: Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1β activation. J Leukoc Biol 2017; 102:7-17. [PMID: 28087651 PMCID: PMC6608057 DOI: 10.1189/jlb.3hi0316-152r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Sterile particles cause several chronic, inflammatory diseases, characterized by repeating cycles of particle phagocytosis and inflammatory cell death. Recent studies have proposed that these processes are driven by the NLRP3 inflammasome, a platform activated by phagocytosed particles, which controls both caspase-1-dependent cell death (pyroptosis) and mature IL-1β secretion. After phagocytosis, particles can disrupt lysosomes, and inhibitor studies have suggested that the resulting release of a lysosomal protease-cathepsin B-into the cytosol somehow activates NLRP3. However, using primary murine macrophages, we found that particle-induced cell death occurs independent of NLRP3/caspase-1 and depends instead on multiple, redundant cathepsins. In contrast, nigericin, a soluble activator of NLRP3 inflammasomes, induced cell death that was dependent on the NLRP3. Interestingly, nigericin-induced cell death depended partly on a single cathepsin, cathepsin X. By inhibiting or silencing multiple cathepsins in macrophages, several key proinflammatory events induced by sterile particles are blocked, including cell death, pro-IL-1β production, and IL-1β secretion. These data suggest that cathepsins might be potential therapeutic targets in particulate-mediated inflammatory disease. In support of this concept, we find that a broad-spectrum cathepsin inhibitor can suppress particle-induced IL-1-dependent peritonitis.
Collapse
Affiliation(s)
- Gregory M Orlowski
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shruti Sharma
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA; and
| | - Stephanie A Robertson
- Sandler Center for Drug Discovery, University of California, San Francisco, California, USA
| | - Hiroshi Kataoka
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Francis K Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
26
|
Brojatsch J, Lima H, Palliser D, Jacobson LS, Muehlbauer SM, Furtado R, Goldman DL, Lisanti MP, Chandran K. Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. Cell Cycle 2015; 14:964-72. [PMID: 25830414 DOI: 10.4161/15384101.2014.991194] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Necrotic cell death triggers a range of biological responses including a strong adaptive immune response, yet we know little about the cellular pathways that control necrotic cell death. Inhibitor studies suggest that proteases, and in particular cathepsins, drive necrotic cell death. The cathepsin B-selective inhibitor CA-074-Me blocks all forms of programmed necrosis by an unknown mechanism. We found that cathepsin B deficiency does not prevent induction of pyroptosis and lysosome-mediated necrosis suggesting that CA-074-Me blocks necrotic cell death by targeting cathepsins other than cathepsin B. A single cathepsin, cathepsin C, drives necrotic cell death mediated by the lysosome-destabilizing agent Leu-Leu-OMe (LLOMe). Here we present evidence that cathepsin C-deficiency and CA-074-Me block LLOMe killing in a distinct and cell type-specific fashion. Cathepsin C-deficiency and CA-074-Me block LLOMe killing of all myeloid cells, except for neutrophils. Cathepsin C-deficiency, but not CA-074-Me, blocks LLOMe killing of neutrophils suggesting that CA-074-Me does not target cathepsin C directly, consistent with inhibitor studies using recombinant cathepsin C. Unlike other cathepsins, cathepsin C lacks endoproteolytic activity, and requires activation by other lysosomal proteases, such as cathepsin D. Consistent with this theory, we found that lysosomotropic agents and cathepsin D downregulation by siRNA block LLOMe-mediated necrosis. Our findings indicate that a proteolytic cascade, involving cathepsins C and D, controls LLOMe-mediated necrosis. In contrast, cathepsins C and D were not required for pyroptotic cell death suggesting that distinct cathepsins control pyroptosis and lysosome-mediated necrosis.
