1
|
Mi T, Soerens AG, Alli S, Kang TG, Vasandan AB, Wang Z, Vezys V, Kimura S, Iacobucci I, Baylin SB, Jones PA, Hiner C, Mueller A, Goldstein H, Mullighan CG, Zebley CC, Masopust D, Youngblood B. Conserved epigenetic hallmarks of T cell aging during immunity and malignancy. NATURE AGING 2024; 4:1053-1063. [PMID: 38867059 PMCID: PMC11333289 DOI: 10.1038/s43587-024-00649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.
Collapse
Affiliation(s)
- Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew G Soerens
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tae Gun Kang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anoop Babu Vasandan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Computational Biology and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Christopher Hiner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - April Mueller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Harris Goldstein
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Caitlin C Zebley
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Sharma G, Banerjee R, Srivastava S. Molecular Mechanisms and the Interplay of Important Chronic Obstructive Pulmonary Disease Biomarkers Reveals Novel Therapeutic Targets. ACS OMEGA 2023; 8:46376-46389. [PMID: 38107961 PMCID: PMC10719921 DOI: 10.1021/acsomega.3c07480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, age-dependent, and unmet chronic inflammatory disease of the peripheral airways, leading to difficulty in exhalation. Several biomarkers have been tested in general towards the resolution for a long time, but no apparent success was achieved. Ongoing therapies of COPD have only symptomatic relief but no cure. Reactive oxygen species (ROS) are highly reactive species which include oxygen radicals and nonradical derivatives, and are the prominent players in COPD. They are produced as natural byproducts of cellular metabolism, but their levels can vary due to exposure to indoor air pollution, occupational pollution, and environmental pollutants such as cigarette smoke. In COPD, the lungs are continuously exposed to high levels of ROS thus leading to oxidative stress. ROS can cause damage to cells, proteins, lipids, and DNA which further contributes to the chronic inflammation in COPD and exacerbates the disease condition. Excessive ROS production can overwhelm cellular antioxidant systems and act as signaling molecules that regulate cellular processes, including antioxidant defense mechanisms involving glutathione and sirtuins which further leads to cellular apoptosis, cellular senescence, inflammation, and sarcopenia. In this review paper, we focused on COPD from different perspectives including potential markers and different cellular processes such as apoptosis, cellular senescence, inflammation, sirtuins, and sarcopenia, and tried to connect the dots between them so that novel therapeutic strategies to evaluate and target the possible underlying mechanisms in COPD could be explored.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
3
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
4
|
Matsudaira T, Nakano S, Konishi Y, Kawamoto S, Uemura K, Kondo T, Sakurai K, Ozawa T, Hikida T, Komine O, Yamanaka K, Fujita Y, Yamashita T, Matsumoto T, Hara E. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Commun Biol 2023; 6:665. [PMID: 37353538 PMCID: PMC10290132 DOI: 10.1038/s42003-023-05027-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16INK4a, a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders.
Collapse
Affiliation(s)
- Tatsuyuki Matsudaira
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Sosuke Nakano
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Konishi
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken Uemura
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tamae Kondo
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Kawamoto S, Uemura K, Hori N, Takayasu L, Konishi Y, Katoh K, Matsumoto T, Suzuki M, Sakai Y, Matsudaira T, Adachi T, Ohtani N, Standley DM, Suda W, Fukuda S, Hara E. Bacterial induction of B cell senescence promotes age-related changes in the gut microbiota. Nat Cell Biol 2023; 25:865-876. [PMID: 37169880 DOI: 10.1038/s41556-023-01145-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The elucidation of the mechanisms of ageing and the identification of methods to control it have long been anticipated. Recently, two factors associated with ageing-the accumulation of senescent cells and the change in the composition of gut microbiota-have been shown to play key roles in ageing. However, little is known about how these phenomena occur and are related during ageing. Here we show that the persistent presence of commensal bacteria gradually induces cellular senescence in gut germinal centre B cells. Importantly, this reduces both the production and diversity of immunoglobulin A (IgA) antibodies that target gut bacteria, thereby changing the composition of gut microbiota in aged mice. These results have revealed the existence of IgA-mediated crosstalk between the gut microbiota and cellular senescence and thus extend our understanding of the mechanism of gut microbiota changes with age, opening up possibilities for their control.
Collapse
Affiliation(s)
- Shimpei Kawamoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Ken Uemura
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Nozomi Hori
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Lena Takayasu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Konishi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazutaka Katoh
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masae Suzuki
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yusuke Sakai
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Tatsuyuki Matsudaira
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takahiro Adachi
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Ohtani
- Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
- Immunology Frontier Research Center, Osaka University, Suita, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan.
| |
Collapse
|
6
|
Teo YV, Hinthorn SJ, Webb AE, Neretti N. Single-cell transcriptomics of peripheral blood in the aging mouse. Aging (Albany NY) 2023; 15:6-20. [PMID: 36622281 PMCID: PMC9876630 DOI: 10.18632/aging.204471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Compositional and transcriptional changes in the hematopoietic system have been used as biomarkers of immunosenescence and aging. Here, we use single-cell RNA-sequencing to study the aging peripheral blood in mice and characterize the changes in cell-type composition and transcriptional profiles associated with age. We identified 17 clusters from a total of 14,588 single cells. We detected a general upregulation of antigen processing and presentation and chemokine signaling pathways and a downregulation of genes involved in ribosome pathways with age. In old peripheral blood, we also observed an increased percentage of cells expressing senescence markers (Cdkn1a, and Cdkn2a). In addition, we detected a cluster of activated T cells exclusively found in old blood, with lower expression of Cd28 and higher expression of Bcl2 and Cdkn2a, suggesting that the cells are senescent and resistant to apoptosis.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Samuel J. Hinthorn
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02903, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02903, USA
| |
Collapse
|
7
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
8
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
9
|
Malvezzi H, Dobo C, Filippi RZ, Mendes do Nascimento H, Palmieri da Silva e Sousa L, Meola J, Piccinato CA, Podgaec S. Altered p16 Ink4a, IL-1β, and Lamin b1 Protein Expression Suggest Cellular Senescence in Deep Endometriotic Lesions. Int J Mol Sci 2022; 23:2476. [PMID: 35269619 PMCID: PMC8910415 DOI: 10.3390/ijms23052476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Endometriosis causes immunological and cellular alterations. Endometriosis lesions have lower levels of lamin b1 than the endometrium. Moreover, high levels of pro-inflammatory markers are observed in the peritoneal fluid, follicular fluid, and serum in endometriosis lesions. Thus, we hypothesized that the accumulation of senescent cells in endometriosis tissues would facilitate endometriosis maintenance in an inflammatory microenvironment. To study senescent cell markers and the senescence-associated secretory phenotype (SASP) in endometriosis lesions, we conducted a cross-sectional study with 27 patients undergoing video laparoscopy for endometriosis resection and 19 patients without endometriosis. Endometriosis lesions were collected from patients with endometriosis, while eutopic endometrium was collected from patients both with and without endometriosis. Tissues were evaluated for senescence markers (p16Ink4a, lamin b1, and IL-1β) and interleukin concentrations. The expression of p16Ink4a increased in lesions compared to that in eutopic endometrium from endometriosis patients in the secretory phase. In the proliferative phase, lesions exhibited lower lamin b1 expression but higher IL-4 expression than the eutopic endometrium. Further, IL-1β levels were higher in the lesions than in the eutopic endometrium in both the secretory and proliferative phases. We believe that our findings may provide targets for better therapeutic interventions to alleviate the symptoms of endometriosis.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Cristine Dobo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Renee Zon Filippi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Helen Mendes do Nascimento
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Laura Palmieri da Silva e Sousa
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Juliana Meola
- School of Medicine of Ribeirão Preto, University of São Paulo, Gynecology and Obstetrics, Av. Bandeirantes, 3900, Vila Monte Alegre 14049-900, SP, Brazil;
| | - Carla Azevedo Piccinato
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| | - Sérgio Podgaec
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi 05652-900, SP, Brazil; (C.D.); (R.Z.F.); (H.M.d.N.); (L.P.d.S.e.S.); (C.A.P.); (S.P.)
