1
|
Jiang W, Zhao Y, Liu R, Zhang B, Xie Y, Gao B, Shi K, Zou M, Jia D, Ding J, Hu X, Duan Y, Han R, Huang D, Van Kaer L, Shi FD. Histidine-rich glycoprotein modulates neutrophils and thrombolysis-associated hemorrhagic transformation. EMBO Mol Med 2024; 16:2146-2169. [PMID: 39148004 PMCID: PMC11393346 DOI: 10.1038/s44321-024-00117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Intravenous thrombolysis using recombinant tissue plasminogen activator (tPA) remains the primary treatment for patients with acute ischemic stroke (AIS). However, the mechanism of tPA-related hemorrhagic transformation (HT) remains poorly understood. Elevation of histidine-rich glycoprotein (HRG) expression was detected by nano-liquid chromatography tandem mass spectrometry at 1 h following tPA infusion as compared to baseline prior to tPA infusion (discovery cohort, n = 10), which was subsequently confirmed in a validation cohort (n = 157) by ELISA. Surprisingly, no elevation of HRG was detected in individuals who subsequently developed HT. During in vitro experiments, HRG reduced neutrophil NETosis, inflammatory cytokine production, and migration across the blood-brain barrier induced by tPA. In a photothrombotic murine AIS model, HRG administration ameliorated HT with delayed thrombolysis, by inhibiting neutrophil immune infiltration and downregulating pro-inflammatory signaling pathways. Neutrophil depletion or NETosis inhibition also alleviated HT, whereas HRG siRNA treatment exacerbated HT. In conclusion, fluctuations in HRG levels may reflect tPA therapy and its associated HT. The inhibitory effect of HRG on neutrophils may counteract tPA-induced immune abnormalities and HT in patients with AIS.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuexin Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rongrong Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bohao Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhan Xie
- Department of Neurology, Tianjin NanKai Hospital, Tianjin, 300102, China
| | - Bin Gao
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kaibin Shi
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiayue Ding
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaowei Hu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanli Duan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ranran Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - DeRen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
2
|
Schoeppe R, Waldmann M, Jessen HJ, Renné T. An Update on Polyphosphate In Vivo Activities. Biomolecules 2024; 14:937. [PMID: 39199325 PMCID: PMC11352482 DOI: 10.3390/biom14080937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Polyphosphate (polyP) is an evolutionary ancient inorganic molecule widespread in biology, exerting a broad range of biological activities. The intracellular polymer serves as an energy storage pool and phosphate/calcium ion reservoir with implications for basal cellular functions. Metabolisms of the polymer are well understood in procaryotes and unicellular eukaryotic cells. However, functions, regulation, and association with disease states of the polymer in higher eukaryotic species such as mammalians are just beginning to emerge. The review summarises our current understanding of polyP metabolism, the polymer's functions, and methods for polyP analysis. In-depth knowledge of the pathways that control polyP turnover will open future perspectives for selective targeting of the polymer.
Collapse
Affiliation(s)
- Robert Schoeppe
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, D-79105 Freiburg, Germany;
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Center for Thrombosis and Haemostasis (CTH), Johannes Gutenberg University Medical Center, D-55131 Mainz, Germany
| |
Collapse
|
3
|
Malik RA, Zhou J, Fredenburgh JC, Crosby J, Revenko AS, Healey JS, Weitz JI. Histidine-Rich Glycoprotein Modulates the Toxic Effects of High-Dose Polyphosphate in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1658-1670. [PMID: 38752349 DOI: 10.1161/atvbaha.124.320899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Polyphosphate (polyP), a procoagulant released from platelets, activates coagulation via the contact system and modulates cardiomyocyte viability. High-dose intravenous polyP is lethal in mice, presumably because of thrombosis. Previously, we showed that HRG (histidine-rich glycoprotein) binds polyP and attenuates its procoagulant effects. In this study, we investigated the mechanisms responsible for the lethality of intravenous polyP in mice and the impact of HRG on this process. METHODS The survival of wild-type or HRG-deficient mice given intravenous synthetic or platelet-derived polyP in doses up to 50 mg/kg or saline was compared. To determine the contribution of thrombosis, the effect of FXII (factor XII) knockdown or enoxaparin on polyP-induced fibrin deposition in the lungs was examined. To assess cardiotoxicity, the ECG was continuously monitored, the levels of troponin I and the myocardial band of creatine kinase were quantified, and the viability of a cultured murine cardiomyocyte cell line exposed to polyP in the absence or presence of HRG was determined. RESULTS In HRG-deficient mice, polyP was lethal at 30 mg/kg, whereas it was lethal in wild-type mice at 50 mg/kg. Although FXII knockdown or enoxaparin administration attenuated polyP-induced fibrin deposition in the lungs, neither affected mortality. PolyP induced dose-dependent ECG abnormalities, including heart block and ST-segment changes, and increased the levels of troponin and myocardial band of creatine kinase, effects that were more pronounced in HRG-deficient mice than in wild-type mice and were attenuated when HRG-deficient mice were given supplemental HRG. Consistent with its cardiotoxicity, polyP reduced the viability of cultured cardiomyocytes in a dose-dependent manner, an effect attenuated with supplemental HRG. CONCLUSIONS High-dose intravenous polyP is cardiotoxic in mice, and HRG modulates this effect.
Collapse
Affiliation(s)
- Rida A Malik
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (R.A.M., J.Z., J.C.F., J.I.W.)
- Department of Medical Sciences (R.A.M.), McMaster University, Hamilton, Ontario, Canada
| | - Ji Zhou
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (R.A.M., J.Z., J.C.F., J.I.W.)
- Department of Medicine (J.Z., J.C.F., J.S.H., J.I.W.), McMaster University, Hamilton, Ontario, Canada
| | - James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (R.A.M., J.Z., J.C.F., J.I.W.)
- Department of Medicine (J.Z., J.C.F., J.S.H., J.I.W.), McMaster University, Hamilton, Ontario, Canada
| | - Jeff Crosby
- Department of Pulmonary and Oncology Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (J.C., A.S.R.)
| | - Alexey S Revenko
- Department of Pulmonary and Oncology Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA (J.C., A.S.R.)
| | - Jeff S Healey
- Department of Medicine (J.Z., J.C.F., J.S.H., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada (J.S.H.)
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (R.A.M., J.Z., J.C.F., J.I.W.)
- Department of Medicine (J.Z., J.C.F., J.S.H., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences (J.I.W.), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Lv K, Chen S, Xu X, Chiu J, Wang HJ, Han Y, Yang X, Bowley SR, Wang H, Tang Z, Tang N, Yang A, Yang S, Wang J, Jin S, Wu Y, Schmaier AH, Ju LA, Hogg PJ, Fang C. Protein disulfide isomerase cleaves allosteric disulfides in histidine-rich glycoprotein to regulate thrombosis. Nat Commun 2024; 15:3129. [PMID: 38605050 PMCID: PMC11009332 DOI: 10.1038/s41467-024-47493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.