Collapse
Affiliation(s)
- Jürgen Brojatsch
- a Department of Microbiology and Immunology; Albert Einstein College of Medicine , Bronx , NY USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2015; 13:148-59. [PMID: 26549800 DOI: 10.1038/cmi.2015.95] [Citation(s) in RCA: 961] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, South Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, South Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, South Korea
| | - Dong-Min Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, South Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, South Korea
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.,Nippon Institute for Biological Science, Tokyo 198-0024, Japan
| |
Collapse
|
28
|
Abstract
Eukaryotes have evolved strategies to detect microbial intrusion and instruct immune responses to limit damage from infection. Recognition of microbes and cellular damage relies on the detection of microbe-associated molecular patterns (MAMPs, also called PAMPS, or pathogen-associated molecular patterns) and so-called "danger signals" by various families of host pattern recognition receptors (PRRs). Members of the recently identified protein family of nucleotide-binding domain andleucine-rich-repeat-containing proteins (NLR), including Nod1, Nod2, NLRP3, and NLRC4, have been shown to detect specific microbial motifs and danger signals for regulating host inflammatory responses. Moreover, with the discovery that polymorphisms in NOD1, NOD2, NLRP1, and NLRP3 are associated with susceptibility to chronic inflammatory disorders, the view has emerged that NLRs act not only as sensors butalso can serve as signaling platforms for instructing and balancing host immune responses. In this chapter, we explore the functions of these intracellular innate immune receptors and examine their implication in inflammatory diseases.
Collapse
|
29
|
Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA, Rock KL. Multiple Cathepsins Promote Pro-IL-1β Synthesis and NLRP3-Mediated IL-1β Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1685-97. [PMID: 26195813 PMCID: PMC4530060 DOI: 10.4049/jimmunol.1500509] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Sterile particles induce robust inflammatory responses that underlie the pathogenesis of diseases like silicosis, gout, and atherosclerosis. A key cytokine mediating this response is IL-1β. The generation of bioactive IL-1β by sterile particles is mediated by the NOD-like receptor containing a pyrin domain 3 (NLRP3) inflammasome, although exactly how this occurs is incompletely resolved. Prior studies have found that the cathepsin B inhibitor, Ca074Me, suppresses this response, supporting a model whereby ingested particles disrupt lysosomes and release cathepsin B into the cytosol, somehow activating NLRP3. However, reports that cathepsin B-deficient macrophages have no defect in particle-induced IL-1β generation have questioned cathepsin B's involvement. In this study, we examine the hypothesis that multiple redundant cathepsins (not just cathepsin B) mediate this process by evaluating IL-1β generation in murine macrophages, singly or multiply deficient in cathepsins B, L, C, S and X. Using an activity-based probe, we measure specific cathepsin activity in living cells, documenting compensatory changes in cathepsin-deficient cells, and Ca074Me's dose-dependent cathepsin inhibition profile is analyzed in parallel with its suppression of particle-induced IL-1β secretion. Also, we evaluate endogenous cathepsin inhibitors cystatins C and B. Surprisingly, we find that multiple redundant cathepsins, inhibited by Ca074Me and cystatins, promote pro-IL-1β synthesis, and to our knowledge, we provide the first evidence that cathepsin X plays a nonredundant role in nonparticulate NLRP3 activation. Finally, we find cathepsin inhibitors selectively block particle-induced NLRP3 activation, independently of suppressing pro-IL-1β synthesis. Altogether, we demonstrate that both small molecule and endogenous cathepsin inhibitors suppress particle-induced IL-1β secretion, implicating roles for multiple cathepsins in both pro-IL-1β synthesis and NLRP3 activation.
Collapse
Affiliation(s)
- Gregory M Orlowski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shruti Sharma
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Stephanie A Robertson
- Sandler Center for Drug Discovery, University of California, San Francisco, San Francisco, CA 94158
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655;
| |
Collapse
|
30
|
Different shapes of Al2O3 particles induce differential cytotoxicity via a mechanism involving lysosomal destabilization and reactive oxygen species generation. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0038-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Haverkamp MH, van de Vosse E, Goldbach-Mansky R, Holland SM. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS). Clin Exp Immunol 2014; 177:720-31. [PMID: 24773462 DOI: 10.1111/cei.12361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2014] [Indexed: 12/01/2022] Open
Abstract
Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β.
