1
|
Oh BL, Vinanica N, Wong DM, Campana D. Chimeric antigen receptor T-cell therapy for T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:1677-1688. [PMID: 38832423 PMCID: PMC11141683 DOI: 10.3324/haematol.2023.283848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/11/2024] [Indexed: 06/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and effective treatment for patients with hematologic malignancies. Clinical responses to CAR T cells in leukemia, lymphoma, and multiple myeloma have provided strong evidence of the antitumor activity of these cells. In patients with refractory or relapsed B-cell acute lymphoblastic leukemia (ALL), the infusion of autologous anti-CD19 CAR T cells is rapidly gaining standard-of-care status and might eventually be incorporated into frontline treatment. In T-ALL, however, leukemic cells generally lack surface molecules recognized by established CAR, such as CD19 and CD22. Such deficiency is particularly important, as outcome is dismal for patients with T-ALL that is refractory to standard chemotherapy and/or hematopoietic stem cell transplant. Recently, CAR T-cell technologies directed against T-cell malignancies have been developed and are beginning to be tested clinically. The main technical obstacles stem from the fact that malignant and normal T cells share most surface antigens. Therefore, CAR T cells directed against T-ALL targets might be susceptible to self-elimination during manufacturing and/or have suboptimal activity after infusion. Moreover, removing leukemic cells that might be present in the cell source used for CAR T-cell manufacturing might be problematic. Finally, reconstitution of T cells and natural killer cells after CAR T-cell infusion might be impaired. In this article, we discuss potential targets for CAR T-cell therapy of T-ALL with an emphasis on CD7, and review CAR configurations as well as early clinical results.
Collapse
Affiliation(s)
- Bernice L.Z. Oh
- Viva-University Children’s Cancer Center, Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, National University Health System
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Natasha Vinanica
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Desmond M.H. Wong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
3
|
He H, Yao Y, Tang L, Li Y, Li Z, Liu B, Lan Y. Divergent molecular events underlying initial T-cell commitment in human prenatal and postnatal thymus. Front Immunol 2023; 14:1240859. [PMID: 37828991 PMCID: PMC10565475 DOI: 10.3389/fimmu.2023.1240859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Intrathymic T-cell development is a coordinated process accompanied by dynamic changes in gene expression. Although the transcriptome characteristics of developing T cells in both human fetal and postnatal thymus at single-cell resolution have been revealed recently, the differences between human prenatal and postnatal thymocytes regarding the ontogeny and early events of T-cell development still remain obscure. Moreover, the transcriptional heterogeneity and posttranscriptional gene expression regulation such as alternative polyadenylation at different stages are also unknown. Method In this study, we performed integrative single-cell analyses of thymocytes at distinct developmental stages. Results The subsets of prenatal CD4-CD8- double-negative (DN) cells, the most immature thymocytes responsible for T-cell lineage commitment, were characterized. By comprehensively comparing prenatal and postnatal DN cells, we revealed significant differences in some key gene expressions. Specifically, prenatal DN subpopulations exhibited distinct biological processes and markedly activated several metabolic programs that may be coordinated to meet the required bioenergetic demands. Although showing similar gene expression patterns along the developmental path, prenatal and postnatal thymocytes were remarkably varied regarding the expression dynamics of some pivotal genes for cell cycle, metabolism, signaling pathway, thymus homing, and T-cell commitment. Finally, we quantified the transcriptome-wide changes in alternative polyadenylation across T-cell development and found diverse preferences of polyadenylation site usage in divergent populations along the T-cell commitment trajectory. Discussion In summary, our results revealed transcriptional heterogeneity and a dynamic landscape of alternative polyadenylation during T-cell development in both human prenatal and postnatal thymus, providing a comprehensive resource for understanding T lymphopoiesis in human thymus.
Collapse
Affiliation(s)
- Han He
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Basic Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Lindong Tang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuhui Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Liang KL, Laurenti E, Taghon T. Circulating IRF8-expressing CD123 +CD127 + lymphoid progenitors: key players in human hematopoiesis. Trends Immunol 2023; 44:678-692. [PMID: 37591714 PMCID: PMC7614993 DOI: 10.1016/j.it.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Lymphopoiesis is the process in which B and T cells, and innate lymphoid cells (ILCs) develop from hematopoietic progenitors that exhibit early lymphoid priming. The branching points where lymphoid-primed human progenitors are further specified to B/T/ILC differentiation trajectories remain unclear. Here, we discuss the emerging role of interferon regulatory factor (IRF)8 as a key factor to bridge human lymphoid and dendritic cell (DC) differentiation, and the current evidence for the existence of circulating and tissue-resident CD123+CD127+ lymphoid progenitors. We propose a model whereby DC/B/T/ILC lineage programs in circulating CD123+CD127+ lymphoid progenitors are expressed in balance. Upon tissue seeding, the tissue microenvironment tilts this molecular balance towards a specific lineage, thereby determining in vivo lineage fates. Finally, we discuss the translational implication of these lymphoid precursors.
Collapse
Affiliation(s)
- Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
5
|
Anjos-Afonso F, Bonnet D. Human CD34+ hematopoietic stem cell hierarchy: how far are we with its delineation at the most primitive level? Blood 2023; 142:509-518. [PMID: 37018661 PMCID: PMC10644061 DOI: 10.1182/blood.2022018071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to isolate and characterize different hematopoietic stem cell (HSC) or progenitor cell populations opens avenues to understand how hematopoiesis is regulated during development, homeostasis, and regeneration as well as in age-related conditions such as clonal hematopoiesis and leukemogenesis. Significant progress has been made in the past few decades in determining the composition of the cell types that exist in this system, but the most significant advances have come from mouse studies. However, recent breakthroughs have made significant strides that have enhanced the resolution of the human primitive hematopoietic compartment. Therefore, we aim to review this subject not only from a historical perspective but also to discuss the progress made in the characterization of the human postnatal CD34+ HSC-enriched populations. This approach will enable us to shed light on the potential future translational applicability of human HSCs.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
6
|
Keita S, Diop S, Lekiashvili S, Chabaane E, Nelson E, Strullu M, Arfeuille C, Guimiot F, Domet T, Duchez S, Evrard B, Darde T, Larghero J, Verhoeyen E, Cumano A, Macintyre EA, Kasraian Z, Jouen F, Goodhardt M, Garrick D, Chalmel F, Alhaj Hussen K, Canque B. Distinct subsets of multi-lymphoid progenitors support ontogeny-related changes in human lymphopoiesis. Cell Rep 2023; 42:112618. [PMID: 37294633 DOI: 10.1016/j.celrep.2023.112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/11/2023] Open
Abstract
Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.