Collapse
Affiliation(s)
- Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Pharmacology, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Joyce Chiu
- The Centenary Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Haoqing J Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaodan Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Sheryl R Bowley
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Hao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhaoming Tang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ning Tang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Aizhen Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical Collage, Huazhong University of Science and Technology, and the Key Laboratory of Oral and Maxillofacial Development and Regeneration of Hubei Province, Wuhan, 430030, Hubei, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Wu
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Alvin H Schmaier
- Department of Medicine, Hematology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lining A Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Philip J Hogg
- The Centenary Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Zou Y, Pronker MF, Damen JMA, Heck AJR, Reiding KR. Genotype-dependent N-glycosylation and newly exposed O-glycosylation affect plasmin-induced cleavage of histidine-rich glycoprotein (HRG). J Biol Chem 2024; 300:105683. [PMID: 38272220 PMCID: PMC10882129 DOI: 10.1016/j.jbc.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Histidine-rich glycoprotein (HRG) is an abundant plasma protein harboring at least three N-glycosylation sites. HRG integrates many biological processes, such as coagulation, antiangiogenic activity, and pathogen clearance. Importantly, HRG is known to exhibit five genetic variants with minor allele frequencies of more than 10%. Among them, Pro204Ser can induce a fourth N-glycosylation site (Asn202). Considerable efforts have been made to reveal the biological function of HRG, whereas data on HRG glycosylation are scarcer. To close this knowledge gap, we used C18-based LC-MS/MS to study the glycosylation characteristics of six HRG samples from different sources. We used endogenous HRG purified from human plasma and compared its glycosylation to that of the recombinant HRG produced in Chinese hamster ovary cells or human embryonic kidney 293 cells, targeting distinct genotypic isoforms. In endogenous plasma HRG, every N-glycosylation site was occupied predominantly with a sialylated diantennary complex-type glycan. In contrast, in the recombinant HRGs, all glycans showed different antennarities, sialylation, and core fucosylation, as well as the presence of oligomannose glycans, LacdiNAcs, and antennary fucosylation. Furthermore, we observed two previously unreported O-glycosylation sites in HRG on residues Thr273 and Thr274. These sites together showed more than 90% glycan occupancy in all HRG samples studied. To investigate the potential relevance of HRG glycosylation, we assessed the plasmin-induced cleavage of HRG under various conditions. These analyses revealed that the sialylation of the N- and O-glycans as well as the genotype-dependent N-glycosylation significantly influenced the kinetics and specificity of plasmin-induced cleavage of HRG.
Collapse
Affiliation(s)
- Yang Zou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Nishibori M, Wake H, Sakaguchi M. [The plasma protein HRG is an important factor for preventing sepsis and maintaining homeostatic response]. Nihon Yakurigaku Zasshi 2024; 159:107-111. [PMID: 38432918 DOI: 10.1254/fpj.23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute phase proteins such as CRP, amyloid protein A, and α1-antitrypsin are produced in the liver and their plasma levels are increased during the acute inflammatory response. In contrast, there are plasma proteins whose dynamics are opposite to acute phase proteins. This group includes histidine-rich glycoprotein (HRG), inter-α-inhibitor proteins, albumin, and transthyretin. HRG binds to a variety of factors and regulates the fundamental processes; the blood coagulation, the clearance of apoptotic cells, and tumor growth. In the present review, we focus on the anti-septic effects of HRG in mice model, the actions of HRG on human blood cells/vascular endothelial cells, and the identification of a novel receptor CLEC1A for HRG, based on our recent findings. HRG appears to maintain the quiescence of neutrophils; a round shape, the low levels of spontaneous release of ROS, the ease passage through artificial microcapillaries, and prevention of adhesion to vascular endothelial cells. HRG also inhibited activation of vascular endothelial cells; the suppression of adhesion molecules and the inhibition of HMGB1 mobilization and cytokine secretion. It was shown that plasma HRG level was an excellent biomarker of septic patients in ICU for the evaluation of severity and prognosis. So far little attention has been paid to HRG in terms of a functional role in sepsis and ARDS, however, it is strongly suggested that HRG may be an important plasma factor that prevents a progress in the septic cascade and maintains the homeostasis of blood cells and vascular endothelial cells.
Collapse
Affiliation(s)
- Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
7
|
Godtfredsen AC, Palarasah Y, Dolleris BB, Jørgensen JS, Sidelmann JJ, Gram JB. Increased contact activated endogenous thrombin potential in pregnant women with preeclampsia. Blood Coagul Fibrinolysis 2024; 35:1-7. [PMID: 38051647 PMCID: PMC10836780 DOI: 10.1097/mbc.0000000000001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Preeclampsia is a worldwide contributor to maternal and fetal morbidity and mortality. Women with preeclampsia are in a hyper-coagulable state with increased risk of thromboembolic disease later in life compared with normal pregnant women. The contact system (CAS) in plasma can mediate thrombin generation and is an important contributor to thrombus growth, but the activation of CAS during pregnancy complicated by preeclampsia is not yet elucidated, and CAS may play a role in the pathophysiology of preeclampsia. Therefore, the aim of the study is to address thrombin generation, and in particular, the capacity of the CAS-mediated pathway in patients with preeclampsia compared with pregnant controls. One hundred and seventeen women with preeclampsia and matched controls were included. The project was registered at www.clinicaltrials.gov as NCT04825145. CAS and tissue factor induced thrombin generation, proteins C and S, antithrombin, and histidine-rich glycoprotein (HRG) were assessed. Women with preeclampsia had significantly increased CAS and tissue factor-induced endogenous thrombin potential (ETP), and HRG compared with controls, P = 0.022, P = 0.024, and P = 0.02, respectively. The concentrations of protein C and antithrombin were significantly reduced in the preeclampsia group, P = 0.024 and P < 0.0001, respectively. No significant difference in the concentration of protein S was detected, P = 0.06. This study demonstrates a significant increased CAS-induced ETP and an overall decrease of important regulators of coagulation in women with preeclampsia compared with controls. These aspects can contribute to the hyper-coagulable state characterizing preeclampsia.
Collapse
Affiliation(s)
- Anne Cathrine Godtfredsen
- Department of Gynecology and Obstetrics, University Hospital of Southern Denmark
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg
- Department of Cancer and Inflammation Research, University of Southern Denmark
| | - Britta Blume Dolleris
- Department of Gynecology and Obstetrics, University Hospital of Southern Denmark, Odense
| | - Jan Stener Jørgensen
- Department of Gynecology and Obstetrics, University Hospital of Southern Denmark, Odense
| | - Johannes Jakobsen Sidelmann
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Jørgen Brodersen Gram
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
8
|
Schmaier AH. Histidine-rich glycoprotein: antithrombosis without bleeding. Blood Adv 2023; 7:5649-5650. [PMID: 37756538 PMCID: PMC10546342 DOI: 10.1182/bloodadvances.2023011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Affiliation(s)
- Alvin H Schmaier
- Department of Medicine, Division of Hematology and Cell Therapy, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
9
|
Malik RA, Liao P, Zhou J, Hussain R, Fredenburgh JC, Hettrick L, Revenko AS, Weitz JI. Histidine-rich glycoprotein attenuates catheter thrombosis. Blood Adv 2023; 7:5651-5660. [PMID: 37042966 PMCID: PMC10546346 DOI: 10.1182/bloodadvances.2022009236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/13/2023] Open
Abstract
Factor XII (FXII) knockdown attenuates catheter thrombosis in rabbits. Because histidine-rich glycoprotein (HRG) modulates FXIIa activity, we hypothesized that HRG depletion would promote catheter thrombosis. To test this, rabbits were given either antisense oligonucleotides (ASOs) against HRG or FXII, a control ASO, or saline. The activated partial thromboplastin time (aPTT), prothrombin time (PT), and catheter-induced thrombin generation were determined in blood collected before and after treatment. Compared with the controls, the HRG- and FXII-directed ASOs reduced hepatic messenger RNA and plasma levels of HRG and FXII, respectively, by >90%. Although HRG knockdown shortened the aPTT by 2.5 fold, FXII knockdown prolonged it by fourfold; neither of the ASOs affected the PT. Catheter segments shortened the lag time and increased peak thrombin in the plasma from control rabbits; effects were significantly enhanced and attenuated in the plasma from rabbits given the HRG- and FXII-directed ASOs, respectively. Catheters were then inserted into the right external jugular vein of the rabbits, and the time for catheter occlusion was determined. The catheter occlusion times with the control ASO or saline were 62 ± 8 minutes and 60 ± 11 minutes, respectively. The occlusion time was significantly reduced to 34 ± 9 minutes, with HRG knockdown and significantly prolonged to 128 ± 19 minutes with FXII knockdown. HRG levels are decreased with sepsis or cancer, and such patients are prone to catheter thrombosis. Because HRG modulates catheter thrombosis, our findings suggest that HRG supplementation may prevent this problem.
