1
|
Bürdek M, Prinz PU, Mutze K, Tippmer S, Geiger C, Longinotti G, Schendel DJ. Characterization of a 3S PRAME VLD-Specific T Cell Receptor and Its Use in Investigational Medicinal Products for TCR-T Therapy of Patients with Myeloid Malignancies. Cancers (Basel) 2025; 17:242. [PMID: 39858024 PMCID: PMC11763942 DOI: 10.3390/cancers17020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME100-108 VLD-peptide presented by HLA-A*02:01-encoded surface molecules. METHODS Two preclinical batches of MDG1011, produced from enriched CD8+ T cells of healthy donors, underwent rigorous evaluation of on-target and off-target recognition of tumor cells and test cells representing healthy tissues. MDG1011 investigational medicinal products (IMPs) were produced for 13 patients. VLD-TCR surface expression was assessed using dual-marker flow cytometry using TCR V-beta-specific antibody and VLD/HLA-A2-specific multimer. Functionality was assessed by interferon-gamma (IFN-γ) secretion and cell-mediated cytotoxicity of target cells. RESULTS Preclinical MDG1011 batches displayed strong VLD-TCR expression, cytokine secretion, and cytotoxicity after antigen-specific activation, while showing no signals of on-target/off-tumor or off-target recognition. All IMPs had good VLD-TCR expression as well as functionality after activation by multiple target cells. CONCLUSIONS Preclinical studies demonstrated that MDG1011 displayed key 3S attributes of high specificity, sensitivity, and safety required for regulatory approval of a first-in-human (FIH) clinical study of patients with myeloid malignancies (CD-TCR-001: ClinicalTrials.gov Identifier: NCT03503968). MDG1011 IMP manufacturing was successful at 92%, even including heavily pretreated elderly patients with very advanced disease. The IMPs applied in nine patients all displayed antigen-specific functionality. Elsewhere, clinical study results for MDG1011 showed no dose-limiting toxicity and signs of biological and/or clinical activity in several patients.
Collapse
Affiliation(s)
- Maja Bürdek
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Petra U. Prinz
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Kathrin Mutze
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Stefanie Tippmer
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Christiane Geiger
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Giulia Longinotti
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany; (P.U.P.); (K.M.); (S.T.); (C.G.); (G.L.)
- Medigene AG, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Schendel DJ. Evolution by innovation as a driving force to improve TCR-T therapies. Front Oncol 2023; 13:1216829. [PMID: 37810959 PMCID: PMC10552759 DOI: 10.3389/fonc.2023.1216829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapies continually evolve through science-based innovation. Specialized innovations for TCR-T therapies are described here that are embedded in an End-to-End Platform for TCR-T Therapy Development which aims to provide solutions for key unmet patient needs by addressing challenges of TCR-T therapy, including selection of target antigens and suitable T cell receptors, generation of TCR-T therapies that provide long term, durable efficacy and safety and development of efficient and scalable production of patient-specific (personalized) TCR-T therapy for solid tumors. Multiple, combinable, innovative technologies are used in a systematic and sequential manner in the development of TCR-T therapies. One group of technologies encompasses product enhancements that enable TCR-T therapies to be safer, more specific and more effective. The second group of technologies addresses development optimization that supports discovery and development processes for TCR-T therapies to be performed more quickly, with higher quality and greater efficiency. Each module incorporates innovations layered onto basic technologies common to the field of immunology. An active approach of "evolution by innovation" supports the overall goal to develop best-in-class TCR-T therapies for treatment of patients with solid cancer.
Collapse
Affiliation(s)
- Dolores J. Schendel
- Medigene Immunotherapies GmbH, Planegg, Germany
- Medigene AG, Planegg, Germany
| |
Collapse
|
4
|
Foldvari Z, Knetter C, Yang W, Gjerdingen TJ, Bollineni RC, Tran TT, Lund-Johansen F, Kolstad A, Drousch K, Klopfleisch R, Leisegang M, Olweus J. A systematic safety pipeline for selection of T-cell receptors to enter clinical use. NPJ Vaccines 2023; 8:126. [PMID: 37607971 PMCID: PMC10444760 DOI: 10.1038/s41541-023-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Cancer immunotherapy using T cell receptor-engineered T cells (TCR-Ts) represents a promising treatment option. However, technologies for pre-clinical safety assessment are incomplete or inaccessible to most laboratories. Here, TCR-T off-target reactivity was assessed in five steps: (1) Mapping target amino acids necessary for TCR-T recognition, followed by (2) a computational search for, and (3) reactivity screening against, candidate cross-reactive peptides in the human proteome. Natural processing and presentation of recognized peptides was evaluated using (4) short mRNAs, and (5) full-length proteins. TCR-Ts were screened for recognition of unintended HLA alleles, and as proxy for off-target reactivity in vivo, a syngeneic, HLA-A*02:01-transgenic mouse model was used. Validation demonstrated importance of studying recognition of full-length candidate off-targets, and that the clinically applied 1G4 TCR has a hitherto unknown reactivity to unintended HLA alleles, relevant for patient selection. This widely applicable strategy should facilitate evaluation of candidate therapeutic TCRs and inform clinical decision-making.
Collapse
Affiliation(s)
- Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Thea Johanne Gjerdingen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Trung The Tran
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Arne Kolstad
- Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kimberley Drousch
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL, USA.
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Meeuwsen MH, Wouters AK, Wachsmann TLA, Hagedoorn RS, Kester MGD, Remst DFG, van der Steen DM, de Ru AH, van Hees EP, Kremer M, Griffioen M, van Veelen PA, Falkenburg JHF, Heemskerk MHM. Broadly applicable TCR-based therapy for multiple myeloma targeting the immunoglobulin J chain. J Hematol Oncol 2023; 16:16. [PMID: 36850001 PMCID: PMC9969645 DOI: 10.1186/s13045-023-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The immunoglobulin J chain (Jchain) is highly expressed in the majority of multiple myeloma (MM), and Jchain-derived peptides presented in HLA molecules may be suitable antigens for T-cell therapy of MM. METHODS Using immunopeptidomics, we identified Jchain-derived epitopes presented by MM cells, and pHLA tetramer technology was used to isolate Jchain-specific T-cell clones. RESULTS We identified T cells specific for Jchain peptides presented in HLA-A1, -A24, -A3, and -A11 that recognized and lysed JCHAIN-positive MM cells. TCRs of the most promising T-cell clones were sequenced, cloned into retroviral vectors, and transferred to CD8 T cells. Jchain TCR T cells recognized target cells when JCHAIN and the appropriate HLA restriction alleles were expressed, while JCHAIN or HLA-negative cells, including healthy subsets, were not recognized. Patient-derived JCHAIN-positive MM samples were also lysed by Jchain TCR T cells. In a preclinical in vivo model for established MM, Jchain-A1, -A24, -A3, and -A11 TCR T cells strongly eradicated MM cells, which resulted in 100-fold lower tumor burden in Jchain TCR versus control-treated mice. CONCLUSIONS We identified TCRs targeting Jchain-derived peptides presented in four common HLA alleles. All four TCRs demonstrated potent preclinical anti-myeloma activity, encouraging further preclinical testing and ultimately clinical development.
Collapse
Affiliation(s)
- Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tassilo L A Wachsmann
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Els P van Hees
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Martijn Kremer
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J H Frederik Falkenburg
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
6
|
Schmidt K, Leisegang M, Kloetzel PM. ERAP2 supports TCR recognition of three immunotherapy targeted tumor epitopes. Mol Immunol 2023; 154:61-68. [PMID: 36608422 DOI: 10.1016/j.molimm.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The therapy of cancer by adoptive T cell transfer (ACT) requires T cell receptors (TCRs) with optimal affinity for HLA class I-bound peptides (pHLA-I). But not every patient responds to ACT. Therefore, it is critical to understand the individual factors influencing the recognition of HLA class I-bound peptides (pHLA-I) by TCRs. Focusing on three immunotherapy-targeted human HLA-A* 02:01-presented T cell epitopes we investigated the contribution of the ER-resident aminopeptidases ERAP1 and ERAP2 to TCR recognition of cancer cells. We found that ERAP2 on its own, when expressed in ERAP-deficient cells, elicited a strong CTL response towards the Tyrosinase368-376 epitope. In vitro generated TAP-dependent N-terminally extended epitope precursor peptides were differently customized by ERAP1 and ERAP2 and thus may serve as potential source for the Tyrosinase368-376 epitope. ERAP2 also influenced recognition of the gp100209-217 tumor epitope and enhanced T cell recognition of the MART-126/27-35 epitope in the absence of ERAP1 expression. Our results underline the relevance of ERAP2 for tumor epitope presentation and TCR recognition and may need to be considered when designing ACT in the future.