Collapse
Affiliation(s)
- Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France; Laboratoire Cognitions Humaine et Artificielle (CHArt) EA 4004 FED 4246, École Pratique des Hautes Études/PSL Research University, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Marion Strullu
- Service d'Hémato-Immunologie Pédiatrique, Inserm U1131, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Chloé Arfeuille
- Service d'Hémato-Immunologie Pédiatrique, Inserm U1131, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Service de Biologie du Développement, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Thomas Domet
- AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CIC de Biothérapies, Université de Paris, INSERM U976, Paris, France
| | - Sophie Duchez
- Plateforme d'Imagerie et de Tri Cellulaire, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, University Rennes, Rennes, France
| | | | - Jerome Larghero
- AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CIC de Biothérapies, Université de Paris, INSERM U976, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France; Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - Elizabeth A Macintyre
- Institut Necker Enfants-Malades, Team 2, INSERM Unité 1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Zeinab Kasraian
- Institut Necker Enfants-Malades, Team 2, INSERM Unité 1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - François Jouen
- Laboratoire Cognitions Humaine et Artificielle (CHArt) EA 4004 FED 4246, École Pratique des Hautes Études/PSL Research University, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Frederic Chalmel
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, University Rennes, Rennes, France
| | - Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France; Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France.
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.
| |
Collapse
|
7
|
Intrathymic dendritic cell-biased precursors promote human T cell lineage specification through IRF8-driven transmembrane TNF. Nat Immunol 2023; 24:474-486. [PMID: 36703005 DOI: 10.1038/s41590-022-01417-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.
Collapse
|
8
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
9
|
Van de Walle I, Lambrechts N, Derveeuw A, Lavaert M, Roels J, Taghon T. Identification and Purification of Human T Cell Precursors. Methods Mol Biol 2023; 2580:315-333. [PMID: 36374467 DOI: 10.1007/978-1-0716-2740-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During their development, human T cells undergo similar genomic changes and pass through the same developmental checkpoints as developing thymocytes in the mouse. The difference between both species, however, is that some of these developmental stages are characterized by different phenotypic markers, and as a result, evidence emerges that the molecular regulation of human T cell development subtly differs from the mouse (Taghon et al., Curr Top Microbiol Immunol 360:75-97, 2021; Haddad et al., Immunity 24:217-230, 2006; Hao et al., Blood 111:1318-1326, 2008; Taghon and Rothenberg, Semin Immunopathol 30:383-398, 2008). In this chapter, we describe in detail how the different stages of human T cell development can be characterized and isolated using specific surface markers.
Collapse
Affiliation(s)
- Inge Van de Walle
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nina Lambrechts
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Anaïs Derveeuw
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Marieke Lavaert
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Juliette Roels
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- The Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
10
|
Gaudeaux P, Moirangthem RD, Bauquet A, Simons L, Joshi A, Cavazzana M, Nègre O, Soheili S, André I. T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:956919. [PMID: 35874778 PMCID: PMC9300856 DOI: 10.3389/fimmu.2022.956919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference for numerous malignant and non-malignant hemopathies. The outcome of this approach is significantly hampered by not only graft-versus-host disease (GvHD), but also infections and relapses that may occur because of persistent T-cell immunodeficiency following transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year. Thus, the major challenge in the management of allogeneic HSCT relies on the possibility of shortening the window of immune deficiency through the acceleration of T-cell recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations that can give rise to mature T cells faster than HSCs while maintaining a safety profile compatible with clinical use is of major interest. In this review, we summarize current advances in the characterization of thymus seeding progenitors, and their ex vivo generated counterparts, T-cell progenitors. Transplantation of the latter has been identified as a worthwhile approach to shorten the period of immune deficiency in patients following allogeneic HSCT, and to fulfill the clinical objective of reducing morbimortality due to infections and relapses. We further discuss current opportunities for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-the-shelf strategies. These opportunities will be analyzed in the light of results from ongoing clinical studies involving T-cell progenitors.
Collapse
Affiliation(s)
- Pierre Gaudeaux
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Smart Immune, Paris, France
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Laura Simons
- Smart Immune, Paris, France
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Akshay Joshi
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Marina Cavazzana
- Smart Immune, Paris, France
- Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Paris Cité, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | | | | | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Modeling of human T cell development in vitro as a read-out for hematopoietic stem cell multipotency. Biochem Soc Trans 2021; 49:2113-2122. [PMID: 34643218 PMCID: PMC8589437 DOI: 10.1042/bst20210144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in distinct sites throughout fetal and adult life and give rise to all cells of the hematopoietic system. Because of their multipotency, HSCs are capable of curing a wide variety of blood disorders through hematopoietic stem cell transplantation (HSCT). However, due to HSC heterogeneity, site-specific ontogeny and current limitations in generating and expanding HSCs in vitro, their broad use in clinical practice remains challenging. To assess HSC multipotency, evaluation of their capacity to generate T lymphocytes has been regarded as a valid read-out. Several in vitro models of T cell development have been established which are able to induce T-lineage differentiation from different hematopoietic precursors, although with variable efficiency. Here, we review the potential of human HSCs from various sources to generate T-lineage cells using these different models in order to address the use of both HSCs and T cell precursors in the clinic.
Collapse
|
12
|
Moirangthem RD, Ma K, Lizot S, Cordesse A, Olivré J, de Chappedelaine C, Joshi A, Cieslak A, Tchen J, Cagnard N, Asnafi V, Rausell A, Simons L, Zuber J, Taghon T, Staal FJT, Pflumio F, Six E, Cavazzana M, Lagresle-Peyrou C, Soheili T, André I. A DL-4- and TNFα-based culture system to generate high numbers of nonmodified or genetically modified immunotherapeutic human T-lymphoid progenitors. Cell Mol Immunol 2021; 18:1662-1676. [PMID: 34117371 PMCID: PMC8245454 DOI: 10.1038/s41423-021-00706-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Several obstacles to the production, expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy. In the context of HSCT, delayed naïve T-cell recovery contributes to poor outcomes. A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors (HTLPs), allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus. However, it is challenging to produce HTLPs in the high numbers required to meet clinical needs. Here, we found that adding tumor necrosis factor alpha (TNFα) to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival. This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy (including CAR T-cell therapy).
Collapse
Affiliation(s)
- Ranjita Devi Moirangthem
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Kuiying Ma
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Sabrina Lizot
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anne Cordesse
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Juliette Olivré
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Corinne de Chappedelaine
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Akshay Joshi
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Agata Cieslak
- grid.412134.10000 0004 0593 9113Laboratory of Onco-Hematology, AP-HP, Hôpital Necker-Enfants Malades., Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM UMR 1151, Paris, France
| | - John Tchen
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Nicolas Cagnard
- grid.508487.60000 0004 7885 7602Plateforme Bio-informatique, Université Paris Descartes, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Vahid Asnafi
- grid.412134.10000 0004 0593 9113Laboratory of Onco-Hematology, AP-HP, Hôpital Necker-Enfants Malades., Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM UMR 1151, Paris, France
| | - Antonio Rausell
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Clinical Bioinformatics, INSERM UMR 1163, Paris, France
| | - Laura Simons
- grid.412134.10000 0004 0593 9113Department of Biotherapy Clinical Investigation Center, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Julien Zuber
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France ,grid.412134.10000 0004 0593 9113Department of Adult Kidney Transplantation, AP-HP, Hôpital Necker, Paris, France
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Frank J. T. Staal
- grid.10419.3d0000000089452978Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Pflumio
- grid.7429.80000000121866389Team Niche and Cancer in Hematopoiesis, Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Emmanuelle Six
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France ,grid.412134.10000 0004 0593 9113Department of Biotherapy Clinical Investigation Center, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Chantal Lagresle-Peyrou
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France ,grid.412134.10000 0004 0593 9113Department of Biotherapy Clinical Investigation Center, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Tayebeh Soheili
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Isabelle André
- grid.508487.60000 0004 7885 7602Université de Paris, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| |
Collapse
|
13
|
Lefeivre T, Jones L, Trinquand A, Pinton A, Macintyre E, Laurenti E, Bond J. Immature acute leukaemias: lessons from the haematopoietic roadmap. FEBS J 2021; 289:4355-4370. [PMID: 34028982 DOI: 10.1111/febs.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
It is essential to relate the biology of acute leukaemia to normal blood cell development. In this review, we discuss how modern models of haematopoiesis might inform approaches to diagnosis and management of immature leukaemias, with a specific focus on T-lymphoid and myeloid cases. In particular, we consider whether next-generation analytical tools could provide new perspectives that could improve our understanding of immature blood cancer biology.
