1
|
Pocock R, Mansour MR. T-ALL and T-LBL: a notch apart. Blood 2024; 144:1356-1357. [PMID: 39325484 DOI: 10.1182/blood.2024026122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Affiliation(s)
| | - Marc R Mansour
- University College London Cancer Institute
- University College London
| |
Collapse
|
2
|
de Albuquerque A, Lopes BA, Fernandes RA, Gimba ERP, Emerenciano M. IKZF1 and BTG1 silencing reduces glucocorticoid response in B-cell precursor acute leukemia cell line. Hematol Transfus Cell Ther 2024:S2531-1379(24)00275-X. [PMID: 39095315 DOI: 10.1016/j.htct.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Secondary genetic alterations, which contribute to the dysregulation of cell cycle progression and lymphoid specialization, are frequently observed in B-cell precursor acute lymphoblastic leukemia (B-ALL). As IKZF1 and BTG1 deletions are associated with a worse outcome in B-ALL, this study aimed to address whether they synergistically promote glucocorticoid resistance. METHODS Small interfering RNA was used to downregulate either IKZF1, or BTG1, or both genes in the 207 B-ALL cell line. Cell viability was investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and trypan blue exclusion assays. The expression levels of IKZF1, BTG1 and glucocorticoid-responsive genes (DUSP1, SGK1, FBXW7 and NR3C1) were evaluated by real time quantitative real time polymerase chain reaction (PCR). RESULTS Isolated silencing of BTG1, IKZF1, or both genes in combination under dexamethasone treatment increased cell viability by 24%, 40% and 84%, respectively. Although BTG1 silencing did not alter the expression of glucocorticoid-responsive genes, IKZF1 knockdown decreased the transcript levels of DUSP1 (2.6-fold), SGK1 (1.8-fold), FBXW7 (2.2-fold) and NR3C1 (1.7-fold). The expression of glucocorticoid-responsive genes reached even lower levels (reducing 2.4-4 fold) when IKZF1 and BTG1 silencing occurred in combination. CONCLUSIONS IKZF1 silencing impairs the transcription of glucocorticoid-responsive genes; this effect is enhanced by concomitant loss of BTG1. These results demonstrate the molecular mechanism by which the combination of both genetic deletions might contribute to higher relapse rates in B-ALL.
Collapse
Affiliation(s)
- Amanda de Albuquerque
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Bruno A Lopes
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Genetics of Acute Leukemia Laboratory, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Renan Amphilophio Fernandes
- Pharmacology and Medicinal Chemistry Program, Institute of Biological Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Etel Rodrigues Pereira Gimba
- Department of Natural Sciences (RCN), Institute of Humanities and Health (IHS), Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil; Hematology-Molecular Oncology Program, Research Coordination, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Mariana Emerenciano
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Genetics of Acute Leukemia Laboratory, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Verma D, Kapoor S, Kumari S, Sharma D, Singh J, Benjamin M, Bakhshi S, Seth R, Nayak B, Sharma A, Pramanik R, Palanichamy JK, Sivasubbu S, Scaria V, Arora M, Kumar R, Chopra A. Decoding the genetic symphony: Profiling protein-coding and long noncoding RNA expression in T-acute lymphoblastic leukemia for clinical insights. PNAS NEXUS 2024; 3:pgae011. [PMID: 38328782 PMCID: PMC10847906 DOI: 10.1093/pnasnexus/pgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy characterized by the abnormal proliferation of immature T-cell precursors. Despite advances in immunophenotypic classification, understanding the molecular landscape and its impact on patient prognosis remains challenging. In this study, we conducted comprehensive RNA sequencing in a cohort of 35 patients with T-ALL to unravel the intricate transcriptomic profile. Subsequently, we validated the prognostic relevance of 23 targets, encompassing (i) protein-coding genes-BAALC, HHEX, MEF2C, FAT1, LYL1, LMO2, LYN, and TAL1; (ii) epigenetic modifiers-DOT1L, EP300, EML4, RAG1, EZH2, and KDM6A; and (iii) long noncoding RNAs (lncRNAs)-XIST, PCAT18, PCAT14, LINC00202, LINC00461, LINC00648, ST20, MEF2C-AS1, and MALAT1 in an independent cohort of 99 patients with T-ALL. Principal component analysis revealed distinct clusters aligning with immunophenotypic subtypes, providing insights into the molecular heterogeneity of T-ALL. The identified signature genes exhibited associations with clinicopathologic features. Survival analysis uncovered several independent predictors of patient outcomes. Higher expression of MEF2C, BAALC, HHEX, and LYL1 genes emerged as robust indicators of poor overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). Higher LMO2 expression was correlated with adverse EFS and RFS outcomes. Intriguingly, increased expression of lncRNA ST20 coupled with RAG1 demonstrated a favorable prognostic impact on OS, EFS, and RFS. Conclusively, several hitherto unreported associations of gene expression patterns with clinicopathologic features and prognosis were identified, which may help understand T-ALL's molecular pathogenesis and provide prognostic markers.
Collapse
Affiliation(s)
- Deepak Verma
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Sarita Kumari
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Jay Singh
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mercilena Benjamin
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi-110029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Raja Pramanik
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rajive Kumar
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anita Chopra
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
5
|
Shimony S, DeAngelo DJ, Luskin MR. Nelarabine: when and how to use in the treatment of T-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:23-36. [PMID: 37389830 PMCID: PMC10784681 DOI: 10.1182/bloodadvances.2023010303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
ABSTRACT T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma (T-ALL/LBL) is a rare hematologic malignancy most commonly affecting adolescent and young adult males. Outcomes are dismal for patients who relapse, thus, improvement in treatment is needed. Nelarabine, a prodrug of the deoxyguanosine analog 9-β-arabinofuranosylguanine, is uniquely toxic to T lymphoblasts, compared with B lymphoblasts and normal lymphocytes, and has been developed for the treatment of T-ALL/LBL. Based on phase 1 and 2 trials in children and adults, single-agent nelarabine is approved for treatment of patients with relapsed or refractory T-ALL/LBL, with the major adverse effect being central and peripheral neurotoxicity. Since its approval in 2005, nelarabine has been studied in combination with other chemotherapy agents for relapsed disease and is also being studied as a component of initial treatment in pediatric and adult patients. Here, we review current data on nelarabine and present our approach to the use of nelarabine in the treatment of patients with T-ALL/LBL.
Collapse
Affiliation(s)
- Shai Shimony
- Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
6
|
Jerez J, Goldschmidt V, Guerra MC, Briones JL, Torres C, Hidalgo S, Gazitúa R. Epidemiological and clinical characteristics of adult acute lymphoblastic leukemia patients in Chile: A single-center analysis. Leuk Res Rep 2023; 21:100405. [PMID: 38179336 PMCID: PMC10764242 DOI: 10.1016/j.lrr.2023.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024] Open
Abstract
Background Acute lymphoblastic leukemia represents 20% of acute leukemias in adults. Currently, there is limited data in Chile regarding the clinical, cytogenetic, and prognostic characteristics of this condition. Methods This is a retrospective, observational, and descriptive study of 67 patients treated for acute lymphoblastic leukemia at the Arturo Lopez Perez Foundation between 2018 and 2021. The main objective is to evaluate epidemiological and clinical characteristics, as well as identifying factors associated with improved overall survival and/or progression-free survival. Results 88% of the cases were B-lineage, mainly the common B phenotype. Cytogenetic analysis was performed in less than 50% of the patients, with lower yield than expected according to the literature. Molecular testing was performed in 86.5% of the patients, with the most frequent alteration being BCR-ABL. No study was performed to search for Ph-like abnormalities. The rate of complete response after induction was 83.3%, the majority of patients having negative minimal residual disease. Only 12% of the patients received consolidation with allogenic bone marrow transplant. At 2 years, the overall survival was 69% and the progression-free survival was 59%. Conclusion The results in terms of overall survival and progression-free survival are similar to those reported in the literature. Important diagnostic gaps prevent adequate prognostic characterization. Allogeneic consolidation transplantation was performed in a lower percentage than expected, highlighting the national deficit in access to this treatment.
