1
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits KMT2A to regulate transcription of Myb. Cell Rep 2024; 43:114378. [PMID: 38889007 PMCID: PMC11369905 DOI: 10.1016/j.celrep.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Luis F Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Matthew J Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; University of Iowa Medical School, Iowa City, IA 52242, USA
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; GeneDx, Gaithersburg, MD 20877, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Sonothera, South San Francisco, CA 94080, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Borg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Vlaminck I, Felice A, Liu T, Matei I, Meydan C, Muratani M, Mzava O, Overbey E, Ryon KA, Smith SM, Tierney BT, Trudel G, Zwart SR, Beheshti A, Mason CE, Borg J. Spatiotemporal expression and control of haemoglobin in space. Nat Commun 2024; 15:4927. [PMID: 38862545 PMCID: PMC11166948 DOI: 10.1038/s41467-024-49289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.
Collapse
Affiliation(s)
- Josef Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Conor Loy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Buhagiar
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alex Felice
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Tammy Liu
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Irina Matei
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guy Trudel
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Sara R Zwart
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch, Galveston, TX, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
3
|
Zhou L, Wu D, Zhou Y, Wang D, Fu H, Huang Q, Qin G, Chen J, Lv J, Lai S, Zhang H, Tang K, Ma J, Fiskesund R, Zhang Y, Zhang X, Huang B. Tumor cell-released kynurenine biases MEP differentiation into megakaryocytes in individuals with cancer by activating AhR-RUNX1. Nat Immunol 2023; 24:2042-2052. [PMID: 37919525 PMCID: PMC10681900 DOI: 10.1038/s41590-023-01662-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.
Collapse
Affiliation(s)
- Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dongxiao Wu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qiusha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Shaoyang Lai
- The Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Roland Fiskesund
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits MLL1 to regulate transcription of Myb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559528. [PMID: 37808852 PMCID: PMC10557664 DOI: 10.1101/2023.09.26.559528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81 kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR/Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expression were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the MLL1 complex. Myrlin CRISPRi compromised MLL1 occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting MLL1.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis F. Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Oregon Health and Sciences University, Portland, OR 97239
| | - Matthew J. Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- University of Iowa Medical School, Iowa City, IA 52242
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- GeneDx, Gaithersburg, MD 20877
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Sonothera, South San Francisco, CA 94080
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023; 15:713. [PMID: 36992422 PMCID: PMC10054523 DOI: 10.3390/v15030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the β-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent β-hemoglobinopathies: sickle cell disease and β-thalassemia, both affecting functional β-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for β-thalassemia (Zynteglo™). This review illuminates the β-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the β-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eva Eugenie Rose Segura
- Molecular Biology Interdepartmental Doctoral Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Paul George Ayoub
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevyn Lopez Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Donald Barry Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
7
|
Starlard-Davenport A, Gu Q, Pace BS. Targeting Genetic Modifiers of HBG Gene Expression in Sickle Cell Disease: The miRNA Option. Mol Diagn Ther 2022; 26:497-509. [PMID: 35553407 PMCID: PMC9098152 DOI: 10.1007/s40291-022-00589-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is one of the most common inherited hemoglobinopathy disorders that affects millions of people worldwide. Reactivation of HBG (HBG1, HBG2) gene expression and induction of fetal hemoglobin (HbF) is an important therapeutic strategy for ameliorating the clinical symptoms and severity of SCD. Hydroxyurea is the only US FDA-approved drug with proven efficacy to induce HbF in SCD patients, yet serious complications have been associated with its use. Over the last three decades, numerous additional pharmacological agents that reactivate HBG transcription in vitro have been investigated, but few have proceeded to FDA approval, with the exception of arginine butyrate and decitabine; however, neither drug met the requirements for routine clinical use due to difficulties with oral delivery and inability to achieve therapeutic levels. Thus, novel approaches that produce sufficient efficacy, specificity, and sustainable HbF induction with low adverse effects are desirable. More recently, microRNAs (miRNAs) have gained attention for their diagnostic and therapeutic potential to treat various diseases ranging from cancer to Alzheimer’s disease via targeting oncogenes and their gene products. Thus, it is plausible that miRNAs that target HBG regulatory genes may be useful for inducing HbF as a treatment for SCD. Our laboratory and others have documented the association of miRNAs with HBG activation or suppression via silencing transcriptional repressors and activators, respectively, of HBG expression. Herein, we review progress made in understanding molecular mechanisms of miRNA-mediated HBG regulation and discuss the extent to which molecular targets of HBG might be suitable prospects for development of SCD clinical therapy. Lastly, we discuss challenges with the application of miRNA delivery in vivo and provide potential strategies for overcoming barriers in the future.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Qingqing Gu
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Chen E, Chen Z, Chen L, Hu X. Krüppel-like factor 1: a promising factor that promotes myocardial regeneration by triggering glycolytic shunt. Acta Biochim Biophys Sin (Shanghai) 2021; 54:275-277. [PMID: 35130609 PMCID: PMC9828331 DOI: 10.3724/abbs.2021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Enlin Chen
- Department of anesthesiologythe First Affiliated Hospital of University of South ChinaHengyang421001China
| | - Zhe Chen
- Institute of Pharmacy and PharmacologyHunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug ResearchHunan Province Cooperative Innovation Center for Molecular Target New Drug StudyCollege of Basic Medical ScienceHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Linxi Chen
- Institute of Pharmacy and PharmacologyHunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug ResearchHunan Province Cooperative Innovation Center for Molecular Target New Drug StudyCollege of Basic Medical ScienceHengyang Medical SchoolUniversity of South ChinaHengyang421001China,Correspondence address: Tel: +86-734-8578507; E-mail: (X.H.) / Tel: +86-734-8683928; E-mail: (L.C.).@126.com
| | - Xiaoling Hu
- Department of anesthesiologythe First Affiliated Hospital of University of South ChinaHengyang421001China,Correspondence address: Tel: +86-734-8578507; E-mail: (X.H.) / Tel: +86-734-8683928; E-mail: (L.C.).@126.com
| |
Collapse
|
9
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
10
|
Noh JY. Megakaryopoiesis and Platelet Biology: Roles of Transcription Factors and Emerging Clinical Implications. Int J Mol Sci 2021; 22:ijms22179615. [PMID: 34502524 PMCID: PMC8431765 DOI: 10.3390/ijms22179615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play a critical role in hemostasis and thrombus formation. Platelets are small, anucleate, and short-lived blood cells that are produced by the large, polyploid, and hematopoietic stem cell (HSC)-derived megakaryocytes in bone marrow. Approximately 3000 platelets are released from one megakaryocyte, and thus, it is important to understand the physiologically relevant mechanism of development of mature megakaryocytes. Many genes, including several key transcription factors, have been shown to be crucial for platelet biogenesis. Mutations in these genes can perturb megakaryopoiesis or thrombopoiesis, resulting in thrombocytopenia. Metabolic changes owing to inflammation, ageing, or diseases such as cancer, in which platelets play crucial roles in disease development, can also affect platelet biogenesis. In this review, I describe the characteristics of platelets and megakaryocytes in terms of their differentiation processes. The role of several critical transcription factors have been discussed to better understand the changes in platelet biogenesis that occur during disease or ageing.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
11
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
Predictive SNPs for β 0-thalassemia/HbE disease severity. Sci Rep 2021; 11:10352. [PMID: 33990643 PMCID: PMC8121782 DOI: 10.1038/s41598-021-89641-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
β-Thalassemia/HbE disease has a wide spectrum of clinical phenotypes ranging from asymptomatic to dependent on regular blood transfusions. Ability to predict disease severity is helpful for clinical management and treatment decision making. A thalassemia severity score has been developed from Mediterranean β-thalassemia patients. However, different ethnic groups may have different allele frequency and linkage disequilibrium structures. Here, Thai β0-thalassemia/HbE disease genome-wild association studies (GWAS) data of 487 patients were analyzed by SNP interaction prioritization algorithm, interacting Loci (iLoci), to find predictive SNPs for disease severity. Three SNPs from two SNP interaction pairs associated with disease severity were identifies. The three-SNP disease severity risk score composed of rs766432 in BCL11A, rs9399137 in HBS1L-MYB and rs72872548 in HBE1 showed more than 85% specificity and 75% accuracy. The three-SNP predictive score was then validated in two independent cohorts of Thai and Malaysian β0-thalassemia/HbE patients with comparable specificity and accuracy. The SNP risk score could be used for prediction of clinical severity for Southeast Asia β0-thalassemia/HbE population.