Collapse
Affiliation(s)
- Thomas Lefeivre
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Amélie Trinquand
- National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Antoine Pinton
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
14
|
Euchner J, Sprissler J, Cathomen T, Fürst D, Schrezenmeier H, Debatin KM, Schwarz K, Felgentreff K. Natural Killer Cells Generated From Human Induced Pluripotent Stem Cells Mature to CD56 brightCD16 +NKp80 +/- In-Vitro and Express KIR2DL2/DL3 and KIR3DL1. Front Immunol 2021; 12:640672. [PMID: 34017328 PMCID: PMC8129508 DOI: 10.3389/fimmu.2021.640672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) into T and natural killer (NK) lymphocytes opens novel possibilities for developmental studies of immune cells and in-vitro generation of cell therapy products. In particular, iPSC-derived NK cells gained interest in adoptive anti-cancer immunotherapies, since they enable generation of homogenous populations of NK cells with and without genetic engineering that can be grown at clinical scale. However, the phenotype of in-vitro generated NK cells is not well characterized. NK cells derive in the bone marrow and mature in secondary lymphoid tissues through distinct stages from CD56brightCD16- to CD56dimCD16+ NK cells that represents the most abandoned population in peripheral blood. In this study, we efficiently generated CD56+CD16+CD3- NK lymphocytes from hiPSC and characterized NK-cell development by surface expression of NK-lineage markers. Hematopoietic priming of hiPSC resulted in 31.9% to 57.4% CD34+CD45+ hematopoietic progenitor cells (HPC) that did not require enrichment for NK lymphocyte propagation. HPC were further differentiated into NK cells on OP9-DL1 feeder cells resulting in high purity of CD56brightCD16- and CD56brightCD16+ NK cells. The output of generated NK cells increased up to 40% when OP9-DL1 feeder cells were inactivated with mitomycine C. CD7 expression could be detected from the first week of differentiation indicating priming towards the lymphoid lineage. CD56brightCD16-/+ NK cells expressed high levels of DNAM-1, CD69, natural killer cell receptors NKG2A and NKG2D, and natural cytotoxicity receptors NKp46, NKp44, NKp30. Expression of NKp80 on 40% of NK cells, and a perforin+ and granzyme B+ phenotype confirmed differentiation up to stage 4b. Killer cell immunoglobulin-like receptor KIR2DL2/DL3 and KIR3DL1 were found on up to 3 and 10% of mature NK cells, respectively. NK cells were functional in terms of cytotoxicity, degranulation and antibody-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Johanna Euchner
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Jasmin Sprissler
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany.,Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Fürst
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
15
|
Le J, Park JE, Ha VL, Luong A, Branciamore S, Rodin AS, Gogoshin G, Li F, Loh YHE, Camacho V, Patel SB, Welner RS, Parekh C. Single-Cell RNA-Seq Mapping of Human Thymopoiesis Reveals Lineage Specification Trajectories and a Commitment Spectrum in T Cell Development. Immunity 2021; 52:1105-1118.e9. [PMID: 32553173 DOI: 10.1016/j.immuni.2020.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The challenges in recapitulating in vivo human T cell development in laboratory models have posed a barrier to understanding human thymopoiesis. Here, we used single-cell RNA sequencing (sRNA-seq) to interrogate the rare CD34+ progenitor and the more differentiated CD34- fractions in the human postnatal thymus. CD34+ thymic progenitors were comprised of a spectrum of specification and commitment states characterized by multilineage priming followed by gradual T cell commitment. The earliest progenitors in the differentiation trajectory were CD7- and expressed a stem-cell-like transcriptional profile, but had also initiated T cell priming. Clustering analysis identified a CD34+ subpopulation primed for the plasmacytoid dendritic lineage, suggesting an intrathymic dendritic specification pathway. CD2 expression defined T cell commitment stages where loss of B cell potential preceded that of myeloid potential. These datasets delineate gene expression profiles spanning key differentiation events in human thymopoiesis and provide a resource for the further study of human T cell development.
Collapse
Affiliation(s)
- Justin Le
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jeong Eun Park
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Vi Luan Ha
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Annie Luong
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Fan Li
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Virginia Camacho
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sweta B Patel
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
17
|
Deng Y, Chen H, Zeng Y, Wang K, Zhang H, Hu H. Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing. Semin Immunopathol 2021; 43:29-43. [PMID: 33449155 DOI: 10.1007/s00281-020-00834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.