Collapse
Affiliation(s)
- Joaquín Jerez
- Department of Hematology Fundación Arturo López Pérez, Chile
- Resident of Hematology, Universidad de los Andes, Chile
| | | | | | | | - Carlos Torres
- Department of Hematology Fundación Arturo López Pérez, Chile
| | | | | |
Collapse
|
7
|
Johansson KB, Zimmerman MS, Dmytrenko IV, Gao F, Link DC. Idasanutlin and navitoclax induce synergistic apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:2356-2366. [PMID: 37838759 PMCID: PMC10681904 DOI: 10.1038/s41375-023-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy in which activating mutations in the Notch pathway are thought to contribute to transformation, in part, by activating c-Myc. Increased c-Myc expression induces oncogenic stress that can trigger apoptosis through the MDM2-p53 tumor suppressor pathway. Since the great majority of T-ALL cases carry inactivating mutations upstream in this pathway but maintain wildtype MDM2 and TP53, we hypothesized that T-ALL would be selectively sensitive to MDM2 inhibition. Treatment with idasanutlin, an MDM2 inhibitor, induced only modest apoptosis in T-ALL cells but upregulated the pro-apoptotic BH3 domain genes BAX and BBC3, prompting us to evaluate the combination of idasanutlin with BH3 mimetics. Combination treatment with idasanutlin and navitoclax, a potent Bcl-2/Bcl-xL inhibitor, induces more consistent and potent synergistic killing of T-ALL PDX lines in vitro than venetoclax, a Bcl-2 specific inhibitor. Moreover, a marked synergic response to combination treatment with idasanutlin and navitoclax was seen in vivo in all four T-ALL xenografts tested, with a significant increase in overall survival in the combination treatment group. Collectively, these preclinical data show that the combination of idasanutlin and navitoclax is highly active in T-ALL and may merit consideration in the clinical setting.
Collapse
Affiliation(s)
- Kimberly B Johansson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan S Zimmerman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Iryna V Dmytrenko
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Sun X, Liu X, Li Y, Shi X, Li Y, Tan R, Jiang Y, Sui X, Ge X, Xu H, Wang X, Fang X. Characteristics of Molecular Genetic Mutations and Their Correlation with Prognosis in Adolescent and Adult Patients with Acute Lymphoblastic Leukemia. Oncology 2023; 102:85-98. [PMID: 37437551 DOI: 10.1159/000531522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.
Collapse
Affiliation(s)
- Xue Sun
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China,
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ying Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yahan Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Wang LJ, Chen Y, Xiang M, Yang XF, Chen SN. [Clinical features of 19 patients with SIL-TAL1-positive T-cell acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:132-136. [PMID: 36948867 PMCID: PMC10033260 DOI: 10.3760/cma.j.issn.0253-2727.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 03/24/2023]
Abstract
Objective: To assess the clinical characteristics and prognosis of patients with SIL-TAL1-positive T-cell acute lymphoblastic leukemia (T-ALL) . Methods: The clinical data of 19 SIL-TAL1-positive T-ALL patients admitted to the First Affiliated Hospital of Soochow University between January 2014 and February 2022 were retrospectively computed and contrasted with SIL-TAL1-negative T-ALL patients. Results: The median age of the 19 SIL-TAL1-positive T-ALL patients was 15 (7 to 41 years) , including 16 males (84.2%) . SIL-TAL1-positive T-ALL patients had younger age, higher WBC, and hemoglobin compared with SIL-TAL1-negative T-ALL patients. There was no discrepancy in gender distribution, PLT, chromosome abnormality distribution, immunophenotyping, and complete remission (CR) rate. The 3-year overall survival (OS) was 60.9% and 74.4%, respectively (HR=2.070, P=0.071) . The 3-year relapse-free survival (RFS) was 49.2% and 70.6%, respectively (HR=2.275, P=0.040) . The 3-year RFS rate of SIL-TAL1-positive T-ALL patients was considerably lower than SIL-TAL1-negative T-ALL patients. Conclusion: SIL-TAL1-positive T-ALL patients were connected to younger age, higher WBC, higher HGB, and poor outcome.
Collapse
Affiliation(s)
- L J Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Medical Research Center for Hematological Diseases, Suzhou 215006, China
| | - Y Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Medical Research Center for Hematological Diseases, Suzhou 215006, China
| | - M Xiang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Medical Research Center for Hematological Diseases, Suzhou 215006, China
| | - X F Yang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Medical Research Center for Hematological Diseases, Suzhou 215006, China
| | - S N Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Medical Research Center for Hematological Diseases, Suzhou 215006, China
| |
Collapse
|
11
|
Thomas X. T-cell acute lymphoblastic leukemia: promising experimental drugs in clinical development. Expert Opin Investig Drugs 2023; 32:37-52. [PMID: 36541671 DOI: 10.1080/13543784.2023.2161361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Despite advances in treatment approaches in acute lymphoblastic leukemia (ALL), the prognosis of adults with newly diagnosed T-ALL remains poor, as well as that of adults and children with relapsed disease. Novel targeted therapies are therefore needed. AREAS COVERED This review summarizes promising emerging strategies for the treatment of T-ALL. EXPERT OPINION The recent molecular characterization of T-ALL has led to the identification of new therapeutic targets. Small-molecules inhibitors and other targeted therapies have therefore been recently developed and are currently under clinical investigations. Similarly, first studies involving monoclonal antibodies and chimeric antigen receptor (CAR) T cells have shown encouraging results. Improvement of outcome with these novel approaches, eventually combined with current standard chemotherapy, is therefore expected in a near future in T-ALL.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Department of Clinical Hematology, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
12
|
Peng LJ, Zhou YB, Geng M, Bourova-Flin E, Chuffart F, Zhang WN, Wang T, Gao MQ, Xi MP, Cheng ZY, Zhang JJ, Liu YF, Chen B, Khochbin S, Wang J, Rousseaux S, Mi JQ. Ectopic expression of a combination of 5 genes detects high risk forms of T-cell acute lymphoblastic leukemia. BMC Genomics 2022; 23:467. [PMID: 35751016 PMCID: PMC9233359 DOI: 10.1186/s12864-022-08688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T cell acute lymphoblastic leukemia (T-ALL) defines a group of hematological malignancies with heterogeneous aggressiveness and highly variable outcome, making therapeutic decisions a challenging task. We tried to discover new predictive model for T-ALL before treatment by using a specific pipeline designed to discover aberrantly active gene. RESULTS The expression of 18 genes was significantly associated with shorter survival, including ACTRT2, GOT1L1, SPATA45, TOPAZ1 and ZPBP (5-GEC), which were used as a basis to design a prognostic classifier for T-ALL patients. The molecular characterization of the 5-GEC positive T-ALL unveiled specific characteristics inherent to the most aggressive T leukemic cells, including a drastic shut-down of genes located on the mitochondrial genome and an upregulation of histone genes, the latter characterizing high risk forms in adult patients. These cases fail to respond to the induction treatment, since 5-GEC either predicted positive minimal residual disease (MRD) or a short-term relapse in MRD negative patients. CONCLUSION Overall, our investigations led to the discovery of a homogenous group of leukemic cells with profound alterations of their biology. It also resulted in an accurate predictive tool that could significantly improve the management of T-ALL patients.
Collapse
Affiliation(s)
- Li-Jun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Bo Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Geng
- Department of Oncology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ekaterina Bourova-Flin
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,UMR 5309, CNRSINSERM U1209Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Florent Chuffart
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,UMR 5309, CNRSINSERM U1209Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Wei-Na Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Qing Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Ping Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jiao-Jiao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Fang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saadi Khochbin
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,UMR 5309, CNRSINSERM U1209Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Sophie Rousseaux
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,UMR 5309, CNRSINSERM U1209Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant 2022; 57:1217-1239. [PMID: 35589997 PMCID: PMC9119216 DOI: 10.1038/s41409-022-01691-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
|
14
|
Optimized outcome prediction of oncogenetic mutations in non-early T-cell precursor acute lymphoblastic leukemia. Immunobiology 2022; 227:152205. [DOI: 10.1016/j.imbio.2022.152205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
|
15
|
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23073795. [PMID: 35409154 PMCID: PMC8999045 DOI: 10.3390/ijms23073795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
Collapse
Affiliation(s)
- Kamil Kośmider
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Katarzyna Karska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Agata Kozakiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
16
|
Yin H, Hong M, Deng J, Yao L, Qian C, Teng Y, Li T, Wu Q. Prognostic Significance of Comprehensive Gene Mutations and Clinical Characteristics in Adult T-Cell Acute Lymphoblastic Leukemia Based on Next-Generation Sequencing. Front Oncol 2022; 12:811151. [PMID: 35280829 PMCID: PMC8908046 DOI: 10.3389/fonc.2022.811151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignant tumor with poor prognosis. However, accurate prognostic stratification factors are still unclear. Methods Data from 90 adult T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) patients were collected. The association of gene mutations detected by next-generation sequencing and clinical characteristics with the outcomes of T-ALL/LBL patients were retrospectively analyzed to build three novel risk stratification models through Cox proportional hazards model. Results Forty-seven mutated genes were identified. Here, 73.3% of patients had at least one mutation, and 36.7% had ≥3 mutations. The genes with higher mutation frequency were NOTCH1, FBXW7, and DNMT3A. The most frequently altered signaling pathways were NOTCH pathway, transcriptional regulation pathway, and DNA methylation pathway. Age (45 years old), platelet (PLT) (50 G/L), actate dehydrogenase (LDH) (600 U/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and hematopoietic stem cell transplantation (HSCT) were integrated into a risk stratification model of event-free survival (EFS). Age (45 years old), white blood cell (WBC) count (30 G/L), response in D19-BMR detection, TP53 and cell cycle signaling pathway alterations, and HSCT were integrated into a risk stratification model of overall survival (OS). According to our risk stratification models, the 1-year EFS and OS rates in the low-risk group were significantly higher than those in the high-risk group. Conclusions Our risk stratification models exhibited good prognostic roles in adult T-ALL/LBL patients and might guide individualized treatment and ultimately improve their outcomes.