Collapse
|
13
|
Boontanrart MY, Schröder MS, Stehli GM, Banović M, Wyman SK, Lew RJ, Bordi M, Gowen BG, DeWitt MA, Corn JE. ATF4 Regulates MYB to Increase γ-Globin in Response to Loss of β-Globin. Cell Rep 2021; 32:107993. [PMID: 32755585 DOI: 10.1016/j.celrep.2020.107993] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
β-Hemoglobinopathies can trigger rapid production of red blood cells in a process known as stress erythropoiesis. Cellular stress prompts differentiating erythroid precursors to express high levels of fetal γ-globin. However, the mechanisms underlying γ-globin production during cellular stress are still poorly defined. Here, we use CRISPR-Cas genome editing to model the stress caused by reduced levels of adult β-globin. We find that decreased β-globin is sufficient to induce robust re-expression of γ-globin, and RNA sequencing (RNA-seq) of differentiating isogenic erythroid precursors implicates ATF4 as a causal regulator of this response. ATF4 binds within the HBS1L-MYB intergenic enhancer and regulates expression of MYB, a known γ-globin regulator. Overall, the reduction of ATF4 upon β-globin knockout decreases the levels of MYB and BCL11A. Identification of ATF4 as a key regulator of globin compensation adds mechanistic insight to the poorly understood phenomenon of stress-induced globin compensation and could inform strategies to treat hemoglobinopathies.
Collapse
Affiliation(s)
- Mandy Y Boontanrart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Marija Banović
- Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Stacia K Wyman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel J Lew
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark A DeWitt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zurich, Zurich 8092, Switzerland; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Barbarani G, Labedz A, Stucchi S, Abbiati A, Ronchi AE. Physiological and Aberrant γ-Globin Transcription During Development. Front Cell Dev Biol 2021; 9:640060. [PMID: 33869190 PMCID: PMC8047207 DOI: 10.3389/fcell.2021.640060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
The expression of the fetal Gγ- and Aγ-globin genes in normal development is confined to the fetal period, where two γ-globin chains assemble with two α-globin chains to form α2γ2 tetramers (HbF). HbF sustains oxygen delivery to tissues until birth, when β-globin replaces γ-globin, leading to the formation of α2β2 tetramers (HbA). However, in different benign and pathological conditions, HbF is expressed in adult cells, as it happens in the hereditary persistence of fetal hemoglobin, in anemias and in some leukemias. The molecular basis of γ-globin differential expression in the fetus and of its inappropriate activation in adult cells is largely unknown, although in recent years, a few transcription factors involved in this process have been identified. The recent discovery that fetal cells can persist to adulthood and contribute to disease raises the possibility that postnatal γ-globin expression could, in some cases, represent the signature of the fetal cellular origin.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Agata Labedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sarah Stucchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Alessia Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
15
|
Sonoda Y. Human CD34-negative hematopoietic stem cells: The current understanding of their biological nature. Exp Hematol 2021; 96:13-26. [PMID: 33610645 DOI: 10.1016/j.exphem.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell (HSC) heterogeneity and hierarchy are a current topic of interest, having major implications for clinical HSC transplantation and basic research on human HSCs. It was long believed that the most primitive HSCs in mammals, including mice and humans, were CD34 antigen positive (CD34+). However, 2 decades ago, it was reported that murine long-term multilineage reconstituting HSCs were lineage marker negative (Lin-, i.e., c-kit+Sca-1+CD34low/-), known as CD34low/- KSL cells. In contrast, human CD34- HSCs, a counterpart of murine CD34low/- KSL cells, were hard to identify for a long time mainly because of their rarity. We previously identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method and proposed the new concept that CD34- SRCs (HSCs) reside at the apex of the human HSC hierarchy. Through a series of studies, we identified two positive/enrichment markers: CD133 and GPI-80. The combination of these two markers enabled the development of an ultrahigh-resolution purification method for CD34- as well as CD34+ HSCs and the successful purification of both HSCs at the single-cell level. Cell population purity is a crucial prerequisite for reliable biological and molecular analyses. Clonal analyses of highly purified human CD34- HSCs have revealed their potent megakaryocyte/erythrocyte differentiation potential. Based on these observations, we propose a revised road map for the commitment of human CB-derived CD34- HSCs. This review updates the current understanding of the stem cell nature of human CB-derived primitive CD34- as well as CD34+ HSCs.
