1
|
Sun Q, Zhang L, Huang X, Wang M. Salidroside prevents gestational hypertension-induced impairment of offspring learning and memory via Wnt/Skp2 pathway. Neurosci Lett 2024; 832:137787. [PMID: 38641312 DOI: 10.1016/j.neulet.2024.137787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Salidroside (Sal) has been found to protect against multiple impairments caused by diabetes, and we designed this study to investigate the effect of Sal on gestational hypertension (GHP)-induced impairment of offspring learning and memory. METHODS We established a GHP rat model by intraperitoneal injection of NG-nitro-L-arginine methyl ester (L-NAME), and treated with Sal by daily gavage. We used Morris Water Maze test to evaluate the learning and memory ability of offspring rats. HE staining was used to measured the pathological changes in hippocampus of offspring. Immunohistochemistry, cellular immunofluorescence and western blot were used to detect the protein expression. RESULTS The learning and memory abilities of GHP offspring rats were significantly lower than those of normal rat offspring, while Sal treatment could significantly improve the learning and memory abilities of GHP offspring rats. HE staining did not reveal pathological differences in the hippocampus of normal rats, GHP rats and Sal-treated GHP offspring rats. However, Sal treatment can significantly increase the expression of Wnt1 and Skp2 protein, and decrease the expression of P27kiwf and P21waf1 protein in the hippocampus of GHP offspring rats. In vitro, Sal significantly promoted the proliferation and differentiation on neural stem cell, while Wnt1 knockdown could reverse these promotions by Sal. In the hippocampus of GHP offspring rats, Sal treatment significantly increased the expression of Tuj1, SOX2, Ki67 and DCX protein. CONCLUSION Salidroside significantly improves the learning and memory impairment of offspring caused by GHP, and its mechanism may be related to the fact that Salidroside promotes the proliferation and differentiation of neural stem cells by activating the Wnt1/Skp2 signaling pathway.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University Jinan, Shandong 250001, China
| | - Li Zhang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University Jinan, Shandong 250001, China
| | - Xiuyan Huang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University Jinan, Shandong 250001, China
| | - Min Wang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University Jinan, Shandong 250001, China.
| |
Collapse
|
2
|
William JNG, Dhar R, Gundamaraju R, Sahoo OS, Pethusamy K, Raj AFPAM, Ramasamy S, Alqahtani MS, Abbas M, Karmakar S. SKping cell cycle regulation: role of ubiquitin ligase SKP2 in hematological malignancies. Front Oncol 2024; 14:1288501. [PMID: 38559562 PMCID: PMC10978726 DOI: 10.3389/fonc.2024.1288501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It is associated with ubiquitin-mediated degradation in the mammalian cell cycle components and other target proteins involved in cell cycle progression, signal transduction, and transcription. Being an oncogene in solid tumors and hematological malignancies, it is frequently associated with drug resistance and poor disease outcomes. In the current review, we discussed the novel role of SKP2 in different hematological malignancies. Further, we performed a limited in-silico analysis to establish the involvement of SKP2 in a few publicly available cancer datasets. Interestingly, our study identified Skp2 expression to be altered in a cancer-specific manner. While it was found to be overexpressed in several cancer types, few cancer showed a down-regulation in SKP2. Our review provides evidence for developing novel SKP2 inhibitors in hematological malignancies. We also investigated the effect of SKP2 status on survival and disease progression. In addition, the role of miRNA and its associated families in regulating Skp2 expression was explored. Subsequently, we predicted common miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we discussed current approaches and future prospective approaches to target the Skp2 gene by using different drugs and miRNA-based therapeutics applications in translational research.
Collapse
Affiliation(s)
- Jonahunnatha Nesson George William
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), Ageing Research Center and Translational Medicine-CeSI-MeT, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Gundamaraju
- ER Stress and Intestinal Mucosal Biology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subbiah Ramasamy
- Cardiac Metabolic Disease Laboratory, Department Of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, Borjihan H, Schwartz EL, Zhao H, Oktay MH, Yang R, Geller DS, Hoang BH, Zheng D. SKP2 Knockout in Rb1/p53-Deficient Mouse Models of Osteosarcoma Induces Immune Infiltration and Drives a Transcriptional Program with a Favorable Prognosis. Mol Cancer Ther 2024; 23:223-234. [PMID: 37871911 PMCID: PMC10842346 DOI: 10.1158/1535-7163.mct-23-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Waleed Al-Hardan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward L. Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Chiaramida A, Obwar SG, Nordstrom AEH, Ericsson M, Saldanha A, Ivanova EV, Griffin GK, Khan DH, Belizaire R. Sensitivity to targeted UBA1 inhibition in a myeloid cell line model of VEXAS syndrome. Blood Adv 2023; 7:7445-7456. [PMID: 38091008 PMCID: PMC10758730 DOI: 10.1182/bloodadvances.2023010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 12/18/2023] Open
Abstract
Somatic UBA1 mutations in hematopoietic cells are a hallmark of Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic (VEXAS) syndrome, which is a late-onset inflammatory disease associated with bone marrow failure and high mortality. The majority of UBA1 mutations in VEXAS syndrome comprise hemizygous mutations affecting methionine-41 (M41), leading to the expression of UBA1M41T, UBA1M41V, or UBA1M41L and globally reduced protein polyubiquitination. Here, we used CRISPR-Cas9 to engineer isogenic 32D mouse myeloid cell lines expressing hemizygous Uba1WT or Uba1M41L from the endogenous locus. Consistent with prior analyses of patients with VEXAS syndrome samples, hemizygous Uba1M41L expression was associated with loss of the UBA1b protein isoform, gain of the UBA1c protein isoform, reduced polyubiquitination, abnormal cytoplasmic vacuoles, and increased production of interleukin-1β and inflammatory chemokines. Vacuoles in Uba1M41L cells contained a variety of endolysosomal membranes, including small vesicles, multivesicular bodies, and multilamellar lysosomes. Uba1M41L cells were more sensitive to the UBA1 inhibitor TAK243. TAK243 treatment promoted apoptosis in Uba1M41L cells and led to preferential loss of Uba1M41L cells in competition assays with Uba1WT cells. Knock-in of a TAK243-binding mutation, Uba1A580S, conferred TAK243 resistance. In addition, overexpression of catalytically active UBA1b in Uba1M41L cells restored polyubiquitination and increased TAK243 resistance. Altogether, these data indicate that loss of UBA1b underlies a key biochemical phenotype associated with VEXAS syndrome and renders cells with reduced UBA1 activity vulnerable to targeted UBA1 inhibition. Our Uba1M41L knock-in cell line is a useful model of VEXAS syndrome that will aid in the study of disease pathogenesis and the development of effective therapies.