Collapse
Affiliation(s)
- Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Ge Y, Wang J, Zhang H, Li J, Ye M, Jin X. Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 2022; 23:170. [PMID: 35069851 PMCID: PMC8764575 DOI: 10.3892/etm.2021.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
Regulation of the fate of hematopoietic stem cells (HSCs), including silencing, self-renewal or differentiation into blood line cells, is crucial to maintain the homeostasis of the human blood system and prevent leukemia. Notch1, a key receptor in the Notch signaling pathway, plays an important regulatory role in these properties of HSCs, particularly in the maintenance of the stemness of HSCs. In recent decades, the ubiquitination modification of Notch1 has been gradually revealed, and also demonstrated to affect the proliferation and differentiation of HSCs. Therefore, a detailed elucidation of Notch1 and its ubiquitination modification may help to improve understanding of the maintenance of HSC properties and the pathogenesis of leukemia. In addition, it may aid in identifying potential therapeutic targets for specific leukemias and provide potential prognostic indicators for HSC transplantation (HSCT). In the present review, the association between Notch1 and HSCs and the link between the ubiquitination modification of Notch1 and HSCs were described. In addition, the association between abnormal HSCs mediated by Notch1 or ubiquitinated Notch1and T-cell acute lymphoblastic leukemia (T-ALL) was also examined, which provides a promising direction for clinical application.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hui Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
18
|
Zhu H, Dong B, Zhang Y, Wang M, Rao J, Cui B, Liu Y, Jiang Q, Wang W, Yang L, Yu A, Li Z, Liu C, Zhang L, Huang X, Zhu X, Wu H. Integrated genomic analyses identify high-risk factors and actionable targets in T-cell acute lymphoblastic leukemia. BLOOD SCIENCE 2022; 4:16-28. [PMID: 35399540 PMCID: PMC8974951 DOI: 10.1097/bs9.0000000000000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy often associated with poor outcomes. To identify high-risk factors and potential actionable targets for T-ALL, we perform integrated genomic and transcriptomic analyses on samples from 165 Chinese pediatric and adult T-ALL patients, of whom 85% have outcome information. The genomic mutation landscape of this Chinese cohort is very similar to the Western cohort published previously, except that the rate of NOTCH1 mutations is significant lower in the Chinese T-ALL patients. Among 47 recurrently mutated genes in 7 functional categories, we identify RAS pathway and PTEN mutations as poor survival factors for non-TAL and TAL subtypes, respectively. Mutations in the PI3K pathway are mutually exclusive with mutations in the RAS and NOTCH1 pathways as well as transcription factors. Further analysis demonstrates that approximately 43% of the high-risk patients harbor at least one potential actionable alteration identified in this study, and T-ALLs with RAS pathway mutations are hypersensitive to MEKi in vitro and in vivo. Thus, our integrated genomic analyses not only systematically identify high-risk factors but suggest that these high-risk factors are promising targets for T-ALL therapies.
Collapse
Affiliation(s)
- Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Current address: Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Bingjie Dong
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mei Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Qian Jiang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Weitao Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Anqi Yu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zongru Li
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Chao Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Xiaojun Huang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
19
|
Taj MM, Moorman AV, Hamadeh L, Petit A, Asnafi V, Alby-Laurent F, Vora A, Mansour MR, Gale R, Chevret S, Moppett J, Baruchel A, Macintyre E. Prognostic value of Oncogenetic mutations in pediatric T Acute Lymphoblastic Leukemia: a comparison of UKALL2003 and FRALLE2000T protocols. Leukemia 2022; 36:263-266. [PMID: 34183766 DOI: 10.1038/s41375-021-01334-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mary M Taj
- Royal Marsden Hospital, NHS Foundation Trust, London, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lina Hamadeh
- Leukaemia Research Cytogenetics Group, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, AP-HP Hôpital Armand Trousseau, Sorbonne Université, UMRS_938, CDR Saint-Antoine, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, AP-HP Hôpital Necker-Enfants Malades, Université de Paris and Institut Necker-Enfants Malades, Paris, France
| | - Fanny Alby-Laurent
- Department of Pediatric Hematology and Oncology, AP-HP Hôpital Armand Trousseau, Sorbonne Université, UMRS_938, CDR Saint-Antoine, Paris, France
| | - Ajay Vora
- Great Ormond Street Hospital, London, UK
| | | | - Rosemary Gale
- University College London Cancer Institute, London, UK
| | | | - John Moppett
- University Hospitals Bristol and Weston, Bristol, UK
| | - André Baruchel
- Department of Pediatric Hematology, AP-HP, Hôpital Universitaire Robert Debré, EA 3518, Université de Paris, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, AP-HP Hôpital Necker-Enfants Malades, Université de Paris and Institut Necker-Enfants Malades, Paris, France.
| |
Collapse
|
20
|
Kline KAF, Kallen ME, Duong VH, Law JY. Acute Lymphoblastic Leukemia and Acute Lymphoblastic Lymphoma: Same Disease Spectrum but Two Distinct Diagnoses. Curr Hematol Malig Rep 2021; 16:384-393. [PMID: 34417955 DOI: 10.1007/s11899-021-00648-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Rare malignancies developing from lymphocyte precursor cells, lymphoblastic leukemia (LBL), and acute lymphoblastic lymphoma (ALL) have historically been viewed as different manifestations of the same disease process. This review examines data on their epidemiology, genetics, clinical presentation, and response to treatment while highlighting areas of similarity and divergence between these two clinical entities. RECENT FINDINGS Pediatric-type ALL chemotherapy regimens, compared to both lymphoma-type chemotherapy and adult-type ALL regimens, have led to improved outcomes for children, adolescents, and young adults with ALL. BCR-ABL-targeting tyrosine kinase inhibitors (TKIs) have improved outcomes in Philadelphia chromosome-positive (Ph +) ALL and in rare cases of Ph + LBL. Newer therapies including blinatumomab, inotuzumab, CAR-T therapy, and nelarabine have improved outcomes in selected cases of ALL and have an emerging role in the management of LBL. Better understanding of ALL and LBL biology allows for the development of therapies that target immunophenotypic or genetic features found in subsets of both diseases. Novel therapies are leading to improved outcomes in Ph + and relapsed and refractory disease.
Collapse
Affiliation(s)
- Kathryn A F Kline
- University of Maryland Greenebaum Comprehensive Cancer Center, 22 S. Greene Street, S9D10, Baltimore, MD, 21201-1995, USA.
| | - Michael E Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vu H Duong
- University of Maryland Greenebaum Comprehensive Cancer Center, 22 S. Greene Street, S9D10, Baltimore, MD, 21201-1995, USA.,Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennie Y Law
- University of Maryland Greenebaum Comprehensive Cancer Center, 22 S. Greene Street, S9D10, Baltimore, MD, 21201-1995, USA.,Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
[The characteristics and prognostic impact of NOTCH1/FBXW7 mutation and CDKN2A/B deletion in adult T-cell acute lymphoblastic leukemia patients]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:432-435. [PMID: 34218589 PMCID: PMC8293003 DOI: 10.3760/cma.j.issn.0253-2727.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, Andrieu GP, Tran Quang C, Latiri M, Ghysdael J, Spicuglia S, Dombret H, Ifrah N, Macintyre E, Lutsik P, Boissel N, Plass C, Asnafi V. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med 2021; 13:13/595/eabc4834. [PMID: 34039737 DOI: 10.1126/scitranslmed.abc4834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/10/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Adult "T cell" acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is associated with poor outcomes, requiring additional therapeutic options. The DNA methylation landscapes of adult T-ALL remain undercharacterized. Here, we systematically analyzed the DNA methylation profiles of normal thymic-sorted T cell subpopulations and 143 primary adult T-ALLs as part of the French GRAALL 2003-2005 trial. Our results indicated that T-ALL is epigenetically heterogeneous consisting of five subtypes (C1-C5), which were either associated with co-occurring DNA methyltransferase 3 alpha (DNMT3A)/isocitrate dehydrogenase [NADP(+)] 2 (IDH2) mutations (C1), TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) deregulation (C2), T cell leukemia homeobox 3 (TLX3) (C3), TLX1/in cis-homeobox A9 (HOXA9) (C4), or in trans-HOXA9 overexpression (C5). Integrative analysis of DNA methylation and gene expression identified potential cluster-specific oncogenes and tumor suppressor genes. In addition to an aggressive hypomethylated subgroup (C1), our data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor outcome and primary therapeutic response. Using mouse xenografts, we demonstrated that hypermethylated T-ALL samples exhibited therapeutic responses to the DNA hypomethylating agent 5-azacytidine, which significantly (survival probability; P = 0.001 for C3, 0.01 for C4, and 0.0253 for C5) delayed tumor progression. These findings suggest that epigenetic-based therapies may provide an alternative treatment option in hypermethylated T-ALL.