Collapse
Affiliation(s)
- Yoshiaki Sonoda
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
16
|
Soares-da-Silva F, Freyer L, Elsaid R, Burlen-Defranoux O, Iturri L, Sismeiro O, Pinto-do-Ó P, Gomez-Perdiguero E, Cumano A. Yolk sac, but not hematopoietic stem cell-derived progenitors, sustain erythropoiesis throughout murine embryonic life. J Exp Med 2021; 218:211777. [PMID: 33566111 PMCID: PMC7879581 DOI: 10.1084/jem.20201729] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
In the embryo, the first hematopoietic cells derive from the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. We used three lineage-tracing mouse models to show that, contrary to what was previously assumed, hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac erythromyeloid progenitors, which generate tissue resident macrophages, identified highly proliferative erythroid progenitors that rapidly differentiate after intra-embryonic injection, persisting as the major contributors to the embryonic erythroid compartment. We show that erythrocyte progenitors of yolk sac origin require 10-fold lower concentrations of erythropoietin than their hematopoietic stem cell–derived counterparts for efficient erythrocyte production. We propose that, in a low erythropoietin environment in the fetal liver, yolk sac–derived erythrocyte progenitors efficiently outcompete hematopoietic stem cell progeny, which fails to generate megakaryocyte and erythrocyte progenitors.
Collapse
Affiliation(s)
- Francisca Soares-da-Silva
- Lymphocytes and Immunity Unit, Immunology Department, Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Laina Freyer
- Macrophages and Endothelial Cells, Department of Developmental and Stem Cell Biology, UMR3738 Centre national de la recherche scientifique, Institut Pasteur, Paris, France
| | - Ramy Elsaid
- Lymphocytes and Immunity Unit, Immunology Department, Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Odile Burlen-Defranoux
- Lymphocytes and Immunity Unit, Immunology Department, Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Lorea Iturri
- Macrophages and Endothelial Cells, Department of Developmental and Stem Cell Biology, UMR3738 Centre national de la recherche scientifique, Institut Pasteur, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Perpétua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Elisa Gomez-Perdiguero
- Macrophages and Endothelial Cells, Department of Developmental and Stem Cell Biology, UMR3738 Centre national de la recherche scientifique, Institut Pasteur, Paris, France
| | - Ana Cumano
- Lymphocytes and Immunity Unit, Immunology Department, Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| |
Collapse
|
17
|
Kwon N, Thompson EN, Mayday MY, Scanlon V, Lu YC, Krause DS. Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants. Curr Opin Hematol 2021; 28:28-35. [PMID: 33186151 PMCID: PMC7737300 DOI: 10.1097/moh.0000000000000625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW This review focuses on our current understanding of fate decisions in bipotent megakaryocyte-erythroid progenitors (MEPs). Although extensive research has been carried out over decades, our understanding of how MEP commit to the erythroid versus megakaryocyte fate remains unclear. RECENT FINDINGS We discuss the isolation of primary human MEP, and focus on gene expression patterns, epigenetics, transcription factors and extrinsic factors that have been implicated in MEP fate determination. We conclude with an overview of the open debates in the field of MEP biology. SUMMARY Understanding MEP fate is important because defects in megakaryocyte and erythrocyte development lead to disease states such as anaemia, thrombocytopenia and leukaemia. MEP also represent a model system for studying fundamental principles underlying cell fate decisions of bipotent and pluripotent progenitors, such that discoveries in MEP are broadly applicable to stem/progenitor cell biology.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Madeline Y. Mayday
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Vanessa Scanlon
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| |
Collapse
|
18
|
Wilkes MC, Siva K, Chen J, Varetti G, Youn MY, Chae H, Ek F, Olsson R, Lundbäck T, Dever DP, Nishimura T, Narla A, Glader B, Nakauchi H, Porteus MH, Repellin CE, Gazda HT, Lin S, Serrano M, Flygare J, Sakamoto KM. Diamond Blackfan anemia is mediated by hyperactive Nemo-like kinase. Nat Commun 2020; 11:3344. [PMID: 32620751 PMCID: PMC7334220 DOI: 10.1038/s41467-020-17100-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/26/2020] [Indexed: 01/30/2023] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy. Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome that is associated with anemia. Here, the authors examine the role of Nemo-like kinase (NLK) in erythroid cells in the pathogenesis of DBA and as a potential target for therapy.
Collapse
Affiliation(s)
- M C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - K Siva
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - J Chen
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - G Varetti
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - M Y Youn
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - F Ek
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - R Olsson
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - T Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - D P Dever
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - T Nishimura
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - B Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Nakauchi
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - M H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - C E Repellin
- Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - H T Gazda
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - S Lin
- Department of Molecular, Cell and Development Biology, University of California, Los Angeles, CA, 90095, USA
| | - M Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - J Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - K M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Xie S, Armendariz D, Zhou P, Duan J, Hon GC. Global Analysis of Enhancer Targets Reveals Convergent Enhancer-Driven Regulatory Modules. Cell Rep 2019; 29:2570-2578.e5. [PMID: 31775028 PMCID: PMC6904118 DOI: 10.1016/j.celrep.2019.10.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/15/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Single-cell screens enable high-throughput functional assessment of enhancers in their endogenous genomic context. However, the design of current studies limits their application to identifying the primary gene targets of enhancers. Here, we improve the experimental and computational parameters of single-cell enhancer screens to identify the secondary gene targets of enhancers. Our analysis of >500 putative enhancers in K562 cells reveals an interwoven enhancer-driven gene regulatory network. We find that enhancers from distinct genomic loci converge to modulate the expression of common sub-modules, including the α- and β-globin loci, by directly regulating transcription factors. Our analysis suggests that several genetic variants associated with myeloid blood cell traits alter the activity of a distal enhancer of MYB (~140 kb away), with downstream consequences on hemoglobin genes expression and cell state. These data have implications for the understanding of enhancer-associated traits and emphasize the flexibility of controlling transcriptional systems by modifying enhancer activity. Xie et al. apply improved strategies for single-cell screens to identify an enhancer-driven transcriptional regulatory network in K562 cells. They demonstrate that the same group of genes can be indirectly regulated by enhancers from distinct genomic loci. These data have implications for the understanding of enhancer-associated traits.
Collapse
Affiliation(s)
- Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pei Zhou
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jialei Duan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
|
22
|
Listì F, Sclafani S, Agrigento V, Barone R, Maggio A, D'Alcamo E. Study on the Role of Polymorphisms of the SOX-6 and MYB Genes and Fetal Hemoglobin Levels in Sicilian Patients with β-Thalassemia and Sickle Cell Disease. Hemoglobin 2018; 42:103-107. [PMID: 30200835 DOI: 10.1080/03630269.2018.1482832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hemoglobinopathies, as β-thalassemia (β-thal) and sickle cell disease, are the most common hereditary hemolytic anemias. The increase of fetal hemoglobin (Hb F) levels can ameliorate the symptoms of hemoglobinopathies. There are several transcription factors such as MYB and SOX-6, which are involved in the regulation of Hb F. There are not enough studies investigating the association between single nucleotide polymorphisms (SNPs) of the SOX-6 and MYB genes and the variation of Hb F levels in patients affected by sickle cell disease and β-thal. We therefore decided to analyze the role of four missense variants of MYB and SOX-6 genes in the regulation of Hb F levels. In order to do so, we examinated 30 Sicilian patients affected by sickle cell disease and β-thal, to understand if these variants could also have an influence in our populations. Comparing two groups of patients with low and high levels of Hb F, we found no significant differences in the genetic distribution and allelic frequency of MYB and SOX-6 gene polymorphisms. We also created and compared a 'high producer' and 'low producer' genotype with different genes achieving the same result of no significant difference. Our results may be due either to the fact that the association between these genes and the regulation of Hb F levels are influenced by environmental history and population genetics, or to the small number of samples being analyzed.