| |
Collapse
|
10
|
Jiang Z, Li H, Schroer SA, Voisin V, Ju Y, Pacal M, Erdmann N, Shi W, Chung PED, Deng T, Chen NJ, Ciavarra G, Datti A, Mak TW, Harrington L, Dick FA, Bader GD, Bremner R, Woo M, Zacksenhaus E. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J 2022; 41:e106825. [PMID: 35023164 PMCID: PMC8844977 DOI: 10.15252/embj.2020106825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.
Collapse
Affiliation(s)
- Zhe Jiang
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Huiqin Li
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Stephanie A Schroer
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Veronique Voisin
- The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - YoungJun Ju
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute - Sinai Health System, Mount Sinai Hospital, Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Natalie Erdmann
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Wei Shi
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Philip E D Chung
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tao Deng
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Nien-Jung Chen
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Giovanni Ciavarra
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy.,Network Biology Collaborative Centre, SMART Laboratory for High-Throughput Screening Programs, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Lea Harrington
- Department of Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Frederick A Dick
- Department of Biochemistry, Western University, London, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute - Sinai Health System, Mount Sinai Hospital, Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Minna Woo
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
12
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
13
|
Saito Y, Chikenji TS. Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Front Pharmacol 2021; 12:739510. [PMID: 34552495 PMCID: PMC8450382 DOI: 10.3389/fphar.2021.739510] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle undergoes vigorous tissue remodeling after injury. However, aging, chronic inflammatory diseases, sarcopenia, and neuromuscular disorders cause muscle loss and degeneration, resulting in muscular dysfunction. Cellular senescence, a state of irreversible cell cycle arrest, acts during normal embryonic development and remodeling after tissue damage; when these processes are complete, the senescent cells are eliminated. However, the accumulation of senescent cells is a hallmark of aging tissues or pathological contexts and may lead to progressive tissue degeneration. The mechanisms responsible for the effects of senescent cells have not been fully elucidated. Here, we review current knowledge about the beneficial and detrimental effects of senescent cells in tissue repair, regeneration, aging, and age-related disease, especially in skeletal muscle. We also discuss how senescence of muscle stem cells and muscle-resident fibro-adipogenic progenitors affects muscle pathologies or regeneration, and consider the possibility that immunosenescence leads to muscle pathogenesis. Finally, we explore senotherapy, the therapeutic targeting of senescence to treat age-related disease, from the standpoint of improving muscle regeneration.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Janelle V, Neault M, Lebel MÈ, De Sousa DM, Boulet S, Durrieu L, Carli C, Muzac C, Lemieux S, Labrecque N, Melichar HJ, Mallette FA, Delisle JS. p16 INK4a Regulates Cellular Senescence in PD-1-Expressing Human T Cells. Front Immunol 2021; 12:698565. [PMID: 34434190 PMCID: PMC8381277 DOI: 10.3389/fimmu.2021.698565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
T-cell dysfunction arising upon repeated antigen exposure prevents effective immunity and immunotherapy. Using various clinically and physiologically relevant systems, we show that a prominent feature of PD-1-expressing exhausted T cells is the development of cellular senescence features both in vivo and ex vivo. This is associated with p16INK4a expression and an impaired cell cycle G1 to S-phase transition in repeatedly stimulated T cells. We show that these T cells accumulate DNA damage and activate the p38MAPK signaling pathway, which preferentially leads to p16INK4a upregulation. However, in highly dysfunctional T cells, p38MAPK inhibition does not restore functionality despite attenuating senescence features. In contrast, p16INK4a targeting can improve T-cell functionality in exhausted CAR T cells. Collectively, this work provides insights into the development of T-cell dysfunction and identifies T-cell senescence as a potential target in immunotherapy.
Collapse
Affiliation(s)
- Valérie Janelle
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Mathieu Neault
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Marie-Ève Lebel
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Dave Maurice De Sousa
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Salix Boulet
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Ludovic Durrieu
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Cédric Carli
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Chloé Muzac
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Labrecque
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Heather J Melichar
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Frédérick A Mallette
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Hematology-Oncology, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| |
Collapse
|
15
|
Maggiorani D, Beauséjour C. Senescence and Aging: Does It Impact Cancer Immunotherapies? Cells 2021; 10:1568. [PMID: 34206425 PMCID: PMC8307798 DOI: 10.3390/cells10071568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer incidence increases drastically with age. Of the many possible reasons for this, there is the accumulation of senescent cells in tissues and the loss of function and proliferation potential of immune cells, often referred to as immuno-senescence. Immune checkpoint inhibitors (ICI), by invigorating immune cells, have the potential to be a game-changers in the treatment of cancer. Yet, the variability in the efficacy of ICI across patients and cancer types suggests that several factors influence the success of such inhibitors. There is currently a lack of clinical studies measuring the impact of aging and senescence on ICI-based therapies. Here, we review how cellular senescence and aging, either by directly altering the immune system fitness or indirectly through the modification of the tumor environment, may influence the cancer-immune response.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
16
|
Campbell RA, Docherty MH, Ferenbach DA, Mylonas KJ. The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Front Immunol 2021; 12:700790. [PMID: 34220864 PMCID: PMC8248495 DOI: 10.3389/fimmu.2021.700790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we examine senescent cells and the overlap between the direct biological impact of senescence and the indirect impact senescence has via its effects on other cell types, particularly the macrophage. The canonical roles of macrophages in cell clearance and in other physiological functions are discussed with reference to their functions in diseases of the kidney and other organs. We also explore the translational potential of different approaches based around the macrophage in future interventions to target senescent cells, with the goal of preventing or reversing pathologies driven or contributed to in part by senescent cell load in vivo.