Collapse
Affiliation(s)
- Aurore Touzart
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Anand Mayakonda
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Germany-Israeli Helmholtz Research School in Cancer Biology, 69120 Heidelberg, Germany
| | - Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Guillaume P Andrieu
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Christine Tran Quang
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Mehdi Latiri
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Jacques Ghysdael
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), Equipe labellisée Ligue, UMR1090, 13288 Marseille, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, 49933 Angers, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Pavlo Lutsik
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. .,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France.
| |
Collapse
|
23
|
Pocock R, Farah N, Richardson SE, Mansour MR. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 194:28-43. [PMID: 33942287 DOI: 10.1111/bjh.17310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell ALL (T-ALL) is an aggressive malignancy of T-cell progenitors. Although survival outcomes in T-ALL have greatly improved over the past 50 years, relapsed and refractory cases remain extremely challenging to treat and those who cannot tolerate intensive treatment continue to have poor outcomes. Furthermore, T-ALL has proven a more challenging immunotherapeutic target than B-ALL. In this review we explore our expanding knowledge of the basic biology of T-ALL and how this is paving the way for repurposing established treatments and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rachael Pocock
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Simon E Richardson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
24
|
Arslan S, Pullarkat V, Aldoss I. Indications for Allogeneic HCT in Adults with Acute Lymphoblastic Leukemia in First Complete Remission. Curr Treat Options Oncol 2021; 22:63. [PMID: 34097131 DOI: 10.1007/s11864-021-00860-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/12/2023]
Abstract
OPINION STATEMENT Acute lymphoblastic leukemia (ALL) in adults is associated with poor outcomes as compared to children when treated with chemotherapy, leading to a considerably inferior cure rate. Historically, consolidation with allogeneic hematopoietic cell transplant (alloHCT) was routinely recommended for eligible adults with ALL in first complete remission (CR1) if a donor was available, since randomized studies showed superiority over continuing chemotherapy. With the increasing use of pediatric-inspired frontline regimens in young adults with ALL and the availability of novel salvage agents for relapsed/refractory B-cell ALL that have high potential in inducing a second CR, the role of early alloHCT in the treatment paradigm for ALL needs to be reevaluated, and the decision should be individualized for each patient. Simultaneously, alloHCT has evolved considerably lately, and historical randomized studies that have proven the benefit of alloHCT in adults with ALL in CR1 did not included the increasing use of reduced intensity conditioning and haploidentical transplants, and therefore, data may not entirely apply. Nowadays, detectable minimal residual disease (MRD) is the most prognostic determinant of ALL outcome and should be a major consideration in the decision to perform alloHcT in CR1. Nonetheless, other biological and clinical factors remain relevant and can support the complex decision-making. Such factors include high-risk leukemia genetics, the type of administered chemotherapy regimen and the ability of the patient to tolerate all key components of the regimen, and the availability of effective salvage therapies that allow alloHCT to be performed in CR2 in case of relapse after chemotherapy.
Collapse
Affiliation(s)
- Shukaib Arslan
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
25
|
Guo SS, Mi JQ, Wang J. [The role and research progress of NOTCH1 in T-cell acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:165-170. [PMID: 33858050 PMCID: PMC8071660 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- S S Guo
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - J Q Mi
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - J Wang
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
26
|
Fang-Fang Z, You Y, Wen-Jun L. Progress in research on childhood T-cell acute lymphocytic leukemia, Notch1 signaling pathway, and its inhibitors: A review. Bosn J Basic Med Sci 2021; 21:136-144. [PMID: 32415821 PMCID: PMC7982061 DOI: 10.17305/bjbms.2020.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Childhood leukemia is cancer that seriously threatens the life of children in China. Poor sensitivity to chemotherapy and susceptibility to drug resistance are the reasons for the treatment of T-cell acute lymphocytic leukemia (T-ALL) being extremely difficult. Moreover, traditional intensive chemotherapy regimens cause great damage to children. Therefore, it is highly important to search for targeted drugs and develop a precise individualized treatment for child patients. There are activating mutations in the NOTCH1 gene in more than 50% of human T-ALLs and the Notch signaling pathway is involved in the pathogenesis of T-ALL. In this review, we summarize the progress in research on T-ALL and Notch1 signaling pathway inhibitors to provide a theoretical basis for the clinical treatment of T-ALL.
Collapse
Affiliation(s)
- Zhong Fang-Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yang You
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Liu Wen-Jun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
27
|
Brown P, Inaba H, Annesley C, Beck J, Colace S, Dallas M, DeSantes K, Kelly K, Kitko C, Lacayo N, Larrier N, Maese L, Mahadeo K, Nanda R, Nardi V, Rodriguez V, Rossoff J, Schuettpelz L, Silverman L, Sun J, Sun W, Teachey D, Wong V, Yanik G, Johnson-Chilla A, Ogba N. Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 18:81-112. [PMID: 31910389 DOI: 10.6004/jnccn.2020.0001] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Advancements in technology that enhance our understanding of the biology of the disease, risk-adapted therapy, and enhanced supportive care have contributed to improved survival rates. However, additional clinical management is needed to improve outcomes for patients classified as high risk at presentation (eg, T-ALL, infant ALL) and who experience relapse. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for pediatric ALL provide recommendations on the workup, diagnostic evaluation, and treatment of the disease, including guidance on supportive care, hematopoietic stem cell transplantation, and pharmacogenomics. This portion of the NCCN Guidelines focuses on the frontline and relapsed/refractory management of pediatric ALL.
Collapse
Affiliation(s)
- Patrick Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Hiroto Inaba
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Colleen Annesley
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Susan Colace
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Mari Dallas
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Kara Kelly
- Roswell Park Comprehensive Cancer Center
| | | | | | | | - Luke Maese
- Huntsman Cancer Institute at the University of Utah
| | - Kris Mahadeo
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - Jenna Rossoff
- Ann & Robert H. Lurie Children's Hospital of Chicago
| | - Laura Schuettpelz
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Weili Sun
- City of Hope National Medical Center
| | - David Teachey
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | | | | |
Collapse
|
28
|
Burns MA, Place AE, Stevenson KE, Gutiérrez A, Forrest S, Pikman Y, Vrooman LM, Harris MH, Weinberg OK, Hunt SK, O’Brien JE, Asselin BL, Athale UH, Clavell LA, Cole PD, Gennarini LM, Kahn JM, Kelly KM, Laverdiere C, Leclerc JM, Michon B, Schorin MA, Sulis ML, Welch JJ, Neuberg DS, Sallan SE, Silverman LB. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: Results from DFCI ALL Consortium Protocols 05-001 and 11-001. Pediatr Blood Cancer 2021; 68:e28719. [PMID: 33026184 PMCID: PMC8369809 DOI: 10.1002/pbc.28719] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES While outcomes for pediatric T-cell acute lymphoblastic leukemia (T-ALL) are favorable, there are few widely accepted prognostic factors, limiting the ability to risk stratify therapy. DESIGN/METHODS Dana-Farber Cancer Institute (DFCI) Protocols 05-001 and 11-001 enrolled pediatric patients with newly diagnosed B- or T-ALL from 2005 to 2011 and from 2012 to 2015, respectively. Protocol therapy was nearly identical for patients with T-ALL (N = 123), who were all initially assigned to the high-risk arm. End-induction minimal residual disease (MRD) was assessed by reverse transcription polymerase chain reaction (RT-PCR) or next-generation sequencing (NGS), but was not used to modify postinduction therapy. Early T-cell precursor (ETP) status was determined by flow cytometry. Cases with sufficient diagnostic DNA were retrospectively evaluated by targeted NGS of known genetic drivers of T-ALL, including Notch, PI3K, and Ras pathway genes. RESULTS The 5-year event-free survival (EFS) and overall survival (OS) for patients with T-ALL was 81% (95% CI, 73-87%) and 90% (95% CI, 83-94%), respectively. ETP phenotype was associated with failure to achieve complete remission, but not with inferior OS. Low end-induction MRD (<10-4 ) was associated with superior disease-free survival (DFS). Pathogenic mutations of the PI3K pathway were mutually exclusive of ETP phenotype and were associated with inferior 5-year DFS and OS. CONCLUSIONS Together, our findings demonstrate that ETP phenotype, end-induction MRD, and PI3K pathway mutation status are prognostically relevant in pediatric T-ALL and should be considered for risk classification in future trials. DFCI Protocols 05-001 and 11-001 are registered at www.clinicaltrials.gov as NCT00165087 and NCT01574274, respectively.