Collapse
Affiliation(s)
- Yujun Deng
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Chen
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Keyue Wang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
18
|
Liu C, Lan Y, Liu B, Zhang H, Hu H. T Cell Development: Old Tales Retold By Single-Cell RNA Sequencing. Trends Immunol 2021; 42:165-175. [PMID: 33446417 DOI: 10.1016/j.it.2020.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Mammalian T cell development initiates from the migration of hematopoietic progenitors to the thymus, which undergo cell proliferation, T-lineage specification and commitment, as well as positive and negative selection. These processes are precisely controlled at multiple levels and have been intensively studied using gene-modified animal models and in vitro coculture systems. However, several long-standing questions, including the characterization of the rare but crucial progenitors/precursors and the molecular mechanisms underlying their fate decision, have been dampened because of cell scarcity and lack of appropriate techniques. Single-cell RNA sequencing (scRNA-seq) makes it possible to investigate and resolve some of these questions, leading to new remarkable progress in identifying and characterizing early thymic progenitors and delineating the refined developmental trajectories of conventional and unconventional T cells.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
19
|
Abstract
Single cell RNA sequencing of human thymic cells is dependent on isolation of highly pure and viable cell populations. This protocol describes the isolation of CD34+ progenitor and more differentiated CD34– fractions from post-natal thymic tissue to study thymopoiesis. CD34+ cells represent <1% of thymic cells, so this protocol uses magnetic- followed by fluorescence-activated cell separation to isolate highly enriched CD34+ cells. For complete details on the use and execution of this protocol, please refer to Le et al. (2020). Protocol for processing of human thymus for single cell RNA-seq Thymus dissection and density gradient centrifugation isolate mononuclear cells Magnetic-activated cell separation isolates CD34+/CD34– cells Fluorescence-activated cell separation isolates populations for RNA-seq
Collapse
Affiliation(s)
- Justin Le
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vi Luan Ha
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Annie Luong
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
20
|
Generation and function of progenitor T cells from StemRegenin-1-expanded CD34+ human hematopoietic progenitor cells. Blood Adv 2020; 3:2934-2948. [PMID: 31648315 DOI: 10.1182/bloodadvances.2018026575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
Broader clinical application of umbilical cord blood (UCB), as a source of hematopoietic stem/progenitor cells (HSPCs), is limited by low CD34+ and T-cell numbers, contributing to slow lymphohematopoietic recovery, infection, and relapse. Studies have evaluated the safety, feasibility, and expedited neutrophil recovery associated with the transplantation of CD34+ HSPCs from ex vivo expansion cultures using the aryl hydrocarbon receptor antagonist StemRegenin-1 (SR1). In a phase 1/2 study of 17 patients who received combined SR1-expanded and unexpanded UCB units, a considerable advantage for enhancing T-cell chimerism was not observed. We previously showed that progenitor T (proT) cells generated in vitro from HSPCs accelerated T-cell reconstitution and restored immunity after hematopoietic stem cell transplantation (HSCT). To expedite immune recovery, we hypothesized that SR1-expanded HSPCs together with proT cells could overcome the known T-cell immune deficiency that occurs post-HSCT. Here, we show that SR1-expanded UCB can induce >250-fold expansion of CD34+ HSPCs, which can generate large numbers of proT cells upon in vitro differentiation. When compared with nonexpanded naive proT cells, SR1 proT cells also showed effective thymus-seeding and peripheral T-cell functional capabilities in vivo despite having an altered phenotype. In a competitive transfer approach, both naive and SR1 proT cells showed comparable thymus-engrafting capacities. Single-cell RNA sequencing of peripheral CD3+ T cells from mice injected with either naive or SR1 proT cells revealed functional subsets of T cells with polyclonal T-cell receptor repertoires. Our findings support the use of SR1-expanded UCB grafts combined with proT-cell generation for decreasing T-cell immunodeficiency post-HSCT.
Collapse
|
21
|
Lavaert M, Valcke B, Vandekerckhove B, Leclercq G, Liang KL, Taghon T. Conventional and Computational Flow Cytometry Analyses Reveal Sustained Human Intrathymic T Cell Development From Birth Until Puberty. Front Immunol 2020; 11:1659. [PMID: 32849574 PMCID: PMC7417369 DOI: 10.3389/fimmu.2020.01659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
The thymus is the organ where subsets of mature T cells are generated which subsequently egress to function as central mediators in the immune system. While continuously generating T cells even into adulthood, the thymus does undergo involution during life. This is characterized by an initial rapid decrease in thymic cellularity during early life and by a second age-dependent decline in adulthood. The thymic cellularity of neonates remains low during the first month after birth and the tissue reaches a maximum in cellularity at 6 months of age. In order to study the effect that this first phase of thymic involution has on thymic immune subset frequencies, we performed multi-color flow cytometry on thymic samples collected from birth to 14 years of age. In consideration of the inherent limitations posed by conventional flow cytometry analysis, we established a novel computational analysis pipeline that is adapted from single-cell transcriptome sequencing data analysis. This allowed us to overcome technical effects by batch correction, analyze multiple samples simultaneously, limit computational cost by subsampling, and to rely on KNN-graphs for graph-based clustering. As a result, we successfully identified rare, distinct and gradually developing immune subsets within the human thymus tissues. Although the thymus undergoes early involution from infanthood onwards, our data suggests that this does not affect human T-cell development as we did not observe significant alterations in the proportions of T-lineage developmental intermediates from birth to puberty. Thus, in addition to providing an interesting novel strategy to analyze conventional flow cytometry data for the thymus, our work shows that the early phase of human thymic involution mainly limits the overall T cell output since no obvious changes in thymocyte subsets could be observed.
Collapse
Affiliation(s)
- Marieke Lavaert
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Brecht Valcke
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Kai Ling Liang
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Roels J, Kuchmiy A, De Decker M, Strubbe S, Lavaert M, Liang KL, Leclercq G, Vandekerckhove B, Van Nieuwerburgh F, Van Vlierberghe P, Taghon T. Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development. Nat Immunol 2020; 21:1280-1292. [PMID: 32719521 DOI: 10.1038/s41590-020-0747-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
The development of TCRαβ and TCRγδ T cells comprises a step-wise process in which regulatory events control differentiation and lineage outcome. To clarify these mechanisms, we employed RNA-sequencing, ATAC-sequencing and ChIPmentation on well-defined thymocyte subsets that represent the continuum of human T cell development. The chromatin accessibility dynamics show clear stage specificity and reveal that human T cell-lineage commitment is marked by GATA3- and BCL11B-dependent closing of PU.1 sites. A temporary increase in H3K27me3 without open chromatin modifications is unique for β-selection, whereas emerging γδ T cells, which originate from common precursors of β-selected cells, show large chromatin accessibility changes due to strong T cell receptor (TCR) signaling. Furthermore, we unravel distinct chromatin landscapes between CD4+ and CD8+ αβ-lineage cells that support their effector functions and reveal gene-specific mechanisms that define mature T cells. This resource provides a framework for studying gene regulatory mechanisms that drive normal and malignant human T cell development.
Collapse
Affiliation(s)
- Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Anna Kuchmiy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent, Ghent, Belgium.,Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
23
|
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia 2020; 35:724-736. [PMID: 32655144 PMCID: PMC7932917 DOI: 10.1038/s41375-020-0965-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a−CD7− subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.
Collapse
|
24
|
Lavaert M, Liang KL, Vandamme N, Park JE, Roels J, Kowalczyk MS, Li B, Ashenberg O, Tabaka M, Dionne D, Tickle TL, Slyper M, Rozenblatt-Rosen O, Vandekerckhove B, Leclercq G, Regev A, Van Vlierberghe P, Guilliams M, Teichmann SA, Saeys Y, Taghon T. Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity 2020; 52:1088-1104.e6. [PMID: 32304633 DOI: 10.1016/j.immuni.2020.03.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.