Collapse
Affiliation(s)
- M H Haverkamp
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands; Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Protein secretion, a key intercellular event for transducing cellular signals, is thought to be strictly regulated. However, secretion dynamics at the single-cell level have not yet been clarified because intercellular heterogeneity results in an averaging response from the bulk cell population. To address this issue, we developed a novel assay platform for real-time imaging of protein secretion at single-cell resolution by a sandwich immunoassay monitored by total internal reflection microscopy in sub-nanolitre-sized microwell arrays. Real-time secretion imaging on the platform at 1-min time intervals allowed successful detection of the heterogeneous onset time of nonclassical IL-1β secretion from monocytes after external stimulation. The platform also helped in elucidating the chronological relationship between loss of membrane integrity and IL-1β secretion. The study results indicate that this unique monitoring platform will serve as a new and powerful tool for analysing protein secretion dynamics with simultaneous monitoring of intracellular events by live-cell imaging.
Collapse
|
33
|
Luo Z, Hu Y, Xin R, Zhang B, Li J, Ding X, Hou Y, Yang L, Cai K. Surface functionalized mesoporous silica nanoparticles with natural proteins for reduced immunotoxicity. J Biomed Mater Res A 2013; 102:3781-94. [PMID: 24288246 DOI: 10.1002/jbm.a.35049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) present themselves as one of the most promising nano-carriers for drug delivery. To reduce their immunotoxicities, in this study, natural proteins of gelatin (Gel), bovine serum albumin (BSA), and lysozyme (Lys) were employed as end-caps of MSNs by using succinic anhydride as an intermediate linker, thus leading to fabrication of MSNs/protein nanocomposites, respectively. Furthermore, combined techniques of SEM, TEM, FTIR, and zeta potential instruments were utilized to monitor the construction processes of MSNs/protein nanocomposites, respectively. Finally, the immunotoxicities of those nanocomposites to macrophage cells (RAW264.7 cells) were investigated in detail, i.e., cell morphology, cell viability, nitric oxide (NO) production, reactive oxygen species (ROS), and acid phosphatase activity (ACP) as well as inflammation cytokine expressions (tumor necrosis factor-α and interleukin-1β). All results suggest that macrophages were activated after uptaking nanoparticles of SiO2 and MSNs, which subsequently induced severe inflammation responses in vitro. In contrast, the inflammation responses of MSNs nanocomposites were reduced dramatically after end-capping with those natural proteins. Overall, this study accumulates knowledge for the development of MSNs-based drug delivery systems with reduced immunotoxicity.
Collapse
Affiliation(s)
- Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China; College of Material Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
p53 and cell cycle independent dysregulation of autophagy in chronic lymphocytic leukaemia. Br J Cancer 2013; 109:2434-44. [PMID: 24091621 PMCID: PMC3817336 DOI: 10.1038/bjc.2013.601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/31/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022] Open
Abstract
Background: Activation of wild-type p53 with the small molecule sirtuin inhibitor Tenovin-6 (Tnv-6) induces p53-dependent apoptosis in many malignant cells. In contrast, Tnv-6 reduces chronic lymphocytic leukaemia (CLL) cell viability with dysregulation of autophagy, without increasing p53-pathway activity. Methods: Here, we have investigated whether a quiescent phenotype (unique to CLL) determines the Tnv-6 response, by comparing the effects of Tnv-6 on activated and proliferating CLL. We further studied if these responses are p53-dependent. Results: Unlike quiescent cells, cell death in activated cultures treated with Tnv-6 was consistently associated with p53 upregulation. However, p53 acetylation remained unchanged, without caspase-3 cleavage or apoptosis on electron microscopy. Instead, cellular ultrastructure and protein profiles indicated autophagy inhibition, with reduced ubiquitin–proteasome activity. In specimens with mutant TP53 cultured with Tnv-6, changes in the autophagy-associated protein LC3 occurred independently of p53. Cells treated with Tnv-6 analogues lacking sirtuin inhibitory activity had attenuated LC3 lipidation compared with Tnv-6 (P⩽0.01), suggesting that autophagy dysregulation occurs predominantly through an effect on sirtuins. Conclusion: These cell cycle and p53-independent anti-leukaemic mechanisms potentially offer novel therapeutic approaches to target leukaemia-sustaining cells in CLL, including in disease with p53-pathway dysfunction. Whether targets in addition to sirtuins contribute to autophagy dysregulation by Tnv-6, requires further investigation.