Collapse
Affiliation(s)
- Melissa A. Burns
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Andrew E. Place
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Kristen E. Stevenson
- Department of Biostatistics and Computational Biology,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alejandro Gutiérrez
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Suzanne Forrest
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Lynda M. Vrooman
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Marian H. Harris
- Department of Pathology, Boston Children’s Hospital,
Harvard Medical School, Boston, MA
| | | | - Sarah K. Hunt
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
| | - Jane E. O’Brien
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
| | - Barbara L. Asselin
- Department of Pediatrics, Golisano Children’s
Hospital, University of Rochester Medical Center, Rochester, NY
| | - Uma H. Athale
- Division of Pediatric Hematology/Oncology, McMaster
University, Hamilton, ON, Canada
| | - Luis A. Clavell
- Division of Pediatric Oncology, San Jorge Children’s
Hospital, San Juan, Puerto Rico
| | - Peter D. Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer
Institute of New Jersey, Rutgers ;Robert Wood Johnson School of Medicine, New
Brunswick, NJ
| | - Lisa M. Gennarini
- Division of Pediatric Hematology/Oncology,
Children’s Hospital at Montefiore, Bronx, NY
| | - Justine M. Kahn
- Division of Pediatric Hematology, Oncology, and Stem Cell
Transplantation, Columbia University, New York, NY
| | - Kara M. Kelly
- Department of Pediatric Oncology, Roswell Park
Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Caroline Laverdiere
- Division of Hematology and Oncology, Hospital
Sainte-Justine, University of Montreal, Montreal, Canada
| | - Jean-Marie Leclerc
- Division of Hematology and Oncology, Hospital
Sainte-Justine, University of Montreal, Montreal, Canada
| | - Bruno Michon
- Division of Hematology-Oncology, Centre Hospitalier
Universite de Quebec, Quebec City, Canada
| | | | - Maria Luisa Sulis
- Pediatric Hematologic Malignancies Service, Department of
Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer J.G. Welch
- Division of Pediatric Hematology-Oncology, Hasbro
Children’s Hospital, Warren Alpert Medical School of Brown University,
Providence, RI
| | - Donna S. Neuberg
- Department of Biostatistics and Computational Biology,
Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Stephen E. Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s
Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
30
|
Lejman M, Włodarczyk M, Styka B, Pastorczak A, Zawitkowska J, Taha J, Sędek Ł, Skonieczka K, Braun M, Haus O, Szczepański T, Młynarski W, Kowalczyk JR. Advantages and Limitations of SNP Array in the Molecular Characterization of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2020; 10:1184. [PMID: 32766158 PMCID: PMC7379740 DOI: 10.3389/fonc.2020.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease, and numerous genetic aberrations in the leukemic genome are responsible for the biological and clinical differences among particular ALL subtypes. However, there is limited knowledge regarding the association of whole-genome copy number abnormalities (CNAs) in childhood T-ALL with the course of leukemia and its outcome. The aim of this study was to identify the pattern of whole-genome CNAs in 86 newly diagnosed childhood T-ALL cases using a high-density single-nucleotide polymorphism array. We analyzed the presence of whole-genome CNAs with respect to immunophenotype, clinical features, and treatment outcomes. A total of 769 CNAs, including trisomies, duplications, deletions, and segmental loss of heterozygosity, were detected in 86 analyzed samples. Gain or loss of chromosomal regions exceeding 10 Mb occurred in 46 cases (53%), including six cases (7%) with complex chromosomal alterations. We observed that microdeletions in selected genes (e.g., FIP1L1 and PDGFRB) were related to the clinical features. Interestingly, 13% of samples have a duplication of the two loci (MYB and AIH1—6q23.3), which never occurred alone. Single-nucleotide polymorphism array significantly improved the molecular characterization of pediatric T-ALL. Further studies with larger cohorts of patients may contribute to the selection of prognostic CNAs in this group of patients.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Włodarczyk
- Laboratory of Genetic Diagnostics, University Children's Hospital, Lublin, Poland
| | - Borys Styka
- Laboratory of Genetic Diagnostics, University Children's Hospital, Lublin, Poland
| | - Agata Pastorczak
- Department of Pediatric, Oncology, Hematology and Diabetology, Medical University of Łódz, Łódź, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Joanna Taha
- Department of Pediatric, Oncology, Hematology and Diabetology, Medical University of Łódz, Łódź, Poland
| | - Łukasz Sędek
- Department of Microbiology and Oncology, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Skonieczka
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Łódz, Łódź, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Tomasz Szczepański
- Department of Microbiology and Oncology, Medical University of Silesia in Katowice, Katowice, Poland
| | - Wojciech Młynarski
- Department of Pediatric, Oncology, Hematology and Diabetology, Medical University of Łódz, Łódź, Poland
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
31
|
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol 2020; 10:273. [PMID: 32185137 PMCID: PMC7059203 DOI: 10.3389/fonc.2020.00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma is an aggressive hematological neoplasm whose classification is still based on immunophenotypic findings. Frontline treatment encompass high intensity combination chemotherapy with good overall survival; however, relapsing/refractory patients have very limited options. In the last years, the understanding of molecular physiopathology of this disease, lead to the identification of a subset of patients with peculiar genetic profile, namely “early T-cell precursors” lymphoblastic leukemia, characterized by dismal outcome and indication to frontline allogeneic bone marrow transplant. In general, the most common mutations occur in the NOTCH1/FBXW7 pathway (60% of adult patients), with a positive prognostic impact. Other pathogenic steps encompass transcriptional deregulation of oncogenes/oncosuppressors, cell cycle deregulation, kinase signaling (including IL7R-JAK-STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK signaling pathway, ABL1 signaling pathway), epigenetic deregulation, ribosomal dysfunction, and altered expression of oncogenic miRNAs or long non-coding RNA. The insight in the genomic landscape of the disease paves the way to the use of novel targeted drugs that might improve the outcome, particularly in relapse/refractory patients. In this review, we analyse available literature on T-ALL pathogenesis, focusing on molecular aspects of clinical, prognostic, and therapeutic significance.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Jessica Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Juri Alessandro Giannotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Luca Baldini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | | |
Collapse
|
32
|
Adult T-cell acute lymphoblastic leukemias with IL7R pathway mutations are slow-responders who do not benefit from allogeneic stem-cell transplantation. Leukemia 2020; 34:1730-1740. [PMID: 31992840 DOI: 10.1038/s41375-019-0685-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
The prognostic value of IL7-receptor pathway (IL7Rp) mutations in T-cell acute lymphoblastic leukemia (T-ALL) remains unclear. We performed a comprehensive study of 200 adult patients with T-ALL included in the GRAALL2003/2005 protocols to address the clinical significance of IL7Rp mutations. Next-generation sequencing of the IL7Rp (IL7R/JAK1/JAK3/STAT5B) revealed that IL7Rp mutations were frequent in adult T-ALL (28%) particularly in immature/early T-cell progenitor (ETP)-ALL. They were associated with mutations of NOTCH-pathway, PHF6, and PRC2 components but not with K/NRAS. IL7Rp mutated (IL7Rpmut) T-ALL were slow-responders, with a high rate of M2/M3 day-8 marrow compared with IL7Rp non-mutated (IL7RpWT) T-ALL (p = 0.002) and minimal residual disease positivity at 6-weeks (MRD1) (p = 0.008) but no difference in MRD2 positivity at 12-weeks. Despite this, no adverse prognosis was evidenced when censored for allogeneic hematopoietic stem cell transplantation (HSCT). In time-dependent analysis, HSCT did not benefit IL7Rpmut patients whereas it was of marked benefit to IL7RpWT cases. IL7Rp-mutations identify a subgroup of slow-responder T-ALLs which benefit from post-induction chemotherapy regimens but not from HSCT. Our data suggest that prior knowledge of the mutation status of IL7Rp may influence HSCT decision and help to guide therapy reduction.
