1
|
Witzig T, Sokol L, Kim WS, de la Cruz Vicente F, Martín García-Sancho A, Advani R, Roncero Vidal JM, de Oña Navarrete R, Marín-Niebla A, Rodriguez Izquierdo A, Terol MJ, Domingo-Domenech E, Saunders A, Bendris N, Mackey J, Leoni M, Foss F. Phase 2 trial of the farnesyltransferase inhibitor tipifarnib for relapsed/refractory peripheral T-cell lymphoma. Blood Adv 2024; 8:4581-4592. [PMID: 38991123 PMCID: PMC11401221 DOI: 10.1182/bloodadvances.2024012806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT A phase 2, international, open-label, nonrandomized, single-arm trial was conducted to evaluate the efficacy and safety of tipifarnib, a farnesyltransferase inhibitor, as monotherapy for relapsed/refractory peripheral T-cell lymphoma (PTCL) and to evaluate tumor mutation profile as a biomarker of response. Adults with relapsed/refractory PTCL received tipifarnib 300 mg orally twice daily for 21 days in a 28-day cycle. The primary end point was objective response rate (ORR); secondary end points included ORR, progression-free survival (PFS), duration of response (DOR), and adverse events (AEs) in specific subtypes. Sixty-five patients with PTCL were enrolled: n = 38 angioimmunoblastic T-cell lymphoma (AITL), n = 25 PTCL not otherwise specified, and n = 2 other T-cell lymphomas. The ORR was 39.7% (95% confidence interval [CI], 28.1-52.5) in all patients and 56.3% (95% CI, 39.3-71.8) for AITL. Median PFS was 3.5 months overall (954% CI, 2.1-4.4), and 3.6 months (95% CI, 1.9-8.3) for AITL. Median DOR was 3.7 months (95% CI, 2.0-15.3), and greatest in patients with AITL (7.8 months; 95% CI, 2.0-16.3). The median overall survival was 32.8 months (95% CI, 14.4 to not applicable). Tipifarnib-related hematologic AEs were manageable and included neutropenia (43.1%), thrombocytopenia (36.9%), and anemia (30.8%); other tipifarnib-related AEs included nausea (29.2%) and diarrhea (27.7%). One treatment-related death occurred. Mutations in RhoA, DNMT3A, and IDH2 were seen in 60%, 33%, and 27%, respectively, in the AITL tipifarnib responder group vs 36%, 9%, and 9% in the nonresponder group. Tipifarnib monotherapy demonstrated encouraging clinical activity in heavily pretreated relapsed/refractory PTCL, especially in AITL, with a manageable safety profile. This trial was registered at www.ClinicalTrials.gov as #NCT02464228.
Collapse
Affiliation(s)
- Thomas Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Lubomir Sokol
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Won Seog Kim
- Division of Hematology-Oncology, Sungkyunkwan University School of Medicine Samsung Medical Center, Seoul, South Korea
| | | | - Alejandro Martín García-Sancho
- Hematology Department, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Salamanca, Spain
| | - Ranjana Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Jose Maria Roncero Vidal
- Servei Hematologia ICO Girona, Hospital Universitari de Girona Dr Josep Trueta, Catalunya, Spain
| | | | - Ana Marín-Niebla
- Department of Hematology, Vall D’Hebron Institute of Oncology, Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | | | | | - Eva Domingo-Domenech
- Hematology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | | | | | | | | - Francine Foss
- Division of Hematology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Jäger MC, Kędzierski J, Gell V, Wey T, Kollár J, Winter DV, Schuster D, Smieško M, Odermatt A. Virtual screening and biological evaluation to identify pharmaceuticals potentially causing hypertension and hypokalemia by inhibiting steroid 11β-hydroxylase. Toxicol Appl Pharmacol 2023; 475:116638. [PMID: 37499767 DOI: 10.1016/j.taap.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Several drugs were found after their market approval to unexpectedly inhibit adrenal 11β-hydroxylase (CYP11B1)-dependent cortisol synthesis. Known side-effects of CYP11B1 inhibition include hypertension and hypokalemia, due to a feedback activation of adrenal steroidogenesis, leading to supraphysiological concentrations of 11-deoxycortisol and 11-deoxycorticosterone that can activate the mineralocorticoid receptor. This results in potassium excretion and sodium and water retention, ultimately causing hypertension. With the risk known but usually not addressed in preclinical evaluation, this study aimed to identify drugs and drug candidates inhibiting CYP11B1. Two conceptually different virtual screening methods were combined, a pharmacophore based and an induced fit docking approach. Cell-free and cell-based CYP11B1 activity measurements revealed several inhibitors with IC50 values in the nanomolar range. Inhibitors include retinoic acid metabolism blocking agents (RAMBAs), azole antifungals, α2-adrenoceptor ligands, and a farnesyltransferase inhibitor. The active compounds share a nitrogen atom embedded in an aromatic ring system. Structure activity analysis identified the free electron pair of the nitrogen atom as a prerequisite for the drug-enzyme interaction, with its pKa value as an indicator of inhibitory potency. Another important parameter is drug lipophilicity, exemplified by etomidate. Changing its ethyl ester moiety to a more hydrophilic carboxylic acid group dramatically decreased the inhibitory potential, most likely due to less efficient cellular uptake. The presented work successfully combined different in silico and in vitro methods to identify several previously unknown CYP11B1 inhibitors. This workflow facilitates the identification of compounds that inhibit CYP11B1 and therefore pose a risk for inducing hypertension and hypokalemia.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jacek Kędzierski
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Victoria Gell
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Tim Wey
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jakub Kollár
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Denise V Winter
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Macapagal SC, Bennani NN. Nodal peripheral T-cell lymphoma: Chemotherapy-free management, are we there yet? Blood Rev 2023; 60:101071. [PMID: 36898933 DOI: 10.1016/j.blre.2023.101071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a diverse and uncommon type of lymphoid malignancies with a dismal prognosis. Recent advances in genomic studies have shown recurring mutations that are changing our knowledge of the disease's molecular genetics and pathogenesis. As such, new targeted therapies and treatments to improve disease outcomes are currently being explored. In this review, we discussed the current understanding of the nodal PTCL biology with potential therapeutic implications and gave our insights on the promising novel therapies that are currently under study such as immunotherapy, chimeric antigen receptor T-cell therapy, and oncolytic virotherapy.
