1
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
2
|
Al-Mansour M. Treatment Landscape of Relapsed/Refractory Mantle Cell Lymphoma: An Updated Review. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e1019-e1031. [PMID: 36068158 DOI: 10.1016/j.clml.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mantle cell lymphoma (MCL) accounts for nearly 2-6% of all non-Hodgkin lymphoma (NHL) cases, with a steady incidence increase over the past few decades. Although many patients achieve an adequate response to the upfront treatment, the short duration of remission with rapid relapse is challenging during MCL management. In this regard, there is no consensus on the best treatment options for relapsed/refractory (R/R) disease, and the international guidelines demonstrate wide variations in the recommended approaches. The last decade has witnessed the introduction of new agents in the treatment landscape of R/R MCL. Since the introduction of Bruton's tyrosine kinase (BTK) inhibitors, the treatment algorithm and response of R/R MCL patients have dramatically changed. Nevertheless, BTK resistance is common, necessitating further investigations to develop novel agents with a more durable response. Novel agents targeting the B-cell receptor (BCR) signaling have exhibited clinical activity and a well-tolerable safety profile. However, as the responses to these novel agents are still modest in most clinical trials, combination strategies were investigated in pre-clinical and early clinical settings to determine whether the combination of novel agents would exhibit a better durable response than single agents. In this report, we provide an updated literature review that covers recent clinical data about the safety and efficacy of novel therapies for the management of R/R MCL.
Collapse
Affiliation(s)
- Mubarak Al-Mansour
- Adult Medical Oncology, Princess Noorah Oncology Center, Jeddah, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Affiliation(s)
- Davide Rossi
- From the International Extranodal Lymphoma Study Group, Bellinzona; the Institute of Oncology Research, Bellinzona; the Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona; and the Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano - all in Switzerland
| | - Francesco Bertoni
- From the International Extranodal Lymphoma Study Group, Bellinzona; the Institute of Oncology Research, Bellinzona; the Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona; and the Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano - all in Switzerland
| | - Emanuele Zucca
- From the International Extranodal Lymphoma Study Group, Bellinzona; the Institute of Oncology Research, Bellinzona; the Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona; and the Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano - all in Switzerland
| |
Collapse
|
4
|
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers (Basel) 2022; 14:860. [PMID: 35205606 PMCID: PMC8870007 DOI: 10.3390/cancers14040860] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The proliferation and survival signals emanating from the B-cell receptor (BCR) constitute a crucial aspect of mature lymphocyte's life. Dysregulated BCR signaling is considered a potent contributor to tumor survival in different subtypes of B-cell non-Hodgkin lymphomas (B-NHLs). In the last decade, the emergence of BCR-associated kinases as rational therapeutic targets has led to the development and approval of several small molecule inhibitors targeting either Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), or phosphatidylinositol 3 kinase (PI3K), offering alternative treatment options to standard chemoimmunotherapy, and making some of these drugs valuable assets in the anti-lymphoma armamentarium. Despite their initial effectiveness, these precision medicine strategies are limited by primary resistance in aggressive B-cell lymphoma such as diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), especially in the case of first generation BTK inhibitors. In these patients, BCR-targeting drugs often fail to produce durable responses, and nearly all cases eventually progress with a dismal outcome, due to secondary resistance. This review will discuss our current understanding of the role of antigen-dependent and antigen-independent BCR signaling in DLBCL and MCL and will cover both approved inhibitors and investigational molecules being evaluated in early preclinical studies. We will discuss how the mechanisms of action of these molecules, and their off/on-target effects can influence their effectiveness and lead to toxicity, and how our actual knowledge supports the development of more specific inhibitors and new, rationally based, combination therapies, for the management of MCL and DLBCL patients.