Collapse
|
35
|
NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis 2013; 4:e644. [PMID: 23703389 PMCID: PMC3674376 DOI: 10.1038/cddis.2013.169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NLR family pyrin domain containing 3 (NLRP3) is a cytoplasmic pattern recognition receptor that regulates innate immune responses by forming a protein complex, the inflammasome. It leads to production of proinflammatory cytokine productions such as interleukin 1β (IL-1β). We and others demonstrated that an induction of activated NLRP3 also induced cell death. However, little is known about the characteristics and mechanisms of the cell death and its involvement in the pathogenesis of inflammatory conditions. In this study, we established cell lines in which NLRP3 was induced by doxycycline using a tetracycline-inducible expression (Tet-on) system. Using this system, the expression of NLRP3 mutants in cryopyrin-associated periodic syndrome (CAPS) patients was sufficient for the induction of necrotic cell death without lipopolysaccharide stimulation or generation of mature IL-1β. We also found that CA074-Me, a cathepsin B inhibitor, blocked cell death before oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC), whereas Z-VAD-fmk, a pan-caspase inhibitor, blocked the cell death after the oligomerization. Silencing of the ASC gene (Pycard) by small hairpin RNA treatment inhibited the NLRP3 mutant-induced cell death, but silencing of the caspase-1 gene (Casp1) did not. Taken together, these results indicated that ASC was indispensable for NLRP3-mediated programmed necrotic cell death, and that this type of cell death was distinct from ‘pyroptosis', which requires caspase-1. Finally, we demonstrated in an in vivo model that the programmed necrotic cell death induced by activated NLRP3 could cause neutrophil infiltration, indicating a possible role of cell death in neutrophil infiltration of skin lesions in CAPS patients.
Collapse
|
36
|
Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One 2013; 8:e59610. [PMID: 23555724 PMCID: PMC3608663 DOI: 10.1371/journal.pone.0059610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023] Open
Abstract
In the present study, monocytes were treated with 5-azacytidine (azacytidine), gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER)- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.
Collapse
|
37
|
Jacobson LS, Lima H, Goldberg MF, Gocheva V, Tsiperson V, Sutterwala FS, Joyce JA, Gapp BV, Blomen VA, Chandran K, Brummelkamp TR, Diaz-Griffero F, Brojatsch J. Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. J Biol Chem 2013; 288:7481-7491. [PMID: 23297415 DOI: 10.1074/jbc.m112.400655] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response.
Collapse
Affiliation(s)
- Lee S Jacobson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Heriberto Lima
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Vasilena Gocheva
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering, New York, New York 10065
| | - Vladislav Tsiperson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Johanna A Joyce
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering, New York, New York 10065
| | - Bianca V Gapp
- Department of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Vincent A Blomen
- Department of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jürgen Brojatsch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
38
|
Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, Broglie PM, Marketon K, Austermann J, Vogl T, Foell D, Niemann S, Peters G, Roth J, Löffler B. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 2012; 92:1069-81. [PMID: 22892107 DOI: 10.1189/jlb.0112014] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Staphylococcus aureus pore-forming toxin PVL is most likely causative for life-threatening necrotizing infections, which are characterized by massive tissue inflammation and necrosis. Whereas the cytotoxic action of PVL on human neutrophils is already well established, the PVL effects on other sensitive cell types, such as monocytes and macrophages, are less clear. In this study, we used different types of human leukocytes (neutrophils, monocytes, macrophages, lymphocytes) to investigate cell-specific binding of PVL subunits and subsequent proinflammatory and cytotoxic effects. In all PVL-sensitive cells, we identified the binding of the subunit LukS-PV as the critical factor for PVL-induced cytotoxicity, which was followed by binding of LukF-PV. LukS-PV binds to monocytes, macrophages, and neutrophils but not to lymphocytes. Additionally, we showed that PVL binding to monocytes and macrophages leads to release of caspase-1-dependent proinflammatory cytokines IL-1β and IL-18. PVL activates the NLRP3 inflammasome, a signaling complex of myeloid cells that is involved in caspase-1-dependent IL-1β processing in response to pathogens and endogenous danger signals. Specific inhibition of this pathway at several steps significantly reduced inflammasome activation and subsequent pyronecrosis. Furthermore, we found that PAMPs and DAMPs derived from dying neutrophils can dramatically enhance this response by up-regulating pro-IL-1β in monocytes/macrophages. This study analyzes a specific host signaling pathway that mediates PVL-induced inflammation and cytotoxicity, which has high relevance for CA-MRSA-associated and PVL-mediated pathogenic processes, such as necrotizing infections.