Collapse
Affiliation(s)
- Florinda Listì
- a Ospedale V. Cervello, Unità Operativa Complessa (UOC), Ematologia per le Malattie Rare del Sangue e degli Organi Ematopoietici , Azienda Ospedali Riuniti Villa Sofia-Cervello , Palermo , Italia
| | - Serena Sclafani
- a Ospedale V. Cervello, Unità Operativa Complessa (UOC), Ematologia per le Malattie Rare del Sangue e degli Organi Ematopoietici , Azienda Ospedali Riuniti Villa Sofia-Cervello , Palermo , Italia
| | - Veronica Agrigento
- a Ospedale V. Cervello, Unità Operativa Complessa (UOC), Ematologia per le Malattie Rare del Sangue e degli Organi Ematopoietici , Azienda Ospedali Riuniti Villa Sofia-Cervello , Palermo , Italia
| | - Rita Barone
- a Ospedale V. Cervello, Unità Operativa Complessa (UOC), Ematologia per le Malattie Rare del Sangue e degli Organi Ematopoietici , Azienda Ospedali Riuniti Villa Sofia-Cervello , Palermo , Italia
| | - Aurelio Maggio
- a Ospedale V. Cervello, Unità Operativa Complessa (UOC), Ematologia per le Malattie Rare del Sangue e degli Organi Ematopoietici , Azienda Ospedali Riuniti Villa Sofia-Cervello , Palermo , Italia
| | - Elena D'Alcamo
- a Ospedale V. Cervello, Unità Operativa Complessa (UOC), Ematologia per le Malattie Rare del Sangue e degli Organi Ematopoietici , Azienda Ospedali Riuniti Villa Sofia-Cervello , Palermo , Italia
| |
Collapse
|
23
|
King AJ, Higgs DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:353-360. [PMID: 30504332 PMCID: PMC6246003 DOI: 10.1182/asheducation-2018.1.353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The α-thalassemia trait, associated with deletions removing both α-globin genes from 1 chromosome (genotype ζ αα/ζ--), is common throughout Southeast Asia. Consequently, many pregnancies in couples of Southeast Asian origin carry a 1 in 4 risk of producing a fetus inheriting no functional α-globin genes (ζ--/ζ--), leading to hemoglobin (Hb) Bart's hydrops fetalis syndrome (BHFS). Expression of the embryonic α-globin genes (ζ-globin) is normally limited to the early stages of primitive erythropoiesis, and so when the ζ-globin genes are silenced, at ∼6 weeks of gestation, there should be no α-like globin chains to pair with the fetal γ-globin chains of Hb, which consequently form nonfunctional tetramers (γ4) known as Hb Bart's. When deletions leave the ζ-globin gene intact, a low level of ζ-globin gene expression continues in definitive erythroid cells, producing small amounts of Hb Portland (ζ2γ2), a functional form of Hb that allows the fetus to survive up to the second or third trimester. Untreated, all affected individuals die at these stages of development. Prevention is therefore of paramount importance. With improvements in early diagnosis, intrauterine transfusion, and advanced perinatal care, there are now a small number of individuals with BHFS who have survived, with variable outcomes. A deeper understanding of the mechanism underlying the switch from ζ- to α-globin expression could enable persistence or reactivation of embryonic globin synthesis in definitive cells, thereby providing new therapeutic options for such patients.
Collapse
Affiliation(s)
- Andrew J King
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Douglas R Higgs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
24
|
Rossi C, Zini R, Rontauroli S, Ruberti S, Prudente Z, Barbieri G, Bianchi E, Salati S, Genovese E, Bartalucci N, Guglielmelli P, Tagliafico E, Rosti V, Barosi G, Vannucchi AM, Manfredini R. Role of TGF-β1/miR-382-5p/SOD2 axis in the induction of oxidative stress in CD34+ cells from primary myelofibrosis. Mol Oncol 2018; 12:2102-2123. [PMID: 30259659 PMCID: PMC6275274 DOI: 10.1002/1878-0261.12387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by an excessive production of pro-inflammatory cytokines resulting in chronic inflammation and genomic instability. Besides the driver mutations in JAK2, MPL, and CALR genes, the deregulation of miRNA expression may also contribute to the pathogenesis of PMF. To this end, we recently reported the upregulation of miR-382-5p in PMF CD34+ cells. In order to unveil the mechanistic details of the role of miR-382-5p in pathogenesis of PMF, we performed gene expression profiling of CD34+ cells overexpressing miR-382-5p. Among the downregulated genes, we identified superoxide dismutase 2 (SOD2), which is a predicted target of miR-382-5p. Subsequently, we confirmed miR-382-5p/SOD2 interaction by luciferase assay and we showed that miR-382-5p overexpression in CD34+ cells causes the decrease in SOD2 activity leading to reactive oxygen species (ROS) accumulation and oxidative DNA damage. In addition, our data indicate that inhibition of miR-382-5p in PMF CD34+ cells restores SOD2 function, induces ROS disposal, and reduces DNA oxidation. Since the pro-inflammatory cytokine transforming growth factor-β1 (TGF-β1) is a key player in PMF pathogenesis, we further investigated the effect of TGF-β1 on ROS and miR-382-5p levels. Our data showed that TGF-β1 treatment enhances miR-382-5p expression and reduces SOD2 activity leading to ROS accumulation. Finally, inhibition of TGF-β1 signaling in PMF CD34+ cells by galunisertib significantly reduced miR-382-5p expression and ROS accumulation and restored SOD2 activity. As a whole, this study reports that TGF-β1/miR-382-5p/SOD2 axis deregulation in PMF cells is linked to ROS overproduction that may contribute to enhanced oxidative stress and inflammation. Our results suggest that galunisertib may represent an effective drug reducing abnormal oxidative stress induced by TGF-β1 in PMF patients. DATABASE LINKING: GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103464.