Collapse
Affiliation(s)
- Ross A. Campbell
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie-Helena Docherty
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Ferenbach
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Katie J. Mylonas
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Kohli J, Veenstra I, Demaria M. The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Rep 2021; 22:e52243. [PMID: 33734564 PMCID: PMC8024996 DOI: 10.15252/embr.202052243] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of pro-inflammatory cytokines and molecules. Senescence-associated phenotypes restrict damage propagation and activate immune responses, two essential processes involved in response to viral infections. However, excessive accumulation and persistence of senescent cells can become detrimental and promote pathology and dysfunctions. Various pharmacological interventions, including antiviral therapies, lead to aberrant and premature senescence. Here, we review the molecular mechanisms by which viral infections and antiviral therapy induce senescence. We highlight the importance of these processes in attenuating viral dissemination and damage propagation, but also how prematurely induced senescent cells can promote detrimental adverse effects in humans. We describe which sequelae due to viral infections and treatment can be partly due to excessive and aberrant senescence. Finally, we propose that pharmacological strategies which eliminate senescent cells or suppress their secretory phenotype could mitigate side effects and alleviate the onset of additional morbidities. These strategies can become extremely beneficial in patients recovering from viral infections or undergoing antiviral therapy.
Collapse
Affiliation(s)
- Jaskaren Kohli
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Iris Veenstra
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)GroningenThe Netherlands
| |
Collapse
|
18
|
Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells 2021; 10:cells10030628. [PMID: 33808998 PMCID: PMC8001029 DOI: 10.3390/cells10030628] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-damaging immune reaction, involving T cell immunity and associated with pre-existing basal inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells. Many of these changes can be traced back to age-related thymic involution/degeneration. How these changes contribute to differences in COVID-19 disease severity between young and aged patients is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to self) impacting age-related clinical severity of COVID-19. We also address potential combinational strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.
Collapse
|
19
|
HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov 2021; 7:28. [PMID: 33558529 PMCID: PMC7870821 DOI: 10.1038/s41420-021-00409-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 01/17/2021] [Indexed: 01/10/2023] Open
Abstract
Although cellular senescence has emerged as a novel therapeutic concept in cancer, its underlying mechanisms remain unclear. High mobility group box 1 (HMGB1) and stimulator of interferon genes (STING) are involved in senescence. However, their interactions in senescence have not been reported. Therefore, in this study, we investigated the relationships between HMGB1 and STING in senescence in cancer and other cells. In mouse melanoma cells and several other cell lines, doxorubicin treatment induced senescence in an HMGB1-dependent manner. These responses were mediated by STING, and this function of STING was negatively regulated by the E3 ligase tripartite motif protein 30α (TRIM30α). We also found that HMGB1 bound to the TRIM30α promoter and then suppressed its expression by inhibiting its transcription, which enhanced STING-induced senescence. This mechanism was further mediated by signal transducer and activator of transcription 6 (STAT6) and p21. Overall, our findings demonstrated that HMGB1 orchestrated STING-STAT6-p21-mediated senescence by regulating TRIM30α as an alternative anticancer mechanism.
Collapse
|
20
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
21
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
22
|
Biological Aging Marker p16 INK4a in T Cells and Breast Cancer Risk. Cancers (Basel) 2020; 12:cancers12113122. [PMID: 33114473 PMCID: PMC7692397 DOI: 10.3390/cancers12113122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The association between cellular senescence, a hallmark of biological aging, and cancer risk has not been examined in population-based studies. To fill the gap, in this study, we assessed the relationship between p16INK4a mRNA expression in T cells, a marker of cellular senescence, with breast cancer risk and selected sociodemographic and lifestyle variables. Overall, we discovered that higher p16INK4a mRNA expression in T cells was associated with an increased risk of breast cancer. Also, we found that p16INK4a mRNA expression in T differed by age, race, family history of cancer, marital status, annual income, and smoking status. The results of this study provide evidence that cellular senescence plays a role in breast cancer development. Furthermore, our results also suggest that social demographics may modify cellular senescence and biological aging. Abstract Prior research has demonstrated that altered telomere length, a well-known marker for biological aging, is associated with various types of human cancer. However, whether such association extends to additional hallmarks of biological aging, including cellular senescence, has not been determined yet. In this two-stage study, we assessed the association between p16INK4a mRNA expression in T cells, a marker of cellular senescence, and breast cancer risk. The discovery stage included 352 breast cancer patients and 324 healthy controls. p16INK4a mRNA expression was significantly higher in individuals who were older, Black, and had family history of cancer than their counterparts in both cases and controls. p16INK4a mRNA expression also differed by marital status, annual income, and smoking status in cases. In the discovery stage, we found that increased p16INK4a mRNA expression was associated with 1.40-fold increased risk of breast cancer (OR = 1.40; 95%CI: 1.21, 1.68; p < 0.001). A marginally significant association was further observed in the validation stage with 47 cases and 48 controls using pre-diagnostic samples (OR = 1.28; 95%CI: 0.98, 2.97; p = 0.053). In addition, we found that p16INK4a mRNA expression was higher in tumors with selected aggressive characteristics (e.g., poorly differentiated and large tumors) than their counterparts. In summary, our results demonstrate that higher p16INK4a mRNA expression in T cells is a risk factor for breast cancer and further support the role of biological aging in the etiology of breast cancer development. Novelty and Impact Statements: The results from this study provide evidence that cellular senescence, a process of biological aging, plays a role in breast cancer etiology. In addition, our results also support that social demographics may modify cellular senescence and biological aging.
Collapse
|
23
|
Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, Qian P, Huang H. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol 2020; 13:31. [PMID: 32252797 PMCID: PMC7137344 DOI: 10.1186/s13045-020-00864-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing, myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear, blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions. Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging review delineates the association between functional changes and molecular mechanisms and may have significant clinical relevance.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
24
|
Koll TT, Magnuson A, Dale W, LaBarge MA, Leach CR, Mohile S, Muss H, Sedenquist M, Klepin HD. Developing a clinical and biological measures of aging core: Cancer and Aging Research Group infrastructure. J Geriatr Oncol 2020; 11:343-346. [PMID: 31537478 PMCID: PMC7054170 DOI: 10.1016/j.jgo.2019.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Thuy T Koll
- Division of Geriatrics, Gerontology, Palliative Care Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.