Collapse
Affiliation(s)
- Karin Schmidt
- Institute für Biochemie Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany.
| | - Matthias Leisegang
- Institute of Immunology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, USA; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter-Michael Kloetzel
- Institute für Biochemie Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany.
| |
Collapse
|
7
|
Klatt MG, Dao T, Yang Z, Liu J, Mun SS, Dacek MM, Luo H, Gardner TJ, Bourne C, Peraro L, Aretz ZEH, Korontsvit T, Lau M, Kharas MG, Liu C, Scheinberg DA. A TCR mimic CAR T cell specific for NDC80 is broadly reactive with solid tumors and hematologic malignancies. Blood 2022; 140:861-874. [PMID: 35427421 PMCID: PMC9412008 DOI: 10.1182/blood.2021012882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Target identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene. CAR T cells directed against the ALNEQIARL:HLA-A*02 complex exhibited high sensitivity and specificity for recognition and killing of multiple cancer types, especially those of hematologic origin, and were efficacious in mouse models against a human leukemia and a solid tumor. In contrast, no toxicities toward resting or activated healthy leukocytes as well as hematopoietic stem cells were observed. This shows how MS can inform the design of broadly reactive therapeutic T-cell receptor mimic CAR T-cell therapies that can target multiple cancer types currently not druggable by small molecules, conventional CAR T cells, T cells, or antibodies.
Collapse
Affiliation(s)
- Martin G Klatt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | | | | | - Sung Soo Mun
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Megan M Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Hanzhi Luo
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Thomas J Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Christopher Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
- Immunology and Microbial Pathogenesis Program and
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Zita E H Aretz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY
| | - Tanya Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Michael Lau
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Michael G Kharas
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | | | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
- Pharmacology Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
8
|
Modak M, Mattes AK, Reiss D, Skronska-Wasek W, Langlois R, Sabarth N, Konopitzky R, Ramírez F, Lehr K, Mayr T, Kind D, Viollet C, Swee LK, Petschenka J, El Kasmi KC, Noessner E, Kitt K, Pflanz S. CD206+ tumor-associated macrophages cross-present tumor antigen and drive anti-tumor immunity. JCI Insight 2022; 7:155022. [PMID: 35503656 PMCID: PMC9220841 DOI: 10.1172/jci.insight.155022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
In many solid cancers, tumor-associated macrophages (TAM) represent the predominant myeloid cell population. Antigen (Ag) cross-presentation leading to tumor Ag–directed cytotoxic CD8+ T cell responses is crucial for antitumor immunity. However, the role of recruited monocyte-derived macrophages, including TAM, as potential cross-presenting cells is not well understood. Here, we show that primary human as well as mouse CD206+ macrophages are effective in functional cross-presentation of soluble self-Ag and non–self-Ag, including tumor-associated Ag (TAA), as well as viral Ag. To confirm the presence of cross-presenting TAM in vivo, we performed phenotypic and functional analysis of TAM from B16-F10 and CT26 syngeneic tumor models and have identified CD11b+F4/80hiCD206+ TAM to effectively cross-present TAA. We show that CD11b+CD206+ TAM represent the dominant tumor-infiltrating myeloid cell population, expressing a unique cell surface repertoire, promoting Ag cross-presentation and Ag-specific CD8+ T cell activation comparable with cross-presenting CLEC9A+ DCs (cDC1). The presence of cross-presenting CD206+ TAM is associated with reduced tumor burden in mouse syngeneic tumor models and with improved overall survival in cutaneous melanoma patients. Therefore, the demonstration of effective Ag cross-presentation capabilities of CD206+ TAM, including their clinical relevance, expands our understanding of TAM phenotypic diversity and functional versatility.
Collapse
Affiliation(s)
- Madhura Modak
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ann-Kathrin Mattes
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniela Reiss
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Wioletta Skronska-Wasek
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rebecca Langlois
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Nicolas Sabarth
- Department of Biotherapeutics Discovery, Boehringer Ingelheim RCV GmbH & Co KG., Vienna, Austria
| | - Renate Konopitzky
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Fidel Ramírez
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Katharina Lehr
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tobias Mayr
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - David Kind
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Coralie Viollet
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Lee Kim Swee
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jutta Petschenka
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Karim Christian El Kasmi
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Elfriede Noessner
- Immunoanalytics- Research Group Tissue Control of Immunocytes, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum, Munich, Germany
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stefan Pflanz
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
9
|
Non-Mutated Nucleophosmin 1 Is Recognized by the CD8+ T Lymphocytes of an AML Patient after the Transplantation of Hematopoietic Stem Cells from an HLA-Haploidentical Donor. Curr Oncol 2022; 29:2928-2934. [PMID: 35621629 PMCID: PMC9140185 DOI: 10.3390/curroncol29050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Our study describes an AML patient whose leukemia cells carried the NPM1c+ mutation, and who was the recipient of allogeneic HSCT from a haploidentical donor. The patient raised a robust allorestricted CD8+ T cell response directed against the NPM1wt protein. Favourably, the response against NPM1wt was not accompanied by side effects such as GvHD. Moreover, the induction of a high NPM1wt specific response coincided with the decrease in NPM1c+ transcripts detected, implying a beneficial graft versus leukemia effect. On the basis of these results, we suppose that TCRs from allorestricted NPM1wt-specific T cells are worth studying in other recipients of grafts from haploidentical donors as a possible tool for TCR gene therapy. Abstract Nucleophosmin (NPM1, B23) is a multifunctional phosphoprotein expressed in all tissues. The protein is mainly localized in nucleoli. In hematological malignancies, NPM1 belongs to commonly altered genes. Its mutation, always heterozygous, leads to the re-localization of the NPM1 protein from the nucleolus to the cytoplasm (NPM1c+). NPM1c+ is found in 30% of acute myeloid leukemia (AML). Our study showed that an AML patient, whose leukemia cells carried the NPM1c+ mutation and who was the recipient of allogeneic HSCT from a haploidentical donor, raised a robust allorestricted CD8+ T cell response directed against the NPM1wt protein. Favourably, the response against NPM1wt was not accompanied by side effects such as GvHD. Moreover, the induction of a high NPM1wt-specific response coincided with the decrease in NPM1c+ transcripts detected, implying a beneficial graft versus leukemia effect. On the basis of these results, we suppose that TCRs from allorestricted NPM1wt-specific T cells are worth studying in other recipients of grafts from haploidentical donors as a possible tool for TCR gene therapy.
Collapse
|
10
|
Sailer N, Fetzer I, Salvermoser M, Braun M, Brechtefeld D, Krendl C, Geiger C, Mutze K, Noessner E, Schendel DJ, Bürdek M, Wilde S, Sommermeyer D. T-Cells Expressing a Highly Potent PRAME-Specific T-Cell Receptor in Combination with a Chimeric PD1-41BB Co-Stimulatory Receptor Show a Favorable Preclinical Safety Profile and Strong Anti-Tumor Reactivity. Cancers (Basel) 2022; 14:cancers14081998. [PMID: 35454906 PMCID: PMC9030144 DOI: 10.3390/cancers14081998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The development of effective adoptive T-cell therapies (ATCs) to treat solid tumors has several challenges: the choice of a suitable target antigen, the generation of a specific T-cell receptor (TCR) directed against this target, and the hostile tumor microenvironment (TME). The cancer/testis antigen Preferentially Expressed Antigen in Melanoma (PRAME) is a promising target for ATCs since it is highly expressed in several solid tumor indications, while its expression in normal tissues is mainly restricted to the testis. Using our well-established high throughput TCR generation and characterization process, we identified a highly potent PRAME-specific TCR. To convert the inhibitory PD-1 signal in T-cells to an activating signal, we designed a chimeric receptor consisting of the extracellular domain of PD-1 and the signaling domain of 4-1BB. Combining this PD1-41BB receptor with our lead PRAME-TCR generated a very promising T-cell product with a favorable preclinical in vitro safety profile and enhanced in vitro and in vivo anti-tumor efficacy. Abstract The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications. A TCR with high specificity and sensitivity for PRAME was isolated from non-tolerized T-cell repertoires and introduced into T-cells alongside a chimeric PD1-41BB receptor, consisting of the natural extracellular domain of PD-1 and the intracellular signaling domain of 4-1BB, turning an inhibitory pathway into a T-cell co-stimulatory pathway. The addition of PD1-41BB to CD8+ T-cells expressing the transgenic PRAME-TCR enhanced IFN-γ secretion, improved cytotoxic capacity, and prevented exhaustion upon repetitive re-challenge with tumor cells in vitro without altering the in vitro safety profile. Furthermore, a single dose of TCR-Ts co-expressing PD1-41BB was sufficient to clear a hard-to-treat melanoma xenograft in a mouse model, whereas TCR-Ts without PD1-41BB could not eradicate the PD-L1-positive tumors. This cutting-edge strategy supports development efforts to provide more effective TCR-T immunotherapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Nadja Sailer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Ina Fetzer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Melanie Salvermoser
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Monika Braun
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Doris Brechtefeld
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Christian Krendl
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Christiane Geiger
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Kathrin Mutze
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Elfriede Noessner
- Immunoanalytics-Research Group Tissue Control of Immunocytes (TCI), Helmholtz Zentrum München, 81377 Munich, Germany;
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
- Medigene AG, 82152 Planegg, Germany
- Correspondence: or
| | - Maja Bürdek
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Susanne Wilde
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Daniel Sommermeyer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| |
Collapse
|
11
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
12
|
Meeuwsen MH, Wouters AK, Jahn L, Hagedoorn RS, Kester MG, Remst DF, Morton LT, van der Steen DM, Kweekel C, de Ru AH, Griffioen M, van Veelen PA, Falkenburg JF, Heemskerk MH. A broad and systematic approach to identify B cell malignancy-targeting TCRs for multi-antigen-based T cell therapy. Mol Ther 2022; 30:564-578. [PMID: 34371177 PMCID: PMC8821929 DOI: 10.1016/j.ymthe.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.