Collapse
Affiliation(s)
- Rida A. Malik
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Peng Liao
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ji Zhou
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rawaa Hussain
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James C. Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lisa Hettrick
- Department of Pulmonary and Oncology Drug Discovery, Ionis Pharmaceuticals Inc, Carlsbad, CA
| | - Alexey S. Revenko
- Department of Pulmonary and Oncology Drug Discovery, Ionis Pharmaceuticals Inc, Carlsbad, CA
| | - Jeffrey I. Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Li X, Zhang B, Ding W, Jia X, Han Z, Zhang L, Hu Y, Shen B, Wang H. Serum Proteomic Signatures in Umbilical Cord Blood of Preterm Neonates Delivered by Women with Gestational Diabetes. Diabetes Metab Syndr Obes 2023; 16:1525-1539. [PMID: 37260850 PMCID: PMC10228520 DOI: 10.2147/dmso.s406297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Background Women who develop diabetes during pregnancy are at higher risk of preterm birth. Here, we identified differentially expressed proteins (DEPs) in the serum of umbilical cord blood samples obtained from preterm neonates delivered by women with gestational diabetes to provide therapeutic targets for clinical drug development. Materials and Methods Umbilical cord blood was collected after delivery of preterm neonates by women with gestational diabetes and after delivery of healthy neonates by women without diabetes. DEPs in the serum samples were identified using liquid chromatography-tandem mass spectrometry. Gene Ontology (GO), cluster analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to determine the biological functions associated with these DEPs. Enzyme linked immunosorbent assay was used to confirm the key DEPs. Results We found that 21 proteins were significantly upregulated, and 51 proteins were significantly downregulated in 72 DEPs in serum samples. GO analyses showed that the DEPs were mainly associated with the GO terms cellular process, biological regulation, cellular anatomical entity, and binding. KEGG signaling pathway analysis indicated that most of the upregulated DEPs were associated with the complement and coagulation cascades, Staphylococcus aureus infection, pertussis, HIF-1 signaling pathway and PPAR signaling pathway and that most of the downregulated DEPs were associated with the complement and coagulation cascades, dilated cardiomyopathy, pathways in cancer, Chagas disease, and hypertrophic cardiomyopathy. The results of KEGG pathway annotation and enrichment analyses indicated that changes in the complement and coagulation cascades may be importantly associated with preterm delivery of neonates by women with gestational diabetes. The key DEPs were confirmed by enzyme linked immunosorbent assay. Conclusion Our proteomics and bioinformatics analyses identified several key proteins and the complement and coagulation cascades pathway that warrant further investigation as potential novel therapeutic targets in preterm delivery among women with gestational diabetes.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pediatrics, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - Bin Zhang
- Department of Pediatrics, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - Wen Ding
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Xianfen Jia
- Department of Pediatrics, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - Zhen Han
- Department of Pediatrics, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, 230001, People’s Republic of China
| | - Lin Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Yifeng Hu
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Huiqin Wang
- Department of Pediatrics, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
11
|
Li X, Zeng M, Liu J, Zhang S, Liu Y, Zhao Y, Wei C, Yang K, Huang Y, Zhang L, Xiao L. Identifying potential biomarkers for the diagnosis and treatment of IgA nephropathy based on bioinformatics analysis. BMC Med Genomics 2023; 16:63. [PMID: 36978098 PMCID: PMC10044383 DOI: 10.1186/s12920-023-01494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the leading cause of end-stage renal disease in young adults. Nevertheless, the current diagnosis exclusively relies on invasive renal biopsy, and specific treatment is deficient. Thus, our study aims to identify potential crucial genes, thereby providing novel biomarkers for the diagnosis and therapy of IgAN. METHODS Three microarray datasets were downloaded from GEO official website. Differentially expressed genes (DEGs) were identified by limma package. GO and KEGG analysis were conducted. Tissue/organ-specific DEGs were distinguished via BioGPS. GSEA was utilized to elucidate the predominant enrichment pathways. The PPI network of DEGs was established, and hub genes were mined through Cytoscape. The CTD database was employed to determine the association between hub genes and IgAN. Infiltrating immune cells and their relationship to hub genes were evaluated based on CIBERSORT. Furthermore, the diagnostic effectiveness of hub markers was subsequently predicted using the ROC curves. The CMap database was applied to investigate potential therapeutic drugs. The expression level and diagnostic accuracy of TYROBP was validated in the cell model of IgAN and different renal pathologies. RESULTS A total of 113 DEGs were screened, which were mostly enriched in peptidase regulator activity, regulation of cytokine production, and collagen-containing extracellular matrix. Among these DEGs, 67 genes manifested pronounced tissue and organ specificity. GSEA analysis revealed that the most significant enriched gene sets were involved in proteasome pathway. Ten hub genes (KNG1, FN1, ALB, PLG, IGF1, EGF, HRG, TYROBP, CSF1R, and ITGB2) were recognized. CTD showed a close connection between ALB, IGF, FN1 and IgAN. Immune infiltration analysis elucidated that IGF1, EGF, HRG, FN1, ITGB2, and TYROBP were closely associated with infiltrating immune cells. ROC curves reflected that all hub genes, especially TYROBP, exhibited a good diagnostic value for IgAN. Verteporfin, moxonidine, and procaine were the most significant three therapeutic drugs. Further exploration proved that TYROBP was not only highly expressed in IgAN, but exhibited high specificity for the diagnosis of IgAN. CONCLUSIONS This study may offer novel insights into the mechanisms involved in IgAN occurrence and progression and the selection of diagnostic markers and therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Mengru Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jialu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shumin Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yifei Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuee Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cong Wei
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kexin Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Huang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
12
|
Zhong H, Kong X, Zhang Y, Su Y, Zhang B, Zhu L, Chen H, Gou X, Zhang H. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient. Evol Appl 2022; 15:2100-2112. [PMID: 36540645 PMCID: PMC9753841 DOI: 10.1111/eva.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
Collapse
Affiliation(s)
- Hai‐An Zhong
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiao‐Yan Kong
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya‐Wen Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan‐Kai Su
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Li Zhu
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Chen
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Xiao Gou
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Riedelová Z, de Los Santos Pereira A, Svoboda J, Pop-Georgievski O, Májek P, Pečánková K, Dyčka F, Rodriguez-Emmenegger C, Riedel T. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromol Biosci 2022; 22:e2200247. [PMID: 35917216 DOI: 10.1002/mabi.202200247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.
Collapse
Affiliation(s)
- Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Klára Pečánková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074, Aachen, Germany
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| |
Collapse
|
14
|
Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J Pharmacol Sci 2022; 150:9-20. [PMID: 35926948 PMCID: PMC9197787 DOI: 10.1016/j.jphs.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
Collapse
Affiliation(s)
- M Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
15
|
Li T, Ma H, Li H, Tang H, Huang J, Wei S, Yuan Q, Shi X, Gao C, Mi S, Zhao L, Zhong S, Liu Y. Physicochemical Properties and Anticoagulant Activity of Purified Heteropolysaccharides from Laminaria japonica. Molecules 2022; 27:3027. [PMID: 35566376 PMCID: PMC9102426 DOI: 10.3390/molecules27093027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Laminaria japonica is widely consumed as a key food and medicine. Polysaccharides are one of the most plentiful constituents of this marine plant. In this study, several polysaccharide fractions with different charge numbers were obtained. Their physicochemical properties and anticoagulant activities were determined by chemical and instrumental methods. The chemical analysis showed that Laminaria japonica polysaccharides (LJPs) and the purified fractions LJP0, LJP04, LJP06, and LJP08 mainly consisted of mannose, glucuronic acid, galactose, and fucose in different mole ratios. LJP04 and LJP06 also contained minor amounts of xylose. The polysaccharide fractions eluted by higher concentration of NaCl solutions showed higher contents of uronic acid and sulfate group. Biological activity assays showed that LJPs LJP06 and LJP08 could obviously prolong the activated partial thromboplastin time (APTT), indicating that they had strong anticoagulant activity. Furthermore, we found that LJP06 exerted this activity by inhibiting intrinsic factor Xase with higher selectivity than other fractions, which may have negligible bleeding risk. The sulfate group may play an important role in the anticoagulant activity. In addition, the carboxyl group and surface morphology of these fractions may affect their anticoagulant activities. The results provide information for applications of L. japonica polysaccharides, especially LJP06 as anticoagulants in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Hao Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Jinwen Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Shiying Wei
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China;
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Shunli Mi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (T.L.); (H.M.); (H.L.); (H.T.); (J.H.); (S.W.); (Q.Y.); (C.G.); (S.M.)