Collapse
Affiliation(s)
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Ilovaisky AI, Scherbakov AM, Merkulova VM, Chernoburova EI, Shchetinina MA, Andreeva OE, Salnikova DI, Zavarzin IV, Terent'ev AO. Secosteroid-quinoline hybrids as new anticancer agents. J Steroid Biochem Mol Biol 2023; 228:106245. [PMID: 36608906 DOI: 10.1016/j.jsbmb.2022.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
An elegant approach to unknown secosteroid-quinoline hybrids is disclosed. A series of 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-(iso)quinolylmethylene]hydrazides was prepared and these novel type of secosteroids was screened for antiproliferative activity against estrogen-responsive human breast cancer cell line MCF-7. Most of the synthesized compounds showed a cytotoxic effect superior to that of reference drug cisplatin; the lead compound exhibits the highest activity with the IC50 value of about 0.8 μM and is 7 times more active than cisplatin. A high selectivity index was observed for the hit 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-quinolylmethylene]hydrazides 2a and 2c. Compounds 2a and 2c evaluated in luciferase reporter assays exhibited high antiestrogenic potency which was superior to that of tamoxifen. These hit compounds were characterized by high activity against MCF-7 cells that retained towards multidrug-resistant NCI/ADR-RES cells.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Olga E Andreeva
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115478, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
5
|
Wang X, Zhang R, Huang Z, Zang S, Wu Q, Xia L. Inhibition of the miR-155 and protein prenylation feedback loop alleviated acute graft-versus-host disease through regulating the balance between T helper 17 and Treg cells. Transpl Immunol 2021; 69:101461. [PMID: 34487810 DOI: 10.1016/j.trim.2021.101461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
MicroRNA-155(miR-155) and protein prenylation have been reported to participate in acute graft-versus-host disease (aGVHD) through modulating T lymphocyte differentiation, however the mechanism remains elusive. In this study, we found that the expression of miR-155 and protein prenyltransferases in peripheral blood T lymphocytes of aGVHD mice was significantly increased. Suppression of miR-155 by antagomir-155 could remarkably reduce prenyltransferases mRNA and protein expression in T lymphocytes of aGVHD mice. Conversely, prenyltransferase inhibitors significantly reduced the level of miR-155. Inhibition of this feedback loop of miR-155 and protein prenylation in aGVHD mice led to improved survival and lower aGVHD histopathology scores and significantly induced T cell deficient differentiation towards T helper 17 (Th17) cells and titled differentiation towards CD4+CD25hi regulatory T (Treg) cells. Furthermore, the immunoregulatory effects and protection from aGVHD of prenyltransferase inhibitors could be reversed by the addition of miR-155. The dual treatment of prenylation inhibitors and antagomir-155 showed synergistic effects on T polarization and protection from aGVHD. Consistent with the in vivo changes, inhibition of this feedback loop of miR-155 and protein prenylation affected Th17 and Treg cell polarization in vitro. Our data suggest that miR-155 and protein prenylation may constitute a feedback loop that amplifies immune and inflammatory responses in subjects with aGVHD, and they may serve as potential targets for aGVHD prophylaxis and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China; Department of Geriatrics,Union Hospital,Tongji Medical College, Huazhong University of Science and Technology,1277 JieFang Avenue,Wuhan 430022,China; Institute of Gerontology,Union Hospital,Tongji Medical College, Huazhong University of Science and Technology,1277 JieFang Avenue,Wuhan 430022,China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China
| | - Sibin Zang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China.
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue,Wuhan 430022, China.
| |
Collapse
|
6
|
Targeted based therapy in nodal T-cell lymphomas. Leukemia 2021; 35:956-967. [PMID: 33664464 DOI: 10.1038/s41375-021-01191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
T-cell lymphomas (TCL) are a group of biologically and clinically heterogenous neoplasms derived from mature T lymphocytes. Recent findings in biology have advanced the classification of these neoplasms; however, clinical investigations based on biologic features have yet to be designed. Two biomarker-driven treatments for TCL are promising: brentuximab vedotin (BV) in combination with chemotherapy or as monotherapy is the standard treatment for newly diagnosed CD30-positive TCL and relapsed/refractory anaplastic large cell lymphoma (ALCL), while ALK inhibitors have induced responses in ALK+ ALCLs. Common genetic alterations in TCL, such as aberrations in PI3K/mTOR, JAK/STAT, and epigenetic regulators are also targetable by pathway inhibitors and HDAC/DNMT inhibitors; however, responses to these treatments as monotherapy are neither satisfactory nor durable, even in patients pre-stratified by several biomarkers. Additional work is needed to extend biology/biomarker-driven treatment in these neoplasms. As T-cell lymphomagenesis is multistep and multifactorial, trials are ongoing to evaluate combination treatments. The focus of this article is to summarize the status and the current role of targeted-based therapy in nodal TCL.
Collapse
|
7
|
Identification of tipifarnib sensitivity biomarkers in T-cell acute lymphoblastic leukemia and T-cell lymphoma. Sci Rep 2020; 10:6721. [PMID: 32317694 PMCID: PMC7174413 DOI: 10.1038/s41598-020-63434-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/27/2020] [Indexed: 01/14/2023] Open
Abstract
Patients diagnosed with T-cell leukemias and T-cell lymphomas (TCLs) still have a poor prognosis and an inadequate response to current therapies, highlighting the need for targeted treatments. We have analyzed the potential therapeutic value of the farnesyltransferase inhibitor, tipifarnib, in 25 TCL cell lines through the identification of genomic and/or immunohistochemical markers of tipifarnib sensitivity. More than half of the cell lines (60%) were considered to be sensitive. Tipifarnib reduced cell viability in these T-cell leukemia and TCL cell lines, induced apoptosis and modified the cell cycle. A mutational study showed TP53, NOTCH1 and DNMT3 to be mutated in 84.6%, 69.2% and 30.0% of sensitive cell lines, and in 62.5%, 0% and 0% of resistant cell lines, respectively. An immunohistochemistry study showed that p-ERK and RelB were associated as potential biomarkers of tipifarnib sensitivity and resistance, respectively. Data from RNA-seq show that tipifarnib at IC50 after 72 h downregulated a great variety of pathways, including those controlling cell cycle, metabolism, and ribosomal and mitochondrial activity. This study establishes tipifarnib as a potential therapeutic option in T-cell leukemia and TCL. The mutational state of NOTCH1, p-ERK and RelB could serve as potential biomarkers of tipifarnib sensitivity and resistance.