Collapse
Affiliation(s)
- Miranda H. Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Corresponding author: Miranda H. Meeuwsen, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Lorenz Jahn
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Michel G.D. Kester
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Dennis F.G. Remst
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Dirk M. van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christiaan Kweekel
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Corresponding author: Mirjam H.M. Heemskerk, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
13
|
Olguín-Contreras LF, Mendler AN, Popowicz G, Hu B, Noessner E. Double Strike Approach for Tumor Attack: Engineering T Cells Using a CD40L:CD28 Chimeric Co-Stimulatory Switch Protein for Enhanced Tumor Targeting in Adoptive Cell Therapy. Front Immunol 2021; 12:750478. [PMID: 34912334 PMCID: PMC8666660 DOI: 10.3389/fimmu.2021.750478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.
Collapse
Affiliation(s)
| | - Anna N. Mendler
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Grzegorz Popowicz
- Institute of Structural Biology, Helmholtz Center Munich, Munich, Germany
| | - Bin Hu
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
- Immunoanalytics Research Group - Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
14
|
Büning H, Fehse B, Ivics Z, Kochanek S, Koehl U, Kupatt C, Mussolino C, Nettelbeck DM, Schambach A, Uckert W, Wagner E, Cathomen T. Gene Therapy "Made in Germany": A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Hum Gene Ther 2021; 32:987-996. [PMID: 34662229 DOI: 10.1089/hum.2021.29178.hbu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene therapies have been successfully applied to treat severe inherited and acquired disorders. Although research and development are sufficiently well funded in Germany and while the output of scientific publications and patents is comparable with the leading nations in gene therapy, the country lags noticeably behind with regard to the number of both clinical studies and commercialized gene therapy products. In this article, we give a historical perspective on the development of gene therapy in Germany, analyze the current situation from the standpoint of the German Society for Gene Therapy (DG-GT), and define recommendations for action that would enable our country to generate biomedical and economic advantages from innovations in this sector, instead of merely importing advanced therapy medicinal products. Inter alia, we propose (1) to harmonize and simplify regulatory licensing processes to enable faster access to advanced therapies, and (2) to establish novel coordination, support and funding structures that facilitate networking of the key players. Such a center would provide the necessary infrastructure and know-how to translate cell and gene therapies to patients on the one hand, and pave the way for commercialization of these promising and innovative technologies on the other. Hence, these courses of action would not only benefit the German biotech and pharma landscape but also the society and the patients in need of new treatment options.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Dudaniec K, Westendorf K, Nössner E, Uckert W. Generation of Epstein-Barr Virus Antigen-Specific T Cell Receptors Recognizing Immunodominant Epitopes of LMP1, LMP2A, and EBNA3C for Immunotherapy. Hum Gene Ther 2021; 32:919-935. [PMID: 33798008 DOI: 10.1089/hum.2020.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV) infections in healthy individuals are usually cleared by immune cells, wherein CD8+ T lymphocytes play the most important role. However, in some immunocompromised individuals, EBV infections can lead to the development of cancer in B, T, natural killer (NK) cells and epithelial cells. Most EBV-associated cancers express a limited number of virus-specific antigens such as latent membrane proteins (LMP1 and LMP2) and nuclear proteins (EBNA1, -2, EBNA3A, -B, -C, and EBNA-LP). These antigens represent true tumor-specific antigens and can be considered useful targets for T cell receptor (TCR) gene therapy to treat EBV-associated diseases. We used a TCR isolation platform based on a single major histocompatibility complex class I (MHC I) K562 cell library for the detection, isolation, and re-expression of TCRs targeting immunodominant peptide MHC (pMHC). Mature dendritic cells (mDCs) were pulsed with in vitro-transcribed (ivt) RNA encoding for the selected antigen to stimulate autologous T cells. The procedure allowed the mDCs to select an immunogenic epitope of the antigen for processing and presentation on the cell surface in combination with the most suitable MHC I molecule. We isolated eight EBV-specific TCRs. They recognize various pMHCs of EBV antigens LMP1, LMP2A, and EBNA3C, some of them described previously and some newly identified in this study. The TCR genes were molecularly cloned into retroviral vectors and the resultant TCR-engineered T cells secreted interferon-γ after antigen contact and were able to lyse tumor cells. The EBV-specific TCRs can be used as a basis for the generation of a TCR library, which provides a valuable source of TCRs for the production of EBV-specific T cells to treat EBV-associated diseases in patients with different MHC I types.
Collapse
Affiliation(s)
- Krystyna Dudaniec
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerstin Westendorf
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Wolfgang Uckert
- Molecular Cell Biology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Herda S, Heimann A, Obermayer B, Ciraolo E, Althoff S, Ruß J, Grunert C, Busse A, Bullinger L, Pezzutto A, Blankenstein T, Beule D, Na IK. Long-term in vitro expansion ensures increased yield of central memory T cells as perspective for manufacturing challenges. Int J Cancer 2021; 148:3097-3110. [PMID: 33600609 DOI: 10.1002/ijc.33523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/07/2022]
Abstract
Adoptive T cell therapy (ATT) has revolutionized the treatment of cancer patients. A sufficient number of functional T cells are indispensable for ATT efficacy; however, several ATT dropouts have been reported due to T cell expansion failure or lack of T cell persistence in vivo. With the aim of providing ATT also to those patients experiencing insufficient T cell manufacturing via standard protocol, we evaluated if minimally manipulative prolongation of in vitro expansion (long-term [LT] >3 weeks with IL-7 and IL-15 cytokines) could result in enhanced T cell yield with preserved T cell functionality. The extended expansion resulted in a 39-fold increase of murine CD8+ T central memory cells (Tcm). LT expanded CD8+ and CD4+ Tcm cells retained a gene expression profile related to Tcm and T memory stem cells (Tscm). In vivo transfer of LT expanded Tcm revealed persistence and antitumor capacity. We confirmed our in vitro findings on human T cells, on healthy donors and diffuse large B cell lymphoma patients, undergoing salvage therapy. Our study demonstrates the feasibility of an extended T cell expansion as a practicable alternative for patients with insufficient numbers of T cells after the standard manufacturing process thereby increasing ATT accessibility.