| | - Allison Magnuson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, United States of America; James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, United States of America
| | - William Dale
- Department of Supportive Care Medicine, City of Hope, Duarte, CA, United States of America
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, CA, United States of America
| | - Corinne R Leach
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, United States of America
| | - Supriya Mohile
- Department of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Surgery, University of Rochester Medical Center, Rochester, NY, United States of America; James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hyman Muss
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Geriatric Oncology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Margaret Sedenquist
- SCOREboard Advisory Group, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Heidi D Klepin
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| |
Collapse
|
25
|
The Impact of Type II Diabetes on Tongue Dysplasia and p16-Related Aging Process: An Experimental Study. Anal Cell Pathol (Amst) 2019; 2019:3563215. [PMID: 31687322 PMCID: PMC6800967 DOI: 10.1155/2019/3563215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To evaluate the effect of streptozotocin-induced experimental diabetes mellitus on p16, p53, Ki67, and Bcl2 expressions and histopathological changes in the tongue of the rats. Material and Methods Twenty-two adult female Sprague-Dawley rats were used. The rats were randomly divided into 2 groups (n = 14) as control (C) (n = 8) and diabetic (DM) (n = 6). The rats in the DM group were given streptozotocin as a single intraperitoneal dose for induction of diabetes. Histopathological and immunohistochemical evaluations of formalin-fixed and paraffin-embedded tissue sections of the tongue were used. Results Significant differences were observed between the DM group and the control group in terms of epithelial thickness, length of filiform papillae, and width of filiform papillae (p = 0.005, p = 0.001, and p = 0.006, respectively). There was no significant difference between the groups in terms of mononuclear inflammatory cell infiltration, capillary proliferation, and dysplasia (p = 0.204, p = 0.244, and p = 0.204, respectively). As a result of immunohistochemical studies, no significant difference was found between the groups in terms of p53, Ki67, and Bcl-2 expressions (p = 0.588, p = 0.662, and p = 0.686, respectively). A significant difference was found between the groups when p16 expression was evaluated (p = 0.006). Conclusions In our study, streptozotocin-induced experimental diabetes mellitus induced p16 expression but did not show any difference in p53, Bcl-2, and Ki67 levels. It should be considered in the studies that the pathological changes at the early stages of the relationship between DM and oral cancer may be related to p16 expression; however, it may also be linked with p16-related aging process.
Collapse
|
26
|
Cottage CT, Peterson N, Kearley J, Berlin A, Xiong X, Huntley A, Zhao W, Brown C, Migneault A, Zerrouki K, Criner G, Kolbeck R, Connor J, Lemaire R. Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Commun Biol 2019; 2:307. [PMID: 31428695 PMCID: PMC6689060 DOI: 10.1038/s42003-019-0532-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Senescence is a mechanism associated with aging that alters tissue regeneration by depleting the stem cell pool. Chronic obstructive pulmonary disease (COPD) displays hallmarks of senescence, including a diminished stem cell population. DNA damage from cigarette smoke (CS) induces senescence via the p16 pathway. This study evaluated the contribution of p16 to CS-associated lung pathologies. p16 expression was prominent in human COPD lungs compared with normal subjects. CS induces impaired pulmonary function, emphysema, and increased alveolar epithelial cell (AECII) senescence in wild-type mice, whereas CS-exposed p16-/- mice exhibit normal pulmonary function, reduced emphysema, diminished AECII senescence, and increased pro-growth IGF1 signaling, suggesting that improved lung function in p16-/- mice was due to increased alveolar progenitor cell proliferation. In conclusion, our study suggests that targeting senescence may facilitate alveolar regeneration in COPD emphysema by promoting IGF1 proliferative signaling.
Collapse
Affiliation(s)
- Christopher T. Cottage
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Norman Peterson
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Jennifer Kearley
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Aaron Berlin
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Ximing Xiong
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Anna Huntley
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Weiguang Zhao
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Charles Brown
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Annik Migneault
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Kamelia Zerrouki
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | | | - Roland Kolbeck
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Jane Connor
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| | - Raphael Lemaire
- Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878 United States
| |
Collapse
|
27
|
Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, Moquin‐Beaudry G, Le O, Demaria M, Davalos AR, Decaluwe H, Beauséjour C. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell 2019; 18:e12971. [PMID: 31148373 PMCID: PMC6612633 DOI: 10.1111/acel.12971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent‐associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16‐3MR mice that allow elimination of p16INK4a‐positive cells with exposure to ganciclovir, we show that impaired T‐cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence‐inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.
Collapse
Affiliation(s)
- Lina Palacio
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Marie‐Lyn Goyer
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Damien Maggiorani
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Andrea Espinosa
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | | | | | - Gaël Moquin‐Beaudry
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Oanh Le
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | - Marco Demaria
- European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG) University of Groningen Groningen The Netherlands
| | | | - Hélène Decaluwe
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de Pédiatrie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| |
Collapse
|
28
|
Rosko AE, Huang Y, Benson DM, Efebera YA, Hofmeister C, Jaglowski S, Devine S, Bhatt G, Wildes TM, Dyko A, Jones D, Naughton MJ, Byrd JC, Burd CE. Use of a comprehensive frailty assessment to predict morbidity in patients with multiple myeloma undergoing transplant. J Geriatr Oncol 2019; 10:479-485. [PMID: 29983352 PMCID: PMC6320732 DOI: 10.1016/j.jgo.2018.05.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/26/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
Abstract
Multiple myeloma (MM) is a disease of aging adults and autologous stem cell transplant (ASCT) is considered the standard of care. As the population ages a growing number of older adults will undergo ASCT and an objective approach to estimate physiologic reserve and transplant morbidity risk is warranted. Here, we evaluate assess p16INK4a (p16), a molecular aging biomarker, along with geriatric metrics to determine risk of transplant toxicity. METHODS We prospectively evaluated 100 MM patients for frailty before and after ASCT using a Geriatric Assessment (GA) and collected T-cells for analysis of p16 using a custom nanostring codeset. RESULTS Pre-transplant physical function was predicative of hospital length of stay (LOS). Each one-unit increase in physical function score, the average LOS decreased by 0.52 days (95% CI, -1.03-0.02); p = .04). Similarly, higher self-report of ADL/IADL (Human Activity Profile was associated with shorter LOS (0.65 less days (95% CI -1.15 to -0.15), p = .01). Patients with anxiety/depression (OR = 1.10 (95% CI 1.00-1.22), p = .056), lower handgrip strength (OR = 0.90 (95% CI 0.82-0.98), p = .02), falls (OR = 1.60 (95% CI 1.07-2.38), p = .02), or weight loss (OR = 5.65 (95% CI 1.17-25.24), p = .03) were more likely to be re-admitted. The estimated EFS at 1-year was 85% (95% CI, 75-91) with median follow-up of 15.7 months. Weight loss was a significant predictor of EFS (HR = 3.13 (95% CI 1.15-8.50), p = .03). Frailty assessment by self-reported fatigue minimally correlated with T-cell p16 expression (r = 0.28; p = .02). Age, Karnofsky Performance Status (KPS), or Hematopoietic cell transplantation-specific Co-Morbidity Index (HCT-CI) did not predict hospital LOS or readmissions. CONCLUSIONS Our data illustrate that a GA can identify individuals with MM who are at greater risk for morbidity following ASCT.