Collapse
Affiliation(s)
- Dirk Holzinger
- Institute of Immunology, Department of General Pediatrics, University Children’s Hospital Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood 2012; 120:1299-308. [DOI: 10.1182/blood-2012-03-417881] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Chronic infantile neurologic cutaneous and articular (CINCA) syndrome is an IL-1–driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here we report the generation of NLRP3-mutant and nonmutant-induced pluripotent stem cell (iPSC) lines from 2 CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs). We found that mutant cells are predominantly responsible for the pathogenesis in these mosaic patients because only mutant iPS-MPs showed the disease relevant phenotype of abnormal IL-1β secretion. We also confirmed that the existing anti-inflammatory compounds inhibited the abnormal IL-1β secretion, indicating that mutant iPS-MPs are applicable for drug screening for CINCA syndrome and other NLRP3-related inflammatory conditions. Our results illustrate that patient-derived iPSCs are useful for dissecting somatic mosaicism and that NLRP3-mutant iPSCs can provide a valuable platform for drug discovery for multiple NLRP3-related disorders.
Collapse
|
40
|
Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein. Immunity 2012; 37:85-95. [PMID: 22819042 DOI: 10.1016/j.immuni.2012.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/20/2012] [Accepted: 04/17/2012] [Indexed: 11/20/2022]
Abstract
Cryopyrin-associated periodic syndromes (CAPS) are caused by aberrant interleukin-1β (IL-1β) production induced by mutations in the NLRP3 protein in humans, but the mechanisms involved remain poorly understood. Using a mouse model, we show a role for the indigenous microbiota and mast cells (MCs) in skin disease associated with mutant Nlrp3 protein. Unlike normal cells, MCs expressing mutant Nlrp3 produced IL-1β in response to lipopolysaccharide or tumor necrosis factor-α (TNF-α). In neonatal mice, the microbiota induced TNF-α and IL-1β and promoted skin disease. MC deficiency greatly reduced disease in Nlrp3 mutant mice, and reconstitution of MC-deficient mice with mutant MCs restored skin disease, which required the expression of IL-1β in MCs. Surprisingly, neutralization of TNF-α abrogated IL-1β production and skin disease in neonatal Nlrp3 mutant mice, but not in affected adult mice. Thus, the microbiota and MCs initiate cellular events leading to dysregulated IL-1β production and skin inflammation in neonatal mice with the CAPS-associated Nlrp3 mutation.