Collapse
Affiliation(s)
| | - Sandra G. Obwar
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Aisha Saldanha
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | - Elena V. Ivanova
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - Dilshad H. Khan
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
5
|
Zhan Q, Wang J, Zhang H, Zhang L. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. J Mol Med (Berl) 2023; 101:543-556. [PMID: 37081103 PMCID: PMC10163092 DOI: 10.1007/s00109-023-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Jing Wang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
6
|
Grey W, Atkinson S, Rix B, Casado P, Ariza-McNaughton L, Hawley C, Sopoena ML, Bridge KS, Kent D, Cutillas PR, Bonnet D. The CKS1/CKS2 Proteostasis Axis Is Crucial to Maintain Hematopoietic Stem Cell Function. Hemasphere 2023; 7:e853. [PMID: 36874381 PMCID: PMC9977483 DOI: 10.1097/hs9.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Long-term hematopoietic stem cells are rare, highly quiescent stem cells of the hematopoietic system with life-long self-renewal potential and the ability to transplant and reconstitute the entire hematopoietic system of conditioned recipients. Most of our understanding of these rare cells has relied on cell surface identification, epigenetic, and transcriptomic analyses. Our knowledge of protein synthesis, folding, modification, and degradation-broadly termed protein homeostasis or "proteostasis"-in these cells is still in its infancy, with very little known about how the functional state of the proteome is maintained in hematopoietic stem cells. We investigated the requirement of the small phospho-binding adaptor proteins, the cyclin-dependent kinase subunits (CKS1 and CKS2), for maintaining ordered hematopoiesis and long-term hematopoietic stem cell reconstitution. CKS1 and CKS2 are best known for their roles in p27 degradation and cell cycle regulation, and by studying the transcriptome and proteome of Cks1 -/- and Cks2 -/- mice, we demonstrate regulation of key signaling pathways that govern hematopoietic stem cell biology including AKT, FOXO1, and NFκB, together balancing protein homeostasis and restraining reactive oxygen species to ensure healthy hematopoietic stem cell function.
Collapse
Affiliation(s)
- William Grey
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Samantha Atkinson
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beatrice Rix
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | | | - Cathy Hawley
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Miriam L. Sopoena
- Bioinformatics Core, The Francis Crick Institute, London, United Kingdom
| | - Katherine S. Bridge
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - David Kent
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Bart’s Cancer Institute, London, United Kingdom
| | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
7
|
Hu K, Li XJ, Asmamaw MD, Shi XJ, Liu HM. Establishment of high-throughput screening HTRF assay for identification small molecule inhibitors of Skp2-Cks1. Sci Rep 2021; 11:21105. [PMID: 34702937 PMCID: PMC8548536 DOI: 10.1038/s41598-021-00646-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
S-phase kinase associated protein 2 (Skp2), a member of the F-box family that constitute the largest known class of ubiquitin E3 specificity components, is responsible for recognizing and recruiting cyclin-dependent kinase inhibitor p27 for its ubiquitination in the presence of the small accessory protein cyclin-dependent kinase regulatory subunit 1(Cks1). Skp2 is overexpressed in esophageal carcinoma tissues and closely related with tumor poor prognosis, and perturbation of the Skp2-Cks1 interaction by inhibitors or RNAi could inhibit the proliferation and metastasis of tumor cells. Therefore, inhibition of Skp2 function by small-molecule compounds targeting Skp2-Cks1 interaction is emerging as a promising and novel anti-cancer strategy. In this study, we establish an improved high-throughput screening platform to screen Skp2 inhibitors targeting Skp2-Cks1interaction, which may provide a new therapeutic approach for the clinic.
Collapse
Affiliation(s)
- Kaizhao Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao-Jing Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Albayrak E, Uslu M, Akgol S, Tuysuz EC, Kocabas F. Small molecule-mediated modulation of ubiquitination and neddylation improves HSC function ex vivo. J Cell Physiol 2021; 236:8122-8136. [PMID: 34101829 DOI: 10.1002/jcp.30466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 11/07/2022]
Abstract
Hematopoietic stem cells (HSCs) are particularly characterized by their quiescence and self-renewal. Cell cycle regulators tightly control quiescence and self-renewal capacity. Studies suggest that modulation of ubiquitination and neddylation could contribute to HSC function via cyclin-dependent kinase inhibitors (CDKIs). S-phase kinase-associated protein 2 (SKP2) is responsible for ubiquitin-mediated proteolysis of CDKIs. Here, we modulated overall neddylation and SKP2-associated ubiquitination in HSCs by using SKP2-C25, an SKP2 inhibitor, and MLN4924 (Pevonedistat) as an inhibitor of the NEDD8 system. Treatments of SKP2-C25 and MLN4924 increased both murine and human stem and progenitor cell (HSPC) compartments. This is associated with the improved quiescence of murine HSC by upregulation of p27 and p57 CDKIs. A colony-forming unit assay showed an enhanced in vitro self-renewal potential post inhibition of ubiquitination and neddylation. In addition, MLN4924 triggered the mobilization of bone marrow HSPCs to peripheral blood. Intriguingly, MLN4924 treatment could decrease the proliferation of murine bone marrow mesenchymal stem cells or endothelial cells. These findings shed light on the contribution of SKP2, and associated ubiquitination and neddylation in HSC maintenance, self-renewal, and expansion.