Collapse
Affiliation(s)
- Ashley E Rosko
- Division of Hematology, The Ohio State University, Columbus, OH, United States.
| | - Ying Huang
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Don M Benson
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Yvonne A Efebera
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Craig Hofmeister
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Samantha Jaglowski
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Steven Devine
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Geetika Bhatt
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Tanya M Wildes
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Alanna Dyko
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Desirée Jones
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Michelle J Naughton
- Cancer Prevention and Control, The Ohio State University, Columbus, OH, United States
| | - John C Byrd
- Division of Hematology, The Ohio State University, Columbus, OH, United States; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Christin E Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
29
|
Abstract
Originally thought of as a stress response end point, the view of cellular senescence has since evolved into one encompassing a wide range of physiological and pathological functions, including both protumorignic and antitumorigenic features. It has also become evident that senescence is a highly dynamic and heterogenous process. Efforts to reconcile the beneficial and detrimental features of senescence suggest that physiological functions require the transient presence of senescent cells in the tissue microenvironment. Here, we propose the concept of a physiological "senescence life cycle," which has pathological consequences if not executed in its entirety.
Collapse
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
30
|
Cells exhibiting strong p16 INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci U S A 2019; 116:2603-2611. [PMID: 30683717 PMCID: PMC6377452 DOI: 10.1073/pnas.1818313116] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accumulation of senescent cells over a lifetime causes age-related pathologies; however, the inability to reliably identify senescent cells in vivo has hindered clinical efforts to employ this knowledge as a means to ameliorate or reverse aging. Here, we describe a reporter allele, p16tdTom, enabling the in vivo identification and isolation of cells featuring high-level activation of the p16INK4a promoter. Our findings provide an insight into the functional and molecular characteristics of p16INK4a-activated cells in vitro and in vivo. We show that such cells accumulate with aging or other models of injury, and that they exhibit clinically targetable features of cellular senescence. The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by “knocking-in” a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16INK4a locus. We used this allele (p16tdTom) for the enumeration, isolation, and characterization of individual p16INK4a-expressing cells (tdTom+). The half-life of the knocked-in transcript was shorter than that of the endogenous p16INK4a mRNA, and therefore reporter expression better correlated with p16INK4a promoter activation than p16INK4a transcript abundance. The frequency of tdTom+ cells increased with serial passage in cultured murine embryo fibroblasts from p16tdTom/+ mice. In adult mice, tdTom+ cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16INK4a and found that tdTom+ macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated β-galactosidase (SA-β-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence.
Collapse
|
31
|
Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol 2018; 40:101275. [PMID: 31088710 PMCID: PMC7061456 DOI: 10.1016/j.smim.2019.04.003] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/01/2018] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Senescent cells (SCs) arise from normal cells in multiple organs due to inflammatory, metabolic, DNA damage, or tissue damage signals. SCs are non-proliferating but metabolically active cells that can secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype (SASP). Senescent cell anti-apoptotic pathways (SCAPs) protect SCs from their own pro-apoptotic SASP. SCs can chemo-attract immune cells and are usually cleared by these immune cells. During aging and in multiple chronic diseases, SCs can accumulate in dysfunctional tissues. SCs can impede innate and adaptive immune responses. Whether immune system loss of capacity to clear SCs promotes immune system dysfunction, or conversely whether immune dysfunction permits SC accumulation, are important issues that are not yet fully resolved. SCs may be able to assume distinct states that interact differentially with immune cells, thereby promoting or inhibiting SC clearance, establishing a chronically pro-senescent and pro-inflammatory environment, leading to modulation of the SASP by the immune cells recruited and activated by the SASP. Therapies that enhance immune cell-mediated clearance of SCs could provide a lever for reducing SC burden. Such therapies could include vaccines, small molecule immunomodulators, or other approaches. Senolytics, drugs that selectively eliminate SCs by transiently disabling their SCAPs, may prove to alleviate immune dysfunction in older individuals and thereby accelerate immune-mediated clearance of SCs. The more that can be understood about the interplay between SCs and the immune system, the faster new interventions may be developed to delay, prevent, or treat age-related dysfunction and the multiple senescence-associated chronic diseases and disorders.
Collapse
Affiliation(s)
- Larissa G P Langhi Prata
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
32
|
Kartiko BH, Siswanto FM. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Diekman BO, Sessions GA, Collins JA, Knecht AK, Strum SL, Mitin NK, Carlson CS, Loeser RF, Sharpless NE. Expression of p16 INK 4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 2018; 17:e12771. [PMID: 29744983 PMCID: PMC6052464 DOI: 10.1111/acel.12771] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence drives a functional decline of numerous tissues with aging by limiting regenerative proliferation and/or by producing pro‐inflammatory molecules known as the senescence‐associated secretory phenotype (SASP). The senescence biomarker p16INK4a is a potent inhibitor of the cell cycle but is not essential for SASP production. Thus, it is unclear whether p16INK4a identifies senescence in hyporeplicative cells such as articular chondrocytes and whether p16INK4a contributes to pathologic characteristics of cartilage aging. To address these questions, we examined the role of p16INK4a in murine and human models of chondrocyte aging. We observed that p16INK4amRNA expression was significantly upregulated with chronological aging in murine cartilage (~50‐fold from 4 to 18 months of age) and in primary human chondrocytes from 57 cadaveric donors (r2 = .27, p < .0001). Human chondrocytes exhibited substantial replicative potential in vitro that depended on the activity of cyclin‐dependent kinases 4 or 6 (CDK4/6), and proliferation was reduced in cells from older donors with increased p16INK4a expression. Moreover, increased chondrocyte p16INK4a expression correlated with several SASP transcripts. Despite the relationship between p16INK4a expression and these features of senescence, somatic inactivation of p16INK4a in chondrocytes of adult mice did not mitigate SASP expression and did not alter the rate of osteoarthritis (OA) with physiological aging or after destabilization of the medial meniscus. These results establish that p16INK4a expression is a biomarker of dysfunctional chondrocytes, but that the effects of chondrocyte senescence on OA are more likely driven by production of SASP molecules than by loss of chondrocyte replicative function.