Collapse
|
41
|
Blomgran R, Patcha Brodin V, Verma D, Bergström I, Söderkvist P, Sjöwall C, Eriksson P, Lerm M, Stendahl O, Särndahl E. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils. PLoS One 2012; 7:e31326. [PMID: 22403613 PMCID: PMC3293864 DOI: 10.1371/journal.pone.0031326] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/06/2012] [Indexed: 12/20/2022] Open
Abstract
Background Neutrophils are key-players in the innate host defense and their programmed cell death and removal are essential for efficient resolution of inflammation. These cells recognize a variety of pathogens, and the NOD-like receptors (NLRs) have been suggested as intracellular sensors of microbial components and cell injury/stress. Some NLR will upon activation form multi-protein complexes termed inflammasomes that result in IL-1β production. NLR mutations are associated with auto-inflammatory syndromes, and our previous data propose NLRP3 (Q705K)/CARD-8 (C10X) polymorphisms to contribute to increased risk and severity of inflammatory disease by acting as genetic susceptibility factors. These gene products are components of the NALP3 inflammasome, and approximately 6.5% of the Swedish population are heterozygote carriers of these combined gene variants. Since patients carrying the Q705K/C10X polymorphisms display leukocytosis, the aim of the present study was to find out whether the inflammatory phenotype was related to dysfunctional apoptosis and impaired clearance of neutrophils by macrophages. Methods and Findings Patients carrying the Q705K/C10X polymorphisms displayed significantly delayed spontaneous as well as microbe-induced apoptosis compared to matched controls. Western blotting revealed increased levels and phosphorylation of Akt and Mcl-1 in the patients' neutrophils. In contrast to macrophages from healthy controls, macrophages from the patients produced lower amounts of TNF; suggesting impaired macrophage clearance response. Conclusions The Q705K/C10X polymorphisms are associated with delayed apoptosis of neutrophils. These findings are explained by altered involvement of different regulators of apoptosis, resulting in an anti-apoptotic profile. Moreover, the macrophage response to ingestion of microbe-induced apoptotic neutrophils is altered in the patients. Taken together, the patients display impaired turnover and clearance of apoptotic neutrophils, pointing towards a dysregulated innate immune response that influences the resolution of inflammation. The future challenge is to understand how microbes affect the activation of inflammasomes, and why this interaction will develop into severe inflammatory disease in certain individuals.
Collapse
Affiliation(s)
- Robert Blomgran
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Veronika Patcha Brodin
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Deepti Verma
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ida Bergström
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Rheumatology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Per Eriksson
- Division of Rheumatology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Infectious Medicine, Karolinska Institute Huddinge, Stockholm, Sweden
| | - Olle Stendahl
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Eva Särndahl
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
- * E-mail:
| |
Collapse
|
42
|
Izawa K, Hijikata A, Tanaka N, Kawai T, Saito MK, Goldbach-Mansky R, Aksentijevich I, Yasumi T, Nakahata T, Heike T, Nishikomori R, Ohara O. Detection of base substitution-type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res 2012; 19:143-52. [PMID: 22279087 PMCID: PMC3325078 DOI: 10.1093/dnares/dsr047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic infantile neurological cutaneous and articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID), is a dominantly inherited systemic autoinflammatory disease and is caused by a heterozygous germline gain-of-function mutation in the NLRP3 gene. We recently found a high incidence of NLRP3 somatic mosaicism in apparently mutation-negative CINCA/NOMID patients using subcloning and subsequent capillary DNA sequencing. It is important to rapidly diagnose somatic NLRP3 mosaicism to ensure proper treatment. However, this approach requires large investments of time, cost, and labour that prevent routine genetic diagnosis of low-level somatic NLRP3 mosaicism. We developed a routine pipeline to detect even a low-level allele of NLRP3 with statistical significance using massively parallel DNA sequencing. To address the critical concern of discriminating a low-level allele from sequencing errors, we first constructed error rate maps of 14 polymerase chain reaction products covering the entire coding NLRP3 exons on a Roche 454 GS-FLX sequencer from 50 control samples without mosaicism. Based on these results, we formulated a statistical confidence value for each sequence variation in each strand to discriminate sequencing errors from real genetic variation even in a low-level allele, and thereby detected base substitutions at an allele frequency as low as 1% with 99.9% or higher confidence.