Collapse
Affiliation(s)
- Stefanie Herda
- Experimental and Clinical Research Center, Berlin, Germany
| | - Andreas Heimann
- Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Elisa Ciraolo
- Experimental and Clinical Research Center, Berlin, Germany
| | | | - Josefine Ruß
- Experimental and Clinical Research Center, Berlin, Germany
| | | | - Antonia Busse
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antonio Pezzutto
- Berlin Institute of Health, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité, Campus Berlin Buch, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Il-Kang Na
- Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Davari K, Holland T, Prassmayer L, Longinotti G, Ganley KP, Pechilis LJ, Diaconu I, Nambiar PR, Magee MS, Schendel DJ, Sommermeyer D, Ellinger C. Development of a CD8 co-receptor independent T-cell receptor specific for tumor-associated antigen MAGE-A4 for next generation T-cell-based immunotherapy. J Immunother Cancer 2021; 9:e002035. [PMID: 33771892 PMCID: PMC7996660 DOI: 10.1136/jitc-2020-002035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The cancer-testis antigen MAGE-A4 is an attractive target for T-cell-based immunotherapy, especially for indications with unmet clinical need like non-small cell lung or triple-negative breast cancer. METHODS An unbiased CD137-based sorting approach was first used to identify an immunogenic MAGE-A4-derived epitope (GVYDGREHTV) that was properly processed and presented on human leukocyte antigen (HLA)-A2 molecules encoded by the HLA-A*02:01 allele. To isolate high-avidity T cells via subsequent multimer sorting, an in vitro priming approach using HLA-A2-negative donors was conducted to bypass central tolerance to this self-antigen. Pre-clinical parameters of safety and activity were assessed in a comprehensive set of in vitro and in vivo studies. RESULTS A MAGE-A4-reactive, HLA-A2-restricted T-cell receptor (TCR) was isolated from primed T cells of an HLA-A2-negative donor. The respective TCR-T-cell (TCR-T) product bbT485 was demonstrated pre-clinically to have a favorable safety profile and superior in vivo potency compared with TCR-Ts expressing a TCR derived from a tolerized T-cell repertoire to self-antigens. This natural high-avidity TCR was found to be CD8 co-receptor independent, allowing effector functions to be elicited in transgenic CD4+ T helper cells. These CD4+ TCR-Ts supported an anti-tumor response by direct killing of MAGE-A4-positive tumor cells and upregulated hallmarks associated with helper function, such as CD154 expression and release of key cytokines on tumor-specific stimulation. CONCLUSION The extensive pre-clinical assessment of safety and in vivo potency of bbT485 provide the basis for its use in TCR-T immunotherapy studies. The ability of this non-mutated high-avidity, co-receptor-independent TCR to activate CD8+ and CD4+ T cells could potentially provide enhanced cellular responses in the clinical setting through the induction of functionally diverse T-cell subsets that goes beyond what is currently tested in the clinic.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- HEK293 Cells
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes
- Immunotherapy, Adoptive
- K562 Cells
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Kathrin Davari
- Medigene Immunotherapies GmbH, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilde S, Geiger C, Milosevic S, Mosetter B, Eichenlaub S, Schendel DJ. Generation of allo-restricted peptide-specific T cells using RNA-pulsed dendritic cells: A three phase experimental procedure. Oncoimmunology 2021; 1:129-140. [PMID: 22720234 PMCID: PMC3376998 DOI: 10.4161/onci.1.2.18216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Designer T cells expressing transgenic T cell receptors (TCR) with anti-tumor specificity offer new treatment options for cancer patients. We developed a three phase procedure to identify T cells of high avidity based on the fact that T cells recognizing peptides presented by allogeneic MHC efficiently kill tumor cells. Autologous dendritic cells (DC) are co-transfected with ivt-RNA encoding an allogeneic MHC molecule and a selected antigen to allow them to express allogeneic MHC-peptide complexes that activate allo-restricted peptide-specific T cells. This approach provides great flexibility for obtaining high-avidity T cells as potential sources of TCR for adoptive T cell therapy.
Collapse
Affiliation(s)
- Susanne Wilde
- Institute of Molecular Immunology; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
20
|
Clauss J, Obenaus M, Miskey C, Ivics Z, Izsvák Z, Uckert W, Bunse M. Efficient Non-Viral T-Cell Engineering by Sleeping Beauty Minicircles Diminishing DNA Toxicity and miRNAs Silencing the Endogenous T-Cell Receptors. Hum Gene Ther 2019; 29:569-584. [PMID: 29562762 DOI: 10.1089/hum.2017.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transposon-based vectors have entered clinical trials as an alternative to viral vectors for genetic engineering of T cells. However, transposon vectors require DNA transfection into T cells, which were found to cause adverse effects. T-cell viability was decreased in a dose-dependent manner, and DNA-transfected T cells showed a delayed response upon T-cell receptor (TCR) stimulation with regard to blast formation, proliferation, and surface expression of CD25 and CD28. Gene expression analysis demonstrated a DNA-dependent induction of a type I interferon response and interferon-β upregulation. By combining Sleeping Beauty transposon minicircle vectors with SB100X transposase-encoding RNA, it was possible to reduce the amount of total DNA required, and stable expression of therapeutic TCRs was achieved in >50% of human T cells without enrichment. The TCR-engineered T cells mediated effective tumor cell killing and cytokine secretion upon antigen-specific stimulation. Additionally, the Sleeping Beauty transposon system was further improved by miRNAs silencing the endogenous TCR chains. These miRNAs increased the surface expression of the transgenic TCR, diminished mispairing with endogenous TCR chains, and enhanced antigen-specific T-cell functionality. This approach facilitates the rapid non-viral generation of highly functional, engineered T cells for immunotherapy.
Collapse
Affiliation(s)
- Julian Clauss
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| | - Matthias Obenaus
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,2 Charité Universitätsmedizin Berlin , Campus Virchow-Klinikum, Berlin, Germany
| | - Csaba Miskey
- 3 Division of Medical Biotechnology, Paul Ehrlich-Institut , Langen, Germany
| | - Zoltán Ivics
- 3 Division of Medical Biotechnology, Paul Ehrlich-Institut , Langen, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany
| | - Wolfgang Uckert
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany .,5 Institute of Biology, Humboldt-Universität zu Berlin , Berlin, Germany
| | - Mario Bunse
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
21
|
Rosskopf S, Leitner J, Paster W, Morton LT, Hagedoorn RS, Steinberger P, Heemskerk MHM. A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget 2018; 9:17608-17619. [PMID: 29707134 PMCID: PMC5915142 DOI: 10.18632/oncotarget.24807] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive T cell therapy using TCR transgenic autologous T cells has shown great potential for the treatment of tumor patients. Thorough characterization of genetically reprogrammed T cells is necessary to optimize treatment success. Here, we describe the generation of triple parameter reporter T cells based on the Jurkat 76 T cell line for the evaluation of TCR and chimeric antigen receptor functions as well as adoptive T cell strategies. This Jurkat subline is devoid of endogenous TCR alpha and TCR beta chains, thereby circumventing the problem of TCR miss-pairing and unexpected specificities. The resultant reporter cells allow simultaneous determination of the activity of the transcription factors NF-κB, NFAT and AP-1 that play key roles in T cell activation. Human TCRs directed against tumor and virus antigens were introduced and reporter responses were determined using tumor cell lines endogenously expressing the antigens of interest or via addition of antigenic peptides. Finally, we demonstrate that coexpression of adhesion molecules like CD2 and CD226 as well as CD28 chimeric receptors represents an effective strategy to augment the response of TCR-transgenic reporters to cells presenting cognate antigens.
Collapse
Affiliation(s)
- Sandra Rosskopf
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Laura T Morton
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Lorenz FKM, Ellinger C, Kieback E, Wilde S, Lietz M, Schendel DJ, Uckert W. Unbiased Identification of T-Cell Receptors Targeting Immunodominant Peptide-MHC Complexes for T-Cell Receptor Immunotherapy. Hum Gene Ther 2017; 28:1158-1168. [PMID: 28950731 PMCID: PMC5737719 DOI: 10.1089/hum.2017.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell receptor (TCR) immunotherapy uses T cells engineered with new TCRs to enable detection and killing of cancer cells. Efficacy of TCR immunotherapy depends on targeting antigenic peptides that are efficiently presented by the best-suited major histocompatibility complex (MHC) molecules of cancer cells. However, efficient strategies are lacking to easily identify TCRs recognizing immunodominant peptide-MHC (pMHC) combinations utilizing any of the six possible MHC class I alleles of a cancer cell. We generated an MHC cell library and developed a platform approach to detect, isolate, and re-express TCRs specific for immunodominant pMHCs. The platform approach was applied to identify a human papillomavirus (HPV16) oncogene E5-specific TCR, recognizing a novel, naturally processed pMHC (HLA-B*15:01) and a cytomegalovirus-specific TCR targeting an immunodominant pMHC (HLA-B*07:02). The platform provides a useful tool to isolate in an unbiased manner TCRs specific for novel and immunodominant pMHC targets for use in TCR immunotherapy.