Collapse
Affiliation(s)
- Esra Albayrak
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Merve Uslu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sezer Akgol
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
9
|
Identification of the antidepressive properties of C1, a specific inhibitor of Skp2, in mice. Behav Pharmacol 2021; 32:62-72. [PMID: 33416256 DOI: 10.1097/fbp.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported that SMIP004, an inhibitor of S-phase kinase-associated protein 2 (Skp2), displays antidepressant-like activities in stress-naïve and chronically stressed mice. Here, we investigated the antidepressant-like effect of C1, another inhibitor of Skp2, in mouse models following acute or chronic drug administration at different doses and treatment times by using the tail suspension test (TST), forced swimming test (FST), and social interaction test (SIT). The time- and dose-dependent results showed that the antidepressant-like effect of C1 occurred 8 days after the drug treatment, and C1 produced antidepressant-like activities at the dose of 5 and 10 but not 1 mg/kg in male or female mice. C1 administration (5 mg/kg) also induced antidepressant-like effects in stress-naïve mice in a three-times administration mode within 24 h (24, 5, and 1 h before the test) but not in an acute administration mode (1 h before the test). The C1 and fluoxetine co-administration produced additive effect on depression-like behaviors in stress-naïve mice. The antidepressant-like effect of C1 was not associated with the change in locomotor activity, as no increased locomotor activity was observed in different treatment modes. Furthermore, the long-term C1 treatment (5 mg/kg) was found to ameliorate the depression-like behaviors in chronic social defeat stress-exposed mice, suggesting that C1 can produce antidepressant-like actions in stress conditions. Since C1 is a specific inhibitor of Skp2, our results demonstrate that inhibition of Skp2 might be a potential strategy for the treatment of depression, and Skp2 may be potential target for the development of novel antidepressants.
Collapse
|
10
|
Hynes-Smith RW, Wittorf KJ, Buckley SM. Regulation of Normal and Malignant Hematopoiesis by FBOX Ubiquitin E3 Ligases. Trends Immunol 2020; 41:1128-1140. [PMID: 33160841 DOI: 10.1016/j.it.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for numerous functions, ranging from oxygen transportation to host defense, to injury repair. This process of hematopoiesis is maintained throughout life by hematopoietic stem cells and requires a controlled balance between self-renewal, differentiation, and quiescence. Disrupting this balance can result in hematopoietic malignancies, including anemia, immune deficiency, leukemia, and lymphoma. Recent work has shown that FBOX E3 ligases, a substrate recognition component of the ubiquitin proteasome system (UPS), have an integral role in maintaining this balance. In this review, we detail how FBOX proteins target specific proteins for degradation to regulate hematopoiesis through cell processes, such as cell cycle, development, and apoptosis.
Collapse
Affiliation(s)
- R Willow Hynes-Smith
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karli J Wittorf
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon M Buckley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Regulation of Stem Cells by Cullin-RING Ligase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:79-98. [PMID: 31898223 DOI: 10.1007/978-981-15-1025-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells can remain quiescent, self-renewal, and differentiate into many types of cells and even cancer stem cells. The coordination of these complex processes maintains the homeostasis of the organism. Ubiquitination is an important posttranslational modification process that regulates protein stability and activity. The ubiquitination levels of stem cell-associated proteins are closely related with stem cell characteristics. Cullin-RING Ligases (CRLs) are the largest family of E3 ubiquitin ligases, accounting for approximately 20% of proteins degraded by proteasome. In this review, we discuss the role of CRLs in stem cell homeostasis, self-renewal, and differentiation and expound their ubiquitination substrates. In addition, we also discuss the effect of CRLs on the formation of cancer stem cells that may provide promising therapy strategies for cancer.
Collapse
|
13
|
Rodriguez S, Abundis C, Boccalatte F, Mehrotra P, Chiang MY, Yui MA, Wang L, Zhang H, Zollman A, Bonfim-Silva R, Kloetgen A, Palmer J, Sandusky G, Wunderlich M, Kaplan MH, Mulloy JC, Marcucci G, Aifantis I, Cardoso AA, Carlesso N. Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL. Leukemia 2019; 34:1241-1252. [PMID: 31772299 PMCID: PMC7192844 DOI: 10.1038/s41375-019-0653-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/18/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Timed degradation of the cyclin-dependent kinase inhibitor p27Kip1 by the E3 ubiquitin ligase F-box protein SKP2 is critical for T-cell progression into cell cycle, coordinating proliferation and differentiation processes. SKP2 expression is regulated by mitogenic stimuli and by Notch signaling, a key pathway in T-cell development and in T-cell acute lymphoblastic leukemia (T-ALL); however, it is not known whether SKP2 plays a role in the development of T-ALL. Here, we determined that SKP2 function is relevant for T-ALL leukemogenesis, whereas is dispensable for T-cell development. Targeted inhibition of SKP2 by genetic deletion or pharmacological blockade markedly inhibited proliferation of human T-ALL cells in vitro and antagonized disease in vivo in murine and xenograft leukemia models, with little effect on normal tissues. We also demonstrate a novel feed forward feedback loop by which Notch and IL-7 signaling cooperatively converge on SKP2 induction and cell cycle activation. These studies show that the Notch/SKP2/p27Kip1 pathway plays a unique role in T-ALL development and provide a proof-of-concept for the use of SKP2 as a new therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL).
Collapse
Affiliation(s)
- Sonia Rodriguez
- Beckman Research Institute, Gehr Leukemia Center, City of Hope, Duarte, CA, 91010, USA.,Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Christina Abundis
- Beckman Research Institute, Gehr Leukemia Center, City of Hope, Duarte, CA, 91010, USA
| | - Francesco Boccalatte
- Department of Pathology and Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Purvi Mehrotra
- Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark Y Chiang
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Mary A Yui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lin Wang
- Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Huajia Zhang
- Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Amy Zollman
- Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ricardo Bonfim-Silva
- Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Riberão Preto, São Paulo, 14049-900, Brazil
| | - Andreas Kloetgen
- Department of Pathology and Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Joycelynne Palmer
- Beckman Research Institute, Gehr Leukemia Center, City of Hope, Duarte, CA, 91010, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark H Kaplan
- Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Guido Marcucci
- Beckman Research Institute, Gehr Leukemia Center, City of Hope, Duarte, CA, 91010, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Angelo A Cardoso
- Beckman Research Institute, Gehr Leukemia Center, City of Hope, Duarte, CA, 91010, USA
| | - Nadia Carlesso
- Beckman Research Institute, Gehr Leukemia Center, City of Hope, Duarte, CA, 91010, USA. .,Herman B Wells Center, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
14
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
15
|
Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019; 10:124. [PMID: 30999935 PMCID: PMC6472071 DOI: 10.1186/s13287-019-1222-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence shows that epithelial-mesenchymal transition (EMT) plays a crucial role in tumor invasion, metastasis, cancer stem cells, and drug resistance. Data obtained thus far have revealed that F-box proteins are critically involved in the regulation of the EMT process and stem cell differentiation in human cancers. In this review, we will briefly describe the role of EMT and stem cells in cell metastasis and drug resistance. We will also highlight how numerous F-box proteins govern the EMT process and stem cell survival by controlling their downstream targets. Additionally, we will discuss whether F-box proteins involved in drug resistance are associated with EMT and cancer stem cells. Targeting these F-box proteins might be a potential therapeutic strategy to reverse EMT and inhibit cancer stem cells and thus overcome drug resistance in human cancers.