Collapse
Affiliation(s)
- Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Kai Ling Liang
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Juliette Roels
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Monica S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Haematology Department, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Bart Vandekerckhove
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium; Faculty of Sciences, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
25
|
Themeli M, Chhatta A, Boersma H, Prins HJ, Cordes M, de Wilt E, Farahani AS, Vandekerckhove B, van der Burg M, Hoeben RC, Staal FJT, Mikkers HMM. iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports 2020; 14:300-311. [PMID: 31956083 PMCID: PMC7013232 DOI: 10.1016/j.stemcr.2019.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7−CD5− to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7−CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks. RAG2-SCID cells show impaired differentiation at several stages of T cell development RAG2-SCID T and NK cells fail to undergo legitimate RAG-driven TCR rearrangements RAG2-SCID cells exhibit a skewed differentiation toward NK cell-like cells RAG2-SCID phenotype is rescued by gene correction
Collapse
Affiliation(s)
- Maria Themeli
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Amiet Chhatta
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Hester Boersma
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Henk Jan Prins
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Martijn Cordes
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Edwin de Wilt
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Aïda Shahrabi Farahani
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent 9000, Belgium
| | - Mirjam van der Burg
- Department of Immunology, Erasmus Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Rob C Hoeben
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Harald M M Mikkers
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; LUMC hiPSC Hotel, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.
| |
Collapse
|
26
|
Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity 2019; 51:930-948.e6. [PMID: 31604687 DOI: 10.1016/j.immuni.2019.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Siyuan Hou
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Hui Shi
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China.
| |
Collapse
|
27
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
28
|
Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev 2019; 287:202-225. [PMID: 30565241 PMCID: PMC6310041 DOI: 10.1111/imr.12725] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
Human NK cells are innate immune effectors that play a critical roles in the control of viral infection and malignancy. The importance of their homeostasis and function can be demonstrated by the study of patients with primary immunodeficiencies (PIDs), which are part of the family of diseases known as inborn defects of immunity. While NK cells are affected in many PIDs in ways that may contribute to a patient's clinical phenotype, a small number of PIDs have an NK cell abnormality as their major immunological defect. These PIDs can be collectively referred to as NK cell deficiency (NKD) disorders and include effects upon NK cell numbers, subsets, and/or functions. The clinical impact of NKD can be severe including fatal viral infection, with particular susceptibility to herpesviral infections, such as cytomegalovirus, varicella zoster virus, and Epstein-Barr virus. While NKD is rare, studies of these diseases are important for defining specific requirements for human NK cell development and homeostasis. New themes in NK cell biology are emerging through the study of both known and novel NKD, particularly those affecting cell cycle and DNA damage repair, as well as broader PIDs having substantive impact upon NK cells. In addition, the discovery of NKD that affects other innate lymphoid cell (ILC) subsets opens new doors for better understanding the relationship between conventional NK cells and other ILC subsets. Here, we describe the biology underlying human NKD, particularly in the context of new insights into innate immune cell function, including a discussion of recently described NKD with accompanying effects on ILC subsets. Given the impact of these disorders upon human immunity with a common focus upon NK cells, the unifying message of a critical role for NK cells in human host defense singularly emerges.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
29
|
Montel-Hagen A, Crooks GM. From pluripotent stem cells to T cells. Exp Hematol 2018; 71:24-31. [PMID: 30590093 DOI: 10.1016/j.exphem.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
The generation of T cells from human pluripotent stem cells (PSCs) opens a valuable experimental window into developmental hematopoiesis and raises the possibility of a new therapeutic approach for T-cell immunotherapy. After directing PSCs through mesoderm and early hematopoietic developmental stages, commitment to the T-cell lineage has been achieved by several groups using coculture with stromal cells that express a notch ligand, recapitulating the critical signals that initiate the first stages of normal T-cell differentiation in the thymus. However, positive selection and the production of mature T cells from human PSCs have been limited to date. Nonetheless, T-lineage cells have been generated from PSCs with tumor antigen specificity either through a prearranged clonal T-cell receptor (TCR) or lentiviral-mediated expression of chimeric antigen receptors. The recent development of a 3D artificial organoid model has demonstrated that PSCs can generate mature conventional T cells that are fully functional and express a diverse TCR repertoire. Introduction of a transgenic TCR at the PSC stage allows for the production of tumor-antigen-specific, mature conventional T cells. The tools of gene editing in PSCs are ideally suited to produce off-the-shelf universal products for T-cell immunotherapy. In this review, we describe the studies that have led to this exciting moment in PSC biology and discuss translation to clinical applications.
Collapse
Affiliation(s)
- Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA; Broad Stem Cell Research Center, University of California, Los Angeles, CA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA.
| |
Collapse
|
30
|
Ha VL, Luong A, Li F, Casero D, Malvar J, Kim YM, Bhatia R, Crooks GM, Parekh C. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation. Leukemia 2017; 31:2503-2514. [PMID: 28232744 PMCID: PMC5599326 DOI: 10.1038/leu.2017.70] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.
Collapse
Affiliation(s)
- VL Ha
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - A Luong
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - F Li
- MiNGS Core Laboratory, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - D Casero
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, USA
| | - J Malvar
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - YM Kim
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - GM Crooks
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - C Parekh
- Children’s Center for Cancer and Blood Disease, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Martín-Gayo E, González-García S, García-León MJ, Murcia-Ceballos A, Alcain J, García-Peydró M, Allende L, de Andrés B, Gaspar ML, Toribio ML. Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches. J Exp Med 2017; 214:3361-3379. [PMID: 28947612 PMCID: PMC5679173 DOI: 10.1084/jem.20161564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Martín-Gayo et al. report that human early thymic progenitors can undergo a GATA2-dependent myeloid developmental program leading to resident dendritic cells (DCs) upon JAG1-Notch activation. The identification of JAG1+ DC-permissive intrathymic niches validates the human thymus as a DC-poietic organ. A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive commitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of a discrete JAG1+ thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development.
Collapse
Affiliation(s)
- Enrique Martín-Gayo
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara González-García
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Murcia-Ceballos
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Alcain
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina García-Peydró
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Allende
- Immunology Department, i+12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Belén de Andrés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Gaspar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, Moore MA, van den Brink MRM, Kusunoki Y. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. THE JOURNAL OF IMMUNOLOGY 2017; 199:2777-2793. [PMID: 28893953 DOI: 10.4049/jimmunol.1601711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
The role of Notch signaling in human innate lymphoid cell (ILC) differentiation is unclear, although IL-7 and IL-15 promote differentiation of natural cytotoxicity receptor (NCR) NKp44+ group 3 ILCs (NCR+ILC3s) and conventional NK (cNK) cells from CD34+ hematopoietic progenitor cells (HPCs) ex vivo. In this study, we analyzed the functions of Notch in the differentiation of NCR+ILC3s and cNK cells from human HPC subpopulations circulating in peripheral blood by limiting dilution and clonal assays using high-throughput flow cytometry. We demonstrated that Notch signaling in combination with IL-7 induced NCR+ILC3 differentiation, but conversely suppressed IL-15-dependent cNK cell generation in CD45RA+Flt-3-c-Kitlow, a novel innate lymphocyte-committed HPC subpopulation. In contrast, Notch signaling induced CD45RA-Flt-3+c-Kithigh multipotent HPCs to generate CD34+CD7+CD62Lhigh, the earliest thymic progenitor-like cells, which preserved high cNK/T cell potential, but lost NCR+ILC3 potential. These findings implicate the countervailing functions of Notch signaling in the fate decision between NCR+ILC3 and cNK cell lineages at different maturational stages of human HPCs. Inhibition of Notch functions by Abs specific for either the Notch1 or Notch2 negative regulatory region suggested that both Notch1 and Notch2 signals were involved in the fate decision of innate lymphocyte-committed HPCs and in the generation of earliest thymic progenitor-like cells from multipotent HPCs. Furthermore, the synergistic interaction between Notch and IL-7 in NCR+ILC3 commitment was primarily explicable by the induction of IL-7 receptor expression in the innate lymphocyte-committed HPCs by Notch stimulation, suggesting the pivotal role of Notch in the transcriptional control required for human NCR+ILC3 commitment.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan;
| | - Yoshiko Kubo
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Junko Kajimura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kei Nakachi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Malcolm A Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marcel R M van den Brink
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and.,Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| |
Collapse
|
33
|
Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev 2017; 32:36-51. [PMID: 28830639 DOI: 10.1016/j.blre.2017.08.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% and 25% of total childhood and adult ALL cases, respectively. During T-ALL, patients are at risk of organ infiltration by leukemic T-cells. Infiltration is a major consequence of disease relapse and correlates with poor prognosis. Transendothelial migration of leukemic cells is required to exit the blood stream into target organs. While mechanisms of normal T-cell transmigration are well known, the mechanisms of leukemic T-cell extravasation remain elusive; but involvement of chemokines, integrins and Notch signaling play critical roles. Here, we summarize current knowledge about molecular mechanisms of leukemic T-cell infiltration with special emphasis on the newly identified subtype early T-cell-progenitor (ETP)-ALL. Furthermore, we compare the extravasation potential of T-ALL cells with that of other hematologic malignancies such as B-ALL and acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| | - Elisa Dorantes-Acosta
- Leukemia Clinic, Children's Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720 Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico.