| |
Collapse
|
16
|
Truong TK, Malik RA, Yao X, Fredenburgh JC, Stafford AR, Madarati HM, Kretz CA, Weitz JI. Identification of the histidine-rich glycoprotein domains responsible for contact pathway inhibition. J Thromb Haemost 2022; 20:821-832. [PMID: 34967109 DOI: 10.1111/jth.15631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previously, we showed that histidine-rich glycoprotein (HRG) binds factor (F) XIIa with high affinity, inhibits FXII autoactivation and FXIIa-mediated activation of FXI, and attenuates ferric chloride-induced arterial thrombosis in mice. Therefore, HRG downregulates the contact pathway in vitro and in vivo. OBJECTIVE To identify the domains on HRG responsible for contact pathway inhibition. METHODS Recombinant HRG domain constructs (N-terminal [N1, N2, and N1N2], proline-rich regions, histidine-rich region [HRR], and C-terminal) were expressed and purified. The affinities of plasma-derived HRG, HRG domain constructs, and synthetic HRR peptides for FXII, FXIIa, β-FXIIa, and polyphosphate (polyP) were determined using surface plasmon resonance, and their effects on polyP-induced FXII autoactivation, FXIIa-mediated activation of FXI and prekallikrein, the activated partial thromboplastin time (APTT), and thrombin generation were examined. RESULTS HRG and HRG domain constructs bind FXIIa, but not FXII or β-FXII. HRR, N1, and N1N2 bind FXIIa with affinities comparable with that of HRG, whereas the remaining domains bind with lower affinity. Synthetic HRR peptides bind FXIIa and polyP with high affinity. HRG and HRR significantly inhibit FXII autoactivation and prolong the APTT. Like HRG, synthetic HRR peptides inhibit FXII autoactivation, attenuate FXIIa-mediated activation of prekallikrein and FXI, prolong the APTT, and attenuate thrombin generation. CONCLUSION The interaction of HRG with FXIIa and polyP is predominantly mediated by the HRR domain. Like intact HRG, HRR downregulates the contact pathway and contributes to HRG-mediated down regulation of coagulation.
Collapse
Affiliation(s)
- Tammy K Truong
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rida A Malik
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Xintong Yao
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alan R Stafford
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hasam M Madarati
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Wake H. [Role of histidine-rich glycoprotein as anti-DAMPs and therapeutic effects on DAMPs-related diseases]. Nihon Yakurigaku Zasshi 2022; 157:426-428. [PMID: 36328553 DOI: 10.1254/fpj.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histidine-rich glycoprotein (HRG) is a plasma glycoprotein produced mainly in the liver. We have shown that HRG replacement therapy has a marked therapeutic effect on sepsis, in which high mobility group box 1 (HMGB1), one of the representative damage-associated molecular patterns (DAMPs), is known to play an important role in the disease progression. The mechanisms of action are diverse, including inhibition of immune thrombus formation and inhibition of ROS production. In addition, HRG has been shown to neutralize the toxicity of heme, a type of DAMPs, and neutralize the activity of LPS, a type of pathogen-associated molecular patterns (PAMPs), and to inhibit the translocation of HMGB1 from the nucleus of vascular endothelial cells to the extracellular space. Since DAMPs/PAMPs are known to play a central role in the pathogenesis of not only sepsis but also many inflammatory diseases, HRG has wide therapeutic applications and is considered to be a very promising seed for drug discovery.
Collapse
Affiliation(s)
- Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University
| |
Collapse
|
18
|
Polyphosphate-induced thrombosis in mice is factor XII dependent and is attenuated by histidine-rich glycoprotein. Blood Adv 2021; 5:3540-3551. [PMID: 34474475 DOI: 10.1182/bloodadvances.2021004567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Histidine-rich glycoprotein (HRG) is an abundant plasma protein that binds factor XIIa (FXIIa) and inhibits factor XII (FXII) autoactivation and FXIIa-mediated activation of FXI. Polyphosphate (polyP), a potent procoagulant released from activated platelets, may serve as a physiological activator of the contact system. Previously, we showed that HRG binds DNA and neutralizes its procoagulant activity. Consequently, our goal was to determine whether the capacity of HRG to bind polyanions enables it to regulate polyP-induced thrombosis. In a plate-based assay, immobilized polyP bound HRG, FXII, and FXIIa in a zinc-dependent manner. Basal and polyP-induced thrombin generation was greater in plasma from HRG-deficient mice than in plasma from wild-type mice. Intraperitoneal injection of polyP shortened the activated partial thromboplastin time, enhanced thrombin generation, increased thrombin-antithrombin levels, reduced lung perfusion, and promoted pulmonary fibrin deposition to a greater extent in HRG-deficient mice than in wild-type mice, effects that were abrogated with FXII knockdown. HRG thus attenuates the procoagulant and prothrombotic effects of polyP in an FXII-dependent manner by modulating the contact system.
Collapse
|
19
|
Nishibori M, Stonestreet BS. Understanding of COVID-19 Pathology: Much More Attention to Plasma Proteins. Front Immunol 2021; 12:656099. [PMID: 33841442 PMCID: PMC8024577 DOI: 10.3389/fimmu.2021.656099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Reitsma SE, Pang J, Raghunathan V, Shatzel JJ, Lorentz CU, Tucker EI, Gruber A, Gailani D, McCarty OJT, Puy C. Role of platelets in regulating activated coagulation factor XI activity. Am J Physiol Cell Physiol 2021; 320:C365-C374. [PMID: 33471623 DOI: 10.1152/ajpcell.00056.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Factor XI (FXI) has been shown to bind platelets, but the functional significance of this observation remains unknown. Platelets are essential for hemostasis and play a critical role in thrombosis, whereas FXI is not essential for hemostasis but promotes thrombosis. An apparent functional contradiction, platelets are known to support thrombin generation, yet platelet granules release protease inhibitors, including those of activated FXI (FXIa). We aim to investigate the secretory and binding mechanisms by which platelets could support or inhibit FXIa activity. The presence of platelets enhanced FXIa activity in a purified system and increased coagulation Factor IX (FIX) activation by FXIa and fibrin generation in human plasma. In contrast, platelets reduced the activation of FXI by activated coagulation factor XII (FXIIa) and the activation of FXII by kallikrein (PKa). Incubation of FXIa with the platelet secretome, which contains FXIa inhibitors, such as protease nexin-II, abolished FXIa activity, yet in the presence of activated platelets, the secretome was not able to block the activity of FXIa. FXIa variants lacking the anion-binding sites did not alter the effect of platelets on FXIa activity or interaction. Western blot analysis of bound FXIa [by FXIa-platelet membrane immunoprecipitation] showed that the interaction with platelets is zinc dependent and, unlike FXI binding to platelets, not dependent on glycoprotein Ib. FXIa binding to the platelet membrane increases its capacity to activate FIX in plasma likely by protecting it from inhibition by inhibitors secreted by activated platelets. Our findings suggest that an interaction of FXIa with the platelet surface may induce an allosteric modulation of FXIa.
Collapse
Affiliation(s)
- Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Vikram Raghunathan
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Joseph J Shatzel
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon.,Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | | | | | - András Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon.,Aronora, Inc, Portland, Oregon
| | - David Gailani
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
21
|
Marancik DP, Perrault JR, Komoroske LM, Stoll JA, Kelley KN, Manire CA. Plasma proteomics of green turtles ( Chelonia mydas) reveals pathway shifts and potential biomarker candidates associated with health and disease. CONSERVATION PHYSIOLOGY 2021; 9:coab018. [PMID: 33959286 PMCID: PMC8084024 DOI: 10.1093/conphys/coab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC-MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.