Collapse
|
16
|
Ewerth D, Kreutmair S, Schmidts A, Ihorst G, Follo M, Wider D, Felthaus J, Schüler J, Duyster J, Illert AL, Engelhardt M, Wäsch R. APC/C Cdh1 regulates the balance between maintenance and differentiation of hematopoietic stem and progenitor cells. Cell Mol Life Sci 2019; 76:369-380. [PMID: 30357422 PMCID: PMC11105657 DOI: 10.1007/s00018-018-2952-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) represent the lifelong source of all blood cells and continuously regenerate the hematopoietic system through differentiation and self-renewal. The process of differentiation is initiated in the G1 phase of the cell cycle, when stem cells leave their quiescent state. During G1, the anaphase-promoting complex or cyclosome associated with the coactivator Cdh1 is highly active and marks proteins for proteasomal degradation to regulate cell proliferation. Following Cdh1 knockdown in HSPCs, we analyzed human and mouse hematopoiesis in vitro and in vivo in competitive transplantation assays. We found that Cdh1 is highly expressed in human CD34+ HSPCs and downregulated in differentiated subsets; whereas, loss of Cdh1 restricts myeloid differentiation, supports B cell development and preserves immature short-term HSPCs without affecting proliferation or viability. Our data highlight a role of Cdh1 as a regulator of balancing the maintenance of HSPCs and differentiation into mature blood cells.
Collapse
Affiliation(s)
- Daniel Ewerth
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Stefanie Kreutmair
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Andrea Schmidts
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Marie Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Dagmar Wider
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Julia Felthaus
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Lena Illert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
17
|
Kulinski M, Achkar IW, Haris M, Dermime S, Mohammad RM, Uddin S. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk Lymphoma 2017; 59:1051-1063. [PMID: 28797197 DOI: 10.1080/10428194.2017.1359740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Michal Kulinski
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Iman W Achkar
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Mohammad Haris
- b Translational Medicine Research Branch , Sidra Medical and Research Center , Doha , Qatar
| | - Said Dermime
- c National Center for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
18
|
Shen Y, Sun Y, Zhang L, Liu H. Effects of DTX3L on the cell proliferation, adhesion, and drug resistance of multiple myeloma cells. Tumour Biol 2017; 39:1010428317703941. [PMID: 28653881 DOI: 10.1177/1010428317703941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cell adhesion-mediated drug resistance is an important factor that influences the effects of chemotherapy in multiple myeloma. DTX3L, a ubiquitin ligase, plays a key role in cell-cycle-related process. Here, we found that the expression of DTX3L gradually increased during the proliferation of myeloma cells, which resulted in arrest of the cell cycle in the G1 phase and promoted the adherence of myeloma cells to fibronectin or bone marrow stromal cells. In addition, silencing of DTX3L improved sensitivity to chemotherapy drugs in multiple myeloma cell lines adherent to bone marrow stromal cells and increased the expression of caspase-3 and poly-adenosine diphosphate-ribose polymerase, two markers of apoptosis. Finally, we also found that DTX3L expression was regulated by focal adhesion kinase. Taken together, the results of this study show that DTX3L plays an important role in the proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells and as such may play a key role in the development of multiple myeloma.
Collapse
Affiliation(s)
- Yaodong Shen
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yuxiang Sun
- 2 Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Linlin Zhang
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,2 Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Hong Liu
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
19
|
Abstract
Capon is a ligand protein of nitric oxide synthase 1. Recently, studies have shown that Capon is involved in the development of tumors. It is independent of the regulation of nitric oxide synthase 1 in this process. At the same time, studies have found that nitric oxide synthase 1 is expressed in multiple myeloma, but its role in the development and progression of myeloma remains unclear. In this study, we found that there was a different expression of Capon between the normal multiple myeloma cells and the adherent multiple myeloma cells. In the process of myeloma cell proliferation, the reduced expression of Capon reduces the arrest of the cell cycle in the G1 phase and promotes the proliferation of myeloma cells. Cell adhesion-mediated drug resistance is one of the most important factors, which affect the chemotherapy effect of multiple myeloma. If the expression of Capon is decreased, myeloma cells are adhered to fibronectin or bone marrow stromal cells (bone marrow mesenchymal stem cells). In addition, the sensitivity of the cell line to chemotherapeutic agents was reduced after silencing Capon in the myeloma cell line which was adhered to bone marrow mesenchymal stem cells. We also found that reduced expression of Capon resulted in the activation of the AKT signaling pathway. In conclusion, these results may be helpful in studying the role of Capon in multiple myeloma.
Collapse
Affiliation(s)
- Yaodong Shen
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Haiyan Liu
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Siyu Gu
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ziwei Wei
- 2 Nantong University, Nantong, P.R. China
| | - Hong Liu
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| |
Collapse
|
20
|
Takeishi S, Nakayama KI. To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Sci 2016; 107:875-81. [PMID: 27116333 PMCID: PMC4946711 DOI: 10.1111/cas.12958] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) generate transient-amplifying cells and thereby contribute to cancer propagation. A fuller understanding of the biological features of CSCs is expected to lead to the development of new anticancer therapies capable of eradicating this life-threatening disease. Cancer stem cells are known to maintain a non-proliferative state and to enter the cell cycle only infrequently. Given that conventional anticancer therapies preferentially target dividing cells, CSCs are resistant to such treatments, with those remaining after elimination of bulk cancer cells potentially giving rise to disease relapse and metastasis as they re-enter the cell cycle after a period of latency. Targeting of the switch between quiescence and proliferation in CSCs is therefore a potential strategy for preventing the reinitiation of malignancy, underscoring the importance of elucidation of the mechanisms by which these cells are maintained in the quiescent state. The fundamental properties of CSCs are thought to be governed cooperatively by internal molecules and cues from the external microenvironment (stem cell niche). Several such intrinsic and extrinsic regulators are responsible for the control of cell cycle progression in CSCs. In this review, we address two opposite approaches to the therapeutic targeting of CSCs - wake-up and hibernation therapies - that either promote or prevent the entry of CSCs into the cell cycle, respectively, and we discuss the potential advantages and risks of each strategy.