Collapse
Affiliation(s)
- Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Marín-Niebla
- Department of Hematology, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, Brazil
| |
Collapse
|
5
|
Donzel M, Baseggio L, Fontaine J, Pesce F, Ghesquières H, Bachy E, Verney A, Traverse-Glehen A. New Insights into the Biology and Diagnosis of Splenic Marginal Zone Lymphomas. ACTA ACUST UNITED AC 2021; 28:3430-3447. [PMID: 34590593 PMCID: PMC8482189 DOI: 10.3390/curroncol28050297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which has been recognized as a distinct pathological entity since the WHO 2008 classification. It classically presents an indolent evolution, but a third of patients progress rapidly and require aggressive treatments, such as immuno-chemotherapy or splenectomy, with all associated side effects. In recent years, advances in the comprehension of SMZL physiopathology have multiplied, thanks to the arrival of new devices in the panel of available molecular biology techniques, allowing the discovery of new molecular findings. In the era of targeted therapies, an update of current knowledge is needed to guide future researches, such as those on epigenetic modifications or the microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Marie Donzel
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Lucile Baseggio
- Laboratoire d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France;
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Juliette Fontaine
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Florian Pesce
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Hervé Ghesquières
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Emmanuel Bachy
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Aurélie Verney
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Alexandra Traverse-Glehen
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Correspondence: ; Tel.: +33-4-7876-1186
| |
Collapse
|
6
|
|
7
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
8
|
Stepanov AV, Markov OV, Chernikov IV, Gladkikh DV, Zhang H, Jones T, Sen’kova AV, Chernolovskaya EL, Zenkova MA, Kalinin RS, Rubtsova MP, Meleshko AN, Genkin DD, Belogurov AA, Xie J, Gabibov AG, Lerner RA. Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. SCIENCE ADVANCES 2018; 4:eaau4580. [PMID: 30443597 PMCID: PMC6235538 DOI: 10.1126/sciadv.aau4580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/12/2018] [Indexed: 05/24/2023]
Abstract
We report the development of a novel platform to enhance the efficacy and safety of follicular lymphoma (FL) treatment. Since lymphoma is a clonal malignancy of a diversity system, every tumor has a different antibody on its cell surface. Combinatorial autocrine-based selection is used to rapidly identify specific ligands for these B cell receptors on the surface of FL tumor cells. The selected ligands are used in a chimeric antigen receptor T cell (CAR-T) format for redirection of human cytotoxic T lymphocytes. Essentially, the format is the inverse of the usual CAR-T protocol. Instead of being a guide molecule, the antibody itself is the target. Thus, these studies raise the possibility of personalized treatment of lymphomas using a private antibody binding ligand that can be obtained in a few weeks.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Female
- Humans
- Ligands
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/therapy
- Mice, Inbred NOD
- Mice, SCID
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Alexey V. Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Hongkai Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Teresa Jones
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | - Alexandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russian Federation
| | - Roman S. Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Maria P. Rubtsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Lenin Hills, 1, bld. 3, 119991 Moscow, Russian Federation
| | - Alexander N. Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION Dysregulated B cell receptor (BCR) signaling has been identified as a potent contributor to tumor survival in B cell non-Hodgkin lymphomas (NHLs). This pathway's emergence as a rational therapeutic target in NHL led to development of BCR-directed agents, including inhibitors of Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), and phosphatidylinositol 3 kinase (PI3K). Several drugs have become valuable assets in the anti-lymphoma armamentarium. AREAS COVERED We provide an overview of the BCR pathway, its dysregulation in B cell NHL, and the drugs developed to target BCR signaling in lymphoma. Mechanisms, pharmacokinetics, pharmacodynamics, efficacy, and toxicity of currently available BTK, SYK, and PI3K inhibitors are described. EXPERT OPINION While the excellent response rates and favorable toxicity profile of the BTK inhibitor ibrutinib in certain NHL subtypes have propelled it to consideration as frontline therapy in selected populations, additional data and clinical studies are needed before other agents targeting BCR signaling influence clinical practice similarly. PI3K inhibitors remain an option for some relapsed indolent lymphomas and chronic lymphocytic leukemia, but their widespread use may be limited by adverse effects. Future research should include efforts to overcome resistance to BTK inhibitors, combination therapy using BCR-targeted agents, and exploration of novel agents.
Collapse
Affiliation(s)
- Kelly Valla
- Winship Cancer Institute of Emory University - Department of Hematology and Medical Oncology, 1365 C Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Christopher R. Flowers
- Emory University - Winship Cancer Institute, School of Medicine, 1365 Clifton Road, N.E. Building B, Atlanta, Georgia 30322, United States
| | - Jean L. Koff
- Emory University - Winship Cancer Institute, School of Medicine, 1365 Clifton Road, N.E. Building B, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Abstract
There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs.
Collapse
Affiliation(s)
- Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
11
|
Rosand CB, Valla K, Flowers CR, Koff JL. Effective management strategies for patients with marginal zone lymphoma. Future Oncol 2017; 14:1213-1222. [PMID: 29260925 DOI: 10.2217/fon-2017-0480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Marginal zone lymphoma (MZL) is an uncommon indolent lymphoma classified into subtypes based on primary site of involvement: splenic, nodal and extranodal. MZLs' relative rarity has largely precluded adoption of a standard management strategy. Here, we provide an overview of the epidemiology, clinical behavior and therapeutic approaches for each subtype. Biologic insights into lymphomagenesis have identified B-cell receptor signaling as a rational therapeutic target. Recent clinical data suggest that novel agents targeting this pathway, including the Bruton's tyrosine kinase inhibitor, ibrutinib, show significant promise in treatment of relapsed MZL. More work is needed to evaluate these agents' activity in the front-line setting, possible combination regimens and the impact of resistance to B-cell receptor-targeted agents in order to optimize therapy in MZL.