Collapse
Affiliation(s)
- Brian O. Diekman
- Lineberger Comprehensive Cancer Center; University of North Carolina School of Medicine; Chapel Hill North Carolina
- Thurston Arthritis Research Center; University of North Carolina School of Medicine; Chapel Hill North Carolina
- Department of Biomedical Engineering; University of North Carolina, Chapel Hill, NC; North Carolina State University; Raleigh North Carolina
| | - Garrett A. Sessions
- Thurston Arthritis Research Center; University of North Carolina School of Medicine; Chapel Hill North Carolina
| | - John A. Collins
- Thurston Arthritis Research Center; University of North Carolina School of Medicine; Chapel Hill North Carolina
| | - Anne K. Knecht
- HealthSpan Diagnostics LLC; Research Triangle Park North Carolina
| | - Susan L. Strum
- HealthSpan Diagnostics LLC; Research Triangle Park North Carolina
| | - Natalia K. Mitin
- HealthSpan Diagnostics LLC; Research Triangle Park North Carolina
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences; University of Minnesota; St. Paul Minnesota
| | - Richard F. Loeser
- Thurston Arthritis Research Center; University of North Carolina School of Medicine; Chapel Hill North Carolina
- Division of Rheumatology, Allergy, and Immunology; University of North Carolina School of Medicine; Chapel Hill North Carolina
| | - Norman E. Sharpless
- Lineberger Comprehensive Cancer Center; University of North Carolina School of Medicine; Chapel Hill North Carolina
- Departments of Medicine and Genetics; University of North Carolina School of Medicine; Chapel Hill North Carolina
- The National Cancer Institute; Bethesda Maryland
| |
Collapse
|
34
|
Zhang X, Xu GB, Zhou D, Pan YX. High-fat diet modifies expression of hepatic cellular senescence gene p16(INK4a) through chromatin modifications in adult male rats. GENES AND NUTRITION 2018; 13:6. [PMID: 29564021 PMCID: PMC5853101 DOI: 10.1186/s12263-018-0595-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Background Liver is the crucial organ as a hub for metabolic reactions. p16(INK4a) is a well-established cyclin-dependent kinase (CDK) inhibitor that plays important role in the molecular pathways of senescence, which lead to irreversible cell cycle arrest with secretion of proinflammatory cytokines and mitochondrial dysfunction. This study tested the hypothesis that cellular senescence regulated by p16(INK4a) is associated with high-fat diet in adult male rats. Methods Sprague Dawley rats were fed a high-fat (HF) diet or a control (C) diet for 9 weeks after weaning. At 12 weeks of age, liver samples of male rats were collected to investigate the key genes and liver physiological status. Results Both mRNA and protein expression level of cellular senescence marker, p16(INK4a), was increased significantly in HF group when compared to C group. A decrease of tri-methylated histone H3 lysine 27 (H3K27Me3) in the coding region of p16(INK4a) was observed. On the other hand, mRNA and protein expression of another inhibitor of cyclin-dependent kinase, p21(Cip1), was decreased significantly in HF group; however, no significant chromatin modification was found in this gene. Histological analysis demonstrated hepatic steatosis in HF group as well as severe fat accumulation. Conclusions Our study demonstrated that HF diet regulated cellular senescence marker p16(INK4a) through chromatin modifications, which may promote hepatic fat accumulation and steatosis.
Collapse
Affiliation(s)
- Xiyuan Zhang
- 1Pediatric Oncology Branch (POB), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892 USA
| | - Guanying Bianca Xu
- 2Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Dan Zhou
- 4Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yuan-Xiang Pan
- 2Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,3Division of Nutritional Sciences (DNS), University of Illinois Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,5Illinois Informatics Institute, University of Illinois at Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
35
|
Sewastianik T, Jiang M, Sukhdeo K, Patel SS, Roberts K, Kang Y, Alduaij A, Dennis PS, Lawney B, Liu R, Song Z, Xiong J, Zhang Y, Lemieux ME, Pinkus GS, Rich JN, Weinstock DM, Mullighan CG, Sharpless NE, Carrasco RD. Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Adv 2017; 1:2361-2374. [PMID: 29296886 PMCID: PMC5729631 DOI: 10.1182/bloodadvances.2017012211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Surgical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kumar Sukhdeo
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Sanjay S Patel
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Ahmad Alduaij
- Pathology and Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Peter S Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Brian Lawney
- Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Zeyuan Song
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Jessie Xiong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Yunyu Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | | | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | - Norman E Sharpless
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
36
|
He S, Sharpless NE. Senescence in Health and Disease. Cell 2017; 169:1000-1011. [PMID: 28575665 DOI: 10.1016/j.cell.2017.05.015] [Citation(s) in RCA: 1115] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Many cellular stresses activate senescence, a persistent hyporeplicative state characterized in part by expression of the p16INK4a cell-cycle inhibitor. Senescent cell production occurs throughout life and plays beneficial roles in a variety of physiological and pathological processes including embryogenesis, wound healing, host immunity, and tumor suppression. Meanwhile, the steady accumulation of senescent cells with age also has adverse consequences. These non-proliferating cells occupy key cellular niches and elaborate pro-inflammatory cytokines, contributing to aging-related diseases and morbidity. This model suggests that the abundance of senescent cells in vivo predicts "molecular," as opposed to chronologic, age and that senescent cell clearance may mitigate aging-associated pathology.
Collapse
Affiliation(s)
- Shenghui He
- Departments of Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA; The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| | - Norman E Sharpless
- Departments of Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA; The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
37
|
Reprint of: Aging: Treating the Older Patient. Biol Blood Marrow Transplant 2017; 23:S10-S17. [PMID: 28236837 DOI: 10.1016/j.bbmt.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022]
|
38
|
Rosko A, Artz A. Aging: Treating the Older Patient. Biol Blood Marrow Transplant 2017; 23:193-200. [PMID: 27864162 PMCID: PMC5967228 DOI: 10.1016/j.bbmt.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Ashley Rosko
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Andrew Artz
- Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
39
|
Rosko A, Giralt S, Mateos MV, Dispenzieri A. Myeloma in Elderly Patients: When Less Is More and More Is More. Am Soc Clin Oncol Educ Book 2017; 37. [PMID: 28561667 PMCID: PMC6619424 DOI: 10.14694/edbk_175171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Multiple myeloma is a plasma cell malignancy that occurs among older adults and accounts for 15% of all hematologic malignancies in the United States. Thirty-five percent of patients are diagnosed at age 75 or older. Novel therapeutics and routine use of autologous stem cell transplantation (ASCT) have led to substantial improvements in patient survival, although improvements have been more impressive among patients younger than age 65. Finding the balance between under- and overtreating elderly patients is one of the biggest challenges specific to them as a subgroup of patients with MM. Decision making about which therapies and their dose intensity and duration should be influenced by a patient's functional status, personal preferences, disease characteristics, and ability to tolerate therapy. ASCT should be considered for all patients younger than age 80, assuming that they are not frail. The attainment of a stringent complete response and minimal residual disease negativity is associated with improved progression-free and overall survival. Again, consideration of quality of life for these patients is paramount. Although there is a growing list of tools to sort through these issues, a fully integrated approach has not yet been finely tuned, leaving additional work to be done for the treatment of elderly patients with MM.