Collapse
Affiliation(s)
- Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailänder V, Landfester K, Rouis M, Simmet T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS NANO 2011; 5:9648-57. [PMID: 22111911 DOI: 10.1021/nn203596e] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH(2)) of ∼100 nm in diameter, but not carboxyl- or nonfunctionalized particles, trigger NLRP3 inflammasome activation and subsequent release of proinflammatory interleukin 1β (IL-1β) by human macrophages. PS-NH(2) induced time-dependent proton accumulation in lysosomes associated with lysosomal destabilization, release of cathepsin B, and damage of the mitochondrial membrane. Accumulation of mitochondrial reactive oxygen species was accompanied by oxidation of thioredoxin, a protein playing a central role in maintaining the cellular redox balance. Upon oxidation, thioredoxin dissociated from the thioredoxin-interacting protein (TXNIP). Liberated TXNIP, in turn, interacted with the NLRP3 protein, resulting in a conformational change of the pyrin domain of the NLRP3 protein, as was predicted by molecular modeling. Consequently, this prompted assembly of the NLRP3 inflammasome complex with recruitment and activation of caspase-1, inducing IL-1β release by cleavage of pro-IL-1β. The central role of the NLRP3 inflammasome for cytokine production was confirmed by in vitro knockdown of NLRP3 and of the adaptor protein ASC, confirming that other inflammasomes were not activated by PS-NH(2). The PS-NH(2)-mediated proinflammatory macrophage activation could be antagonized by the radical scavenger N-acetyl-L-cysteine, which prevented mitochondrial damage, caspase-1 activation, and the subsequent release of IL-1β. Our study reveals the molecular mechanism of NLRP3 inflammasome activation by amino-functionalized nanoparticles and suggests a strategy as to how such adverse effects could be antagonized.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Saito MK. [CAPS: cryopyrin-associated periodic syndrome]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2011; 34:369-77. [PMID: 22041424 DOI: 10.2177/jsci.34.369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory syndrome caused by heterozygous mutations of NLRP3 gene. CAPS consists of three phenotypically similar but distinct syndromes: familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome and CINCA syndrome. Among them, FCAS shows the mildest phenotype while CINCA is the severest. Common symptoms include sporadic or cold-induced nonpruritic urticarial rash and fever. Severe cases suffers from deafness, meningitis, articular contracture and secondary amyloidosis. Gain-of-function mutations of NLRP3 causes excessive production of a potent proinflammatory cytokine IL-1β, thereby evokes autoinflammatory symptoms of CAPS. Recent advances of anti-IL-1 therapy dramatically improved the prognosis of CAPS. Currently three anti-IL-1 medicines are available, and all of them significantly improved clinical symptoms of CAPS patients. Although long-term observation is still needed, the molecular-targeted therapy has opened up a new opportunity for managing CAPS.
Collapse
Affiliation(s)
- Megumu K Saito
- Center for iPS cell research and application, Kyoto university, Japan
| |
Collapse
|
45
|
Motani K, Kushiyama H, Imamura R, Kinoshita T, Nishiuchi T, Suda T. Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity. J Biol Chem 2011; 286:33963-72. [PMID: 21832064 DOI: 10.1074/jbc.m111.286823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), connects pathogen/danger sensors such as NLRP3 and NLRC4 with caspases and is involved in inflammation and cell death. We have found that ASC activation induced caspase-8-dependent apoptosis or CA-074Me (cathepsin B inhibitor)-inhibitable necrosis depending on the cell type. Unlike necroptosis, another necrotic cell death, ASC-mediated necrosis, was neither RIP3-dependent nor necrostatin-1-inhibitable. Although acetyl-YVAD-chloromethylketone (Ac-YVAD-CMK) (caspase-1 inhibitor) did not inhibit ASC-mediated necrosis, comprehensive gene expression analyses indicated that caspase-1 expression coincided with the necrosis type. Furthermore, caspase-1 knockdown converted necrosis-type cells to apoptosis-type cells, whereas exogenous expression of either wild-type or catalytically inactive caspase-1 did the opposite. Knockdown of caspase-1, but not Ac-YVAD-CMK, suppressed the monocyte necrosis induced by Staphylococcus and Pseudomonas infection. Thus, the catalytic activity of caspase-1 is dispensable for necrosis induction. Intriguingly, a short period of caspase-1 knockdown inhibited IL-1β production but not necrosis, although longer knockdown suppressed both responses. Possible explanations of this phenomenon are discussed.