Collapse
Affiliation(s)
- Chiara Rossi
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Roberta Zini
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Sebastiano Rontauroli
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Samantha Ruberti
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Zelia Prudente
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Greta Barbieri
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Elisa Bianchi
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Simona Salati
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Elena Genovese
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi, University of Florence, Italy
| | - Rossella Manfredini
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia, Italy
| | | |
Collapse
|
25
|
Kao CY, Papoutsakis ET. Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells. SCIENCE ADVANCES 2018; 4:eaau6762. [PMID: 30417099 PMCID: PMC6221511 DOI: 10.1126/sciadv.aau6762] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are important target cells for gene therapy applications. Current genetic modifications of HSPCs rely on viral vectors in vivo or electroporation ex vivo. Here, we developed a nonviral system based on megakaryocytic microparticles (MPs) for targeted delivery of plasmid DNA (pDNA) and small RNAs to HSPCs. We have previously shown that megakaryocytic MPs, the most abundant MPs in blood circulation, target specifically and deliver cargo to HSPCs both in vitro and in vivo. With an optimized electroporation protocol, an average of 4200 plasmid copies per MP were loaded into MP, thus enabling effective delivery of green fluorescent protein (GFP)-encoding pDNA to HSPCs and HSPC nuclei, with up to 81% nuclei containing pDNA. Effective functional small interfering RNA (siRNA) and microRNA (miRNA) delivery were also demonstrated. As patient-specific or generic megakaryocytic MPs can be readily generated and stored frozen, our data suggest that this system has great potential for therapeutic applications targeting HSPCs.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
26
|
Yang X, Tan Y, Wang P, Zhang H, Zhao M, Zhao X, Wang K. PML-RARα interferes with erythropoiesis by repressing LMO2 in acute promyelocytic leukaemia. J Cell Mol Med 2018; 22:6275-6284. [PMID: 30320491 PMCID: PMC6237603 DOI: 10.1111/jcmm.13917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/06/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
The PML‐RARα fusion gene, generated by the t(15;17) chromosome translocation, is regarded as the initiating factor of acute promyelocytic leukaemia (APL). In addition to the well‐known effects on blocking myeloid differentiation at the promyelocytic stage, promyelocytic leukaemia‐retinoic acid receptor α (PML‐RARα) has also been reported to interfere with multiple differentiation processes, including erythroid differentiation. However, the detailed molecular mechanism by which PML‐RARα impairs erythropoiesis has not yet been fully addressed. By chromatin immunoprecipitation‐PCR assay, we found that PML‐RARα bound to the distal promoter region of LMO2 (LIM‐only protein 2), a critical erythroid‐specific transcription factor. Luciferase reporter assays and qRT‐PCR results demonstrated that PML‐RARα down‐regulated the expression of the LMO2 distal transcript through transrepressing its promoter activity. Analysis of gene expression profiling data from large cohorts of acute myeloid leukaemia (AML) patients confirmed that LMO2 expressed at a markedly lower level in APL patients in comparison to non‐APL AML patients. Further flow cytometry analysis demonstrated that PML‐RARα inhibited erythropoietin‐induced erythroid differentiation by down‐regulating LMO2 expression. Our findings reveal a previously unidentified mechanism, by which PML‐RARα interferes with erythropoiesis through directly targeting and transrepressing LMO2 expression in the development of APL.
Collapse
Affiliation(s)
- Xianwen Yang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xujie Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Abstract
In the 100 years since sickle cell anemia (SCA) was first described in the medical literature, studies of its molecular and pathophysiological basis have been at the vanguard of scientific discovery. By contrast, the translation of such knowledge into treatments that improve the lives of those affected has been much too slow. Recent years, however, have seen major advances on several fronts. A more detailed understanding of the switch from fetal to adult hemoglobin and the identification of regulators such as BCL11A provide hope that these findings will be translated into genomic-based approaches to the therapeutic reactivation of hemoglobin F production in patients with SCA. Meanwhile, an unprecedented number of new drugs aimed at both the treatment and prevention of end-organ damage are now in the pipeline, outcomes from potentially curative treatments such as allogeneic hematopoietic stem cell transplantation are improving, and great strides are being made in gene therapy, where methods employing both antisickling β-globin lentiviral vectors and gene editing are now entering clinical trials. Encouragingly, after a century of neglect, the profile of the vast majority of those with SCA in Africa and India is also finally improving.
Collapse
Affiliation(s)
- Thomas N Williams
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College London, London W2 1NY, United Kingdom;
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1589, USA;
| |
Collapse
|
28
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
29
|
Demirci S, Uchida N, Tisdale JF. Gene therapy for sickle cell disease: An update. Cytotherapy 2018; 20:899-910. [PMID: 29859773 PMCID: PMC6123269 DOI: 10.1016/j.jcyt.2018.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.
Collapse
Affiliation(s)
- Selami Demirci
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
30
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
31
|
Chang AK, Ginter Summarell CC, Birdie PT, Sheehan VA. Genetic modifiers of severity in sickle cell disease. Clin Hemorheol Microcirc 2018; 68:147-164. [PMID: 29614629 DOI: 10.3233/ch-189004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sickle cell disease (SCD) is one of the most common single disease disorders world-wide. It is remarkable for its clinical heterogeneity, even among individuals with identical genotypes. Some individuals experience morbidity and mortality in early childhood, while others have a relatively mild course, and normal or near normal life expectancy. Many clinical complications are associated with SCD; most notably frequent pain episodes, stroke, acute chest syndrome, avascular necrosis, nephropathy, retinopathy and pulmonary hypertension. While the effects of higher fetal hemoglobin (HbF) levels, UGTA1A polymorphisms, alpha-thalassemia and G6PD deficiency on SCD has been extensively studied, these variables do not explain all of the clinical heterogeneity of SCD. It is not known why some patients develop certain complications, and it is difficult to predict which complications a particular patient will experience. Much work has been done to identify genetic variants associated with these disease complications; many associations remain unvalidated. As the field continues to move beyond small sample collections and candidate gene approaches into whole genome sequencing and merging of samples from all over the world, we will identify more genetic variants associated with development of specific SCD related complications, and hopefully leverage this knowledge into targeted therapies.
Collapse
Affiliation(s)
- Alicia K Chang
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Carly C Ginter Summarell
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Parendi T Birdie
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Xavier-Ferrucio J, Krause DS. Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies. Stem Cells 2018; 36:1138-1145. [PMID: 29658164 DOI: 10.1002/stem.2834] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem and progenitor cells maintain blood formation throughout our lifetime by undergoing long- and short-term self-renewal, respectively. As progenitor cells progress through the hematopoiesis process, their differentiation capabilities narrow, such that the precursors become committed to only one or two lineages. This Review focuses on recent advances in the identification and characterization of bipotent megakaryocytic-erythroid progenitors (MEP), the cells that can further produce two completely different functional outputs: platelets and red blood cells. The existence of MEP has sparked controversy as studies describing the requirement for this intermediate progenitor stage prior to commitment to the erythroid and megakaryocytic lineages have been potentially contradictory. Interpretation of these studies is complicated by the variety of species, cell sources, and analytical approaches used along with inherent challenges in the continuum of hematopoiesis, where hematopoietic progenitors do not stop at discrete steps on single paths as classically drawn in hematopoietic hierarchy models. With the goal of improving our understanding of human hematopoiesis, we discuss findings in both human and murine cells. Based on these data, MEP clearly represent a transitional stage of differentiation in at least one route to the generation of both megakaryocytes and erythroid cells. Stem Cells 2018;36:1138-1145.