| |
Collapse
|
34
|
Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2017; 16:310-20. [PMID: 27121652 DOI: 10.1038/nri.2016.34] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells have long been considered to be a homogenous population of innate lymphocytes with limited phenotypic and functional diversity. However, recent findings have revealed that these cells comprise a large number of distinct populations with diverse characteristics. Some of these characteristics may relate to their developmental origin, and others represent differences in differentiation that are influenced by factors such as tissue localization and imprints by viral infections. In this Review, we provide a comprehensive overview of the emerging knowledge about the development, differentiation and function of human NK cell populations, with a particular focus on NK cells in peripheral tissues.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
35
|
Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, Zhu Y, Kim K, Kohn DB, Baltimore D, Crooks GM, Montel-Hagen A. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods 2017; 14:521-530. [PMID: 28369043 PMCID: PMC5426913 DOI: 10.1038/nmeth.4237] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCRab+ single positive (SP) CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports highly efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naïve phenotypes, a diverse TCR repertoire, and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen specific cytotoxicity and near complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ loci. ATOs provide a robust tool for studying human T cell development and stem cell based approaches to engineered T cell therapies.
Collapse
Affiliation(s)
- Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Chongbin He
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, California, USA
| | - Suwen Li
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Brent Chick
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, UCLA, Los Angeles, California, USA
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Kenneth Kim
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, UCLA, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, California, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| |
Collapse
|
36
|
Requirements for human natural killer cell development informed by primary immunodeficiency. Curr Opin Allergy Clin Immunol 2016; 16:541-548. [DOI: 10.1097/aci.0000000000000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
T Cell Genesis: In Vitro Veritas Est? Trends Immunol 2016; 37:889-901. [PMID: 27789110 DOI: 10.1016/j.it.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
T cells, as orchestrators of the adaptive immune response, serve important physiological and potentially therapeutic roles, for example in cancer immunotherapy. T cells are readily isolated from patients; however, the yield of antigen-specific T cells is limited, thus making their clinical use challenging. Therefore, the generation of T lymphocytes from hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (PSCs) in vitro provides an attractive method for the large-scale production and genetic manipulation of T cells. In this review, we discuss recent strategies for the generation of T cells from human HSPCs and PSCs in vitro. Continued advancement in the generation of human T cells in vitro will expand their benefits and therapeutic potential in the clinic.
Collapse
|
38
|
Wiekmeijer AS, Pike-Overzet K, Brugman MH, van Eggermond MCJA, Cordes M, de Haas EFE, Li Y, Oole E, van IJcken WFJ, Egeler RM, Meijerink JP, Staal FJT. Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms. Exp Hematol 2016; 44:838-849.e9. [PMID: 27302866 DOI: 10.1016/j.exphem.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
Overexpression of LMO2 is known to be one of the causes of T-cell acute lymphoblastic leukemia (T-ALL) development; however, the mechanisms behind its oncogenic activity are incompletely understood. LMO2-overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as the main preleukemic event. The effects of LMO2 overexpression on human T-cell development in vivo are unknown. Here, we report studies of a humanized mouse model transplanted with LMO2-transduced human hematopoietic stem/progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage; however, initially, multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: (1) a block at the double-negative/immature single-positive stage, (2) an accumulation of CD4(+)CD8(+) double-positive CD3(-) cells, and (3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes. Microarray analysis of sorted double-positive cells overexpressing LMO2 led to the identification of an LMO2 gene set that clustered with human T-ALL patient samples of the described "proliferative" cluster. In this article, we demonstrate previously unrecognized mechanisms by which LMO2 alters human T-cell development in vivo; these mechanisms correlate with human T-ALL leukemogenesis.
Collapse
Affiliation(s)
- Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marja C J A van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Cordes
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin F E de Haas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Edwin Oole
- Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - R Maarten Egeler
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Division of Hematology/Oncology, Hospital for Sick Children/University of Toronto, Toronto, Canada
| | - Jules P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
39
|
Van de Walle I, Davids K, Taghon T. Characterization and Isolation of Human T Cell Progenitors. Methods Mol Biol 2016; 1323:221-237. [PMID: 26294412 DOI: 10.1007/978-1-4939-2809-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
During their development, human T cells undergo similar genomic changes and pass through the same developmental checkpoints as developing thymocytes in the mouse. The difference between both species, however, is that some of these developmental stages are characterized by different phenotypic markers and as a result, evidence emerges that the molecular regulation of human T cell development subtly differs from the mouse [1-4]. In this chapter, we describe in detail how the different stages of human T cell development can be characterized and isolated using specific surface markers.
Collapse
Affiliation(s)
- Inge Van de Walle
- The Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, De Pintelaan 185 Blok A-4, 9000, Ghent, Belgium
| | | | | |
Collapse
|
40
|
Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nat Immunol 2015; 16:1282-91. [PMID: 26502406 PMCID: PMC4653072 DOI: 10.1038/ni.3299] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022]
Abstract
To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus.