Collapse
Affiliation(s)
- Felix K M Lorenz
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| | - Christian Ellinger
- 2 Institute for Molecular Immunology, Helmholtz-Zentrum Munich , Munich, Germany
| | - Elisa Kieback
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| | - Susanne Wilde
- 2 Institute for Molecular Immunology, Helmholtz-Zentrum Munich , Munich, Germany
| | - Maria Lietz
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| | - Dolores J Schendel
- 2 Institute for Molecular Immunology, Helmholtz-Zentrum Munich , Munich, Germany
| | - Wolfgang Uckert
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,3 Institute of Biology, Humboldt-University Berlin , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
23
|
Schlenker R, Olguín-Contreras LF, Leisegang M, Schnappinger J, Disovic A, Rühland S, Nelson PJ, Leonhardt H, Harz H, Wilde S, Schendel DJ, Uckert W, Willimsky G, Noessner E. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy. Cancer Res 2017; 77:3577-3590. [PMID: 28533272 DOI: 10.1158/0008-5472.can-16-1922] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR.
Collapse
Affiliation(s)
- Ramona Schlenker
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Luis Felipe Olguín-Contreras
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany.,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité, Campus Buch, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Schnappinger
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany.,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| | - Anja Disovic
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany.,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| | - Svenja Rühland
- Ludwig-Maximilian University Munich, Medizinische Klinik und Poliklinik IV, Munich, Germany.,Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilian University Munich, Munich, Germany
| | - Peter J Nelson
- Ludwig-Maximilian University Munich, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilian University Munich, Munich, Germany
| | - Hartmann Harz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilian University Munich, Munich, Germany
| | | | | | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité, Campus Buch, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany. .,Immunoanalytics Research Group Tissue Control of Immunocytes & Core Facility, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
24
|
Mensali N, Ying F, Sheng VOY, Yang W, Walseng E, Kumari S, Fallang LE, Kolstad A, Uckert W, Malmberg KJ, Wälchli S, Olweus J. Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncoimmunology 2016; 5:e1138199. [PMID: 27467957 DOI: 10.1080/2162402x.2016.1138199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeted to CD19 are effective in treatment of B-lymphoid malignancies. However, CARs recognize all CD19 positive (pos) cells, and durable responses are linked to profound depletion of normal B cells. Here, we designed a strategy to specifically target patient B cells by utilizing the fact that T-cell receptors (TCRs), in contrast to CARs, are restricted by HLA. Two TCRs recognizing a peptide from CD20 (SLFLGILSV) in the context of foreign HLA-A*02:01 (CD20p/HLA-A2) were expressed as 2A-bicistronic constructs. T cells re-directed with the A23 and A94 TCR constructs efficiently recognized malignant HLA-A2(pos) B cells endogenously expressing CD20, including patient-derived follicular lymphoma and chronic lymphocytic leukemia (CLL) cells. In contrast, a wide range of HLA-A2(pos)CD20(neg) cells representing different tissue origins, and HLA-A2(neg)CD20(pos) cells, were not recognized. Cytotoxic T cells re-directed with CD20p/HLA-A2-specific TCRs or CD19 CARs responded with similar potencies to cells endogenously expressing comparable levels of CD20 and CD19. The CD20p/HLA-A2-specific TCRs recognized CD20p bound to HLA-A2 with high functional avidity. The results show that T cells expressing CD20p/HLA-A2-specific TCRs efficiently and specifically target B cells. When used in context of an HLA-haploidentical allogeneic stem cell transplantation where the donor is HLA-A2(neg) and the patient HLA-A2(pos), these T cells would selectively kill patient-derived B cells and allow reconstitution of the B-cell compartment with HLA-A2(neg) donor cells. These results should pave the way for clinical testing of T cells genetically engineered to target malignant B cells without permanent depletion of normal B cells.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fan Ying
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Oei Yi Sheng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Even Walseng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Shraddha Kumari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars-Egil Fallang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Arne Kolstad
- K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine and Institute of Biology, Humboldt University , Berlin, Germany
| | - Karl Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Cell Therapy, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Nahas MR, Avigan D. Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opin Biol Ther 2016; 16:1093-104. [DOI: 10.1080/14712598.2016.1190828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Sandri S, Bobisse S, Moxley K, Lamolinara A, De Sanctis F, Boschi F, Sbarbati A, Fracasso G, Ferrarini G, Hendriks RW, Cavallini C, Scupoli MT, Sartoris S, Iezzi M, Nishimura MI, Bronte V, Ugel S. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Res 2016; 76:2540-51. [DOI: 10.1158/0008-5472.can-15-2318] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/24/2016] [Indexed: 11/16/2022]
|
27
|
Leisegang M, Kammertoens T, Uckert W, Blankenstein T. Targeting human melanoma neoantigens by T cell receptor gene therapy. J Clin Invest 2016; 126:854-8. [PMID: 26808500 DOI: 10.1172/jci83465] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022] Open
Abstract
In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2-transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A-specific (MART-1-specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy.
Collapse
|
28
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
29
|
Lorenz FKM, Wilde S, Voigt K, Kieback E, Mosetter B, Schendel DJ, Uckert W. Codon optimization of the human papillomavirus E7 oncogene induces a CD8+ T cell response to a cryptic epitope not harbored by wild-type E7. PLoS One 2015; 10:e0121633. [PMID: 25799237 PMCID: PMC4370481 DOI: 10.1371/journal.pone.0121633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine.
Collapse
Affiliation(s)
| | - Susanne Wilde
- Institute for Molecular Immunology, Helmholtz-Zentrum München, Munich, Germany
| | - Katrin Voigt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Elisa Kieback
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Barbara Mosetter
- Institute for Molecular Immunology, Helmholtz-Zentrum München, Munich, Germany
| | - Dolores J. Schendel
- Institute for Molecular Immunology, Helmholtz-Zentrum München, Munich, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Obenaus M, Leitão C, Leisegang M, Chen X, Gavvovidis I, van der Bruggen P, Uckert W, Schendel DJ, Blankenstein T. Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nat Biotechnol 2015; 33:402-7. [PMID: 25774714 DOI: 10.1038/nbt.3147] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
Identifying T-cell receptors (TCRs) that bind tumor-associated antigens (TAAs) with optimal affinity is a key bottleneck in the development of adoptive T-cell therapy of cancer. TAAs are unmutated self proteins, and T cells bearing high-affinity TCRs specific for such antigens are commonly deleted in the thymus. To identify optimal-affinity TCRs, we generated antigen-negative humanized mice with a diverse human TCR repertoire restricted to the human leukocyte antigen (HLA) A*02:01 (ref. 3). These mice were immunized with human TAAs, for which they are not tolerant, allowing induction of CD8⁺ T cells with optimal-affinity TCRs. We isolate TCRs specific for the cancer/testis (CT) antigen MAGE-A1 (ref. 4) and show that two of them have an anti-tumor effect in vivo. By comparison, human-derived TCRs have lower affinity and do not mediate substantial therapeutic effects. We also identify optimal-affinity TCRs specific for the CT antigen NY-ESO. Our humanized mouse model provides a useful tool for the generation of optimal-affinity TCRs for T-cell therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Chen
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Pierre van der Bruggen
- 1] Ludwig Institute for Cancer Research and WELBIO, Brussels, Belgium. [2] De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang Uckert
- 1] Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. [2] Institute of Biology, Humboldt University, Berlin, Germany
| | | | - Thomas Blankenstein
- 1] Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. [2] Institute of Immunology, Charité Campus Buch, Berlin, Germany
| |
Collapse
|
31
|
Arber C, Feng X, Abhyankar H, Romero E, Wu MF, Heslop HE, Barth P, Dotti G, Savoldo B. Survivin-specific T cell receptor targets tumor but not T cells. J Clin Invest 2014; 125:157-68. [PMID: 25415440 DOI: 10.1172/jci75876] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/16/2014] [Indexed: 01/01/2023] Open
Abstract
Survivin is a tumor-associated antigen (TAA) that inhibits apoptosis and is widely overexpressed in cancer cells; therefore, survivin has potential as a target for cancer immunotherapy. Application of HLA-A2-restricted survivin-specific T cell receptors (TCRs) isolated from allogeneic HLA-mismatched TCR repertoires has, however, been impeded by the inability of these TCRs to distinguish healthy cells expressing low levels of survivin from cancer cells with high survivin expression levels. Here, we identified an HLA-A2-restricted survivin-specific TCR isolated from autologous TCR repertoires that targets tumor cells in vitro and in vivo but does not cause fratricidal toxicity. Molecular modeling of the TCR-peptide-HLA ternary complexes and alanine scanning revealed that the autologously derived TCRs had tighter interactions with the survivin peptide than did fratricidal TCRs. Similar recognition patterns were observed among 7 additional TAA-specific TCRs isolated from allogeneic versus autologous repertoires. Together, the results from this study indicate that maximal peptide recognition is key for TCR selectivity and likely critical for reducing unwanted off-target toxicities. Moreover, isolating TCRs from autologous repertoires to maximize TCR selectivity has potential as a useful strategy to identify and select other shared tumor- and self-antigen-specific TCRs and ensure selective antitumor activity.