Collapse
|
8
|
Ye N, Xu Q, Li W, Wang P, Zhou J. Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors. Curr Top Med Chem 2019; 19:2114-2127. [PMID: 31475899 DOI: 10.2174/1568026619666190902145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Qingfeng Xu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wanwan Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
9
|
Jazieh K, Molina J, Allred J, Yin J, Reid J, Goetz M, Lim VS, Kaufmann SH, Adjei A. A phase I study of the farnesyltransferase inhibitor Tipifarnib in combination with the epidermal growth factor tyrosine kinase inhibitor Erlotinib in patients with advanced solid tumors. Invest New Drugs 2018; 37:307-314. [DOI: 10.1007/s10637-018-0662-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
|
10
|
Abstract
Owing to the rarity of peripheral T-cell lymphoma (PTCL) and the heterogeneity of subtypes, there are no compelling data to guide the therapeutic approaches for such patients. Over the years, there have been remarkable advances in molecular subtyping and treatment of PTCL, although there are still many areas to be explored. In this review, we summarize recent updates on the evolution of understanding and treatment for PTCL.
Collapse
Affiliation(s)
- Jun Ho Yi
- Division of Hematology-Oncology, Department of Medicine, Chung-Ang University , Seoul, Korea, South
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea, South
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea, South
| |
Collapse
|
11
|
Brock EJ, Ji K, Reiners JJ, Mattingly RR. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Mini Rev Med Chem 2016; 16:358-69. [PMID: 26423696 DOI: 10.2174/1389557515666151001154002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.
Collapse
Affiliation(s)
| | | | | | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Ave, Detroit MI, USA.
| |
Collapse
|
12
|
Bogusz AM, Bagg A. Genetic aberrations in small B-cell lymphomas and leukemias: molecular pathology, clinical relevance and therapeutic targets. Leuk Lymphoma 2016; 57:1991-2013. [PMID: 27121112 DOI: 10.3109/10428194.2016.1173212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small B-cell lymphomas and leukemias (SBCLs) are a clinically, morphologically, immunophenotypically and genetically heterogeneous group of clonal lymphoid neoplasms, including entities such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), lymphoplasmacytic lymphoma (LPL), marginal zone lymphoma (MZL) and hairy cell leukemia (HCL). The pathogenesis of some of these lymphoid malignancies is characterized by distinct translocations, for example t(11;14) in the majority of cases of MCL and t(14;18) in most cases of FL, whereas other entities are associated with a variety of recurrent but nonspecific numeric chromosomal abnormalities, as exemplified by del(13q14), del(11q22), and +12 in CLL, and yet others such as LPL and HCL that lack recurrent or specific cytogenetic aberrations. The recent surge in next generation sequencing (NGS) technology has shed more light on the genetic landscape of SBCLs through characterization of numerous driver mutations including SF3B1 and NOTCH1 in CLL, ATM and CCND1 in MCL, KMT2D and EPHA7 in FL, MYD88 (L265P) in LPL, KLF2 and NOTCH2 in splenic MZL (SMZL) and BRAF (V600E) in HCL. The identification of distinct genetic lesions not only provides greater insight into the molecular pathogenesis of these disorders but also identifies potential valuable biomarkers for prognostic stratification, as well as specific targets for directed therapy. This review discusses the well-established and recently identified molecular lesions underlying the pathogenesis of SBCLs, highlights their clinical relevance and summarizes novel targeted therapies.
Collapse
Affiliation(s)
- Agata M Bogusz
- a Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Adam Bagg
- a Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
13
|
Zhang Y, Xu W, Liu H, Li J. Therapeutic options in peripheral T cell lymphoma. J Hematol Oncol 2016; 9:37. [PMID: 27071634 PMCID: PMC4830033 DOI: 10.1186/s13045-016-0267-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Peripheral T cell lymphoma (PTCL) is a rare and heterogeneous group of non-Hodgkin lymphomas with a very poor prognosis. The standard first-line treatments have resulted in unsatisfactory patient outcomes. With the exception of low-risk anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL), the majority of patients relapse rapidly; the current 5-year overall survival rates are only 10–30 %. Novel targeted therapies and combination chemotherapies are required for the treatment of patients with PTCL. In recent years, some retrospective and prospective studies have been performed concerning PTCL. Consequently, a number of novel agents and their relevant combination therapies have been identified, including histone deacetylase inhibitors, immunoconjugates, antifolates, monoclonal antibodies, immunomodulatory agents, nucleoside analogs, proteasome inhibitors, kinase inhibitors, bendamustine, l-asparaginase, and other targeted agents. It is hoped that these innovative approaches will finally improve outcomes in patients with PTCL. This review summarizes the currently available approaches for the treatment of PTCL with an emphasis on potential new agents, including the role of stem cell transplantation.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
14
|
Nowakowski GS, Czuczman MS. ABC, GCB, and Double-Hit Diffuse Large B-Cell Lymphoma: Does Subtype Make a Difference in Therapy Selection? Am Soc Clin Oncol Educ Book 2016:e449-57. [PMID: 25993209 DOI: 10.14694/edbook_am.2015.35.e449] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Personalized therapy for the treatment of patients with cancer is rapidly approaching and is an achievable goal in the near future. A substantial number of novel targets have been developed into therapeutic agents. There is a substantial variability to antitumor activity by novel therapeutics because of the unique heterogeneity and biology that exists both between and within lymphoma subtypes. Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL). Approximately 40% of patients have refractory disease or disease that will relapse after an initial response, and the majority of patients with relapsed DLBCL will succumb to the disease. There are two major biologically distinct molecular subtypes of DLBCL: germinal center B-cell (GCB) and activated B-cell (ABC). ABC DLBCL is associated with substantially worse outcomes when treated with standard chemoimmunotherapy. In addition to GCB and ABC subtypes, double-hit lymphomas (approximately 5% to 10% of patients) and double-expressor lymphomas, which overexpress MYC and BCL2 protein, are aggressive DLBCLs and are also associated with a poor prognosis. Double-hit lymphomas have concurrent chromosomal rearrangements of MYC plus BCL2 (or less likely, BCL6). Advances in molecular characterization techniques and the development of novel agents targeting specific subtypes of DLBCL have provided a foundation for personalized therapy of DLBCL based on molecular subtype. A number of early clinical trials evaluating combinations of novel targeted agents with standard chemotherapy (R-CHOP) have been completed and have demonstrated the feasibility of this approach with encouraging efficacy. As such, molecular classification of DLBCL is not only important for prognostication, but moves to center stage for personalization of therapy for DLBCL.