Collapse
Affiliation(s)
- Shoichiro Takeishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Liu H, Ding L, Shen Y, Zhong F, Wang Q, Xu X. RBQ3 participates in multiple myeloma cell proliferation, adhesion and chemoresistance. Int J Biol Macromol 2016; 91:115-22. [PMID: 27189701 DOI: 10.1016/j.ijbiomac.2016.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Cell adhesion mediated drug resistance (CAM-DR) is a major factor that impedes the effect of chemotherapy in multiple myeloma (MM). RBQ3, which is a RB-binding protein, played a crucial role in cell cycle process. Here, we reported that RBQ3 expression was increased gradually during the proliferation process of myeloma cells. Knocking down of RBQ3 resulted in cell cycle arrest in G1 phase and increased myeloma cells adherent to fibronectin or bone marrow stromal cells (BMSCs). Furthermore, silencing of RBQ3 reduced sensitivity to chemotherapeutic drugs in myeloma cell lines adherent to BMSCs and reduced two apoptotic marker proteins cleaved caspase-3 and cleaved PARP expression. Besides, we also found that RBQ3 participated in MAPK/ERK signal transduction pathway. In summary, these results may shed new insights into the role of RBQ3 in the development of multiple myeloma.
Collapse
Affiliation(s)
- Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Linlin Ding
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yaodong Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Fei Zhong
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Qiru Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu Province, People's Republic of China.
| |
Collapse
|
22
|
Cellular Response upon Stress: p57 Contribution to the Final Outcome. Mediators Inflamm 2015; 2015:259325. [PMID: 26491224 PMCID: PMC4600511 DOI: 10.1155/2015/259325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Progression through the cell cycle is one of the most important decisions during the life of a cell and several kinds of stress are able to influence this choice. p57 is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family and is a well-known regulator of the cell cycle during embryogenesis and tissue differentiation. p57 loss has been reported in a variety of cancers and great effort has been spent during the past years studying the mechanisms of p57 regulation and the effects of p57 reexpression on tumor growth. Recently, growing amount of evidence points out that p57 has a specific function in cell cycle regulation upon cellular stress that is only partially shared by the other CIP/KIP inhibitors p21 and p27. Furthermore, it is nowadays emerging that p57 plays a role in the induction of apoptosis and senescence after cellular stress independently of its cell cycle related functions. This review focuses on the contribution that p57 holds in regulating cell cycle arrest, apoptosis, and senescence after cellular stress with particular attention to the response of cancer cells.
Collapse
|
23
|
MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood 2015; 125:1730-8. [PMID: 25636339 DOI: 10.1182/blood-2014-07-588145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal and multilineage reconstitution are controlled by positive and negative signaling cues with perturbations leading to disease. Lnk is an essential signaling adaptor protein that dampens signaling by the cytokine thrombopoietin (Tpo) to limit HSC expansion. Here, we show that MERIT40 (Mediator of RAP80 Interactions and Targeting 40 kDa [M40]), a core subunit of an Lnk-associated Lys63 deubiquitinating (DUB) complex, attenuates HSC expansion. M40 deficiency increases the size of phenotypic and functional HSC pools. M40(-/-) HSCs are more resistant to cytoablative stress, and exhibit superior repopulating ability and self-renewal upon serial transplantation. M40(-/-) HSCs display increased quiescence and decelerated cell cycle kinetics accompanied by downregulation of gene sets associated with cell division. Mechanistically, M40 deficiency triggers hypersensitivity to Tpo stimulation and the stem cell phenotypes are abrogated on a background null for the Tpo receptor Mpl. These results establish M40-containing DUB complexes as novel HSC regulators of HSC expansion, implicate Lys63 ubiquitination in HSC signaling, and point to DUB-specific inhibitors as reagents to expand stem cell populations.
Collapse
|
24
|
Lin MC, Ou TT, Chang CH, Chan KC, Wang CJ. Protocatechuic acid inhibits oleic acid-induced vascular smooth muscle cell proliferation through activation of AMP-activated protein kinase and cell cycle arrest in G0/G1 phase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:235-241. [PMID: 25513741 DOI: 10.1021/jf505303s] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protocatechuic acid (PCA) has been implicated in the progression of atherosclerosis. The proliferation of vascular smooth muscle cells (VSMC) may play a crucial role in the pathogenesis of atherosclerosis. Adenosine 5′-monophosphate-activated protein kinase (AMPK) additionally exerts several beneficial effects on vascular function and improves vascular abnormalities. The current study sought to determine whether PCA has an inhibitory effect on VSMC proliferation under oleic acid (OA) treatment. A7r5 cells were treated with OA (150 μM) or cotreated with OA and PCA (150 μg/mL) for 24 and 48 h. PCA-treated cells were found to cause an increase in G0/G1 cell cycle arrest. Western blotting showed that PCA increased the expressions of p53 and p21Cip1, subsequently decreasing the expression of cyclin E1 and Cdk2. In addition, PCA induced phosphorylation of AMPK and inhibited the expression of fatty acid synthase, Akt-p, and Skp2 after stimulation with OA. After treatment with AMPK inhibitor, the effects of PCA mentioned above were reversed. Taken together, PCA inhibited OA-induced VSMC proliferation through AMPK activation and down-regulation of FAS and AKT signals, which then blocks G0/G1 phase cell cycle progression. These findings provide a new insight into the protective properties of PCA on VSMC, which may constitute a novel effective antiatherosclerosis agent.