Collapse
Affiliation(s)
- Ashley Rosko
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| | - Sergio Giralt
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| | - Maria-Victoria Mateos
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| | - Angela Dispenzieri
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| |
Collapse
|
40
|
Rosko A, Giralt S, Mateos MV, Dispenzieri A. Myeloma in Elderly Patients: When Less Is More and More Is More. Am Soc Clin Oncol Educ Book 2017; 37:575-585. [PMID: 28561667 PMCID: PMC6619424 DOI: 10.1200/edbk_175171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple myeloma is a plasma cell malignancy that occurs among older adults and accounts for 15% of all hematologic malignancies in the United States. Thirty-five percent of patients are diagnosed at age 75 or older. Novel therapeutics and routine use of autologous stem cell transplantation (ASCT) have led to substantial improvements in patient survival, although improvements have been more impressive among patients younger than age 65. Finding the balance between under- and overtreating elderly patients is one of the biggest challenges specific to them as a subgroup of patients with MM. Decision making about which therapies and their dose intensity and duration should be influenced by a patient's functional status, personal preferences, disease characteristics, and ability to tolerate therapy. ASCT should be considered for all patients younger than age 80, assuming that they are not frail. The attainment of a stringent complete response and minimal residual disease negativity is associated with improved progression-free and overall survival. Again, consideration of quality of life for these patients is paramount. Although there is a growing list of tools to sort through these issues, a fully integrated approach has not yet been finely tuned, leaving additional work to be done for the treatment of elderly patients with MM.
Collapse
Affiliation(s)
- Ashley Rosko
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| | - Sergio Giralt
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| | - Maria-Victoria Mateos
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| | - Angela Dispenzieri
- From The Ohio State University, Columbus, OH; Memorial Sloan Kettering Cancer Center, New York, NY; University Hospital of Salamanca, Salamanca, Spain; Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
The effects of aging and maternal protein restriction during lactation on thymic involution and peripheral immunosenescence in adult mice. Oncotarget 2016; 7:6398-409. [PMID: 26843625 PMCID: PMC4872722 DOI: 10.18632/oncotarget.7176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Environmental factors such as nutrition during early life can influence long-term health, a concept termed developmental programming. Initial research was focused towards the effects on metabolic health but more recent studies have demonstrated effects on parameters such as lifespan and immunity. In this study we report that maternal protein restriction during lactation in mice, that is known to prolong lifespan, slows aging of the central and peripheral immune systems. Offspring of dams fed a postnatal low-protein (PLP) diet during lactation had a significant increase in thymic cellularity and T cell numbers across their lifespan compared to controls, and a less marked age-associated decrease in thymocyte cluster of differentiation (CD) 3 expression. PLP animals also demonstrated increased relative splenic cellularity, increased naïve: memory CD4+ and CD8+ T cell ratios, increased staining and density of germinal centres, and decreased gene expression of p16 in the spleen, a robust biomarker of aging. A slower rate of splenic aging in PLP animals would be expected to result in decreased susceptibility to infection and neoplasia. In conclusion nutritionally-induced slow postnatal growth leads to delayed aging of the adaptive immune system, which may contribute towards the extended lifespan observed in these animals.
Collapse
|
42
|
Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman SB, Zhang H, Goronzy JJ, Weyand CM. Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity 2016; 45:903-916. [PMID: 27742546 DOI: 10.1016/j.immuni.2016.09.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
Immune aging manifests with a combination of failing adaptive immunity and insufficiently restrained inflammation. In patients with rheumatoid arthritis (RA), T cell aging occurs prematurely, but the mechanisms involved and their contribution to tissue-destructive inflammation remain unclear. We found that RA CD4+ T cells showed signs of aging during their primary immune responses and differentiated into tissue-invasive, proinflammatory effector cells. RA T cells had low expression of the double-strand-break repair nuclease MRE11A, leading to telomeric damage, juxtacentromeric heterochromatin unraveling, and senescence marker upregulation. Inhibition of MRE11A activity in healthy T cells induced the aging phenotype, whereas MRE11A overexpression in RA T cells reversed it. In human-synovium chimeric mice, MRE11Alow T cells were tissue-invasive and pro-arthritogenic, and MRE11A reconstitution mitigated synovitis. Our findings link premature T cell aging and tissue-invasiveness to telomere deprotection and heterochromatin unpacking, identifying MRE11A as a therapeutic target to combat immune aging and suppress dysregulated tissue inflammation.
Collapse
Affiliation(s)
- Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philipp Hohensinner
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jihang Ju
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhenke Wen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hui Zhang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Kao TW, Chen WL, Han DS, Huang YH, Chen CL, Yang WS. Examining how p16(INK4a) expression levels are linked to handgrip strength in the elderly. Sci Rep 2016; 6:31905. [PMID: 27549351 PMCID: PMC4994020 DOI: 10.1038/srep31905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/29/2016] [Indexed: 12/30/2022] Open
Abstract
Although many studies have shown that p16INK4a is more highly expressed in the human body during senescence, studies on its relevance to handgrip strength among old adults, are relatively sparse. We enrolled 205 community-dwelling old adults aged 65 years and older without specific medical conditions. Handgrip strength of the dominant hand was measured. Low handgrip strength was defined as the lowest quartile of handgrip strength among the participants. RNA was extracted from peripheral white blood cells. Use quantitative polymerase chain reaction to estimate the p16INK4a mRNA expression level. The average handgrip strength was 25.22 ± 8.98 kg, and gender difference was observed. In the linear regression model, the p16INK4a mRNA expression level was significantly negatively associated with handgrip strength in men but not in women. The β coefficient, representing the change of handgrip strength for each increment in the p16INK4a mRNA expression level, was −0.208 (p = 0.024) among old men. The negative association remained after additional covariates adjustment. In the multiple logistic regression model among old men, the odds ratio (OR) of low handgrip strength was 1.246 (p = 0.032). In this study, we observed the p16INK4a mRNA expression level was negative associated with handgrip strength among community-dwelling old men.
Collapse
Affiliation(s)
- Tung-Wei Kao
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Liang Chen
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
| | - Ying-Hsin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Research Centre for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Center for Obesity, Lifestyle and Metabolic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Schafer MJ, White TA, Evans G, Tonne JM, Verzosa GC, Stout MB, Mazula DL, Palmer AK, Baker DJ, Jensen MD, Torbenson MS, Miller JD, Ikeda Y, Tchkonia T, van Deursen JM, Kirkland JL, LeBrasseur NK. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes 2016; 65:1606-15. [PMID: 26983960 PMCID: PMC4878429 DOI: 10.2337/db15-0291] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span.