Collapse
|
41
|
Wiekmeijer AS, Pike-Overzet K, IJspeert H, Brugman MH, Wolvers-Tettero ILM, Lankester AC, Bredius RGM, van Dongen JJM, Fibbe WE, Langerak AW, van der Burg M, Staal FJT. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol 2015; 137:517-526.e3. [PMID: 26441229 DOI: 10.1016/j.jaci.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) represents congenital disorders characterized by a deficiency of T cells caused by arrested development in the thymus. Yet the nature of these developmental blocks has remained elusive because of the difficulty of taking thymic biopsy specimens from affected children. OBJECTIVE We sought to identify the stages of arrest in human T-cell development caused by various major types of SCID. METHODS We performed transplantation of SCID CD34(+) bone marrow stem/progenitor cells into an optimized NSG xenograft mouse model, followed by detailed phenotypic and molecular characterization using flow cytometry, immunoglobulin and T-cell receptor spectratyping, and deep sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor δ (TRD) loci. RESULTS Arrests in T-cell development caused by mutations in IL-7 receptor α (IL7RA) and IL-2 receptor γ (IL2RG) were observed at the most immature thymocytes much earlier than expected based on gene expression profiling of human thymocyte subsets and studies with corresponding mouse mutants. T-cell receptor rearrangements were functionally required at the CD4(-)CD8(-)CD7(+)CD5(+) stage given the developmental block and extent of rearrangements in mice transplanted with Artemis-SCID cells. The xenograft model used is not informative for adenosine deaminase-SCID, whereas hypomorphic mutations lead to less severe arrests in development. CONCLUSION Transplanting CD34(+) stem cells from patients with SCID into a xenograft mouse model provides previously unattainable insight into human T-cell development and functionally identifies the arrest in thymic development caused by several SCID mutations.
Collapse
Affiliation(s)
- Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
42
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
43
|
Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro. Exp Cell Res 2015; 331:387-98. [PMID: 25576384 DOI: 10.1016/j.yexcr.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/21/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022]
Abstract
Thymopentin is a group of biologically active peptide secreted mainly by the epithelial cells of thymic cortex and medulla. Whether it promotes T cells production from human embryonic stem cells(hESCs) in vitro remains an elusive issue. In the present study, we develop a novel strategy that enhances T-cell lineage differentiation of hESCs in collagen matrix culture by sequential cytokine cocktails treatment combined with thymopentin stimulation. We observed that approximately 30.75% cells expressed CD34 on day 14 of the cultures and expressed the surface markers of erythroid, lymphoid and myeloid lineages. The results of colony assays and gene expressions by RT-PCR analysis also demonstrated that hematopoietic progenitor cells (HPCs) derived from hESCs were capable of multi-lineage differentiation. Further study revealed that culturing with thymopentin treatment, the CD34(+)CD45RA(+)CD7(+) cells sorted from HPCs expressed T-cell-related genes, IKAROS, DNTT, TCRγ and TCRβ, and T-cell surface markers, CD3, cytoplasmic CD3, CD5, CD27, TCRγδ, CD4 and CD8. The differentiated cells produced the cytokines including IFN-γ, IL-2 and TNF-α in response to stimulation, providing the evidence for T-cell function of these cells. In conclusion, thymopentin enhances T-cell lineage differentiation from hESCs in vitro by mimicking thymus peptide environment in vivo.
Collapse
|
44
|
Waegemans E, Van de Walle I, De Medts J, De Smedt M, Kerre T, Vandekerckhove B, Leclercq G, Wang T, Plum J, Taghon T. Notch3 activation is sufficient but not required for inducing human T-lineage specification. THE JOURNAL OF IMMUNOLOGY 2014; 193:5997-6004. [PMID: 25381438 DOI: 10.4049/jimmunol.1400764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although the role for the individual Notch receptors in early hematopoiesis have been thoroughly investigated in mouse, studies in human have been mostly limited to the use of pan-Notch inhibitors. However, such studies in human are important to predict potential side effects of specific Notch receptor blocking reagents because these are currently being considered as therapeutic tools to treat various Notch-dependent diseases. In this study, we studied the individual roles of Notch1 and Notch3 in early human hematopoietic lineage decisions, particularly during T-lineage specification. Although this process in mice is solely dependent on Notch1 activation, we recently reported Notch3 expression in human uncommitted thymocytes, raising the possibility that Notch3 mediates human T-lineage specification. Although expression of a constitutive activated form of Notch3 (ICN3) results in the induction of T-lineage specification in human CD34(+) hematopoietic progenitor cells, similar to ICN1 overexpression, loss-of-function studies using blocking Abs reveal that only Notch1, but not Notch3, is critical in this process. Blocking of Notch1 activation in OP9-DLL4 cocultures resulted in a complete block in T-lineage specification and induced monocytic and plasmacytoid dendritic cell differentiation instead. In fetal thymus organ cultures, impeded Notch1 activation resulted in B and dendritic cell development. In contrast, Notch3 blocking Abs only marginally affected T-lineage specification and hematopoietic differentiation with a slight increase in monocyte development. No induction of B or dendritic cell development was observed. Thus, our results unambiguously reveal a nonredundant role for Notch1 in human T-lineage specification, despite the expression of other Notch receptors.
Collapse
Affiliation(s)
- Els Waegemans
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Inge Van de Walle
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Jelle De Medts
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Magda De Smedt
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Tessa Kerre
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Tao Wang
- Medical Genetics Research Group and Centre for Molecular Medicine, School of Clinical and Laboratory Sciences, Faculty of Medicine and Human Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jean Plum
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, B-9000 Ghent, Belgium; and
| |
Collapse
|
45
|
Halkias J, Melichar HJ, Taylor KT, Robey EA. Tracking migration during human T cell development. Cell Mol Life Sci 2014; 71:3101-17. [PMID: 24682469 PMCID: PMC11113765 DOI: 10.1007/s00018-014-1607-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/21/2014] [Accepted: 03/11/2014] [Indexed: 01/06/2023]
Abstract
Specialized microenvironments within the thymus are comprised of unique cell types with distinct roles in directing the development of a diverse, functional, and self-tolerant T cell repertoire. As they differentiate, thymocytes transit through a number of developmental intermediates that are associated with unique localization and migration patterns. For example, during one particular developmental transition, immature thymocytes more than double in speed as they become mature T cells that are among the fastest cells in the body. This transition is associated with dramatic changes in the expression of chemokine receptors and their antagonists, cell adhesion molecules, and cytoskeletal components to direct the maturing thymocyte population from the cortex to medulla. Here we discuss the dynamic changes in behavior that occur throughout thymocyte development, and provide an overview of the cell-intrinsic and extrinsic mechanisms that regulate human thymocyte migration.
Collapse
Affiliation(s)
- Joanna Halkias
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, #3200, Berkeley, CA, 94720-3200, USA,
| | | | | | | |
Collapse
|
46
|
Kohn LA, Seet CS, Scholes J, Codrea F, Chan R, Zaidi-Merchant S, Zhu Y, De Oliveira S, Kapoor N, Shah A, Abdel-Azim H, Kohn DB, Crooks GM. Human lymphoid development in the absence of common γ-chain receptor signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:5050-8. [PMID: 24771849 DOI: 10.4049/jimmunol.1303496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the power of model systems to reveal basic immunologic mechanisms, critical differences exist between species that necessitate the direct study of human cells. Illustrating this point is the difference in phenotype between patients with SCID caused by mutations affecting the common γ-chain (γc) cytokine signaling pathway and mice with similar mutations. Although in both species, null mutations in either IL-2RG (which encodes γc), or its direct downstream signaling partner JAK3, result in T and NK cell deficiency, an associated B cell deficiency is seen in mice but not in humans with these genetic defects. In this study, we applied recent data that have revised our understanding of the earliest stages of lymphoid commitment in human bone marrow (BM) to determine the requirement for signaling through IL-2RG and JAK3 in normal development of human lymphoid progenitors. BM samples from SCID patients with IL-2RG (n = 3) or JAK3 deficiency (n = 2), which produce similar "T-NK-B+" clinical phenotypes, were compared with normal BM and umbilical cord blood as well as BM from children on enzyme treatment for adenosine deaminase-deficient SCID (n = 2). In both IL-2RG- and JAK3-SCID patients, the early stages of lymphoid commitment from hematopoietic stem cells were present with development of lymphoid-primed multipotent progenitors, common lymphoid progenitors and B cell progenitors, normal expression patterns of IL-7RA and TLSPR, and the DNA recombination genes DNTT and RAG1. Thus, in humans, signaling through the γc pathway is not required for prethymic lymphoid commitment or for DNA rearrangement.