Collapse
Affiliation(s)
- Grzegorz S Nowakowski
- From the Division of Hematology, Mayo Clinic, Rochester, MN; Roswell Park Cancer Institute, Buffalo, NY
| | - Myron S Czuczman
- From the Division of Hematology, Mayo Clinic, Rochester, MN; Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
15
|
Moorthy NSHN, Sousa SF, Ramos MJ, Fernandes PA. Molecular dynamic simulations and structure-based pharmacophore development for farnesyltransferase inhibitors discovery. J Enzyme Inhib Med Chem 2016; 31:1428-42. [PMID: 26887913 DOI: 10.3109/14756366.2016.1144593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Farnesyltransferase is one of the enzyme targets for the development of drugs for diseases, including cancer, malaria, progeria, etc. In the present study, the structure-based pharmacophore models have been developed from five complex structures (1LD7, 1NI1, 2IEJ, 2ZIR and 2ZIS) obtained from the protein data bank. Initially, molecular dynamic (MD) simulations were performed for the complexes for 10 ns using AMBER 12 software. The conformers of the complexes (75) generated from the equilibrated protein were undergone protein-ligand interaction fingerprint (PLIF) analysis. The results showed that some important residues, such as LeuB96, TrpB102, TrpB106, ArgB202, TyrB300, AspB359 and TyrB361, are predominantly present in most of the complexes for interactions. These residues form side chain acceptor and surface (hydrophobic or π-π) kind of interactions with the ligands present in the complexes. The structure-based pharmacophore models were generated from the fingerprint bits obtained from PLIF analysis. The pharmacophore models have 3-4 pharmacophore contours consist of acceptor and metal ligation (Acc & ML), hydrophobic (HydA) and extended acceptor (Acc2) features with the radius ranging between 1-3 Å for Acc & ML and 1-2 Å for HydA. The excluded volumes of the pharmacophore contours radius are between 1-2 Å. Further, the distance between the interacting groups, root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radial distribution function (RDF) analysis were performed for the MD-simulated proteins using PTRAJ module. The generated pharmacophore models were used to screen a set of natural compounds and database compounds to select significant HITs. We conclude that the developed pharmacophore model can be a significant model for the identification of HITs as FTase inhibitors.
Collapse
Affiliation(s)
- N S Hari Narayana Moorthy
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Sergio F Sousa
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Maria J Ramos
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Pedro A Fernandes
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| |
Collapse
|
16
|
Bojarczuk K, Bobrowicz M, Dwojak M, Miazek N, Zapala P, Bunes A, Siernicka M, Rozanska M, Winiarska M. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells Mol Dis 2015; 55:255-65. [PMID: 26227856 DOI: 10.1016/j.bcmd.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
Abstract
B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Kamil Bojarczuk
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Michal Dwojak
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Nina Miazek
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Piotr Zapala
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anders Bunes
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Marta Siernicka
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Maria Rozanska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
17
|
Abstract
Peripheral T-cell lymphomas (PTCLs) are relatively uncommon lymphomas, compared with B-cell malignancies, and given short-lived responses to therapies and an aggressive clinical course provide a therapeutic challenge for the clinician. Although anthracycline-based regimens have been a mainstay of therapy, inferior outcomes with these regimens have called attention to the need for the development of novel agents and effective combination therapies. Recently, new agents with activity in PTCL have emerged with evidence of improved efficacy. This review summarizes novel, investigational, and standard treatment options in the management of treatment naive and relapsed refractory PTCL.