Collapse
Affiliation(s)
- Juliana Xavier-Ferrucio
- Yale Stem Cell Center and Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| | - Diane S Krause
- Yale Stem Cell Center and Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Megakaryocyte lineage development is controlled by modulation of protein acetylation. PLoS One 2018; 13:e0196400. [PMID: 29698469 PMCID: PMC5919413 DOI: 10.1371/journal.pone.0196400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.
Collapse
|
35
|
Li Y, Liu D, Zhang X, Li Z, Ye Y, Liu Q, Shen J, Chen Z, Huang H, Liang Y, Han X, Liu J, An X, Mohandas N, Xu X. miR-326 regulates HbF synthesis by targeting EKLF in human erythroid cells. Exp Hematol 2018; 63:33-40.e2. [PMID: 29601850 DOI: 10.1016/j.exphem.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
Haploinsufficiency of erythroid Krüppel-like factor (EKLF/KLF1) has been shown recently to ameliorate the clinical severity of β-thalassemia by increased expression levels of fetal hemoglobin (HbF). The underlying mechanisms for role of EKLF in regulating HbF are of great interest but remain incompletely understood. In this study, we used a combination of in silico, in vitro, and in vivo approaches to identify microRNAs (miRs) involved in EKLF regulation and to validate the role of miR-326 in HbF modification. We found that miR-326 suppresses EKLF expression directly by targeting its 3' untranslated region. miR-326 overexpression in K562 cells or CD34+ hematopoietic progenitor cells resulted in reduced EKLF protein levels and was associated with elevated expression of γ-globin, whereas inhibition of physiological miR-326 levels increased EKLF and thus reduced γ-globin expression. Moreover, miR-326 expression is positively correlated with HbF levels in β-thalassemia patients. Our results suggest that miR-326 plays a key role in regulating EKLF expression and in modifying the HbF level, which may provide a new strategy for activating HbF in individuals with β-thalassemia or sickle cell disease.
Collapse
Affiliation(s)
- Yihong Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dun Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 303rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Zhiming Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Chen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huajie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Han
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA; College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
A novel role of CKIP-1 in promoting megakaryocytic differentiation. Oncotarget 2018; 8:30138-30150. [PMID: 28404913 PMCID: PMC5444732 DOI: 10.18632/oncotarget.15619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/27/2017] [Indexed: 11/30/2022] Open
Abstract
Casein kinase 2-interacting protein-1 (CKIP-1) is a known regulator of cardiomyocytes and macrophage proliferation. In this study, we showed that CKIP-1 was involved in the process of megakaryocytic differentiation. During megakaryocytic differentiation of K562 cells, CKIP-1 was dramatically upregulated and this upregulation induced by PMA was mediated through downregulation of transcription factor GATA-1. By transient transfection, oligonucleotide-directed mutagenesis and chromatin immunoprecipitation assays, we identified the transcriptional regulation of CKIP-1 by GATA-1. Overexpression of CKIP-1 initiated events of spontaneous megakaryocytic differentiation in K562 cells. Conversely, knockdown of CKIP-1 in cell lines suppressed megakaryocytic differentiation. Mechanistically, overexpression of CKIP-1 changed the expression levels of transcription factors that have been shown to be critical in erythro-megakaryocytic differentiation such as Fli-1, c-Myb and c-Myc. In vivo analysis confirmed that CKIP-1−/− mice had decreased number of CD41+ cells harvested from bone marrow, and lower platelet levels when compared to wild-type littermates. This is the first direct evidence suggesting that CKIP-1 is a novel regulator of megakaryocytic differentiation.
Collapse
|
37
|
Li Y, Liu D, Li Z, Zhang X, Ye Y, Liu Q, Shen J, Chen Z, Huang H, Liang Y, Han X, Liu J, An X, Mohandas N, Xu X. Role of tissue-specific promoter DNA methylation in regulating the human EKLF gene. Blood Cells Mol Dis 2018; 71:16-22. [PMID: 29475801 DOI: 10.1016/j.bcmd.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) is an erythroid-specific transcription factor whose activity is essential for erythropoiesis. The underlying mechanisms for EKLF specifically restricted to erythroid cells are of great interest but remain incompletely understood. To explore the epigenetic regulation of EKLF expression by promoter DNA methylation, we investigated the methylation status of the EKLF promoter and EKLF gene expression from a panel of human tissues. We observed that erythroid-specific hypomethylation of the EKLF promoter in adult erythroid cells was positively associated with EKLF expression. Demethylation of the EKLF promoter by 5-aza-2'-deoxycytidine led to elevated EKLF expression in non-erythroid cells. We further uncovered that EKLF promoter DNA methylation reduced the binding affinity for the transcription factors GATA1 and c-myb (MYB), which in turn silenced EKLF expression. These results suggest that hypomethylation of the EKLF promoter has functional significance in the establishment and maintenance of erythroid-specific gene expression.
Collapse
Affiliation(s)
- Yihong Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dun Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiming Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 303rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi Chen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huajie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Han
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, United States; College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, United States
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Salati S, Prudente Z, Genovese E, Pennucci V, Rontauroli S, Bartalucci N, Mannarelli C, Ruberti S, Zini R, Rossi C, Bianchi E, Guglielmelli P, Tagliafico E, Vannucchi AM, Manfredini R. Calreticulin Affects Hematopoietic Stem/Progenitor Cell Fate by Impacting Erythroid and Megakaryocytic Differentiation. Stem Cells Dev 2018; 27:225-236. [PMID: 29258411 DOI: 10.1089/scd.2017.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and the retention of calcium. Recently, mutations affecting exon 9 of the CALR gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis. To shed light on the role of WT CALR during normal hematopoiesis, we performed gene silencing and overexpression experiments in hematopoietic stem progenitor cells (HSPCs). Our results showed that CALR overexpression is able to affect physiological hematopoiesis by enhancing both erythroid and megakaryocytic (MK) differentiation. In agreement with overexpression data, CALR silencing caused a significant decrease in both erythroid and MK differentiation of human HSPCs. Gene expression profiling (GEP) analysis showed that CALR is able to affect the expression of several genes involved in HSPC differentiation toward both the erythroid and MK lineages. Moreover, GEP data also highlighted the modulation of several genes involved in ER stress response, unfolded protein response (UPR), and DNA repair, and of several genes already described to play a role in MPN development, such as proinflammatory cytokines and hematological neoplasm-related markers. Altogether, our data unraveled a new and unexpected role for CALR in the regulation of normal hematopoietic differentiation. Moreover, by showing the impact of CALR on the expression of genes involved in several biological processes already described in cellular transformation, our data strongly suggest a more complex role for CALR in MPN development that goes beyond the activation of the THPO receptor and involves ER stress response, UPR, and DNA repair.