Collapse
Affiliation(s)
- Lisa A Kohn
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Christopher S Seet
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Jessica Scholes
- Broad Stem Cell Research Center Flow Cytometry Core, University of California, Los Angeles, Los Angeles, CA 90095
| | - Felicia Codrea
- Broad Stem Cell Research Center Flow Cytometry Core, University of California, Los Angeles, Los Angeles, CA 90095
| | - Rebecca Chan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Sania Zaidi-Merchant
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Satiro De Oliveira
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles CA 90095
| | - Neena Kapoor
- Division of Research Immunology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles CA 90027; and
| | - Ami Shah
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles CA 90095; Division of Research Immunology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles CA 90027; and
| | - Hisham Abdel-Azim
- Division of Research Immunology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles CA 90027; and
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles CA 90095; Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles CA 90095;
| |
Collapse
|
47
|
Abstract
Discrete diagnostic subtypes of T lymphoblastic leukemia/lymphoma (T-cell acute lymphoblastic leukemia/lymphoma, T-ALL) have historically not been widely recognized. Recently, a novel subset with distinctive immunophenotypic, molecular, and clinical features has been proposed. Termed early T-cell precursor acute lymphoblastic leukemia (ETP-ALL), these cases seem to correspond to a very early stage of T-cell development. ETP-ALL is associated with a poor prognosis using standard protocols, and patients with ETP-ALL may benefit from intensified, alternative, or targeted therapies. Recognizing ETP-ALL and distinguishing it from other forms of acute leukemia are important elements of an up-to-date diagnostic approach to precursor T-cell neoplasms.
Collapse
Affiliation(s)
- David R Czuchlewski
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Kathryn Foucar
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
48
|
Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 2013; 122:4210-9. [PMID: 24215033 DOI: 10.1182/blood-2012-12-472803] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is followed by a period of immune deficiency due to a paucity in T-cell reconstitution. Underlying causes are a severely dysfunctional thymus and an impaired production of thymus-seeding progenitors in the host. Here, we addressed whether in vitro-derived human progenitor T (proT)-cells could not only represent a source of thymus-seeding progenitors, but also able to influence the recovery of the thymic microenvironment. We examined whether co-transplantation of in vitro-derived human proT-cells with hematopoietic stem cells (HSCs) was able to facilitate HSC-derived T-lymphopoiesis posttransplant. A competitive transfer approach was used to define the optimal proT subset capable of reconstituting immunodeficient mice. Although the 2 subsets tested (proT1, CD34(+)CD7(+)CD5(-); proT2, CD34(+)CD7(+)CD5(+)) showed thymus engrafting function, proT2-cells exhibited superior engrafting capacity. Based on this, when proT2-cells were coinjected with HSCs, a significantly improved and accelerated HSC-derived T-lymphopoiesis was observed. Furthermore, we uncovered a potential mechanism by which receptor activator of nuclear factor κb (RANK) ligand-expressing proT2-cells induce changes in both the function and architecture of the thymus microenvironment, which favors the recruitment of bone marrow-derived lymphoid progenitors. Our findings provide further support for the use of Notch-expanded progenitors in cell-based therapies to aid in the recovery of T-cells in patients undergoing HSCT.
Collapse
|
49
|
Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H, Amsen D. Modulation of Signal Strength Switches Notch from an Inducer of T Cells to an Inducer of ILC2. Front Immunol 2013; 4:334. [PMID: 24155745 PMCID: PMC3804867 DOI: 10.3389/fimmu.2013.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are emerging key players of the immune system with close lineage relationship to T cells. ILC2 play an important role in protective immunity against multicellular parasites, but are also involved in the pathogenesis of type 2 immune diseases. Here, we have studied the developmental requirements for human ILC2. We report that ILC2 are present in the thymus of young human donors, possibly reflecting local differentiation. Furthermore, we show that uncommitted lineage−CD34+CD1a−human thymic progenitors have the capacity to develop into ILC2 in vitro under the influence of Notch signaling, either by stimulation with the Notch ligand Delta like 1 (Dll1) or by expression of the active intracellular domain of NOTCH1 (NICD1). The capacity of NICD1 to mobilize the ILC2 differentiation program was sufficiently potent to override commitment to the T cell lineage in CD34+CD1a+ progenitors and force them into the ILC2 lineage. As Notch is an important factor also for T cell development, these results raise the question how one and the same signaling pathway can elicit such distinct developmental outcomes from the same precursors. We provide evidence that Notch signal strength is a critical determinant in this decision: by tuning signal amplitude, Notch can be converted from a T cell inducer (low signal strength) to an ILC2 inducer (high signal strength). Thus, this study enhances our understanding of human ILC2 development and identifies a mechanism determining specificity of Notch signal output during T cell and ILC2 differentiation.
Collapse
Affiliation(s)
- Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center , Amsterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
A simple model system enabling human CD34(+) cells to undertake differentiation towards T cells. PLoS One 2013; 8:e69572. [PMID: 23894504 PMCID: PMC3720953 DOI: 10.1371/journal.pone.0069572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
Background Channelling the development of haematopoietic progenitor cells into T lymphocytes is dependent upon a series of extrinsic prompts whose temporal and spatial sequence is critical for a productive outcome. Simple models of human progenitor cells development depend in the main on the use of xenogeneic systems which may provide some limitations to development. Methods and Findings Here we provide evidence that a simple model system which utilises both human keratinocyte and fibroblast cell lines arrayed on a synthetic tantalum coated matrix provides a permissive environment for the development of human CD34⁺ haematopoietic cells into mature CD4⁺ or CD8⁺ T lymphocytes in the presence of Interleukin 7 (IL-7), Interleukin 15 (IL-15) and the Fms-like tyrosine kinase 3 ligand (Flt-3L). This system was used to compare the ability of CD34+ cells to produce mature thymocytes and showed that whilst these cells derived from cord blood were able to productively differentiate into thymocytes the system was not permissive for the development of CD34+ cells from adult peripheral blood. Conclusions/Significance Our study provides direct evidence for the capacity of human cord blood CD34+ cells to differentiate along the T lineage in a simple human model system. Productive commitment of the CD34⁺ cells to generate T cells was found to be dependent on a three-dimensional matrix which induced the up-regulation of the Notch delta-like ligand 4 (Dll-4) by epithelial cells.
Collapse
|