Collapse
|
18
|
Vuong H, Cheng F, Lin CC, Zhao Z. Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach. Genome Med 2014; 6:81. [PMID: 25360158 PMCID: PMC4213513 DOI: 10.1186/s13073-014-0081-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022] Open
Abstract
Background Recently, a number of large-scale cancer genome sequencing projects have generated a large volume of somatic mutations; however, identifying the functional consequences and roles of somatic mutations in tumorigenesis remains a major challenge. Researchers have identified that protein pocket regions play critical roles in the interaction of proteins with small molecules, enzymes, and nucleic acid. As such, investigating the features of somatic mutations in protein pocket regions provides a promising approach to identifying new genotype-phenotype relationships in cancer. Methods In this study, we developed a protein pocket-based computational approach to uncover the functional consequences of somatic mutations in cancer. We mapped 1.2 million somatic mutations across 36 cancer types from the COSMIC database and The Cancer Genome Atlas (TCGA) onto the protein pocket regions of over 5,000 protein three-dimensional structures. We further integrated cancer cell line mutation profiles and drug pharmacological data from the Cancer Cell Line Encyclopedia (CCLE) onto protein pocket regions in order to identify putative biomarkers for anticancer drug responses. Results We found that genes harboring protein pocket somatic mutations were significantly enriched in cancer driver genes. Furthermore, genes harboring pocket somatic mutations tended to be highly co-expressed in a co-expressed protein interaction network. Using a statistical framework, we identified four putative cancer genes (RWDD1, NCF1, PLEK, and VAV3), whose expression profiles were associated with overall poor survival rates in melanoma, lung, or colorectal cancer patients. Finally, genes harboring protein pocket mutations were more likely to be drug-sensitive or drug-resistant. In a case study, we illustrated that the BAX gene was associated with the sensitivity of three anticancer drugs (midostaurin, vinorelbine, and tipifarnib). Conclusions This study provides novel insights into the functional consequences of somatic mutations during tumorigenesis and for anticancer drug responses. The computational approach used might be beneficial to the study of somatic mutations in the era of cancer precision medicine. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0081-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huy Vuong
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, Nashville, TN 37203 USA
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, Nashville, TN 37203 USA
| | - Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, Nashville, TN 37203 USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, Nashville, TN 37203 USA ; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA ; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 USA ; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| |
Collapse
|
19
|
Abstract
Patients with Hodgkin lymphoma (HL) who relapse following effective front-line therapy are offered salvage second-line chemotherapy regimens followed by high-dose therapy and autologous stem cell transplantation (HDT/ASCT). Randomized studies comparing HDT/ASCT with conventional chemotherapy in patients with relapsed refractory HL have shown significant improvement in progression-free survival and freedom from treatment failure but were not powered to show improvements in overall survival. For patients who relapse after salvage HDT/ASCT, novel therapies exist as a bridge to allogeneic SCT. In this article, we review indications and results of autologous and allogeneic SCT in HL.
Collapse
Affiliation(s)
- Nishitha M Reddy
- Division of Hematology/Oncology, Vanderbilt University Medical Center, 3927 The Vanderbilt Clinic, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 298, New York, NY 10065, USA.
| |
Collapse
|
20
|
Coiffier B, Federico M, Caballero D, Dearden C, Morschhauser F, Jäger U, Trümper L, Zucca E, Gomes da Silva M, Pettengell R, Weidmann E, d'Amore F, Tilly H, Zinzani PL. Therapeutic options in relapsed or refractory peripheral T-cell lymphoma. Cancer Treat Rev 2014; 40:1080-8. [PMID: 25199959 DOI: 10.1016/j.ctrv.2014.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) represents a relatively rare group of heterogeneous non-Hodgkin lymphomas with a very poor prognosis. Current therapies, based on historical regimens for aggressive B-cell lymphomas, have resulted in insufficient patient outcomes. The majority of patients relapse rapidly, and current 5-year overall survival rates are only 10-30%. It is evident that new approaches to treat patients with PTCL are required. In recent years, prospective studies in PTCL have been initiated, mainly in patients with relapsed/refractory disease. In some of these, selected histologic subtypes have been evaluated in detail. As a consequence, numerous new therapies have been developed and shown activity in PTCL, including: agents targeting the immune system (e.g. brentuximab vedotin, alemtuzumab, lenalidomide); histone deacetylase inhibitors (romidepsin, belinostat); antifolates (pralatrexate); fusion proteins (denileukin diftitox); nucleoside analogs (pentostatin, gemcitabine); and other agents (e.g. alisertib, plitidepsin, bendamustine, bortezomib). A variety of interesting novel combinations is also emerging. It is hoped that these innovative approaches, coupled with a greater understanding of the clinicopathologic features, pathogenesis, molecular biology, and natural history of PTCL will advance the field and improve outcomes in this challenging group of diseases. This review summarizes the currently available clinical evidence on the various approaches to treating relapsed/refractory PTCL, including the role of stem cell transplantation, with an emphasis on potential new drug therapies.
Collapse
Affiliation(s)
| | - Massimo Federico
- Dipartimento di Medicina di Laboratorio, Clinica e di Sanità Pubblica, Università degli studi di Modena e Reggio Emilia, Policlinico, Via del Pozzo, 71, 41124 Modena, Italy.
| | - Dolores Caballero
- Instituto Biosanitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain.
| | - Claire Dearden
- Department of Haemato-Oncology, Royal Marsden Hospital, Downs Road, SM2 5PT Sutton, UK.
| | - Franck Morschhauser
- Department of Hematology, University Hospital of Lille, F-59037 Lille, France.
| | - Ulrich Jäger
- Medical University of Vienna, Department of Medicine I, Division of Hematology and Hemostaseology, Comprehensive Cancer Center, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Lorenz Trümper
- UniversitätsKrebszentrum (G-CCC), Georg August University, 37099 Göttingen, Germany.
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, 6500 Bellinzona, Switzerland.
| | - Maria Gomes da Silva
- Instituto Português de Oncologia de Lisboa de Francisco Gentil, R. Prof. Lima Basto, 1099-023 Lisbon, Portugal.
| | - Ruth Pettengell
- St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Eckhart Weidmann
- Klinik für Onkologie und Hämatologie am Krankenhaus Nordwest GmbH, Steinbacher Hohl 2-26, D-60488 Frankfurt, Germany.
| | - Francesco d'Amore
- Department Hematology, Aarhus University Hospital, Tage Hansens Gade 2, DK-8000 Aarhus C, Denmark.
| | - Hervé Tilly
- Department of Hematology, Centre Henri-Becquerel, UMR918, Université de Rouen, Rue d'Amiens, 76038 Rouen Cedex 1, France.