Collapse
|
25
|
Tomiatti V, Istvánffy R, Pietschmann E, Kratzat S, Hoellein A, Quintanilla-Fend L, von Bubnoff N, Peschel C, Oostendorp RAJ, Keller U. Cks1 is a critical regulator of hematopoietic stem cell quiescence and cycling, operating upstream of Cdk inhibitors. Oncogene 2014; 34:4347-57. [DOI: 10.1038/onc.2014.364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/06/2014] [Accepted: 09/02/2014] [Indexed: 01/14/2023]
|
26
|
Liao YJ, Bai HY, Li ZH, Zou J, Chen JW, Zheng F, Zhang JX, Mai SJ, Zeng MS, Sun HD, Pu JX, Xie D. Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis 2014; 5:e1137. [PMID: 24651440 PMCID: PMC3973226 DOI: 10.1038/cddis.2014.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and is also highly resistant to conventional chemotherapy treatments. In this study, we report that Longikaurin A (LK-A), an ent-kaurane diterpenoid isolated from the plant Isodon ternifolius, induced cell cycle arrest and apoptosis in human HCC cell lines. LK-A also suppressed tumor growth in SMMC-7721 xenograft models, without inducing any notable major organ-related toxicity. LK-A treatment led to reduced expression of the proto-oncogene S phase kinase-associated protein 2 (Skp2) in SMMC-7721 cells. Lower Skp2 levels correlated with increased expression of p21 and p-cdc2 (Try15), and a corresponding decrease in protein levels of Cyclin B1 and cdc2. Overexpression of Skp2 significantly inhibited LK-A-induced cell cycle arrest in SMMC-7721 cells, suggesting that LK-A may target Skp2 to arrest cells at the G2/M phase. LK-A also induced reactive oxygen species (ROS) production and apoptosis in SMMC-7721 cells. LK-A induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase and P38 MAP kinase. Treatment with, the JNK inhibitor SP600125 prevented LK-A-induced apoptosis in SMMC-7721 cells. Moreover, the antioxidant N-acetylcysteine prevented phosphorylation of both JNK and c-Jun. Taken together, these data indicate that LK-A induces cell cycle arrest and apoptosis in cancer cells by dampening Skp2 expression, and thereby activating the ROS/JNK/c-Jun signaling pathways. LK-A is therefore a potential lead compound for development of antitumor drugs targeting HCC.
Collapse
Affiliation(s)
- Y-J Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - H-Y Bai
- 1] Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Z-H Li
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - J Zou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - J-W Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - F Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - J-X Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - S-J Mai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M-S Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - H-D Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - J-X Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - D Xie
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
27
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
28
|
Wang J, Han F, Lee SW, Wu J, Chan CH, Zhang X, Gao Y, Su HK, Feng ZZ, Xu DZ, Lin HK. E3-ligase Skp2 regulates β-catenin expression and maintains hematopoietic stem cell homing. Biochem Biophys Res Commun 2014; 445:566-71. [PMID: 24561244 DOI: 10.1016/j.bbrc.2014.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 02/03/2023]
Abstract
The homing ability of hematopoietic stem cells (HSCs) was a critical step for transplantation and subsequent hematopoiesis. Although the HSC transplantation was widely used for many diseases, the mechanism by which HSC homing was regulated remained poorly understood. F-box protein S-phase kinase associated protein2 (Skp2), a component of the Skp2-SCF E3 ligase complex, was regarded as a cell cycle regulator by controlling the level of p21 and p27 through ubiquitination. We recently reported an important role of Skp2 in maintaining HSC pool size, quiescent stage and self-renewal ability. In this current study, we showed that Skp2 was a novel and critical regulator for maintaining the homing of HSCs as well as their residence in the endosteal niche. Microarray analysis together with biochemical validations revealed that Skp2 deficiency profoundly reduced the expression of β-catenin and its target genes. Knockdown of β-catenin mimicked the decline of HSC homing upon Skp2 deficiency, suggesting that Skp2 may regulate β-catenin and its target gene expression to orchestrate HSC homing. Our study not only identified Skp2 as a new regulator for maintaining β-catenin expression and HSC homing, but also suggested that Skp2 may serve as a predictive marker for monitoring the transplantation efficiency.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Fei Han
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Szu-Wei Lee
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Juan Wu
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Chia-Hsin Chan
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Xian Zhang
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Hong-Kai Su
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zi-Zhen Feng
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Da-Zhi Xu
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Hui-Kuan Lin
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 404, Taiwan.
| |
Collapse
|
29
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
30
|
Abstract
Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed.
Collapse
Affiliation(s)
- Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
31
|
Knockdown of SCF(Skp2) function causes double-parked accumulation in the nucleus and DNA re-replication in Drosophila plasmatocytes. PLoS One 2013; 8:e79019. [PMID: 24205363 PMCID: PMC3812016 DOI: 10.1371/journal.pone.0079019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, circulating hemocytes are derived from the cephalic mesoderm during the embryonic wave of hematopoiesis. These cells are contributed to the larva and persist through metamorphosis into the adult. To analyze this population of hemocytes, we considered data from a previously published RNAi screen in the hematopoietic niche, which suggested several members of the SCF complex play a role in lymph gland development. eater-Gal4;UAS-GFP flies were crossed to UAS-RNAi lines to knockdown the function of all known SCF complex members in a plasmatocyte-specific fashion, in order to identify which members are novel regulators of plasmatocytes. This specific SCF complex contains five core members: Lin-19-like, SkpA, Skp2, Roc1a and complex activator Nedd8. The complex was identified by its very distinctive large cell phenotype. Furthermore, these large cells stained for anti-P1, a plasmatocyte-specific antibody. It was also noted that the DNA in these cells appeared to be over-replicated. Gamma-tubulin and DAPI staining suggest the cells are undergoing re-replication as they had multiple centrioles and excessive DNA content. Further experimentation determined enlarged cells were BrdU-positive indicating they have progressed through S-phase. To determine how these cells become enlarged and undergo re-replication, cell cycle proteins were analyzed by immunofluorescence. This analysis identified three proteins that had altered subcellular localization in these enlarged cells: Cyclin E, Geminin and Double-parked. Previous research has shown that Double-parked must be degraded to exit S-phase, otherwise the DNA will undergo re-replication. When Double-parked was titrated from the nucleus by an excess of its inhibitor, geminin, the enlarged cells and aberrant protein localization phenotypes were partially rescued. The data in this report suggests that the SCFSkp2 complex is necessary to ubiquitinate Double-parked during plasmatocyte cell division, ensuring proper cell cycle progression and the generation of a normal population of this essential blood cell type.