Collapse
Affiliation(s)
- David P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
- Corresponding author: Tel: 473-444-4175.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| | - Lisa M Komoroske
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Jamie A Stoll
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Kristina N Kelley
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Charles A Manire
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| |
Collapse
|
22
|
Olausson N, Mobarrez F, Zubarev R, Chernobrovkin A, Rutishauser D, Bremme K, Westerlund E, Hovatta O, Wallén H, Henriksson P. Changes in the plasma microvesicle proteome during the ovarian hyperstimulation phase of assisted reproductive technology. Sci Rep 2020; 10:13645. [PMID: 32788624 PMCID: PMC7423945 DOI: 10.1038/s41598-020-70541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/22/2020] [Indexed: 11/26/2022] Open
Abstract
The incidence of pulmonary and venous thromboembolism is increased during the first trimester of pregnancies after assisted reproductive technology (ART) compared to spontaneous conception. We previously found that haemostatic plasma variables changed but within normal limits during controlled ovarian hyperstimulation (COH) concomitant with a major increase in plasma microvesicles (MVs) and markers indicating cell activation. We now explored the proteome of these MVs. Thirty-one women undergoing ART were blood sampled at down-regulation (DR) of oestrogen and at high level stimulation (HLS) with its 10-100-fold increased oestrogen level. Samples were analysed by liquid chromatography and tandem mass spectrometry to identify and quantify the proteome. We identified 306 proteins in the MVs and 72 had changed significantly at HLS compared to DR and more than 20% of them were associated with haemostasis. Thus, proteins related to both haemostasis and complement activation altered in plasma MVs in parallel with MV activation during COH. This needs to be further explored in the clinical context.
Collapse
Affiliation(s)
- Nina Olausson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 18288, Stockholm, Sweden.
| | - Fariborz Mobarrez
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Dorothea Rutishauser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Katarina Bremme
- Department of Women's and Children's Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Eli Westerlund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 18288, Stockholm, Sweden
| | - Outi Hovatta
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 18288, Stockholm, Sweden
| | - Peter Henriksson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 18288, Stockholm, Sweden
| |
Collapse
|
23
|
Wake H, Nishibori M. [Various functions of plasma histidine-rich glycoprotein and its clinical application as the biomarker and therapeutic drug for sepsis]. Nihon Yakurigaku Zasshi 2020; 155:155-158. [PMID: 32378634 DOI: 10.1254/fpj.19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Histidine-rich glycoprotein (HRG) is a 75 kDa plasma glycoprotein synthesized in liver mainly, which exists at approximately 60-100 μg/ml in human plasma. HRG is known to bind to several ligands and cells, leading to exert coagulation, fibrinolysis, immune and inflammation regulatory activity in septic condition. Thus, decreased plasma HRG level induces the dysregulations of coagulation, fibrinolysis and immune system, resulting in disseminated intravascular coagulation and multiple organ failure. This article focuses on the physiological activity of HRG and the potential of HRG as the biomarker and therapeutic drug for sepsis.
Collapse
Affiliation(s)
- Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
24
|
Zeng M, Liu J, Yang W, Zhang S, Liu F, Dong Z, Peng Y, Sun L, Xiao L. Multiple-microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. J Cell Physiol 2019; 234:16447-16462. [PMID: 30761531 DOI: 10.1002/jcp.28313] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Diabetic nephropathy (DN) is a primary cause of renal failure. However, studies providing renal gene expression profiles of diabetic tubulointerstitial injury are scarce and its molecular mechanisms still await clarification. To identify vital genes involved in the diabetic tubulointerstitial injury, three microarray data sets from gene expression omnibus (GEO) were downloaded. A total of 127 differentially expressed genes (DEGs) were identified by limma package. Gene set enrichment analysis (GSEA) plots showed that sister chromatid cohesion was the most significant enriched gene set positively correlated with the DN group while retinoid X receptor binding was the most significant enriched gene set positively correlated with the control group. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included extracellular matrix organization, extracellular space, extracellular matrix structural constituent, and Staphylococcus aureus infection. Twenty hub genes from three significant modules were ascertained by Cytoscape. Correlation analysis and subgroup analysis between hub genes and clinical features of DN showed that ALB, ANXA1, APOH, C3, CCL19, COL1A2, COL3A1, COL4A1, COL6A3, CXCL6, DCN, EGF, HRG, KNG1, LUM, SERPINA3, SPARC, SRGN, and TIMP1 may involve in diabetic tubulointerstitial injury. ConnectivityMap analysis indicated the most significant three compounds are 5182598, thapsigargin and 5224221. In conclusion, this study may provide new insights into the molecular mechanisms underlying diabetic tubulointerstitial injury as well as potential targets for diagnosis and therapeutics of DN.
Collapse
Affiliation(s)
- Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Pathak M, Manna R, Li C, Kaira BG, Hamad BK, Belviso BD, Bonturi CR, Dreveny I, Fischer PM, Dekker LV, Oliva MLV, Emsley J. Crystal structures of the recombinant β-factor XIIa protease with bound Thr-Arg and Pro-Arg substrate mimetics. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:578-591. [DOI: 10.1107/s2059798319006910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 11/10/2022]
Abstract
Coagulation factor XII (FXII) is a key initiator of the contact pathway, which contributes to inflammatory pathways. FXII circulates as a zymogen, which when auto-activated forms factor XIIa (FXIIa). Here, the production of the recombinant FXIIa protease domain (βFXIIaHis) with yields of ∼1–2 mg per litre of insect-cell culture is reported. A second construct utilized an N-terminal maltose-binding protein (MBP) fusion (MBP-βFXIIaHis). Crystal structures were determined of MBP-βFXIIaHisin complex with the inhibitor D-Phe-Pro-Arg chloromethyl ketone (PPACK) and of βFXIIaHisin isolation. The βFXIIaHisstructure revealed that the S2 and S1 pockets were occupied by Thr and Arg residues, respectively, from an adjacent molecule in the crystal. The Thr-Arg sequence mimics the P2–P1 FXIIa cleavage-site residues present in the natural substrates prekallikrein and FXII, and Pro-Arg (from PPACK) mimics the factor XI cleavage site. A comparison of the βFXIIaHisstructure with the available crystal structure of the zymogen-like FXII protease revealed large conformational changes centred around the S1 pocket and an alternate conformation for the 99-loop, Tyr99 and the S2 pocket. Further comparison with activated protease structures of factors IXa and Xa, which also have the Tyr99 residue, reveals that a more open form of the S2 pocket only occurs in the presence of a substrate mimetic. The FXIIa inhibitors EcTI and infestin-4 have Pro-Arg and Phe-Arg P2–P1 sequences, respectively, and the interactions that these inhibitors make with βFXIIa are also described. These structural studies of βFXIIa provide insight into substrate and inhibitor recognition and establish a scaffold for the structure-guided drug design of novel antithrombotic and anti-inflammatory agents.
Collapse
|
26
|
Toonstra C, Hu Y, Zhang H. Deciphering the Roles of N-Glycans on Collagen-Platelet Interactions. J Proteome Res 2019; 18:2467-2477. [PMID: 31055923 DOI: 10.1021/acs.jproteome.9b00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collagen is a potent agonist for platelet activation, presenting itself as a key contributor to coagulation via interactions with platelet glycoproteins. The fine details dictating platelet-collagen interactions are poorly understood. In particular, glycosylation could be a key determinant in the platelet-collagen interaction. Here, we report an affinity purification coupled to a mass spectrometry-based approach to elucidate the function of N-glycans in dictating platelet-collagen interactions. By integrative proteomic and glycoproteomic analysis of collagen-platelet interactive proteins with N-glycan manipulation, we demonstrate that the interaction of platelet adhesive receptors with collagen is highly N-glycan regulated, with glycans on many receptors playing positive roles in collagen binding, with glycans on other platelet glycoproteins exhibiting inhibitory roles on the binding to collagen. Our results significantly enhance our understanding of the details of glycans influencing the platelet-collagen interaction.