Collapse
Affiliation(s)
- Simona Salati
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Zelia Prudente
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Genovese
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Pennucci
- Institute for Cell and Gene Therapy & Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bartalucci
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Carmela Mannarelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Samantha Ruberti
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Rossi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Guglielmelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro M Vannucchi
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
39
|
Chapin J, Giardina PJ. Thalassemia Syndromes. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Antoniani C, Romano O, Miccio A. Concise Review: Epigenetic Regulation of Hematopoiesis: Biological Insights and Therapeutic Applications. Stem Cells Transl Med 2017; 6:2106-2114. [PMID: 29080249 PMCID: PMC5702521 DOI: 10.1002/sctm.17-0192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
Hematopoiesis is the process of blood cell formation starting from hematopoietic stem/progenitor cells (HSPCs). The understanding of regulatory networks involved in hematopoiesis and their impact on gene expression is crucial to decipher the molecular mechanisms that control hematopoietic development in physiological and pathological conditions, and to develop novel therapeutic strategies. An increasing number of epigenetic studies aim at defining, on a genome‐wide scale, the cis‐regulatory sequences (e.g., promoters and enhancers) used by human HSPCs and their lineage‐restricted progeny at different stages of development. In parallel, human genetic studies allowed the discovery of genetic variants mapping to cis‐regulatory elements and associated with hematological phenotypes and diseases. Here, we summarize recent epigenetic and genetic studies in hematopoietic cells that give insights into human hematopoiesis and provide a knowledge basis for the development of novel therapeutic approaches. As an example, we discuss the therapeutic approaches targeting cis‐regulatory regions to reactivate fetal hemoglobin for the treatment of β‐hemoglobinopathies. Epigenetic studies allowed the definition of cis‐regulatory sequences used by human hematopoietic cells. Promoters and enhancers are targeted by transcription factors and are characterized by specific histone modifications. Genetic variants mapping to cis‐regulatory elements are often associated with hematological phenotypes and diseases. In some cases, these variants can alter the binding of transcription factors, thus changing the expression of the target genes. Targeting cis‐regulatory sequences represents a promising therapeutic approach for many hematological diseases. Stem Cells Translational Medicine2017;6:2106–2114
Collapse
Affiliation(s)
- Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Oriana Romano
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR1163, Imagine Institute, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
41
|
Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis 2017; 70:54-65. [PMID: 28651846 DOI: 10.1016/j.bcmd.2017.06.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The remarkable phenotypic diversity of β thalassemia that range from severe anemia and transfusion-dependency, to a clinically asymptomatic state exemplifies how a spectrum of disease severity can be generated in single gene disorders. While the genetic basis for β thalassemia, and how severity of the anemia could be modified at different levels of its pathophysiology have been well documented, therapy remains largely supportive with bone marrow transplant being the only cure. Identification of the genetic variants modifying fetal hemoglobin (HbF) production in combination with α globin genotype provide some prediction of disease severity for β thalassemia but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered. Nonetheless, genetic studies have been successful in characterizing the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation. BCL11A has been established as a quantitative repressor, and progress has been made in manipulating its expression using genomic and gene-editing approaches for therapeutic benefits. Recent discoveries and understanding in the mechanisms associated with ineffective and abnormal erythropoiesis have also provided additional therapeutic targets, a couple of which are currently being tested in clinical trials.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The discovery of several genetic variants associated with erythroid traits and subsequent elucidation of their functional mechanisms are exemplars of the power of the new genetic and genomic technology. The present review highlights findings from recent genetic studies related to the control of erythropoiesis and dyserythropoiesis, and fetal hemoglobin, an erythroid-related trait. RECENT FINDINGS Identification of the genetic modulators of erythropoiesis involved two approaches: genome-wide association studies (GWASs) using single nucleotide polymorphism (SNP) arrays that revealed the common genetic variants associated with erythroid phenotypes (hemoglobin, red cell count, MCV, MCH) and fetal hemoglobin; and massive parallel sequencing such as whole genome sequencing (WGS) and whole exome sequencing (WES) that led to the discovery of the rarer variants (GFI1B, SBDS, RPS19, PKLR, EPO, EPOR, KLF1, GATA1). Functional and genomic studies aided by computational approaches and gene editing technology refined the regions encompassing the putative causative SNPs and confirmed their regulatory role at different stages of erythropoiesis. SUMMARY Five meta-analysis of GWASs identified 17 genetic loci associated with erythroid phenotypes, which are potential regulators of erythropoiesis. Some of these loci showed pleiotropy associated with multiple erythroid traits, suggesting undiscovered molecular mechanisms and challenges underlying erythroid biology. Other sequencing strategies (WGS and WES) further elucidated the role of rare variants in dyserythropoiesis. Integration of common and rare variant studies with functional assays involving latest genome-editing technologies will significantly improve our understanding of the genetics underlying erythropoiesis and erythroid disorders.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, Maryland, USA
| | | |
Collapse
|
43
|
Bianchi E, Ruberti S, Rontauroli S, Guglielmelli P, Salati S, Rossi C, Zini R, Tagliafico E, Vannucchi AM, Manfredini R. Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis. Int J Mol Sci 2017; 18:ijms18010145. [PMID: 28098757 PMCID: PMC5297778 DOI: 10.3390/ijms18010145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Primary Myelofibrosis (PMF) is a chronic Philadelphia-negative myeloproliferative neoplasm characterized by a skewed megakaryopoiesis and an overproduction of proinflammatory and profibrotic mediators that lead to the development of bone marrow (BM) fibrosis. Since we recently uncovered the upregulation of miR-34a-5p in PMF CD34+ hematopoietic progenitor cells (HPCs), in order to elucidate its role in PMF pathogenesis here we unravelled the effects of miR-34a-5p overexpression in HPCs. We showed that enforced expression of miR-34a-5p partially constrains proliferation and favours the megakaryocyte and monocyte/macrophage commitment of HPCs. Interestingly, we identified lymphoid enhancer-binding factor 1 (LEF1) and nuclear receptor subfamily 4, group A, member 2 (NR4A2) transcripts as miR-34a-5p-targets downregulated after miR-34a-5p overexpression in HPCs as well as in PMF CD34+ cells. Remarkably, the knockdown of NR4A2 in HPCs mimicked the antiproliferative effects of miR-34a-5p overexpression, while the silencing of LEF1 phenocopied the effects of miR-34a-5p overexpression on HPCs lineage choice, by favouring the megakaryocyte and monocyte/macrophage commitment. Collectively our data unravel the role of miR-34a-5p in HPCs fate decision and suggest that the increased expression of miR-34a-5p in PMF HPCs could be important for the skewing of megakaryopoiesis and the production of monocytes, that are key players in BM fibrosis in PMF patients.