Collapse
|
32
|
Schendel DJ, Frankenberger B. Limitations for TCR gene therapy by MHC-restricted fratricide and TCR-mediated hematopoietic stem cell toxicity. Oncoimmunology 2014; 2:e22410. [PMID: 23483031 PMCID: PMC3583918 DOI: 10.4161/onci.22410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The clinical use of lymphocytes engineered to express high affinity T-cell receptors (TCRs) specific for two broadly expressed tumor-associated antigens is strongly limited by MHC-restricted fratricide of lymphocytes and TCR-mediated killing of hematopoietic stem cells. Specific clinical applications must therefore be conceived to bypass these limitations.
Collapse
Affiliation(s)
- Dolores J Schendel
- Institute of Molecular Immunology; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich, Germany ; Clinical Cooperation Group "Immune Monitoring"; Helmholtz Zentrum München; German Research Center for Environmental Health; Munich, Germany
| | | |
Collapse
|
33
|
Batich KA, Swartz AM, Sampson JH. Enhancing dendritic cell-based vaccination for highly aggressive glioblastoma. Expert Opin Biol Ther 2014; 15:79-94. [PMID: 25327832 DOI: 10.1517/14712598.2015.972361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Patients with primary glioblastoma (GBM) have a dismal prognosis despite standard therapy, which can induce potentially deleterious side effects. Arming the immune system is an alternative therapeutic approach, as its cellular effectors and inherent capacity for memory can be utilized to specifically target invasive tumor cells, while sparing collateral damage to otherwise healthy brain parenchyma. AREAS COVERED Active immunotherapy is aimed at eliciting a specific immune response against tumor antigens. Dendritic cells (DCs) are one of the most potent activators of de novo and recall immune responses and are thus a vehicle for successful immunotherapy. Currently, investigators are optimizing DC vaccines by enhancing maturation status and migratory potential to induce more potent antitumor responses. An update on the most recent DC immunotherapy trials is provided. EXPERT OPINION Targeting of unique antigens restricted to the tumor itself is the most important parameter in advancing DC vaccines. In order to overcome intrinsic mechanisms of immune evasion observed in GBM, the future of DC-based therapy lies in a multi-antigenic vaccine approach. Successful targeting of multiple antigens will require a comprehensive understanding of all immunologically relevant oncological epitopes present in each tumor, thereby permitting a rational vaccine design.
Collapse
Affiliation(s)
- Kristen A Batich
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery ; Durham, NC 27710 , USA
| | | | | |
Collapse
|
34
|
Subklewe M, Geiger C, Lichtenegger FS, Javorovic M, Kvalheim G, Schendel DJ, Bigalke I. New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia. Cancer Immunol Immunother 2014; 63:1093-103. [PMID: 25186611 PMCID: PMC11028838 DOI: 10.1007/s00262-014-1600-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023]
Abstract
Dendritic cell (DC)-based immunotherapy is a promising strategy for the elimination of minimal residual disease in patients with acute myeloid leukemia (AML). Particularly, patients with a high risk of relapse who are not eligible for hematopoietic stem cell transplantation could benefit from such a therapeutic approach. Here, we review our extensive studies on the development of a protocol for the generation of DCs with improved immunogenicity and optimized for the use in cell-based immunotherapy. This new generation DC vaccine combines the production of DCs in only 3 days with Toll-like receptor-signaling-induced cell maturation. These mature DCs are then loaded with RNA encoding the leukemia-associated antigens Wilm's tumor protein 1 and preferentially expressed antigen in melanoma in order to stimulate an AML-specific T-cell-based immune response. In vitro as well as in vivo studies demonstrated the enhanced capacity of these improved DCs for the induction of tumor-specific immune responses. Finally, a proof-of-concept Phase I/II clinical trial is discussed for post-remission AML patients with high risk for disease relapse.
Collapse
Affiliation(s)
- Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany
| | - Christiane Geiger
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
- Trianta Immunotherapies GmbH, A subsidiary of Medigene AG, Lochhamer Str. 11, 82152 Planegg-Martinsried, Germany
| | - Felix S. Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany
| | - Miran Javorovic
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Dolores J. Schendel
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
- Trianta Immunotherapies GmbH, A subsidiary of Medigene AG, Lochhamer Str. 11, 82152 Planegg-Martinsried, Germany
| | - Iris Bigalke
- Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Pinto S, Sommermeyer D, Michel C, Wilde S, Schendel D, Uckert W, Blankenstein T, Kyewski B. Misinitiation of intrathymic MART-1 transcription and biased TCR usage explain the high frequency of MART-1-specific T cells. Eur J Immunol 2014; 44:2811-21. [PMID: 24846220 DOI: 10.1002/eji.201444499] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/23/2014] [Accepted: 05/16/2014] [Indexed: 12/29/2022]
Abstract
Immunity to tumor differentiation antigens, such as melanoma antigen recognized by T cells 1 (MART-1), has been comprehensively studied. Intriguingly, CD8(+) T cells specific for the MART-1(26(27)-35) epitope in the context of HLA-A0201 are about 100 times more abundant compared with T cells specific for other tumor-associated antigens. Moreover, MART-1-specific CD8(+) T cells show a highly biased usage of the Vα-region gene TRAV12-2. Here, we provide independent support for this notion, by showing that the combinatorial pairing of different TCRα- and TCRβ- chains derived from HLA-A2-MART-1(26-35) -specific CD8(+) T-cell clones is unusually permissive in conferring MART-1 specificity, provided the CDR1α TRAV12-2 region is used. Whether TCR bias alone accounts for the unusual abundance of HLA-A2-MART-1(26-35) -specific CD8(+) T cells has remained conjectural. Here, we provide an alternative explanation: misinitiated transcription of the MART-1 gene resulting in truncated mRNA isoforms leads to lack of promiscuous transcription of the MART-1(26-35) epitope in human medullary thymic epithelial cells and, consequently, evasion of central self-tolerance toward this epitope. Thus, biased TCR usage and leaky central tolerance might act in an independent and additive manner to confer high frequency of MART-1(26-35) -specific CD8(+) T cells.
Collapse
Affiliation(s)
- Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells. Leukemia 2014; 28:2355-66. [PMID: 24736212 DOI: 10.1038/leu.2014.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/26/2022]
Abstract
T cells have been proven to be therapeutically effective in patients with relapsed leukemias, although target antigens on leukemic cells as well as T-cell receptors (TCRs), potentially recognizing those antigens, are mostly unknown. We have applied an immunopeptidomic approach and isolated human leukocyte antigen (HLA) ligands from primary leukemia cells. We identified a number of ligands derived from different genes that are restrictedly expressed in the hematopoietic system. We exemplarily selected myeloperoxidase (MPO) as a potential target and isolated a high-avidity TCR with specificity for a HLA-B*07:02-(HLA-B7)-restricted epitope of MPO in the single HLA-mismatched setting. T cells transgenic for this TCR demonstrated high peptide and antigen specificity as well as leukemia reactivity in vitro and in vivo. In contrast, no significant on- and off-target toxicity could be observed. In conclusion, we here demonstrate, exemplarily for MPO, that leukemia-derived HLA ligands can be selected for specific effector tool development to redirect T cells to be used for graft manipulation or adoptive T-cell therapies in diverse transplant settings. This approach can be extended to other HLA ligands and HLA molecules in order to provide better treatment options for this life-threatening disease.
Collapse
|
37
|
D'Orsogna LJ, Nguyen THO, Claas FHJ, Witt C, Mifsud NA. Endogenous-peptide-dependent alloreactivity: new scientific insights and clinical implications. ACTA ACUST UNITED AC 2014; 81:399-407. [PMID: 23646948 DOI: 10.1111/tan.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
T-cell alloreactivity is generated via immune responsiveness directed against allogeneic (allo) human leucocyte antigen (HLA) molecules. Whilst the alloresponse is of extraordinary potency and frequency, it has often been assumed to be less peptide-specific than conventional T-cell reactivity. Recently, several human studies have shown that both alloreactive CD8(+) and CD4(+) T cells exhibit exquisite allo-HLA and endogenous peptide specificity that has also underpinned tissue-specific allorecognition. In this review, we summarize former and recent scientific evidence in support of endogenous peptide (self-peptide)-dependence of T-cell alloreactivity. The clinical implications of these findings will be discussed in the context of both solid organ transplantation and haematopoietic stem cell transplantation (HSCT). Insights into the understanding of the molecular basis of T-cell allorecognition will probably translate into improved allograft survival outcomes, lower frequencies of graft vs host disease and could potentially be exploited for selective graft vs leukaemia effect to improve clinical outcomes following HSCT.