| | - Pier Luigi Zinzani
- Institute of Hematology "Seràgnoli", University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
21
|
Njue A, Colosia A, Trask PC, Olivares R, Khan S, Abbe A, Police R, Wang J, Ruiz-Soto R, Kaye JA, Awan F. Clinical efficacy and safety in relapsed/refractory mantle cell lymphoma: a systematic literature review. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 15:1-12.e7. [PMID: 25052050 DOI: 10.1016/j.clml.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
A systematic literature review was performed to collect and review information on the clinical efficacy and safety of treatments for relapsed/refractory (R/R) mantle cell lymphoma (MCL), with a meta-analysis, if possible. PubMed, Embase, and the Cochrane Library were searched for studies published in English from January 1, 1997, to August 2, 2012. Conference proceedings, bibliographic reference lists of included articles, recent reviews, and ClinicalTrials.gov were searched for phase II to IV studies displaying results. Studies were included if they reported on patients with R/R MCL who were ineligible to receive high-dose chemotherapy with stem cell transplant. Studies of patients with several non-Hodgkin lymphoma subtypes were only included if they reported MCL outcomes separately. We identified 59 studies in R/R MCL. Forty distinct treatment regimens were evaluated. Thirty studies included more than 15 patients with R/R MCL. Six studies were comparative (including 5 randomized controlled trials [RCTs]); 53 were single-arm. There were no common treatments among the RCTs; therefore, a meta-analysis was not feasible. Thirty-one of 59 studies reported baseline data for patients with R/R MCL. Of the 30 studies with > 15 patients with R/R MCL, 30 reported overall response rate data, 14 reported progression-free survival (PFS), and 12 reported overall survival (OS). The small number of RCTs in R/R MCL precludes identifying an optimal treatment. Small sample sizes, infrequent reporting of OS and PFS, and limited information on patient characteristics made a comparison of results difficult. High-quality comparative studies of novel therapies that have the potential to demonstrate OS advantages in R/R MCL are needed.
Collapse
Affiliation(s)
- Annete Njue
- RTI Health Solutions, The Pavillion, Towers Business Park, Manchester, United Kingdom.
| | - Ann Colosia
- RTI Health Solutions, Research Triangle Park, NC
| | - Peter C Trask
- Global Evidence and Value Development, Sanofi, Cambridge, MA
| | - Robert Olivares
- Global Evidence and Value Development, Sanofi, Chilly-Mazarin, France
| | - Shahnaz Khan
- RTI Health Solutions, The Pavillion, Towers Business Park, Manchester, United Kingdom
| | - Adeline Abbe
- Global Evidence and Value Development, Sanofi, Chilly-Mazarin, France
| | | | - Jianmin Wang
- RTI Health Solutions, The Pavillion, Towers Business Park, Manchester, United Kingdom
| | | | | | | |
Collapse
|
22
|
MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia. Blood 2014; 124:263-72. [PMID: 24695851 DOI: 10.1182/blood-2013-09-525741] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.
Collapse
|
23
|
Update on salvage options in relapsed/refractory hodgkin lymphoma after autotransplant. ISRN ONCOLOGY 2014; 2014:605691. [PMID: 25006506 PMCID: PMC4003874 DOI: 10.1155/2014/605691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 03/18/2014] [Indexed: 02/04/2023]
Abstract
Despite a high clinical success, relapse in Hodgkin lymphoma occurs in 10–30% of cases and 5–10% patients are nonresponsive to initial chemotherapy. The standard management of these patients includes high-dose chemotherapy followed by autologous stem cell transplant. However, 50% of patients ultimately relapse after autotransplant which poses a big challenge. Allogeneic stem cell transplantation offers the only chance of cure in these patients. For patients who are not candidates for allogeneic stem cell transplantation, achieving cure with other possible options is highly unlikely, and thus the treatment plan becomes noncurative. Various novel agents have shown promising results but the duration of response is short lived. A standard approach to deliver the most effective treatment for these patients is still lacking. This review focuses on the treatment options currently available for relapsed and refractory disease after autotransplant.
Collapse
|
24
|
Colosia A, Njue A, Trask PC, Olivares R, Khan S, Abbe A, Police R, Wang J, Ruiz-Soto R, Kaye JA, Awan F. Clinical efficacy and safety in relapsed/refractory diffuse large B-cell lymphoma: a systematic literature review. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:343-355.e6. [PMID: 24768510 DOI: 10.1016/j.clml.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
Abstract
This systematic literature review was designed to assess information on the clinical efficacy and safety of interventions used in the treatment of refractory or relapsed diffuse large B-cell lymphoma (R/R DLBCL) and to perform a meta-analysis if possible. We searched databases (PubMed, EMBASE, and Cochrane Library for articles from 1997 to August 2, 2012 reported in English), conference abstracts, bibliographic reference lists, and the ClinicalTrials.gov database for phase II to IV studies with results. Studies had to report on patients with R/R DLBCL who were not eligible to receive high-dose therapy (HDT) with stem cell transplantation (SCT) (autologous or allogeneic). Mixed-type non-Hodgkin lymphoma (NHL) studies were required to report R/R DLBCL outcomes separately. We identified 55 studies that presented outcomes data separately for patients with R/R DLBCL. Of 7 comparative studies, only 4 were randomized controlled trials (RCTs). In the 2 RCTs with a common regimen, the patient populations differed too greatly to perform a valid meta-analysis. The 48 single-arm studies identified were typically small (n < 50 in most), with 31% reporting median progression-free survival (PFS) or overall survival (OS) specifically for the R/R DLBCL population. In these studies, median OS ranged from 4 to 13 months. The small number of RCTs in R/R DLBCL precludes identifying optimal treatments. Small sample size, infrequent reporting of OS and PFS separated by histologic type, and limited information on patient characteristics also hinder comparison of results. Randomized studies are needed to demonstrate which current therapies have advantages for improving survival and other important clinical outcomes in patients with R/R DLBCL.
Collapse
Affiliation(s)
- Ann Colosia
- RTI Health Solutions, Research Triangle Park, NC.