Collapse
|
33
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
34
|
Vega-García N, Perez-Jaume S, Esperanza-Cebollada E, Vicente-Garcés C, Torrebadell M, Jiménez-Velasco A, Ortega M, Llop M, Abad L, Vagace JM, Minguela A, Pratcorona M, Sánchez-Garcia J, García-Calderón CB, Gómez-Casares MT, Martín-Clavero E, Escudero A, Riñón Martinez-Gallo M, Muñoz L, Velasco MR, García-Morin M, Català A, Pascual A, Velasco P, Fernández JM, Lassaletta A, Fuster JL, Badell I, Molinos-Quintana Á, Molinés A, Guerra-García P, Pérez-Martínez A, García-Abós M, Robles Ortiz R, Pisa S, Adán R, Díaz de Heredia C, Dapena JL, Rives S, Ramírez-Orellana M, Camós M. Measurable Residual Disease Assessed by Flow-Cytometry Is a Stable Prognostic Factor for Pediatric T-Cell Acute Lymphoblastic Leukemia in Consecutive SEHOP Protocols Whereas the Impact of Oncogenetics Depends on Treatment. Front Pediatr 2020; 8:614521. [PMID: 33614543 PMCID: PMC7892614 DOI: 10.3389/fped.2020.614521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Robust and applicable risk-stratifying genetic factors at diagnosis in pediatric T-cell acute lymphoblastic leukemia (T-ALL) are still lacking, and most protocols rely on measurable residual disease (MRD) assessment. In our study, we aimed to analyze the impact of NOTCH1, FBXW7, PTEN, and RAS mutations, the measurable residual disease (MRD) levels assessed by flow cytometry (FCM-MRD) and other reported risk factors in a Spanish cohort of pediatric T-ALL patients. We included 199 patients treated with SEHOP and PETHEMA consecutive protocols from 1998 to 2019. We observed a better outcome of patients included in the newest SEHOP-PETHEMA-2013 protocol compared to the previous SHOP-2005 cohort. FCM-MRD significantly predicted outcome in both protocols, but the impact at early and late time points differed between protocols. The impact of FCM-MRD at late time points was more evident in SEHOP-PETHEMA 2013, whereas in SHOP-2005 FCM-MRD was predictive of outcome at early time points. Genetics impact was different in SHOP-2005 and SEHOP-PETHEMA-2013 cohorts: NOTCH1 mutations impacted on overall survival only in the SEHOP-PETHEMA-2013 cohort, whereas homozygous deletions of CDKN2A/B had a significantly higher CIR in SHOP-2005 patients. We applied the clinical classification combining oncogenetics, WBC count and MRD levels at the end of induction as previously reported by the FRALLE group. Using this score, we identified different subgroups of patients with statistically different outcome in both Spanish cohorts. In SHOP-2005, the FRALLE classifier identified a subgroup of high-risk patients with poorer survival. In the newest protocol SEHOP-PETHEMA-2013, a very low-risk group of patients with excellent outcome and no relapses was detected, with borderline significance. Overall, FCM-MRD, WBC count and oncogenetics may refine the risk-stratification, helping to design tailored approaches for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Nerea Vega-García
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sara Perez-Jaume
- Developmental Tumour Biology Laboratory, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Elena Esperanza-Cebollada
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Clara Vicente-Garcés
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Torrebadell
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Margarita Ortega
- Cytogenetics Unit, Hematology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Llop
- Molecular Biology Unit, Clinical Analysis Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cáncer (CIBERONC CB16/12/00284), Madrid, Spain
| | - Lorea Abad
- Paediatric Hemato-Oncology Laboratory, Hospital Niño Jesús, Madrid, Spain
| | | | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Marta Pratcorona
- Haematology Laboratory, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Clara B García-Calderón
- Instituto de Biomedicina de Sevilla (IBIS/Consejo Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red - Cáncer (CIBERONC)), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - María Teresa Gómez-Casares
- Biology and Molecular Haematology and Hemotherapy Service, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canarias, Spain
| | - Estela Martín-Clavero
- Haematology-Cytology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Adela Escudero
- Translational Research in Pediatric Oncology Hematopoietic Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Luz Muñoz
- Haematology Laboratory, Hospital Parc Taulí, Sabadell, Spain
| | | | - Marina García-Morin
- Paediatric Hematology Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Albert Català
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Pablo Velasco
- Pediatric Hematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Mª Fernández
- Haematology and Oncology Department, Hospital de La Fe, Valencia, Spain
| | - Alvaro Lassaletta
- Haematology and Oncology Department, Hospital Niño Jesús, Madrid, Spain
| | - José Luis Fuster
- Paediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Isabel Badell
- Paediatric Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Águeda Molinos-Quintana
- Instituto de Biomedicina de Sevilla (IBIS/Consejo Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red - Cáncer (CIBERONC)), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Antonio Molinés
- Unit of Hematology and Hemotherapy, H.U. Materno Infantil de Canarias, Canarias, Spain
| | - Pilar Guerra-García
- Paediatric Hemato-Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology Hematopoietic Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Miriam García-Abós
- Pediatric Onco-Hematology Department, Hospital Universitario Donostia, Donostia, Spain
| | - Reyes Robles Ortiz
- Pediatric Onco-Hematology Department, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Sandra Pisa
- Paediatric Hematology Department, Hospital Parc Taulí, Sabadell, Spain
| | - Rosa Adán
- Haematology and Oncology Department, Hospital de Cruces, Bilbao, Spain
| | - Cristina Díaz de Heredia
- Pediatric Hematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Dapena
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Susana Rives
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Mireia Camós
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Sakhdari A, Thakral B, Loghavi S, Kanagal-Shamanna R, Yin CC, Zuo Z, Routbort MJ, Luthra R, Medeiros LJ, Wang SA, Patel KP, Ok CY. RAS and TP53 can predict survival in adults with T-cell lymphoblastic leukemia treated with hyper-CVAD. Cancer Med 2019; 9:849-858. [PMID: 31804006 PMCID: PMC6997098 DOI: 10.1002/cam4.2757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/05/2022] Open
Abstract
Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of acute leukemias that account for about one third of all cases of Philadelphia chromosome (Ph)-negative ALL. Recently, a molecular classifier using the mutational status of NOTCH1, FBXW7, RAS, and PTEN (NFRP) has been shown to distinguish low- vs high-risk groups in adult T-ALL patients treated using the Berlin-Frankfurt-Münster ALL protocol. However, it is unknown if this molecular classifier can stratify adult T-ALL patients treated with hyper-CVAD ± nelarabine. We identified a relatively small cohort of 27 adults with T-ALL who were uniformly treated with hyper-CVAD ± nelarabine with available mutational analysis at time of diagnosis. The most commonly mutated genes in this group were NOTCH1 (52%), NRAS (22%), DNMT3A (19%), KRAS (15%), and TP53 (7%). The NFRP molecular classifier failed to stratify overall survival (OS; P = .84) and relapse-free survival (RFS; P = .18) in this cohort. We developed a new stratification model combining K/NRAS and TP53 mutations as high-risk factors and showed that mutations in these genes predicted poorer OS (P = .03) and RFS (P = .04). While the current study is limited by cohort size, these data suggest that the NFRP molecular classifier might not be applicable to adult T-ALL patients treated with hyper-CVAD ± nelarabine. RAS/TP53 mutation status, however, was useful in risk stratification in adults with T-ALL.
Collapse
Affiliation(s)
- Ali Sakhdari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
37
|
Touzart A, Boissel N, Belhocine M, Smith C, Graux C, Latiri M, Lhermitte L, Mathieu EL, Huguet F, Lamant L, Ferrier P, Ifrah N, Macintyre E, Dombret H, Asnafi V, Spicuglia S. Low level CpG island promoter methylation predicts a poor outcome in adult T-cell acute lymphoblastic leukemia. Haematologica 2019; 105:1575-1581. [PMID: 31537687 PMCID: PMC7271605 DOI: 10.3324/haematol.2019.223677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer cells undergo massive alterations in their DNA methylation patterns which result in aberrant gene expression and malignant phenotypes. Abnormal DNA methylation is a prognostic marker in several malignancies, but its potential prognostic significance in adult T-cell acute lymphoblastic leukemia (T-ALL) is poorly defined. Here, we performed methylated DNA immunoprecipitation to obtain a comprehensive genome-wide analysis of promoter methylation in adult T-ALL (n=24) compared to normal thymi (n=3). We identified a CpG hypermethylator phenotype that distinguishes two T-ALL subgroups and further validated it in an independent series of 17 T-lymphoblastic lymphoma. Next, we identified a methylation classifier based on nine promoters which accurately predict the methylation phenotype. This classifier was applied to an independent series of 168 primary adult T-ALL treated accordingly to the GRAALL03/05 trial using methylation-specific multiplex ligation-dependent probe amplification. Importantly hypomethylation correlated with specific oncogenic subtypes of T-ALL and identified patients associated with a poor clinical outcome. This methylation-specific multiplex ligation-dependent probe amplification based methylation profiling could be useful for therapeutic stratification of adult T-ALL in routine practice. The GRAALL-2003 and -2005 studies were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively.