Collapse
Affiliation(s)
- L J D'Orsogna
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
38
|
Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proc Natl Acad Sci U S A 2013; 111:403-8. [PMID: 24344295 DOI: 10.1073/pnas.1306549111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HLA molecules presenting peptides derived from tumor-associated self-antigens (self-TAA) are attractive targets for T-cell-based immunotherapy of cancer. However, detection of such epitopes is hampered by self-tolerance and limitations in the sensitivity of mass spectrometry. Here, we used T cells from HLA-A2-negative donors as tools to detect HLA-A2-bound peptides from two leukemia-associated differentiation antigens; CD20 and the previously undescribed cancer target myeloperoxidase. A high-throughput platform for epitope discovery was designed using dendritic cells cotransfected with full-length transcripts of self-TAA and HLA-A2 to allow presentation of all naturally processed peptides from a predefined self-protein on foreign HLA. Antigen-reactive T cells were directly detected using panels of color-coded peptide-HLA multimers containing epitopes predicted by a computer algorithm. Strikingly, cytotoxic T cells were generated against 37 out of 50 peptides predicted to bind HLA-A2. Among these, 36 epitopes were previously undescribed. The allorestricted T cells were exquisitely peptide- and HLA-specific and responded strongly to HLA-A2-positive leukemic cells with endogenous expression of CD20 or myeloperoxidase. These results indicate that the repertoire of self-peptides presented on HLA class I has been underestimated and that a wealth of self-TAA can be targeted by T cells when using nontolerized T-cell repertoires.
Collapse
|
39
|
Schaft N, Wellner V, Wohn C, Schuler G, Dörrie J. CD8(+) T-cell priming and boosting: more antigen-presenting DC, or more antigen per DC? Cancer Immunol Immunother 2013; 62:1769-80. [PMID: 24114143 PMCID: PMC11029756 DOI: 10.1007/s00262-013-1481-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
RNA transfection is a standard method to load dendritic cells (DC) with antigen for therapeutic cancer vaccination. While electroporation yields high transfection efficiency and satisfying expression levels, lipofection results in only few cells expressing high amounts of antigen. We compared antigen loading of human monocyte-derived DC by MelanA RNA electroporation and lipofection. No differences in phenotype or migrational capacity were detected, but lipofected DC induced stronger cytokine secretion by antigen-specific T cells and were superior in priming and boosting of MelanA-specific CD8(+) T cells. Interestingly, T cells stimulated with the differently transfected DC did not differ in their functional avidity. To determine whether the amount of antigen per cell is indeed responsible for the superiority of the lipofected DC, we increased the amount of MelanA RNA fivefold and mixed those DC with mock-electroporated ones to mimic the antigen distribution of lipofected cells. This significantly improved the stimulatory capacity, indicating that indeed the amount of antigen per cell seems to be the responsible feature for the observed superiority of lipofected DCs. These data suggest that a few DC that express high amounts of antigen are more immunogenic than many DC expressing lower amounts, although this needs to be tested in a two-armed immunogenicity trial.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Verena Wellner
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Christian Wohn
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
- Present Address: ErasmusMC, Rotterdam, The Netherlands
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Hartmannstraße 14, 91052 Erlangen, Germany
| |
Collapse
|
40
|
Steger B, Milosevic S, Doessinger G, Reuther S, Liepert A, Braeu M, Schick J, Vogt V, Schuster F, Kroell T, Busch DH, Borkhardt A, Kolb HJ, Tischer J, Buhmann R, Schmetzer H. CD4(+)and CD8(+)T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiology 2013; 219:247-60. [PMID: 24315637 DOI: 10.1016/j.imbio.2013.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/08/2023]
Abstract
T-cells play an important role in the remission-maintenance in AML-patients (pts) after SCT, however the role of LAA- (WT1, PR1, PRAME) or minor-histocompatibility (mHag, HA1) antigen-specific CD4(+) and CD8(+)T-cells is not defined. A LAA/HA1-peptide/protein stimulation, cloning and monitoring strategy for specific CD8(+)/CD4(+)T-cells in AML-pts after SCT is given. Our results show that (1) LAA-peptide-specific CD8+T-cells are detectable in every AML-pt after SCT. CD8(+)T-cells, recognizing two different antigens detectable in 5 of 7 cases correlate with long-lasting remissions. Clonal TCR-Vβ-restriction exemplarily proven by spectratyping in PRAME-specific CD8(+)T-cells; high PRAME-peptide-reactivity was CD4(+)-associated, as shown by IFN-γ-release. (2) Two types of antigen-presenting cells (APCs) were tested for presentation of LAA/HA1-proteins to CD4(+)T-cells: miniEBV-transduced lymphoblastoid cells (B-cell-source) and CD4-depleted MNC (source for B-cell/monocyte/DC). We provide a refined cloning-system for proliferating, CD40L(+)CD4(+)T-cells after LAA/HA1-stimulation. CD4(+)T-cells produced cytokines (GM-CSF, IFN-γ) upon exposure to LAA/HA1-stimulation until after at least 7 restimulations and demonstrated cytotoxic activity against naive blasts, but not fibroblasts. Antileukemic activity of unstimulated, stimulated or cloned CD4(+)T-cells correlated with defined T-cell-subtypes and the clinical course of the disease. In conclusion we provide immunological tools to enrich and monitor LAA/HA1-CD4(+)- and CD8(+)T-cells in AML-pts after SCT and generate data with relevant prognostic value. We were able to demonstrate the presence of LAA-peptide-specific CD8(+)T-cell clones in AML-pts after SCT. In addition, we were also able to enrich specific antileukemic reactive CD4(+)T-cells without GvH-reactivity upon repeated LAA/HA1-protein stimulation and limiting dilution cloning.
Collapse
Affiliation(s)
- Brigitte Steger
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Slavoljub Milosevic
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany
| | - Georg Doessinger
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group'Clinical Cell Processing and Purification', Institute for Advanced Study, Technical University Munich, 81675 Munich, Germany
| | - Susanne Reuther
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Anja Liepert
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Marion Braeu
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany
| | - Julia Schick
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Valentin Vogt
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Friedhelm Schuster
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Tanja Kroell
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group'Clinical Cell Processing and Purification', Institute for Advanced Study, Technical University Munich, 81675 Munich, Germany; Clinical Cooperation Groups "Antigen-specific Immunotherapy" and "Immune Monitoring", Helmholtz Center Munich and Technical University Munich, 81675 Munich, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Hans-Jochem Kolb
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Johanna Tischer
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Raymund Buhmann
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Helga Schmetzer
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany.
| |
Collapse
|
41
|
Linnemann C, Heemskerk B, Kvistborg P, Kluin RJC, Bolotin DA, Chen X, Bresser K, Nieuwland M, Schotte R, Michels S, Gomez-Eerland R, Jahn L, Hombrink P, Legrand N, Shu CJ, Mamedov IZ, Velds A, Blank CU, Haanen JBAG, Turchaninova MA, Kerkhoven RM, Spits H, Hadrup SR, Heemskerk MHM, Blankenstein T, Chudakov DM, Bendle GM, Schumacher TNM. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med 2013; 19:1534-41. [DOI: 10.1038/nm.3359] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
|
42
|
Abstract
Over-expression of the proto-oncogene c-MYC is frequently observed in a variety of tumors and is a hallmark of Burkitt´s lymphoma. The fact that many tumors are oncogene-addicted to c-MYC, renders c-MYC a powerful target for anti-tumor therapy. Using a xenogenic vaccination strategy by immunizing C57BL/6 mice with human c-MYC protein or non-homologous peptides, we show that the human c-MYC protein, despite its high homology between mouse and man, contains several immunogenic epitopes presented in the context of murine H2b haplotype. We identified an MHC class II-restricted CD4+ T-cell epitope and therein an MHC class I-restricted CD8+ T-cell epitope (SSPQGSPEPL) that, after prime/boost immunization, protected up to 25% of mice against a lethal lymphoma challenge. Lymphoma-rejecting animals contained MHC multimer-binding CD8+ cell within the peripheral blood and displayed in vivo cytolytic activity with specificity for SSPQGSPEPL. Taken together these data suggest that oncogenic c-MYC can be targeted with specific T-cells.