| | - Annete Njue
- RTI Health Solutions, Didsbury, Manchester, United Kingdom
| | - Peter C Trask
- Global Evidence and Value Development, Sanofi, Cambridge, MA
| | - Robert Olivares
- Global Evidence and Value Development, Sanofi, Chilly-Mazarin, France
| | - Shahnaz Khan
- RTI Health Solutions, Research Triangle Park, NC
| | - Adeline Abbe
- Global Evidence and Value Development, Sanofi, Chilly-Mazarin, France
| | | | - Jianmin Wang
- RTI Health Solutions, Research Triangle Park, NC
| | | | | | | |
Collapse
|
25
|
|
26
|
Sexauer A, Cheng MJ, Knight L, Riley AW, King L, Smith TJ. Patterns of hospice use in patients dying from hematologic malignancies. J Palliat Med 2014; 17:195-9. [PMID: 24383458 DOI: 10.1089/jpm.2013.0250] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hospice brings substantial clinical benefits to dying patients and families but is underutilized by patients dying of hematologic malignancies (HM); nationwide, only 2% of HM patients use hospice. There are 70,000 deaths among U.S. patients with hematologic malignancies yearly. OBJECTIVE We measured the use and length of stay (LOS) in hospice among patients with HMs at a large academic cancer center. DESIGN This was a single center retrospective review of adult patients (≥18 years) with lymphoma, leukemia, myelodysplastic syndrome, aplastic anemia, and multiple myeloma referred for hospice. MEASUREMENTS Information included demographics, transplant, hospice type, LOS, and use of "expanded access" services. RESULTS Fifty-nine patients were referred to hospice, and 53 utilized hospice services, 25% of 209 HM decedents. Thirty-five received home hospice and 18 used inpatient hospice. The median home hospice LOS was nine days (SD 13) and inpatient hospice six days (SD 10). Nine patients with "expanded access" hospice received only a few blood transfusions, and none received radiation. CONCLUSIONS HM patients are referred late or never for hospice services. Studies evaluating earlier integration of palliative and hospice care with usual HM care are warranted. We present a one-page negotiation form that we have found useful in negotiations among HM physicians, hospice medical directors, and payers.
Collapse
Affiliation(s)
- Amy Sexauer
- 1 Oncology Department, Johns Hopkins School of Medicine , Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
27
|
Habermann TM. New developments in the management of diffuse large B-cell lymphoma. Hematology 2013; 17 Suppl 1:S93-7. [DOI: 10.1179/102453312x13336169156014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
28
|
Ding H, McDonald JS, Yun S, Schneider PA, Peterson KL, Flatten KS, Loegering DA, Oberg AL, Riska SM, Huang S, Sinicrope FA, Adjei AA, Karp JE, Meng XW, Kaufmann SH. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica 2013; 99:60-9. [PMID: 23996484 DOI: 10.3324/haematol.2013.087734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771).
Collapse
|
29
|
Zverina EA, Lamphear CL, Wright EN, Fierke CA. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol 2012; 16:544-52. [PMID: 23141597 DOI: 10.1016/j.cbpa.2012.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/17/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Abstract
Protein post-translational modifications increase the functional diversity of the proteome by covalently adding chemical moieties onto proteins thereby changing their activation state, cellular localization, interacting partners, and life cycle. Lipidation is one such modification that enables membrane association of naturally cytosolic proteins. Protein prenyltransferases irreversibly install isoprenoid units of varying length via a thioether linkage onto proteins that exert their cellular activity at membranes. Substrates of prenyltransferases are involved in countless signaling pathways and processes within the cell. Identification of new prenylation substrates, prenylation pathway regulators, and dynamic trafficking of prenylated proteins are all avenues of intense, ongoing research that are challenging, exciting, and have the potential to significantly advance the field in the near future.
Collapse
Affiliation(s)
- Elaina A Zverina
- Chemical Biology Program, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | | |
Collapse
|
30
|
Barton S, Hawkes EA, Wotherspoon A, Cunningham D. Are we ready to stratify treatment for diffuse large B-cell lymphoma using molecular hallmarks? Oncologist 2012; 17:1562-73. [PMID: 23086691 PMCID: PMC3528389 DOI: 10.1634/theoncologist.2012-0218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/04/2012] [Indexed: 01/01/2023] Open
Abstract
The division of the heterogeneous entity of diffuse large B-cell lymphoma (DLBCL) into the ontogenic phenotypes of germinal center B-cell-like (GCB) and activated B-cell-like (ABC) is optimally determined by gene expression profiling (GEP), although simpler immunohistochemistry (IHC) algorithms are alternatively being used. The cell-of-origin (COO) classification assists in prognostication and may be predictive of response to therapy. Mounting data suggests that IHC methods of classifying COO may be inaccurate. GEP categorization of COO is superior in defining prognostically and biologically distinct DLBCL subtypes, but current barriers to its widescale use include inaccessibility, cost, and lack of methodological standardization and prospective validation. The poorer prognosis of ABC-DLBCL is frequently associated with constitutive activity in the NF-κB pathway and aberrations in upstream or downstream regulators of this pathway. The molecular mechanisms underlying lymphomagenesis in GCB-DLBCL are arguably less well defined, but C-REL amplification and mutations in BCL-2 and EZH2 are common. New technologies, such as next-generation sequencing, are rapidly revealing novel pathogenic genetic aberrations, and DLBCL treatment strategies are increasingly being designed focusing on distinctive pathogenic drivers within ontogenic phenotypes. This review examines emerging molecular targets and novel therapeutic agents in DLBCL, and discusses whether stratifying therapy for DLBCL using molecular features is merited by current preclinical and clinical evidence.
Collapse
Affiliation(s)
| | | | - Andrew Wotherspoon
- Department of Histopathology, Royal Marsden Hospital, London, United Kingdom
| | | |
Collapse
|
31
|
PRRC2A and BCL2L11 gene variants influence risk of non-Hodgkin lymphoma: results from the InterLymph consortium. Blood 2012; 120:4645-8. [PMID: 23047821 DOI: 10.1182/blood-2012-05-427989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many common genetic variants have been associated with non-Hodgkin lymphoma (NHL), but individual study results are often conflicting. To confirm the role of putative risk alleles in B-cell NHL etiology, we performed a validation genotyping study of 67 candidate single nucleotide polymorphisms within InterLymph, a large international consortium of NHL case-control studies. A meta-analysis was performed on data from 5633 B-cell NHL cases and 7034 controls from 8 InterLymph studies. rs3789068 in the proapoptotic BCL2L11 gene was associated with an increased risk for B-cell NHL (odds ratio = 1.21, P random = 2.21 × 10(-11)), with similar risk estimates for common B-cell subtypes. PRRC2A rs3132453 in the HLA complex class III region conferred a reduced risk of B-cell NHL (odds ratio = 0.68, P random = 1.07 × 10(-9)) and was likewise evident for common B-cell subtypes. These results are consistent with the known biology of NHL and provide insights into shared pathogenic components, including apoptosis and immune regulation, for the major B-cell lymphoma subtypes.