Collapse
|
32
|
Song P, Zhou Y, Coughlan KA, Dai X, Xu H, Viollet B, Zou MH. Adenosine monophosphate-activated protein kinase-α2 deficiency promotes vascular smooth muscle cell migration via S-phase kinase-associated protein 2 upregulation and E-cadherin downregulation. Arterioscler Thromb Vasc Biol 2013; 33:2800-9. [PMID: 24115035 DOI: 10.1161/atvbaha.113.301869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are critical events in the progression of several vasculopathologies. Adenosine monophosphate-activated protein kinase (AMPK) has been shown to play a pivotal role in cellular proliferation and migration. However, the roles of AMPK in VSMC migration and its underlying molecular mechanisms remain elusive. APPROACH AND RESULTS VSMC migration and the neointima formation were studied in cultured mouse VSMCs or in carotid artery ligation of wild-type C57BL/6J mice, AMPKα2, AMPKα1 homozygous-deficient (AMPKα2(-/-), AMPKα1(-/-)) mice. Deletion of AMPKα2, but not AMPKα1, led to increased phosphorylation of both IкB kinase α and its downstream target nuclear factor кB2/p100 at serine 866/870. Consequently, phosphor-p100 at S866/870 bound with E3 ubiquitin ligase β-transducin repeat-containing protein resulting in the proteolytic processing of the p100 precursor and nuclear factor кB2/p52 induction. Interestingly, acetylation of histone H3 at lysine 56 mediated by histone deacetylase-3 reduction was enhanced significantly in AMPKα2(-/-) VSMCs compared with wild-type or AMPKα1(-/-) VSMCs. Moreover, the augmented association of p52/acetylation of histone H3 at lysine 56 with the promoter of ubiquitin E3 ligase, S-phase kinase-associated protein 2, was shown in AMPKα2(-/-) VSMCs by chromatin immunoprecipitation assay. Furthermore, AMPKα2 deletion caused S-phase kinase-associated protein 2-mediated E-cadherin downregulation. S-Phase kinase-associated protein 2 siRNA abolished the increased migration of AMPKα2(-/-) VSMCs via E-cadherin upregulation. Finally, neointima formation after ligation of carotid artery was increased in AMPKα2(-/-), but not AMPKα1(-/-), mice. CONCLUSIONS We conclude that deletion of AMPKα2 causes aberrant VSMC migration with accelerated neointima formation in vivo.
Collapse
Affiliation(s)
- Ping Song
- From the Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK (P.S., Y.Z., K.A.C., X.D., H.X., M.-H.Z.); College of Medicine, Hubei, Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, China (Y.Z.); College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China (H.X.); Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France (B.V.); and INSERM, U1016, Paris, France (B.V.)
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang B, Ji LH, Liu W, Zhao G, Wu ZY. Skp2-RNAi suppresses proliferation and migration of gallbladder carcinoma cells by enhancing p27 expression. World J Gastroenterol 2013; 19:4917-4924. [PMID: 23946596 PMCID: PMC3740421 DOI: 10.3748/wjg.v19.i30.4917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/13/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of S-phase kinase-associated protein-2 (Skp2) in gallbladder carcinoma and to identify whether depletion of Skp2 by Skp2-RNAi could attenuate proliferation and migration of gallbladder carcinoma.
METHODS: Skp2-RNAi was transduced into cells of the gallbladder carcinoma cell line GBC-SD, using a lentiviral vector. The effect of Skp2-RNAi on the proliferation, migration, invasion and cell cycle of GBC-SD cells was studied using in vitro assays for cell proliferation, colony formation, wound healing and cell cycle. The expression of Skp2 and p27 was detected by real-time polymerase chain reaction and Western immunoblotting. The effect of Skp2-RNAi on the proliferation of GBC-SD cells in vivo was investigated by tumorigenicity experiments in nude mice.
RESULTS: Lentivirus-mediated RNAi reduced the expression of Skp2 in cultured cells. The expression of the p27 protein increased along with the down-regulation of Skp2, although no significant difference was found in p27 mRNA expression. Flow cytometry revealed that Skp2-RNAi transfection significantly increased the proportion of cells in the S phase and significantly decreased the proportion of cells in the G2/M phase. No significant difference in the frequency of cells in the G0/G1 phase was observed. The results from the cell proliferation, colony formation and wound healing assays revealed that Skp2-RNAi transfection markedly inhibited the proliferation and migration of GBC-SD cells in vitro. Additionally, tumorigenicity experiments showed that suppression of Skp2 significantly decreased the weights of the tumors (0.56 ± 0.11 and 0.55 ± 0.07 g in the control and Scr-RNAi groups vs 0.37 ± 0.09 and 0.35 ± 0.08 g in the Skp2-RNAi-L and Skp2-RNAi-H groups).
CONCLUSION: The expression of Skp2 in GBC-SD cells was inhibited following Skp2-RNAi transfection. Silencing of the Skp2 gene inhibited proliferation, migration and invasiveness of GBC-SD cells by mechanisms dependent on enhanced expression of the p27 protein.
Collapse
|
34
|
Niimi K, Kiyoi H, Ishikawa Y, Hayakawa F, Kurahashi S, Kihara R, Tomita A, Naoe T. GATA2 zinc finger 2 mutation found in acute myeloid leukemia impairs myeloid differentiation. Leuk Res Rep 2013; 2:21-5. [PMID: 24371770 DOI: 10.1016/j.lrr.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
We identified two novel GATA2 mutations in acute myeloid leukemia (AML). One mutation (p.R308P-GATA2) was a R308P substitution within the zinc finger (ZF)-1 domain, and the other (p.A350_N351ins8-GATA2) was an eight-amino-acid insertion between A350 and N351 residues within the ZF-2 domain. p.R308P-GATA2 did not affect DNA-binding and transcriptional activities, while p.A350_N351ins8-GATA2 reduced them, and impaired G-CSF-induced granulocytic differentiation of 32D cells. Although p.A350_N351ins8-GATA2 did not show a dominant-negative effect over wild-type (Wt)-GATA2 by the reporter assay, it might be involved in the pathophysiology of AML by impairing myeloid differentiation because of little Wt-GATA2 expression in primary AML cells harboring the p.A350_N351ins8 mutation.