Collapse
Affiliation(s)
- Christian Toonstra
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| | - Yingwei Hu
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| | - Hui Zhang
- Department of Pathology , Johns Hopkins School of Medicine , 400 N Broadway , Baltimore , Maryland 21287 , United States
| |
Collapse
|
27
|
The contact system at the crossroads of various key patho- physiological functions: Update on present understanding, laboratory exploration and future perspectives. Transfus Apher Sci 2019; 58:216-222. [PMID: 30954379 DOI: 10.1016/j.transci.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contact system initiates the intrinsic pathway of coagulation and is started by Factor XII activation, which then activates prekallicrein to kallicrein and Factor XI to Factor XIa and, in the presence of high molecular weight kininogen, forms a "contact phase activation loop", that amplifies Factor XII activation. FXII deficiency is not associated with bleeding tendencies, but when the blood clots, the thrombus is less dense, thus favoring antithrombotic protection. Activated Factor XII inhibition emerges as an efficient target for preventing thrombo-embolic diseases without inducing a hemorrhagic risk. Activated Factor XII exhibits other activities, in that it can activate complement and provoke inflammation, contributing to innate immunity. It also stimulates fibrinolysis through uPA activation from scu-PA. Among the other components of the contact phase, Factor XI has a more important role in coagulation pathways and can directly activate FX, FVIII and FV, in a FIX independent pathway. Its deficiency is associated with a mild bleeding diathesis ("pseudo-hemophilia" or hemophilia C), with a variable incidence among kindreds. Recently, the occurrence of thrombotic events the same day following infusion of immunoglobulin concentrates has been demonstrated to be caused by the presence of trace amounts of activated Factor XI, pointing out the key role of this factor for thrombogenicity. Prekallicrein can be activated at the endothelial surface in the presence of high molecular weight kininogen, whose cleavage generates bradykinins and contributes to vessel tonicity and inflammation. The contact phase, through its activation loop, is then an important physiological system, which can initiate and regulate various biological functions and is at the crossroads of various biological activities. Many of the body's physiological functions are intimately linked between them, making the global approach of special usefulness for understanding the interactions which can result from any abnormality of one of them. New pharmaceutical drugs targeting a defined activity need to be investigated for all the possible interferences or side effects. In this article we aim to present and summarize the present understanding of contact phase system activation and regulation, its involvement in various physiological functions, and the laboratory tools for its exploration.
Collapse
|
28
|
Sobczak AIS, Pitt SJ, Stewart AJ. Influence of zinc on glycosaminoglycan neutralisation during coagulation. Metallomics 2018; 10:1180-1190. [PMID: 30132486 PMCID: PMC6148461 DOI: 10.1039/c8mt00159f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS), dermatan sulfate (DS) and heparin are glycosaminoglycans (GAGs) that serve as key natural and pharmacological anticoagulants. During normal clotting such agents require to be inactivated or neutralised. Several proteins have been reported to facilitate their neutralisation, which reside in platelet α-granules and are released following platelet activation. These include histidine-rich-glycoprotein (HRG), fibrinogen and high-molecular-weight kininogen (HMWK). Zinc ions (Zn2+) are also present in α-granules at a high concentration and participate in the propagation of coagulation by influencing the binding of neutralising proteins to GAGs. Zn2+ in many cases increases the affinity of these proteins to GAGs, and is thus an important regulator of GAG neutralisation and haemostasis. Binding of Zn2+ to HRG, HMWK and fibrinogen is mediated predominantly through coordination to histidine residues but the mechanisms by which Zn2+ increases the affinity of the proteins for GAGs are not yet completely clear. Here we will review current knowledge of how Zn2+ binds to and influences the neutralisation of GAGs and describe the importance of this process in both normal and pathogenic clotting.
Collapse
Affiliation(s)
- Amélie I. S. Sobczak
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| | - Samantha J. Pitt
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| | - Alan J. Stewart
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| |
Collapse
|
29
|
|
30
|
Stavrou EX, Fang C, Bane KL, Long AT, Naudin C, Kucukal E, Gandhi A, Brett-Morris A, Mumaw MM, Izadmehr S, Merkulova A, Reynolds CC, Alhalabi O, Nayak L, Yu WM, Qu CK, Meyerson HJ, Dubyak GR, Gurkan UA, Nieman MT, Sen Gupta A, Renné T, Schmaier AH. Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J Clin Invest 2018; 128:944-959. [PMID: 29376892 PMCID: PMC5824869 DOI: 10.1172/jci92880] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023] Open
Abstract
Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice. We discovered that neutrophils produced a pool of FXII that is functionally distinct from hepatic-derived FXII and contributes to neutrophil trafficking at sites of inflammation. FXII signals in neutrophils through urokinase plasminogen activator receptor-mediated (uPAR-mediated) Akt2 phosphorylation at S474 (pAktS474). Downstream of pAkt2S474, FXII stimulation of neutrophils upregulated surface expression of αMβ2 integrin, increased intracellular calcium, and promoted extracellular DNA release. The sum of these activities contributed to neutrophil cell adhesion, migration, and release of neutrophil extracellular traps in a process called NETosis. Decreased neutrophil signaling in F12-/- mice resulted in less inflammation and faster wound healing. Targeting hepatic F12 with siRNA did not affect neutrophil migration, whereas WT BM transplanted into F12-/- hosts was sufficient to correct the neutrophil migration defect in F12-/- mice and restore wound inflammation. Importantly, these activities were a zymogen FXII function and independent of FXIIa and contact activation, highlighting that FXII has a sophisticated role in vivo that has not been previously appreciated.
Collapse
Affiliation(s)
- Evi X. Stavrou
- Department of Medicine, Louis Stokes Veterans Administration Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Chao Fang
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Kara L. Bane
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Andy T. Long
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clément Naudin
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, Ohio, USA
| | - Agharnan Gandhi
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Adina Brett-Morris
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Michele M. Mumaw
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Sudeh Izadmehr
- Department of Genetics and Genomics Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alona Merkulova
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Cindy C. Reynolds
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Omar Alhalabi
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Lalitha Nayak
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Hematology and Oncology Division, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Wen-Mei Yu
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Cheng-Kui Qu
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | | | | | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, CWRU, Cleveland, Ohio, USA
| | | | | | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alvin H. Schmaier
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Hematology and Oncology Division, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Hecel A, Wątły J, Rowińska-Żyrek M, Świątek-Kozłowska J, Kozłowski H. Histidine tracts in human transcription factors: insight into metal ion coordination ability. J Biol Inorg Chem 2018; 23:81-90. [PMID: 29218639 PMCID: PMC5756558 DOI: 10.1007/s00775-017-1512-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins-MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu2+ and Zn2+ towards the two His-rich regions. In the case of Zn2+ species, the availability of imidazole nitrogen donors enhances metal complex stability. Interestingly, an opposite tendency is observed for Cu2+ complexes at above physiological pH, in which amide nitrogens participate in binding.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland.
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | | | | | - Henryk Kozłowski
- Public Higher Medical Professional School in Opole, Katowicka 68, 45-060, Opole, Poland.
- Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066, Wrocław, Poland.
| |
Collapse
|
32
|
Vu T, Fredenburgh J, Weitz J. Zinc: An important cofactor in haemostasis and thrombosis. Thromb Haemost 2017; 109:421-30. [DOI: 10.1160/th12-07-0465] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/27/2012] [Indexed: 02/05/2023]
Abstract
SummaryThere is mounting evidence that zinc, the second most abundant transition metal in blood, is an important mediator of haemostasis and thrombosis. Prompted by the observation that zinc deficiency is associated with bleeding and clotting abnormalities, there now is evidence that zinc serves as an effector of coagulation, anticoagulation and fibrinolysis. Zinc binds numerous plasma proteins and modulates their structure and function. Because activated platelets secrete zinc into the local microenvironment, the concentration of zinc increases in the vicinity of a thrombus. Consequently, the role of zinc varies depending on the microenvironment; a feature that endows zinc with the capacity to spatially and temporally regulate haemostasis and thrombosis. This paper reviews the mechanisms by which zinc regulates coagulation, platelet aggregation, anticoagulation and fibrinolysis and outlines how zinc serves as a ubiquitous modulator of haemostasis and thrombosis.