Collapse
|
32
|
Winiarska M, Nowis D, Bil J, Glodkowska-Mrowka E, Muchowicz A, Wanczyk M, Bojarczuk K, Dwojak M, Firczuk M, Wilczek E, Wachowska M, Roszczenko K, Miaczynska M, Chlebowska J, Basak GW, Golab J. Prenyltransferases regulate CD20 protein levels and influence anti-CD20 monoclonal antibody-mediated activation of complement-dependent cytotoxicity. J Biol Chem 2012; 287:31983-93. [PMID: 22843692 DOI: 10.1074/jbc.m112.374751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Anti-CD20 monoclonal antibodies (mAbs) are successfully used in the management of non-Hodgkin lymphomas and chronic lymphocytic leukemia. We have reported previously that statins induce conformational changes in CD20 molecules and impair rituximab-mediated complement-dependent cytotoxicity. Here we investigated in more detail the influence of farnesyltransferase inhibitors (FTIs) on CD20 expression and antitumor activity of anti-CD20 mAbs. Among all FTIs studied, L-744,832 had the most significant influence on CD20 levels. It significantly increased rituximab-mediated complement-dependent cytotoxicity against primary tumor cells isolated from patients with non-Hodgkin lymphomas or chronic lymphocytic leukemia and increased CD20 expression in the majority of primary lymphoma/leukemia cells. Incubation of Raji cells with L-744,832 led to up-regulation of CD20 at mRNA and protein levels. Chromatin immunoprecipitation assay revealed that inhibition of farnesyltransferase activity was associated with increased binding of PU.1 and Oct-2 to the CD20 promoter sequences. These studies indicate that CD20 expression can be modulated by FTIs. The combination of FTIs with anti-CD20 mAbs is a promising therapeutic approach, and its efficacy should be examined in patients with B-cell tumors.
Collapse
Affiliation(s)
- Magdalena Winiarska
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Is there a future for prenyltransferase inhibitors in cancer therapy? Curr Opin Pharmacol 2012; 12:704-9. [PMID: 22817869 DOI: 10.1016/j.coph.2012.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
It has been over 20 years since it was first recognized that the function of both normal and oncogenic Ras is dependent on the post-translational modification termed farnesylation. Since that time, intense effort has been expended on the development of farnesyltransferase inhibitors as novel anticancer agents. Over 70 clinical trials have now been conducted, with limited efficacy demonstrated. Here we provide an update of the most recently published clinical trials, discuss the use of the RASGRP1/APTX two-gene expression screen to select patients with acute myeloid leukemia for therapy, and report on the latest discoveries related to the targets of prenyltransferase inhibitors.
Collapse
|
34
|
Multi-institutional phase 2 clinical and pharmacogenomic trial of tipifarnib plus etoposide for elderly adults with newly diagnosed acute myelogenous leukemia. Blood 2011; 119:55-63. [PMID: 22001391 DOI: 10.1182/blood-2011-08-370825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tipifarnib (T) exhibits modest activity in elderly adults with newly diagnosed acute myelogenous leukemia (AML). Based on preclinical synergy, a phase 1 trial of T plus etoposide (E) yielded 25% complete remission (CR). We selected 2 comparable dose levels for a randomized phase 2 trial in 84 adults (age range, 70-90 years; median, 76 years) who were not candidates for conventional chemotherapy. Arm A (T 600 mg twice a day × 14 days, E 100 mg days 1-3 and 8-10) and arm B (T 400 mg twice a day × 14 days, E 200 mg days 1-3 and 8-10) yielded similar CR, but arm B had greater toxicity. Total CR was 25%, day 30 death rate 7%. A 2-gene signature of high RASGRP1 and low aprataxin (APTX) expression previously predicted for T response. Assays using blasts from a subset of 40 patients treated with T plus E on this study showed that AMLs with a RASGRP1/APTX ratio of more than 5.2 had a 78% CR rate and negative predictive value 87%. This ratio did not correlate with outcome in 41 patients treated with conventional chemotherapies. The next T-based clinical trials will test the ability of the 2-gene signature to enrich for T responders prospectively. This study is registered at www.clinicaltrials.gov as #NCT00602771.
Collapse
|
35
|
Bai F, Villagra AV, Zou J, Painter JS, Connolly K, Blaskovich MA, Sokol L, Sebti S, Djeu JY, Loughran TP, Wei S, Sotomayor E, Epling-Burnette P. Tipifarnib-mediated suppression of T-bet-dependent signaling pathways. Cancer Immunol Immunother 2011; 61:523-33. [PMID: 21983879 DOI: 10.1007/s00262-011-1109-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Large granular lymphocyte (LGL) leukemia is a chronic lymphoproliferative disease in which T-bet [T-box transcription factor 21 gene (tbx21)] overexpression may play a pathogenic role. T-bet orchestrates the differentiation of mature peripheral T-cells into interferon-γ (IFN-γ) and tumor necrosis factor-α producing CD4+ T-helper type I (Th1) and CD8+ T cytotoxic cells that are necessary for antiviral responses. When IL-12 is produced by antigen-presenting cells, T-bet expression is induced, causing direct stimulation of ifng gene transcription while simultaneously acting as a transcriptional repressor of the IL4 gene, which then leads to Th1 dominance and T-helper type 2 differentiation blockade. Additionally, T-bet has been shown to regulate histone acetylation of the ifng promoter and enhancer to loosen condensed DNA, creating greater accessibility for other transcription factor binding, which further amplifies IFNγ production. We found that treatment with a farnesyltransferase inhibitor tipifarnib reduced Th1 cytokines in LGL leukemia patient T-cells and blocked T-bet protein expression and IL-12 responsiveness in T-cells from healthy donors. The mechanism of suppression was based on modulation of histone acetylation of the ifng gene, which culminated in Th1 blockade.
Collapse
Affiliation(s)
- Fanqi Bai
- Immunology Program, H. Lee Moffitt Cancer Center, SRB3, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|