Collapse
Affiliation(s)
- Keiko Niimi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Kurahashi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rika Kihara
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
35
|
Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2013; 4:149ra118. [PMID: 22932223 DOI: 10.1126/scitranslmed.3004315] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given that most bone marrow cells are short-lived, the accumulation of multiple leukemogenic mutations in a single clonal lineage has been difficult to explain. We propose that serial acquisition of mutations occurs in self-renewing hematopoietic stem cells (HSCs). We investigated this model through genomic analysis of HSCs from six patients with de novo acute myeloid leukemia (AML). Using exome sequencing, we identified mutations present in individual AML patients harboring the FLT3-ITD (internal tandem duplication) mutation. We then screened the residual HSCs and detected some of these mutations including mutations in the NPM1, TET2, and SMC1A genes. Finally, through single-cell analysis, we determined that a clonal progression of multiple mutations occurred in the HSCs of some AML patients. These preleukemic HSCs suggest the clonal evolution of AML genomes from founder mutations, revealing a potential mechanism contributing to relapse. Such preleukemic HSCs may constitute a cellular reservoir that should be targeted therapeutically for more durable remissions.
Collapse
Affiliation(s)
- Max Jan
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Matsumoto A, Nakayama KI. Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2335-44. [PMID: 22820018 DOI: 10.1016/j.bbagen.2012.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/26/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) are characterized by pluripotentiality and self-renewal ability. To maintain a supply of mature blood cells and to avoid HSC exhaustion during the life span of an organism, most HSCs remain quiescent, with only a limited number entering the cell cycle. SCOPE OF REVIEW The molecular mechanisms by which quiescence is maintained in HSCs are addressed, with recent genetic studies having provided important insight into the relation between the cell cycle activity and stemness of HSCs. MAJOR CONCLUSIONS The cell cycle is tightly regulated in HSCs by complex factors. Key regulators of the cell cycle in other cell types-including cyclins, cyclin-dependent kinases (CDKs), the retinoblastoma protein family, the transcription factor E2F, and CDK inhibitors-also contribute to such regulation in HSCs. Most, but not all, of these regulators are necessary for maintenance of HSCs, with abnormal activation or suppression of the cell cycle resulting in HSC exhaustion. The cell cycle in HSCs is also regulated by external factors such as cytokines produced by niche cells as well as by the ubiquitin-proteasome pathway. GENERAL SIGNIFICANCE Studies of the cell cycle in HSCs may shed light on the pathogenesis of hematopoietic disorders, serve as a basis for the development of new therapeutic strategies for such disorders, prove useful for the expansion of HSCs in vitro as a possible replacement for blood transfusion, and provide insight into stem cell biology in general. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
37
|
Rodrigues NP, Tipping AJ, Wang Z, Enver T. GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia. Int J Biochem Cell Biol 2011; 44:457-60. [PMID: 22192845 DOI: 10.1016/j.biocel.2011.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/22/2023]
Abstract
Unremitting blood cell production throughout the lifetime of an organism is reliant on hematopoietic stem cells (HSCs). A rare and relatively quiescent cell type, HSCs are, on entry into cell cycle fated to self-renew, undergo apoptosis or differentiate to progenitors (HPCs) that eventually yield specific classes of blood cells. Disruption of these HSC fate decisions is considered to be fundamental to the development of leukemia. Much effort has therefore been placed on understanding the molecular pathways that regulate HSC fate decisions and how these processes are undermined in leukemia. Transcription factors have emerged as critical regulators in this respect. Here we review the participation of zinc finger transcription factor GATA-2 in regulating normal hematopoietic stem and progenitor cell functionality, myelodysplasia and myeloid leukemia.
Collapse
Affiliation(s)
- Neil P Rodrigues
- National Institutes of Health Center for Biomedical Research Excellence in Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI 02908, United States.
| | | | | | | |
Collapse
|
38
|
Abstract
Although the maintenance of HSC quiescence and self-renewal are critical for controlling stem cell pool and transplantation efficiency, the mechanisms by which they are regulated remain largely unknown. Understanding the factors controlling these processes may have important therapeutic potential for BM failure and cancers. Here, we show that Skp2, a component of the Skp2 SCF complex, is an important regulator for HSC quiescence, frequency, and self-renewal capability. Skp2 deficiency displays a marked enhancement of HSC populations through promoting cell cycle entry independently of its role on apoptosis. Surprisingly, Skp2 deficiency in HSCs reduces quiescence and displays increased HSC cycling and proliferation. Importantly, loss of Skp2 not only increases HSC populations and long-term reconstitution ability but also rescues the defect in long-term reconstitution ability of HSCs on PTEN inactivation. Mechanistically, we show that Skp2 deficiency induces Cyclin D1 gene expression, which contributes to an increase in HSC cycling. Finally, we demonstrate that Skp2 deficiency enhances sensitivity of Lin(-) Sca-1(+) c-kit(+) cells and leukemia cells to chemotherapy agents. Our findings show that Skp2 is a novel regulator for HSC quiescence and self-renewal and that targeting Skp2 may have therapeutic implications for BM transplantation and leukemia stem cell treatment.
Collapse
|
39
|
Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A, Oliva A, Perrotta S, Della Ragione F. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res 2011; 9:1269-84. [PMID: 21816904 DOI: 10.1158/1541-7786.mcr-11-0220] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(Kip2) is a cyclin-dependent kinase inhibitor belonging to the Cip/Kip family, which also includes p21(Cip1) and p27(Kip1). So far, p57(Kip2) is the least-studied Cip/Kip protein, and for a long time its relevance has been related mainly to its unique role in embryogenesis. Moreover, genetic and molecular studies on animal models and patients with Beckwith-Wiedemann syndrome have shown that alterations in CDKN1C (the p57(Kip2) encoding gene) have functional relevance in the pathogenesis of this disease. Recently, a number of investigations have identified and characterized heretofore unexpected roles for p57(Kip2). The protein appears to be critically involved in initial steps of cell and tissue differentiation, and particularly in neuronal development and erythropoiesis. Intriguingly, p27(Kip1), the Cip/Kip member that is most homologous to p57(Kip2), is primarily involved in the process of cell cycle exit. p57(Kip2) also plays a critical role in controlling cytoskeletal organization and cell migration through its interaction with LIMK-1. Furthermore, p57(Kip2) appears to modulate genome expression. Finally, accumulating evidence indicates that p57(Kip2) protein is frequently downregulated in different types of human epithelial and nonepithelial cancers as a consequence of genetic and epigenetic events. In summary, the emerging picture is that several aspects of p57(Kip2)'s functions are only poorly clarified. This review represents an appraisal of the data available on the p57(Kip2) gene and protein structure, and its role in human physiology and pathology. We particularly focus our attention on p57(Kip2) changes in cancers and pharmacological approaches for modulating p57(Kip2) levels.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|