Collapse
Affiliation(s)
- Cecilia B Rosand
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Kelly Valla
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Christopher R Flowers
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Jean L Koff
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Rosenquist R, Beà S, Du MQ, Nadel B, Pan-Hammarström Q. Genetic landscape and deregulated pathways in B-cell lymphoid malignancies. J Intern Med 2017. [PMID: 28631441 DOI: 10.1111/joim.12633] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the introduction of next-generation sequencing, the genetic landscape of the complex group of B-cell lymphoid malignancies has rapidly been unravelled in recent years. This has provided important information about recurrent genetic events and identified key pathways deregulated in each lymphoma subtype. In parallel, there has been intense search and development of novel types of targeted therapy that 'hit' central mechanisms in lymphoma pathobiology, such as BTK, PI3K or BCL2 inhibitors. In this review, we will outline the current view of the genetic landscape of selected entities: follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and marginal zone lymphoma. We will detail recurrent alterations affecting important signalling pathways, that is the B-cell receptor/NF-κB pathway, NOTCH signalling, JAK-STAT signalling, p53/DNA damage response, apoptosis and cell cycle regulation, as well as other perhaps unexpected cellular processes, such as immune regulation, cell migration, epigenetic regulation and RNA processing. Whilst many of these pathways/processes are commonly altered in different lymphoid tumors, albeit at varying frequencies, others are preferentially targeted in selected B-cell malignancies. Some of these genetic lesions are either involved in disease ontogeny or linked to the evolution of each disease and/or specific clinicobiological features, and some of them have been demonstrated to have prognostic and even predictive impact. Future work is especially needed to understand the therapy-resistant disease, particularly in patients treated with targeted therapy, and to identify novel targets and therapeutic strategies in order to realize true precision medicine in this clinically heterogeneous patient group.
Collapse
Affiliation(s)
- R Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - S Beà
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER de Cáncer, Barcelona, Spain
| | - M-Q Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - B Nadel
- CNRS, INSERM, CIML, Aix Marseille University, Marseille, France
| | - Q Pan-Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
13
|
Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Intern Med 2017; 282:395-414. [PMID: 28393412 DOI: 10.1111/joim.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review, we focus on the mechanisms underlying lymphomagenesis in chronic lymphocytic leukaemia, follicular lymphoma, mantle cell lymphoma and splenic marginal zone lymphoma. The cells of origin of these small B-cell lymphomas are distinct, as are the characteristic chromosomal lesions and clinical courses. One shared feature is retention of expression of surface immunoglobulin. Analysis of this critical receptor reveals the point of differentiation reached by the cell of origin. Additionally, the sequence patterns of the immunoglobulin-variable domains can indicate a role for stimulants of the B-cell receptor before, during and after malignant transformation. The pathways driven via the B-cell receptor are now being targeted by specific kinase inhibitors with exciting clinical effects. To consider routes to pathogenesis, potentially offering earlier intervention, or to identify causative factors, genetic tools are being used to track pretransformation events and the early phases in lymphomagenesis. These methods are revealing that chromosomal changes are only one of the many steps involved, and that the influence of surrounding cells, probably multiple and variable according to tissue location, is required, both to establish tumours and to maintain growth and survival. Similarly, the influence of the tumour microenvironment may protect malignant cells from eradication by treatment, and the resulting minimal residual disease will eventually give rise to relapse. The common and different features of the four lymphomas will be summarized to show how normal B lymphocytes can be subverted to generate tumours, how these tumours evolve and how their weaknesses can be attacked by targeted therapies.