Collapse
Affiliation(s)
- Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Glenda Evans
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | | | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Daniel L Mazula
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Michael D Jensen
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Surgery, Mayo Clinic, Rochester, MN
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Jan M van Deursen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| |
Collapse
|
45
|
Pilling LC, Joehanes R, Melzer D, Harries LW, Henley W, Dupuis J, Lin H, Mitchell M, Hernandez D, Ying SX, Lunetta KL, Benjamin EJ, Singleton A, Levy D, Munson P, Murabito JM, Ferrucci L. Gene expression markers of age-related inflammation in two human cohorts. Exp Gerontol 2015; 70:37-45. [PMID: 26087330 PMCID: PMC4600657 DOI: 10.1016/j.exger.2015.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chronically elevated circulating inflammatory markers are common in older persons but mechanisms are unclear. Many blood transcripts (>800 genes) are associated with interleukin-6 protein levels (IL6) independent of age. We aimed to identify gene transcripts statistically mediating, as drivers or responders, the increasing levels of IL6 protein in blood at older ages. METHODS Blood derived in-vivo RNA from the Framingham Heart Study (FHS, n=2422, ages 40-92 yrs) and InCHIANTI study (n=694, ages 30-104 yrs), with Affymetrix and Illumina expression arrays respectively (>17,000 genes tested), were tested for statistical mediation of the age-IL6 association using resampling techniques, adjusted for confounders and multiple testing. RESULTS In FHS, IL6 expression was not associated with IL6 protein levels in blood. 102 genes (0.6% of 17,324 expressed) statistically mediated the age-IL6 association of which 25 replicated in InCHIANTI (including 5 of the 10 largest effect genes). The largest effect gene (SLC4A10, coding for NCBE, a sodium bicarbonate transporter) mediated 19% (adjusted CI 8.9 to 34.1%) and replicated by PCR in InCHIANTI (n=194, 35.6% mediated, p=0.01). Other replicated mediators included PRF1 (perforin, a cytolytic protein in cytotoxic T lymphocytes and NK cells) and IL1B (Interleukin 1 beta): few other cytokines were significant mediators. CONCLUSIONS This transcriptome-wide study on human blood identified a small distinct set of genes that statistically mediate the age-IL6 association. Findings are robust across two cohorts and different expression technologies. Raised IL6 levels may not derive from circulating white cells in age related inflammation.
Collapse
Affiliation(s)
- Luke C Pilling
- Epidemiology and Public Health, Medical School, University of Exeter, RILD, Exeter EX2 5DW, UK
| | - Roby Joehanes
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institute of Health, Bethesda, MD, USA
| | - David Melzer
- Epidemiology and Public Health, Medical School, University of Exeter, RILD, Exeter EX2 5DW, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter, RILD, Exeter EX2 5DW, UK
| | - William Henley
- Institute for Health Services Research, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Josée Dupuis
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Honghuang Lin
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marcus Mitchell
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter, RILD, Exeter EX2 5DW, UK
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sai-Xia Ying
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institute of Health, Bethesda, MD, USA
| | - Kathryn L Lunetta
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Section of Cardiovascular Medicine and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Levy
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; The Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Peter Munson
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institute of Health, Bethesda, MD, USA
| | - Joanne M Murabito
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
46
|
Abstract
Cancer is a disease of aging as older adults are much more likely to develop cancer compared with their younger counterparts. Understanding the biology of cancer and aging remains complex, and numerous theories regarding the relationship between the two have been proposed. Cancer treatment decisions in older patients are particularly challenging, because the evidence is scarce and the risk of toxicity increases with age. Determination of biologic age is essential due to heterogeneity of functional status, comorbidity, and physiologic reserves between patients of the same chronologic age.
Collapse
Affiliation(s)
- Daneng Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Nienke A de Glas
- Department of Internal Medicine, Tergooi Hospitals, Van Riebeeckweg 212, Hilversum 1213XZ, The Netherlands
| | - Arti Hurria
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
47
|
Nelson RK, Gould KA. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice. Lupus 2015; 25:137-54. [PMID: 26385218 DOI: 10.1177/0961203315603139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system.
Collapse
Affiliation(s)
- R K Nelson
- Department of Genetics, Cell Biology & Anatomy, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - K A Gould
- Department of Genetics, Cell Biology & Anatomy, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
48
|
Jiang C, Hu X, Wang L, Cheng H, Lin Y, Pang Y, Yuan W, Cheng T, Wang J. Excessive proliferation and impaired function of primitive hematopoietic cells in bone marrow due to senescence post chemotherapy in a T cell acute lymphoblastic leukemia model. J Transl Med 2015; 13:234. [PMID: 26183432 PMCID: PMC4504405 DOI: 10.1186/s12967-015-0543-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/18/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In clinic settings, rel apsed leukemic patients are found to be more fragile to chemotherapy due to delayed or incomplete hematopoietic recovery, and hematopoiesis of these patients seem to be impaired. METHODS We established a leukemia therapy model with a non-irradiated T cell acute lymphoblastic leukemia mouse model combined with cytarabine and cyclophosphamide. Dynamic kinetics and functional status of both primitive hematopoietic cells and leukemic cells in a leukemia host under the chemotherapy stress were comprehensively investigated. RESULTS We successfully established the leukemia therapy model with T lymphoblastic phenotype. After treatment with cytarabine and cyclophosphamide, the frequency of L(-)K(+)S(+) hematopoietic cells tides with the therapy, and stabled when the disease remission, then reduced when relapsed, while leukemic cells showed a delayed but consistent regeneration. Combination of chemotherapy significantly promote an early and transient entrance of L(-)K(+)S(+) hematopoietic cells into active proliferation and induction of apoptosis on L(-)K(+)S(+) cells in vivo. Moreover, in the competitive bone marrow transplantation assays, hematopoietic cells showed gradually diminished regenerative capacity. Testing of senescence-associated beta-galactosidase (SA-β gal) status showed higher levels in L(-)K(+)S(+) hematopoietic cells post therapy when compared with the control. Gene expression analysis of hematopoietic primitive cells revealed up-regulated p16, p21, and down-regulated egr1 and fos. CONCLUSION We conclude that primitive hematopoietic cells in bone marrow enter proliferation earlier than leukemic cells after chemotherapy, and gradually lost their regenerative capacity partly by senescence due to accelerated cycling.
Collapse
Affiliation(s)
- Chuanhe Jiang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Xiaoxia Hu
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Libing Wang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Yan Lin
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Jianmin Wang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
49
|
Abstract
'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.
Collapse
Affiliation(s)
- Norman E Sharpless
- Department of Medicine and Genetics and The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7295, USA
| | - Charles J Sherr
- Department of Tumor Cell Biology and The Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
50
|
Rosko A, Hofmeister C, Benson D, Efebera Y, Huang Y, Gillahan J, Byrd JC, Burd CE. Autologous hematopoietic stem cell transplant induces the molecular aging of T-cells in multiple myeloma. Bone Marrow Transplant 2015; 50:1379-81. [PMID: 26121107 DOI: 10.1038/bmt.2015.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A Rosko
- Division of Hematology, Ohio State University, Columbus, OH, USA
| | - C Hofmeister
- Division of Hematology, Ohio State University, Columbus, OH, USA
| | - D Benson
- Division of Hematology, Ohio State University, Columbus, OH, USA
| | - Y Efebera
- Division of Hematology, Ohio State University, Columbus, OH, USA
| | - Y Huang
- Division of Hematology, Ohio State University, Columbus, OH, USA
| | - J Gillahan
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA
| | - J C Byrd
- Division of Hematology, Ohio State University, Columbus, OH, USA.,Division of Medicinal Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - C E Burd
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA
| |
Collapse
|