Collapse
|
43
|
Bendle GM, Linnemann C, Bies L, Song JY, Schumacher TNM. Blockade of TGF-β Signaling Greatly Enhances the Efficacy of TCR Gene Therapy of Cancer. THE JOURNAL OF IMMUNOLOGY 2013; 191:3232-9. [DOI: 10.4049/jimmunol.1301270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Nauerth M, Weiβbrich B, Knall R, Franz T, Dössinger G, Bet J, Paszkiewicz PJ, Pfeifer L, Bunse M, Uckert W, Holtappels R, Gillert-Marien D, Neuenhahn M, Krackhardt A, Reddehase MJ, Riddell SR, Busch DH. TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci Transl Med 2013; 5:192ra87. [PMID: 23825303 PMCID: PMC3991308 DOI: 10.1126/scitranslmed.3005958] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adoptive immunotherapy is a promising therapeutic approach for the treatment of chronic infections and cancer. T cells within a certain range of high avidity for their cognate ligand are believed to be most effective. T cell receptor (TCR) transfer experiments indicate that a major part of avidity is hardwired within the structure of the TCR. Unfortunately, rapid measurement of structural avidity of TCRs is difficult on living T cells. We developed a technology where dissociation (koff rate) of truly monomeric peptide-major histocompatibility complex (pMHC) molecules bound to surface-expressed TCRs can be monitored by real-time microscopy in a highly reliable manner. A first evaluation of this method on distinct human cytomegalovirus (CMV)-specific T cell populations revealed unexpected differences in the koff rates. CMV-specific T cells are currently being evaluated in clinical trials for efficacy in adoptive immunotherapy; therefore, determination of koff rates could guide selection of the most effective donor cells. Indeed, in two different murine infection models, we demonstrate that T cell populations with lower koff rates confer significantly better protection than populations with fast koff rates. These data indicate that koff rate measurements can improve the predictability of adoptive immunotherapy and provide diagnostic information on the in vivo quality of T cells.
Collapse
Affiliation(s)
- Magdalena Nauerth
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Bianca Weiβbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Robert Knall
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Tobias Franz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Georg Dössinger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Jeannette Bet
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Paulina J. Paszkiewicz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Lukas Pfeifer
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Humboldt-Universität Berlin, Berlin, Germany
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Humboldt-Universität Berlin, Berlin, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dorothea Gillert-Marien
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
| | - Angela Krackhardt
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
- Medical Department III, Hematology and Oncology, Technische Universität München, Munich, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Helmholtz Virtual Institute on Viral Strategies of Immune Evasion (VISTRIE), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stanley R. Riddell
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
| |
Collapse
|
45
|
Stevanović S, Nijmeijer BA, van Schie ML, Salvatori DC, Maas S, Griffioen M, Falkenburg JF. Donor T Cells Administered Over HLA Class II Barriers Mediate Antitumor Immunity without Broad Off-Target Toxicity in a NOD/Scid Mouse Model of Acute Leukemia. Biol Blood Marrow Transplant 2013; 19:867-75. [DOI: 10.1016/j.bbmt.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/06/2013] [Indexed: 01/21/2023]
|
46
|
A similarity in peptide cross-reactivity between alloantigen- and nominal antigen-induced CD8+ T cell responses in vitro. Immunogenetics 2012; 65:173-84. [PMID: 23233149 DOI: 10.1007/s00251-012-0668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Raising tumor-specific allorestricted T cells in vitro for adoptive transfusion is expected to circumvent host tumor tolerance. However, it has been assumed that alloreactive T cell clones activated in vitro ranges from peptide-specific with high avidity to peptide-degenerate with low avidity. In this study, we examined the peptide specificity and cross-reactivity of T cell responses in vitro to an allogeneic epitope and a nominal epitope with a modified co-culture of lymphocytes and autologous monocytes. After binding to the monocyte via the interaction of its Fc part and the cell surface IgG Fc receptor type I (FcγRI), a fusion protein consisting of the extracellular domains of HLA-A2 molecule and the Fc region of IgG1 (the dimer) introduced a single epitope into the co-culture. The dimer-coated monocytes stimulated the proliferation of autologous CD8(+) T cells after co-culturing. The CD8(+) T cell responses were self-HLA-restricted for HLA-A2-positive (HLA-A2+ve) samples and allo-HLA-restricted for HLA-A2-negative (HLA-A2-ve) samples, since the co-cultural bulks stained with HLA-A2 tetramers, human interferon-gamma (IFN-γ) production in response to T cell receptor (TCR) ligands, and cytotoxicity against a panel of target cells exhibited peptide-specific properties. Two HLA-A2-restricted peptides with sequence homology were included, allowing the comparison of cross-reactivity between allo-antigen- and nominal antigen-induced CD8(+) T cell responses. Interestingly, the allo- and self-HLA-restricted CD8(+) T cell responses were similar in the peptide cross-reactivity, although the allorestricted T cell response seemed, overall, more intensive and had higher binding affinity to specific tetramer. Our findings indicated the alloreactive T cells raised by the co-culture in vitro were as peptide specific and cross-reactive as the self-HLA-restricted ones.
Collapse
|
47
|
Sommermeyer D, Conrad H, Krönig H, Gelfort H, Bernhard H, Uckert W. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability. Int J Cancer 2012; 132:1360-7. [PMID: 22907642 PMCID: PMC3617456 DOI: 10.1002/ijc.27792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/03/2012] [Indexed: 11/30/2022]
Abstract
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy.
Collapse
|
48
|
T-cell receptor gene transfer exclusively to human CD8(+) cells enhances tumor cell killing. Blood 2012; 120:4334-42. [PMID: 22898597 DOI: 10.1182/blood-2012-02-412973] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8(+) cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8(+) cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8(+) T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8(+) cell-specific gene delivery.
Collapse
|
49
|
Wilde S, Sommermeyer D, Leisegang M, Frankenberger B, Mosetter B, Uckert W, Schendel DJ. Human antitumor CD8+ T cells producing Th1 polycytokines show superior antigen sensitivity and tumor recognition. THE JOURNAL OF IMMUNOLOGY 2012; 189:598-605. [PMID: 22689880 DOI: 10.4049/jimmunol.1102165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of T cells expressing transgenic TCR with antitumor specificity provides a hopeful new therapy for patients with advanced cancer. To fulfill a large need for TCR with high affinity and specificity for various tumor entities, we sought to identify parameters for rapid selection of CTL clones with suitable characteristics. Twelve CTL clones displaying different Ag sensitivities for the same peptide-MHC epitope of the melanoma-associated Ag tyrosinase were analyzed in detail. Better MHC-multimer binding and slower multimer release are thought to reflect stronger TCR-peptide-MHC interactions; thus, these parameters would seem well suited to identify higher avidity CTL. However, large disparities were found comparing CTL multimer binding with peptide sensitivity. In contrast, CD8(+) CTL with superior Ag sensitivity mediated good tumor cytotoxicity and also secreted the triple combination of IFN-γ, IL-2, and TNF-α, representing a Th1 pattern often missing in lower avidity CTL. Furthermore, recipient lymphocytes were imbued with high Ag sensitivity, superior tumor recognition, as well as capacity for Th1 polycytokine secretion after transduction with the TCR of a high-avidity CTL. Thus, Th1 polycytokine secretion served as a suitable parameter to rapidly demark cytotoxic CD8(+) T cell clones for further TCR evaluation.
Collapse
Affiliation(s)
- Susanne Wilde
- Institute of Molecular Immunology, Helmholtz Center Munich, German
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The function of T lymphocytes as orchestrators and effectors of the adaptive immune response is directed by the specificity of their T cell receptors (TCRs). By transferring into T cells the genes encoding antigen-specific receptors, the functional activity of large populations of T cells can be redirected against defined targets including virally infected or cancer cells. The potential of therapeutic T cells to traffic to sites of disease, to expand and to persist after a single treatment remains a major advantage over the currently available immunotherapies that use monoclonal antibodies. Here we review recent progress in the field of TCR gene therapy, outlining challenges to its successful implementation and the strategies being used to overcome them. We detail strategies used in the optimization of affinity and surface expression of the introduced TCR, the choice of T cell subpopulations for gene transfer, and the promotion of persistence of gene-modified T cells in vivo. We review the safety concerns surrounding the use of gene-modified T cells in patients, discussing emerging solutions to these problems, and describe the increasingly positive results from the use of gene-modified T cells in recent clinical trials of adoptive cellular immunotherapy. The increasing sophistication of measures to ensure the safety of engineered T cells is accompanied by an increasing number of clinical trials: these will be essential to guide the effective translation of cellular immunotherapy from the laboratory to the bedside.
Collapse
Affiliation(s)
- Benjamin J Uttenthal
- Department of Immunology, Institute of Immunity, Infection and Transplantation, University College London (UCL), Royal Free Hospital, London, UK.
| | | | | | | |
Collapse
|