Collapse
|
33
|
Terent’eva VA, Sveshnikova AN, Panteleev MA. Biophysical mechanisms of contact activation of blood-plasma clotting. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn 2+ in Settings of Tissue Injury. Biomolecules 2017; 7:biom7010022. [PMID: 28257077 PMCID: PMC5372734 DOI: 10.3390/biom7010022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/05/2023] Open
Abstract
Divalent metal ions are essential nutrients for all living organisms and are commonly protein-bound where they perform important roles in protein structure and function. This regulatory control from metals is observed in the relatively abundant plasma protein histidine-rich glycoprotein (HRG), which displays preferential binding to the second most abundant transition element in human systems, Zinc (Zn2+). HRG has been proposed to interact with a large number of protein ligands and has been implicated in the regulation of various physiological and pathological processes including the formation of immune complexes, apoptotic/necrotic and pathogen clearance, cell adhesion, antimicrobial activity, angiogenesis, coagulation and fibrinolysis. Interestingly, these processes are often associated with sites of tissue injury or tumour growth, where the concentration and distribution of Zn2+ is known to vary. Changes in Zn2+ levels have been shown to modify HRG function by altering its affinity for certain ligands and/or providing protection against proteolytic disassembly by serine proteases. This review focuses on the molecular interplay between HRG and Zn2+, and how Zn2+ binding modifies HRG-ligand interactions to regulate function in different settings of tissue injury.
Collapse
|
35
|
Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity. Blood 2016; 128:2834-2845. [PMID: 27694320 DOI: 10.1182/blood-2015-10-673285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70 Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP.
Collapse
|
36
|
Zhang Q, Jiang K, Li Y, Gao D, Sun L, Zhang S, Liu T, Guo K, Liu Y. Histidine-rich glycoprotein function in hepatocellular carcinoma depends on its N-glycosylation status, and it regulates cell proliferation by inhibiting Erk1/2 phosphorylation. Oncotarget 2016; 6:30222-31. [PMID: 26336134 PMCID: PMC4745792 DOI: 10.18632/oncotarget.4997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Significantly downregulated histidine-rich glycoprotein (HRG) during the dynamic stages (WB, WB7, and WB11) of neoplastic transformation of WB F344 hepatic oval-like cells was screened out by iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. HRG expression was significantly lower in HCC tissues. HRG overexpression in Huh7 and MHCC-97H hepatoma cell lines led to decreased cell proliferation, colony-forming ability, and tumor growth, and increased cell apoptosis. HRG could inhibit cell proliferation via the FGF-Erk1/2 signaling pathway by reducing Erk1/2 phosphorylation. On the other hand, the functional expression of HRG was also dependent on the glycosylation status at its N-terminal, especially at the glycosylation site Asn 125. The glycosylation of HRG may play a key competitive role in the interaction between HRG and heparin sulfate for binding bFGF and activating the FGF receptor. These findings provide novel insights into the molecular mechanism of HRG in HCC.
Collapse
Affiliation(s)
- Qinle Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Kai Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Sun
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
37
|
Vu TT, Leslie BA, Stafford AR, Zhou J, Fredenburgh JC, Weitz JI. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. Thromb Haemost 2015; 115:89-98. [PMID: 26354857 DOI: 10.1160/th15-04-0336] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/31/2015] [Indexed: 12/23/2022]
Abstract
When triggered by factor (F) XII and nucleic acids, we showed that thrombosis in HRG-deficient mice is accelerated compared with that in wild-type mice. In this study, we set out to identify the mechanisms by which nucleic acids promote contact activation, and to determine whether HRG attenuates their effects. DNA or RNA addition to human plasma enhances thrombin generation via the intrinsic pathway and shortens the clotting time. Their effect on the clotting time is seven- to 14-fold greater in HRG-deficient plasma than in control plasma. Investigations into the mechanisms of activation reveal that nucleic acids a) promote FXII activation in the presence of prekallikrein- and high molecular weight kininogen (HK), and b) enhance thrombin-mediated FXI activation by 10- to 12-fold. Surface plasmon resonance studies show that DNA and RNA bind FXII, FXIIa, HK, FXI, FXIa and thrombin with high affinity. HRG attenuates DNA- and RNA-mediated FXII activation, and FXI activation by FXIIa or by thrombin, suggesting that HRG down regulates the capacity of DNA and RNA to activate the intrinsic pathway. Therefore, HRG attenuates the procoagulant activity of nucleic acids at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey I Weitz
- Jeffrey Weitz, Thrombosis and Atherosclerosis Research Institute, 237 Barton St. E, Hamilton, Ontario L8L 2X2, Canada, Tel.: +1 905 521 2100 ext 40721, Fax: +1 905 575 2646, E-mail:
| |
Collapse
|
38
|
Neufurth M, Wang X, Tolba E, Dorweiler B, Schröder HC, Link T, Diehl-Seifert B, Müller WEG. Modular Small Diameter Vascular Grafts with Bioactive Functionalities. PLoS One 2015; 10:e0133632. [PMID: 26204529 PMCID: PMC4512703 DOI: 10.1371/journal.pone.0133632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022] Open
Abstract
We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca(2+) through formation of Ca(2+) bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca(2+)-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca(2+). In this universal scaffold of the bTEBV biomaterial, polycations such as poly(L-Lys), poly(D-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca(2+)-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(L-Lys), poly(D-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts.
Collapse
Affiliation(s)
- Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Bernhard Dorweiler
- Division of Vascular Surgery, Department of Cardiothoracic and Vascular Surgery, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Thorben Link
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
39
|
Zhao L, Wu M, Xiao C, Yang L, Zhou L, Gao N, Li Z, Chen J, Chen J, Liu J, Qin H, Zhao J. Discovery of an intrinsic tenase complex inhibitor: Pure nonasaccharide from fucosylated glycosaminoglycan. Proc Natl Acad Sci U S A 2015; 112:8284-9. [PMID: 26100870 PMCID: PMC4500213 DOI: 10.1073/pnas.1504229112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective inhibition of the intrinsic coagulation pathway is a promising strategy for developing safer anticoagulants that do not cause serious bleeding. Intrinsic tenase, the final and rate-limiting enzyme complex in the intrinsic coagulation pathway, is an attractive but less explored target for anticoagulants due to the lack of a pure selective inhibitor. Fucosylated glycosaminoglycan (FG), which has a distinct but complicated and ill-defined structure, is a potent natural anticoagulant with nonselective and adverse activities. Herein we present a range of oligosaccharides prepared via the deacetylation-deaminative cleavage of FG. Analysis of these purified oligosaccharides reveals the precise structure of FG. Among these fragments, nonasaccharide is the minimum fragment that retains the potent selective inhibition of the intrinsic tenase while avoiding the adverse effects of native FG. In vivo, the nonasaccharide shows 97% inhibition of venous thrombus at a dose of 10 mg/kg in rats and has no obvious bleeding risk. This nonasaccharide may therefore serve as a novel promising anticoagulant.
Collapse
Affiliation(s)
- Longyan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chuang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hongbo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
| |
Collapse
|
40
|
Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein. Blood 2015; 125:2712-9. [PMID: 25691157 DOI: 10.1182/blood-2014-11-611319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid-driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation.