Collapse
Affiliation(s)
- Kou Motani
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Induction of necrotic death in macrophages is a primary virulence determinant of Mycobacterium tuberculosis. The ESX-1 secretion system and its substrate ESAT-6 are required for M. tuberculosis to induce necrosis, but host factors that mediate the ESAT-6-promoted necrosis remain unknown. Here we report that ESAT-6-promoted necrotic death in THP-1 human macrophages is dependent on the NLRP3 inflammasome, as shown by RNA interference and pharmacological inhibitions. Phagosomes containing ESAT-6-expressing M. tuberculosis recruit markers previously associated with damaged phagosomal membrane, such as galectin-3 and ubiquitinated protein aggregates. In addition, ESAT-6 promoted lysosomal permeabilization by M. tuberculosis. ESAT-6 mutants defective for ubiquitination were unable to trigger NLRP3 activation and necrotic death. Furthermore, Syk tyrosine kinase, recently implicated in NLRP3 activation during fungal and malarial infections, was necessary for mediating the ESAT-6-promoted necrosis and NLRP3 activation. Our results thus link phagosomal damage and Syk activity to NLRP3-mediated necrotic death triggered by M. tuberculosis ESAT-6 during infection.
Collapse
Affiliation(s)
- Ka-Wing Wong
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
47
|
Welin A, Eklund D, Stendahl O, Lerm M. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS One 2011; 6:e20302. [PMID: 21637850 PMCID: PMC3102687 DOI: 10.1371/journal.pone.0020302] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/29/2011] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.
Collapse
Affiliation(s)
- Amanda Welin
- Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
48
|
Saito MK. [Inflammasomes and related diseases]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2011; 34:20-8. [PMID: 21372510 DOI: 10.2177/jsci.34.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although inflammation is important for host defense, excessive inflammation sometimes causes serious consequences. IL-1β is one of major proinflammatory cytokines. Dysregulation of IL-1β promotes development of several diseases. Mature IL-1β is produced by cleavage of its proform by a protein complex named inflammasome. Inflammasome consists of NOD-LRRs containing family (NLR proteins), an adaptor protein, and a cysteine protease caspase-1. Several NLRs can be assembled into inflammasome in response to various stimulatory signals. Genetic disorder of inflammasome-IL-1 system cause autoinflammatory diseases such as cryopyrin-associated autoinflammatory disease, familial Mediterranean fever, deficiency of IL-1 receptor antagonist, and PAPA syndrome. This article reviews recent advances in the study of inflammasome and related diseases.
Collapse
Affiliation(s)
- Megumu K Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Conforti-Andreoni C, Ricciardi-Castagnoli P, Mortellaro A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cell Mol Immunol 2011; 8:135-45. [PMID: 21258359 PMCID: PMC4003142 DOI: 10.1038/cmi.2010.81] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-containing protein-like receptors (NLRs) are a recently discovered class of innate immune receptors that play a crucial role in initiating the inflammatory response following pathogen recognition. Some NLRs form the framework for cytosolic platforms called inflammasomes, which orchestrate the early inflammatory process via IL-1β activation. Mutations and polymorphisms in NLR-coding genes or in genetic loci encoding inflammasome-related proteins correlate with a variety of autoinflammatory diseases. Moreover, the activity of certain inflammasomes is associated with susceptibility to infections as well as autoimmunity and tumorigenesis. In this review, we will discuss how identifying the genetic characteristics of inflammasomes is assisting our understanding of both autoinflammatory diseases as well as other immune system-driven disorders.
Collapse
Affiliation(s)
- Cristina Conforti-Andreoni
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Immunos, Singapore
| | | | | |
Collapse
|
50
|
Abstract
The innate immune system relies on the recognition of pathogens by pattern recognition receptors as a first line of defense and to initiate the adaptive immune response. Substantial progress has been made in defining the role of Nod (nucleotide-binding oligimerization domain)-like receptors and AIM2 (absent in melanoma 2) as pattern recognition receptors that activate inflammasomes in macrophages. Inflammasomes are protein platforms essential for the activation of inflammatory caspases and subsequent maturation of their pro-inflammatory cytokine substrates and induction of pyroptosis. This paper summarizes recent developments regarding the function of Nod-like receptors in immunity and disease.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|