Collapse
Affiliation(s)
- Aurore Touzart
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut de Recherche Saint-Louis, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Hematology Department, Paris, France
| | - Mohamed Belhocine
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.,Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France.,Equipe Labéllisée Ligue Contre le Cancer, Marseille, France
| | - Charlotte Smith
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Carlos Graux
- Department of Hematology, Mont-Godinne University Hospital, Yvoir, Belgium
| | - Mehdi Latiri
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Eve-Lyne Mathieu
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France.,Equipe Labéllisée Ligue Contre le Cancer, Marseille, France
| | - Françoise Huguet
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Laurence Lamant
- Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, Angers, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Hervé Dombret
- Université Paris Diderot, Institut de Recherche Saint-Louis, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Hematology Department, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France .,Equipe Labéllisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
38
|
Prognostic and predictive value of a microRNA signature in adults with T-cell lymphoblastic lymphoma. Leukemia 2019; 33:2454-2465. [PMID: 30953029 DOI: 10.1038/s41375-019-0466-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
New prognostic factors are needed to establish indications for haematopoietic stem cell transplantation (HSCT) in first complete remission (CR1) for T-cell lymphoblastic lymphoma (T-LBL) patients. We used microarray to compare T-LBL tissue samples (n = 75) and fetal thymus tissues (n = 20), and identified 35 differentially expressed miRNAs. Using 107 subjects as the training group, we developed a five-miRNA-based classifier to predict patient survival with LASSO Cox regression: lower risk was associated with better prognosis (disease-free survival (DFS): hazard ratio (HR) 4.548, 95% CI 2.433-8.499, p < 0.001; overall survival (OS): HR 5.030, 95% CI 2.407-10.513, p < 0.001). This classifier displayed good performance in the internal testing set (n = 106) and the independent external set (n = 304). High risk was associated with more favorable response to HSCT (DFS: HR 1.675, 95% CI 1.127-2.488, p = 0.011; OS: HR 1.602, 95% CI 1.055-2.433, p = 0.027). When combined with ECOG-PS and/or NOTCH1/FBXW7 status, this classifier had even better prognostic performance in patients receiving HSCT (DFS: HR 2.088, 95% CI 1.290-3.379, p = 0.003; OS: HR 1.996, 95% CI 1.203-3.311, p = 0.007). The five-miRNA classifier may be a useful prognostic biomarker for T-LBL adults, and could identify subjects who could benefit from HSCT.
Collapse
|
39
|
Cheng H, Chen L, Hu X, Qiu H, Xu X, Gao L, Tang G, Zhang W, Wang J, Yang J, Huang C. Knockdown of MAML1 inhibits proliferation and induces apoptosis of T-cell acute lymphoblastic leukemia cells through SP1-dependent inactivation of TRIM59. J Cell Physiol 2019; 234:5186-5195. [PMID: 30370525 DOI: 10.1002/jcp.27323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/03/2018] [Indexed: 11/06/2022]
Abstract
Notch exerts important functions in cell proliferation, survival, and differentiation, which plays a critical role in tumor development when aberrantly activated. Mastermind-like protein 1 (MAML1) has been functioning as crucial coactivators of Notch receptors and is required for stable formation of Notch transcriptional complexes. However, the mechanism whereby MAML1 induces T-cell acute lymphoblastic leukemia (T-ALL) tumorigenesis is largely unknown. The CCK-8 and flow cytometry assay were performed to examine the effect of MAML1 knockdown on T-ALL cell proliferation, apoptosis, and cell cycle. The expression of MAML1, cell cycle, and apoptosis-related gene, as well as TRIM family members and specific protein 1 (SP1) was measured by western blot analysis and qPCR. Our results showed that MAML1 knockdown significantly inhibited cell proliferation and induced G0/G1 cell cycle arrest and apoptosis in Jurkat and MOLT-4 cells. Cell cycle and apoptosis-related gene expression, including CDK2, Bcl-2, Bax, and Bad, was modified by the MAML1 knockdown. MAML1 knockdown obviously inhibited the CDK2 and Bcl-2 expression and increased the Bax, p53, and Bad expression. Moreover, the TRIM family members, including TRIM13, TRIM32, TRIM44, and TRIM59, were significantly decreased by the MAML1 knockdown, with the highest decrease detected in TRIM59 expression. Interesting, overexpression of SP1 not only increased the expression of MAML1 and TRIM59, but also promoted the promoter activation of TRIM59. Taken together, knockdown of MAML1 inhibits proliferation and induces apoptosis of T-ALL cells through SP1-dependent inactivation of TRIM59, and therefore suggest that MAML1-SP1-TRIM59 axis may serve as potentially interesting therapeutic targets for treatment of T-ALL.
Collapse
Affiliation(s)
- Hui Cheng
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Chen
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxia Hu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huiying Qiu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoqian Xu
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Gao
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weiping Zhang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Yang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chongmei Huang
- Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
40
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
41
|
Touzart A, Lengliné E, Latiri M, Belhocine M, Smith C, Thomas X, Spicuglia S, Puthier D, Pflumio F, Leguay T, Graux C, Chalandon Y, Huguet F, Leprêtre S, Ifrah N, Dombret H, Macintyre E, Hunault M, Boissel N, Asnafi V. Epigenetic Silencing Affects l-Asparaginase Sensitivity and Predicts Outcome in T-ALL. Clin Cancer Res 2019; 25:2483-2493. [PMID: 30659025 DOI: 10.1158/1078-0432.ccr-18-1844] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/29/2018] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Biological explanation for discrepancies in patient-related response to chemotherapy depending on the underlying oncogenic events is a promising research area. TLX1- or TLX3-deregulated T-cell acute lymphoblastic leukemias (T-ALL; TLX1/3+) share an immature cortical phenotype and similar transcriptional signatures. However, their prognostic impacts differ, and inconsistent clinical outcome has been reported for TLX3. We therefore hypothesized that the overlapping transcriptional profiles of TLX1+ and TLX3+ T-ALLs would allow identification of candidate genes, which might determine their distinct clinical outcomes. EXPERIMENTAL DESIGN We compared TLX1+ and TLX3+ adult T-ALL outcome in the successive French national LALA-94 and GRAALL-2003/2005 multicentric trials and analyzed transcriptomic data to identify differentially expressed genes. Epigenetic regulation of asparagine synthetase (ASNS) and in vitro l-asparaginase sensitivity were evaluated for T-ALL cell lines and primary samples. RESULTS We show that TLX1+ patients expressed low levels of ASNS when compared with TLX3+ and TLX-negative patients, due to epigenetic silencing of ASNS by both DNA methylation and a decrease of active histone marks. Promoter methylation of the ASNS gene correlated with l-asparaginase sensitivity in both T-ALL cell lines and patient-derived xenografts. Finally, ASNS promoter methylation was an independent prognostic factor for both event-free survival [HR, 0.42; 95% confidence interval (CI), 0.24-0.71; P = 0.001] and overall survival (HR, 0.40; 95% CI, 0.23-0.70; P = 0.02) in 160 GRAALL-2003/2005 T-ALL patients and also in an independent series of 47 LL03-treated T lymphoblastic lymphomas (P = 0.012). CONCLUSIONS We conclude that ASNS methylation status at diagnosis may allow individual adaptation of l-asparaginase dose.