Collapse
|
41
|
Kassaar O, Schwarz-Linek U, Blindauer CA, Stewart AJ. Plasma free fatty acid levels influence Zn(2+) -dependent histidine-rich glycoprotein-heparin interactions via an allosteric switch on serum albumin. J Thromb Haemost 2015; 13:101-10. [PMID: 25353308 PMCID: PMC4309485 DOI: 10.1111/jth.12771] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Histidine-rich glycoprotein (HRG) regulates coagulation through its ability to bind and neutralize heparins. HRG associates with Zn(2+) to stimulate HRG-heparin complex formation. Under normal conditions, the majority of plasma Zn(2+) associates with human serum albumin (HSA). However, free fatty acids (FFAs) allosterically disrupt Zn(2+) binding to HSA. Thus, high levels of circulating FFAs, as are associated with diabetes, obesity, and cancer, may increase the proportion of plasma Zn(2+) associated with HRG, contributing to an increased risk of thrombotic disease. OBJECTIVES To characterize Zn(2+) binding by HRG, examine the influence that FFAs have on Zn(2+) binding by HSA, and establish whether FFA-mediated displacement of Zn(2+) from HSA may influence HRG-heparin complex formation. METHODS Zn(2+) binding to HRG and to HSA in the presence of different FFA (myristate) concentrations were examined by isothermal titration calorimetry (ITC) and the formation of HRG-heparin complexes in the presence of different Zn(2+) concentrations by both ITC and ELISA. RESULTS AND CONCLUSIONS We found that HRG possesses 10 Zn(2+) sites (K' = 1.63 × 10(5) ) and that cumulative binding of FFA to HSA perturbed its ability to bind Zn(2+) . Also Zn(2+) binding was shown to increase the affinity with which HRG interacts with unfractionated heparins, but had no effect on its interaction with low molecular weight heparin (~ 6850 Da). [Correction added on 1 December 2014, after first online publication: In the preceding sentence, "6850 kDa" was corrected to "6850 Da".] Speciation modeling of plasma Zn(2+) based on the data obtained suggests that FFA-mediated displacement of Zn(2+) from serum albumin would be likely to contribute to the development of thrombotic complications in individuals with high plasma FFA levels.
Collapse
Affiliation(s)
- O Kassaar
- School of Medicine, University of St AndrewsSt Andrews, UK
| | - U Schwarz-Linek
- Biomedical Sciences Research Complex, University of St AndrewsSt Andrews, UK
| | - C A Blindauer
- Department of Chemistry, University of WarwickCoventry, UK
| | - A J Stewart
- School of Medicine, University of St AndrewsSt Andrews, UK
| |
Collapse
|
42
|
Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen-Dechent W, Siegbahn A, Olsson AK. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis 2013; 16:889-902. [PMID: 23793459 DOI: 10.1007/s10456-013-9363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/12/2013] [Indexed: 01/26/2023]
Abstract
Mice lacking histidine-rich glycoprotein (HRG) display an accelerated angiogenic switch and larger tumors-a phenotype caused by enhanced platelet activation in the HRG-deficient mice. Here we show that platelets induce molecular changes in the pre-tumorigenic environment in HRG-deficient mice, promoting cell survival, angiogenesis and epithelial-to-mesenchymal transition (EMT) and that these effects involved signaling via TBK1, Akt2 and PDGFRβ. These early events subsequently translate into an enhanced rate of spontaneous metastasis to distant organs in mice lacking HRG. Later in tumor development characteristic features of pathological angiogenesis, such as decreased perfusion and pericyte coverage, are more pronounced in HRG-deficient mice. At this stage, platelets are essential to support the larger tumor volumes formed in mice lacking HRG by keeping their tumor vasculature sufficiently functional. We conclude that HRG-deficiency promotes tumor progression via enhanced platelet activity and that platelets play a dual role in this process. During early stages of transformation, activated platelets promote tumor cell survival, the angiogenic switch and invasiveness. In the more progressed tumor, platelets support the enhanced pathological angiogenesis and hence increased tumor growth seen in the absence of HRG. Altogether, our findings strengthen the notion of HRG as a potent tumor suppressor, with capacity to attenuate the angiogenic switch, tumor growth, EMT and subsequent metastatic spread, by regulating platelet activity.
Collapse
Affiliation(s)
- Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Patel KK, Poon IKH, Talbo GH, Perugini MA, Taylor NL, Ralph TJ, Hoogenraad NJ, Hulett MD. New method for purifying histidine-rich glycoprotein from human plasma redefines its functional properties. IUBMB Life 2013; 65:550-63. [DOI: 10.1002/iub.1168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
|
44
|
New Insights into the Functions of Histidine-Rich Glycoprotein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:467-93. [DOI: 10.1016/b978-0-12-407696-9.00009-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Rowinska-Zyrek M, Witkowska D, Potocki S, Remelli M, Kozlowski H. His-rich sequences – is plagiarism from nature a good idea? NEW J CHEM 2013. [DOI: 10.1039/c2nj40558j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Chan HH, Leslie BA, Stafford AR, Roberts RS, Al-Aswad NN, Fredenburgh JC, Weitz JI. By Increasing the Affinity of Heparin for Fibrin, Zn2+ Promotes the Formation of a Ternary Heparin–Thrombin–Fibrin Complex That Protects Thrombin from Inhibition by Antithrombin. Biochemistry 2012; 51:7964-73. [DOI: 10.1021/bi301046b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Howard H. Chan
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Beverly A. Leslie
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Alan R. Stafford
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Robin S. Roberts
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Nadine N. Al-Aswad
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - James C. Fredenburgh
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Jeffrey I. Weitz
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Sabater-Lleal M, Martinez-Perez A, Buil A, Folkersen L, Souto JC, Bruzelius M, Borrell M, Odeberg J, Silveira A, Eriksson P, Almasy L, Hamsten A, Soria JM. A genome-wide association study identifies KNG1 as a genetic determinant of plasma factor XI Level and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 2012; 32:2008-16. [PMID: 22701019 DOI: 10.1161/atvbaha.112.248492] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Elevated plasma levels of coagulation factor XI (FXI) are implicated in the pathogenesis of venous thromboembolism and ischemic stroke, and polymorphisms in the F11 gene are associated both with risk of venous thromboembolism and an elevated plasma FXI level. METHODS AND RESULTS Here, we report the first hypothesis-free genome-wide genetic analysis of plasma FXI levels. Two genome-wide significant loci were detected in the family-based Genetic Analysis of Idiopathic Thrombophilia 1 cohort: one located in the kininogen 1 gene (KNG1) (rs710446; P=7.98 × 10(-10)) and one located in the structural F11 gene (rs4241824; P=1.16 × 10(-8)). Both associations were replicated in a second population-based Swedish cohort. A significant effect on KNG1 mRNA expression was also seen for the 2 most robustly FXI-associated single nucleotide polymorphisms located in KNG1. Furthermore, both KNG1 single nucleotide polymorphisms were associated with activated partial thromboplastin time, suggesting that FXI may be the main mechanistic pathway by which KNG1 and F11 influence activated partial thromboplastin time and risk of thrombosis. CONCLUSIONS These findings contribute to the emerging molecular basis of venous thromboembolism and, more importantly, help in understanding the biological regulation of a phenotype that has proved to have promising therapeutic properties in relation to thrombosis.
Collapse
Affiliation(s)
- Maria Sabater-Lleal
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Vu TT, Stafford AR, Leslie BA, Kim PY, Fredenburgh JC, Weitz JI. Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma'-chain. J Biol Chem 2011; 286:30314-30323. [PMID: 21757718 DOI: 10.1074/jbc.m111.253831] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.
Collapse
Affiliation(s)
- Trang T Vu
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8L 2X2, Canada; the Departments of Medical Sciences, McMaster University, Hamilton, Ontario L8L 2X2, Canada
| | - Alan R Stafford
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8L 2X2, Canada; Medicine, McMaster University, Hamilton, Ontario L8L 2X2, Canada
| | - Beverly A Leslie
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8L 2X2, Canada; Medicine, McMaster University, Hamilton, Ontario L8L 2X2, Canada
| | - Paul Y Kim
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8L 2X2, Canada; Medicine, McMaster University, Hamilton, Ontario L8L 2X2, Canada
| | - James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8L 2X2, Canada; Medicine, McMaster University, Hamilton, Ontario L8L 2X2, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8L 2X2, Canada; the Departments of Medical Sciences, McMaster University, Hamilton, Ontario L8L 2X2, Canada; Medicine, McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
50
|
Taking the brakes off? Blood 2011; 117:3939-40. [DOI: 10.1182/blood-2011-02-337717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|