Collapse
Affiliation(s)
- Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Samantha Ruberti
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Paola Guglielmelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi and Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Simona Salati
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Chiara Rossi
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Roberta Zini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Alessandro Maria Vannucchi
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi and Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
44
|
Thein SL. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:27-57. [PMID: 29127676 DOI: 10.1007/978-1-4939-7299-9_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α2γ2).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.
Collapse
Affiliation(s)
- Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 6S241 MSC 1589, 10 Center Dr., Bethesda, MD, 20892-1589, USA.
| |
Collapse
|
45
|
miR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget 2016; 6:43033-47. [PMID: 26543232 PMCID: PMC4767489 DOI: 10.18632/oncotarget.5824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system.
Collapse
|
46
|
Zini R, Rossi C, Norfo R, Pennucci V, Barbieri G, Ruberti S, Rontauroli S, Salati S, Bianchi E, Manfredini R. miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1. Stem Cells Dev 2016; 25:1433-43. [DOI: 10.1089/scd.2016.0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Roberta Zini
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Rossi
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ruggiero Norfo
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Valentina Pennucci
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Greta Barbieri
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Ruberti
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Salati
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
47
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
48
|
Sanada C, Xavier-Ferrucio J, Lu YC, Min E, Zhang PX, Zou S, Kang E, Zhang M, Zerafati G, Gallagher PG, Krause DS. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 2016; 128:923-33. [PMID: 27268089 PMCID: PMC4990855 DOI: 10.1182/blood-2016-01-693705] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bipotent megakaryocyte/erythroid progenitors (MEPs) give rise to progeny limited to the megakaryocyte (Mk) and erythroid (E) lineages. We developed a novel dual-detection functional in vitro colony-forming unit (CFU) assay for single cells that differentiates down both the Mk and E lineages (CFU-Mk/E), which allowed development and validation of a novel purification strategy for the identification and quantitation of primary functional human MEPs from granulocyte colony-stimulating factor-mobilized peripheral blood and bone marrow. Applying this assay to fluorescence-activated cell sorter-sorted cell populations, we found that the Lin(-)CD34(+)CD38(mid)CD45RA(-)FLT3(-)MPL(+)CD36(-)CD41(-) population is much more highly enriched for bipotent MEPs than any previously reported subpopulations. We also developed purification strategies for primary human lineage-committed Mk and E progenitors identified as CFU-Mk and burst forming unit-E. Comparative expression analyses in MEP, MkP, and ErP populations revealed differential expression of MYB We tested whether alterations in MYB concentration affect the Mk-E fate decision at the single cell level in MEPs and found that short hairpin RNA-mediated MYB knockdown promoted commitment of MEPs to the Mk lineage, further defining its role in MEP lineage fate. There are numerous applications for these novel enrichment strategies, including facilitating mechanistic studies of MEP lineage commitment, improving approaches for in vitro expansion of Mk and E cells, and developing improved therapies for benign and malignant hematologic disease.
Collapse
Affiliation(s)
| | | | - Yi-Chien Lu
- Department of Laboratory Medicine, Yale Stem Cell Center
| | | | - Ping-Xia Zhang
- Department of Laboratory Medicine, Yale Stem Cell Center
| | - Siying Zou
- Yale Stem Cell Center, Department of Cell Biology
| | | | - Meng Zhang
- Yale Stem Cell Center, Department of Cell Biology
| | | | | | - Diane S Krause
- Department of Laboratory Medicine, Yale Stem Cell Center, Department of Cell Biology, Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
49
|
Koury MJ. Tracking erythroid progenitor cells in times of need and times of plenty. Exp Hematol 2016; 44:653-63. [DOI: 10.1016/j.exphem.2015.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
|
50
|
Pule GD, Mowla S, Novitzky N, Wonkam A. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin Transl Med 2016; 5:15. [PMID: 27056246 PMCID: PMC4824700 DOI: 10.1186/s40169-016-0092-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background The major therapeutic benefit of hydroxyurea, the only FDA-approved pharmacologic treatment for sickle cell disease (SCD), is directly related to fetal hemoglobin (HbF) production that leads to significant reduction of morbidity and mortality. However, potential adverse effects such as infertility, susceptibility to infections, or teratogenic effect have been subject of concerns. Therefore, understanding HU molecular mechanisms of action, could lead to alternative therapeutic agents to increase HbF with less toxicity. This paper investigated whether HU-induced HbF could operate through post-transcriptional miRNAs regulation of BCL11A, KLF-1 and MYB, potent negative regulators of HbF. Both ex vivo differentiated primary erythroid cells from seven unrelated individuals, and K562 cells were treated with hydroxyurea (100 μM) and changes in BCL11A, KLF-1, GATA-1, MYB, β- and γ-globin gene expression were investigated. To explore potential mechanisms of post-transcriptional regulation, changes in expression of seven targeted miRNAs, previously associated with basal γ-globin expression were examined using miScript primer assays. In addition, K562 cells were transfected with miScript miRNA inhibitors/anti-miRNAs followed by Western Blot analysis to assess the effect on HbF protein levels. Direct interaction between miRNAs and the MYB 3′-untranslated region (UTR) was also investigated by a dual-luciferase reporter assays. Results Down-regulation of BCL11A and MYB was associated with a sevenfold increase in γ-globin expression in both primary and K562 cells (p < 0.003). Similarly, KLF-1 was down-regulated in both cell models, corresponding to the repressed expression of BCL11A and β-globin gene (p < 0.04). HU induced differential expression of all miRNAs in both cell models, particularly miR-15a, miR-16, miR-26b and miR-151-3p. An HU-induced miRNAs-mediated mechanism of HbF regulation was illustrated with the inhibition of miR-26b and -151-3p resulting in reduced HbF protein levels. There was direct interaction between miR-26b with the MYB 3′-untranslated region (UTR). Conclusions These experiments have shown the association between critical regulators of γ-globin expression (MYB, BCL11A and KLF-1) and specific miRNAs; in response to HU, and demonstrated a mechanism of HbF production through HU-induced miRNAs inhibition of MYB. The role of miRNAs-mediated post-transcriptional regulation of HbF provides potential targets for new treatments of SCD that may minimize alterations to the cellular transcriptome. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0092-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gift Dineo Pule
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa
| | - Shaheen Mowla
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Nicolas Novitzky
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa.
| |
Collapse
|