Collapse
Affiliation(s)
- Aurore Touzart
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Etienne Lengliné
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Paris, France
| | - Mehdi Latiri
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Mohamed Belhocine
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France; Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Charlotte Smith
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Xavier Thomas
- Division of Hematology, Hospices Civils de Lyon, INSERM U1052-Centre National de la Recherche Scientifique UMR 5286, Centre Hospitalier Lyon Sud, Pierre Benite, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France; Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Denis Puthier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France; Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Françoise Pflumio
- INSERM UMR967, CEA/DSV/iRCM, Laboratory of Hematopoietic Stem Cells and Leukemic Cells, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université Paris Diderot, Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France
| | - Thibaut Leguay
- Division of Hematology, Hôpital du Haut-Levêque, Pessac, France
| | - Carlos Graux
- Department of Hematology, Mont-Godinne University Hospital, Yvoir, Belgium
| | - Yves Chalandon
- Hematology Division, Department of Oncology, University Hospital, Genève, Switzerland; Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Françoise Huguet
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Stéphane Leprêtre
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1245, Department of Hematology, Centre Henri-Becquerel and Normandie Univ UNIROUEN, Rouen, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers Service des Maladies du Sang et INSERM U 892, Angers, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Paris, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Mathilde Hunault
- Division of Hematology, Centre Hospitalier Universitaire d'Angers, Angers, France; INSERM U892/Centre National de la Recherche Scientifique 6299, Angers, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
42
|
Hefazi M, Litzow MR. Recent Advances in the Biology and Treatment of T Cell Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2018; 13:265-274. [PMID: 29948644 DOI: 10.1007/s11899-018-0455-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This article provides an overview of the current knowledge regarding the biology and treatment of T cell acute lymphoblastic leukemia (T-ALL) and highlights the most recent findings in this field over the past 5 years. RECENT FINDINGS Remarkable progress has been made in the genomic landscape of T-ALL over the past few years. The discovery of activating mutations of NOTCH1 and FBXW7 in a majority of patients has been a seminal observation, with several early phase clinical trials currently exploring these as potential therapeutic targets. Characterization of early T cell precursor ALL, incorporation of minimal residual disease assessment into therapeutic protocols, and use of pediatric-intensive regimens along with judicious use of allogeneic HCT have significantly improved risk stratification and treatment outcomes. Improved risk stratification and the use of novel targeted therapies based on recent genomic discoveries are expected to change the therapeutic landscape of T-ALL and hopefully improve the outcomes of this historically poor prognosis disease.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
43
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
44
|
Olshanskaya Y, Kazakova A, Tsaur G, Zerkalenkova E, Soldatkina O, Aprelova E, Plekhanova O, Gindina T, Mercur'ev D, Barhkatov I, Baidun L, Bydanov O, Lagoiko S, Tallen G, Rumiantseva J, Rumiantsev A, Karachunskii A, Henze G. Clinical significance of cytogenetic changes in childhood T-cell acute lymphoblastic leukemia: results of the multicenter group Moscow-Berlin (MB). Leuk Lymphoma 2018; 60:426-432. [PMID: 30067411 DOI: 10.1080/10428194.2018.1485904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The prognostic significance of genetic lesions in T-cell ALL still needs to be elucidated. Karyotyping and FISH were performed in samples from 120 patients with T-cell ALL registered in the trial Moscow-Berlin 2008. Most frequent rearrangements were TLX3 (N = 29; 24%) and TAL1 (N = 18; 15%), followed by KMT2A (N = 6; 5%), TLX1 (N = 5; 4.2%), and 11p13-15 (N = 5; 4.2%). In 16.7% of patients, the karyotype was normal, and in 30.8% 'other' aberrations were seen. Patients with a normal karyotype, TAL1, or KMT2A rearrangements had the most favorable outcome (probability of event free survival (pEFS): 82% ± 6%), while prognosis for patients with TLX3 and TLX1 rearrangements and 'other' aberrations was less favorable (pEFS: 62% ± 6%). Worst outcome was observed for five patients with 11p rearrangements (pEFS: 20% ± 18%). In summary, three subgroups of patients with T-cell ALL with significantly different outcomes could be defined by cytogenetic profiling.
Collapse
Affiliation(s)
- Yulia Olshanskaya
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Anna Kazakova
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Grigory Tsaur
- b Research Institute of Medical Cell Technologies, Regional Children's Hospital , Ekaterinburg , Russian Federation
| | - Elena Zerkalenkova
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Olga Soldatkina
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Eugenia Aprelova
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Olga Plekhanova
- c Regional Children's Hospital , Ekaterinburg , Russian Federation
| | - Tatiana Gindina
- d R.M. Gorbacheva Memorial Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University , Saint Petersburg , Russian Federation
| | - Dmitry Mercur'ev
- e Regional Children's Clinical Hospital , Perm , Russian Federation
| | - Ildar Barhkatov
- d R.M. Gorbacheva Memorial Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University , Saint Petersburg , Russian Federation
| | - Ludmila Baidun
- f Russian Federal Children Clinical Hospital , Moscow , Russian Federation
| | - Oleg Bydanov
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Svetlana Lagoiko
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Gesche Tallen
- g Department of Paediatric Oncology/Haematology , Charité-Universitätsmedizin Berlin , Berlin , Germany.,h Department of Paediatrics , University of Calgary Faculty of Medicine , Calgary , Canada
| | - Julia Rumiantseva
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Alexander Rumiantsev
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Alexander Karachunskii
- a Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russian Federation
| | - Guenter Henze
- i Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Charité CVK, Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
45
|
Acute lymphoblastic leukemia in adolescent and young adults: treat as adults or as children? Blood 2018; 132:351-361. [DOI: 10.1182/blood-2018-02-778530] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Abstract
Adolescent and young adult (AYA) patients with acute lymphoblastic leukemia (ALL) are recognized as a unique population with specific characteristics and needs. In adolescents age 15 to 20 years, the use of fully pediatric protocols is supported by many comparative studies of pediatric and adult cooperative groups. In young adults, growing evidence suggests that pediatric-inspired or even fully pediatric approaches may also dramatically improve outcomes, leading to long-term survival rates of almost 70%, despite diminishing indications of hematopoietic stem-cell transplantation. In the last decade, better knowledge of the ALL oncogenic landscape according to age distribution and minimal residual disease assessments has improved risk stratification. New targets have emerged, mostly in the heterogeneous B-other group, particularly in the Philadelphia-like ALL subgroup, which requires both in-depth molecular investigations and specific evaluations of targeted treatments. The remaining gap in the excellent results reported in children has many other contributing factors that should not be underestimated, including late or difficult access to care and/or trials, increased acute toxicities, and poor adherence to treatment. Specific programs should be designed to take into account those factors and finally ameliorate survival and quality of life for AYAs with ALL.
Collapse
|
46
|
Piovan E, Tosello V, Amadori A, Zanovello P. Chemotactic Cues for NOTCH1-Dependent Leukemia. Front Immunol 2018; 9:633. [PMID: 29666622 PMCID: PMC5891592 DOI: 10.3389/fimmu.2018.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL.
Collapse
Affiliation(s)
- Erich Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Alberto Amadori
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Paola Zanovello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| |
Collapse
|
47
|
Liu Z, Smith KR, Khong HT, Huang J, Ahn EYE, Zhou M, Tan M. miR-125b regulates differentiation and metabolic reprogramming of T cell acute lymphoblastic leukemia by directly targeting A20. Oncotarget 2018; 7:78667-78679. [PMID: 27637078 PMCID: PMC5346668 DOI: 10.18632/oncotarget.12018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy. Although it has been reported that overexpression of miR-125b leads to T-ALL development, the underlying mechanisms of miR-125b action are still unclear. The goal of this study is to delineate the role of miR-125b in T-ALL development. We found that miR-125b is highly expressed in undifferentiated leukemic T cells (CD4-negative) while its expression is low in differentiated T cells (CD4-positive). Overexpression of miR-125b increased the CD4-negative population in T cells, whereas depletion of miR-125b by miR-125b-sponge decreased the CD4-negative cell population. We identified that A20 (TNFAIP3) is a direct target of miR-125b in T cells. Overexpression of miR-125b also increased glucose uptake and oxygen consumption in T cells through targeting A20. Furthermore, restoration of A20 in miR-125b-overexpressing cells decreased the CD4-negative population in T cell leukemia, and decreased glucose uptake and oxygen consumption to the basal level of T cells transfected with vector. In conclusion, our data demonstrate that miR-125b regulates differentiation and reprogramming of T cell glucose metabolism via targeting A20. Since both de-differentiation and dysregulated glucose metabolism contribute to the development of T-cell leukemia, these findings provide novel insights into the understanding and treatment of T-ALL.
Collapse
Affiliation(s)
- Zixing Liu
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Kelly R Smith
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Hung T Khong
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL, USA
| | | | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
48
|
Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget 2018; 7:29804-23. [PMID: 26934331 PMCID: PMC5045435 DOI: 10.18632/oncotarget.7772] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway.
Collapse
|
49
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. RECENT FINDINGS NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. SUMMARY Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.
Collapse
|