Collapse
Affiliation(s)
- P Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - B Nadel
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - K Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - F K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
14
|
van den Brand M, Scheijen B, Hess CJ, van Krieken JHJ, Groenen PJTA. Pathways towards indolent B-cell lymphoma - Etiology and therapeutic strategies. Blood Rev 2017; 31:426-435. [PMID: 28802906 DOI: 10.1016/j.blre.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/07/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Although patients with indolent B-cell lymphomas have a relatively good survival rate, conventional chemotherapy is not curative. Disease courses are typically characterized by multiple relapses and progressively shorter response duration with subsequent lines of therapy. There has been an explosion of innovative targeted agents in the past years. This review discusses current knowledge on the etiology of indolent B-cell lymphomas with respect to the role of micro-organisms, auto-immune diseases, and deregulated pathways caused by mutations. In particular, knowledge on the mutational landscape of indolent B-cell lymphomas has strongly increased in recent years and harbors great promise for more accurate decision making in the current wide range of therapeutic options. Despite this promise, only in chronic lymphocytic leukemia the detection of TP53 mutations and/or del17p currently have a direct effect on treatment decisions. Nevertheless, it is expected that in the near future the role of genetic testing will increase for prediction of response to targeted treatment as well as for more accurate prediction of prognosis in indolent B-cell lymphomas.
Collapse
MESH Headings
- Animals
- DNA Damage
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/microbiology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell, Marginal Zone/etiology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, Follicular/etiology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/microbiology
- Lymphoma, Follicular/therapy
- Molecular Targeted Therapy/methods
- Mutation
- Signal Transduction
Collapse
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands; Pathology-DNA, location Rijnstate, Wagnerlaan 55, 6815AD Arnhem, The Netherlands.
| | - Blanca Scheijen
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Corine J Hess
- Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - J Han Jm van Krieken
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| | - Patricia J T A Groenen
- Department of Pathology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Longo NS, Rogosch T, Zemlin M, Zouali M, Lipsky PE. Mechanisms That Shape Human Antibody Repertoire Development in Mice Transgenic for Human Ig H and L Chain Loci. THE JOURNAL OF IMMUNOLOGY 2017; 198:3963-3977. [PMID: 28438896 DOI: 10.4049/jimmunol.1700133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 02/03/2023]
Abstract
To determine the impact of the milieu on the development of the human B cell repertoire, we carried out a comprehensive analysis of productive and nonproductive Ig gene rearrangements from transgenic mice engineered to express single copies of the unrearranged human H chain and L chain Ig gene loci. By examining the nonproductive repertoire as an indication of the immediate product of the rearrangement machinery without an impact of selection, we discovered that the distribution of human rearrangements arising in the mouse was generally comparable to that seen in humans. However, differences between the distribution of nonproductive and productive rearrangements that reflect the impact of selection suggested species-specific selection played a role in shaping the respective repertoires. Although expression of some VH genes was similar in mouse and human (IGHV3-23, IGHV3-30, and IGHV4-59), other genes behaved differently (IGHV3-33, IGHV3-48, IGHV4-31, IGHV4-34, and IGHV1-18). Gene selection differences were also noted in L chains. Notably, nonproductive human VH rearrangements in the transgenic mice expressed shorter CDRH3 with less N addition. Even the CDRH3s in the productive rearrangements were shorter in length than those of the normal human productive repertoire. Amino acids in the CDRH3s in both species showed positive selection of tyrosines and glycines, and negative selection of leucines. The data indicate that the environment in which B cells develop can affect the expressed Ig repertoire by exerting influences on the distribution of expressed VH and VL genes and by influencing the amino acid composition of the Ag binding site.
Collapse
Affiliation(s)
- Nancy S Longo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tobias Rogosch
- Pediatric Immunology and Allergology, Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany
| | - Michael Zemlin
- Klinik für Kinder-und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, D-35033 Marburg, Germany.,Department of General Pediatrics and Neonatology, Saarland University Medical School, D-66421 Homburg, Germany
| | - Moncef Zouali
- INSERM & Université Paris Diderot, Sorbonne Paris Cité Centre Viggo Petersen, Hôpital Lariboisière, 75475 Paris, France; and
| | | |
Collapse
|
16
|
Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:5-12. [PMID: 28288716 DOI: 10.1016/j.beha.2016.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
Abstract
Genomic studies have improved our understanding of the biological basis of splenic (SMZL) and nodal (NMZL) marginal zone lymphoma by providing a comprehensive and unbiased view of the genes/pathways that are deregulated in these diseases. Consistent with the physiological involvement of NOTCH, NF-κB, B-cell receptor and toll-like receptor signaling in mature B-cells differentiation into the marginal zone B-cells, many oncogenic mutations of genes involved in these pathways have been identified in SMZL and NMZL. Beside genetic lesions, also epigenetic and post-transcriptional modifications contribute to the deregulation of marginal zone B-cell differentiation pathways in SMZL and NMZL. This review describes the progress in understanding the molecular mechanism underlying SMZL and NMZL, including molecular and post-transcriptional modifications, and discusses how information gained from these efforts has provided new insights on potential targets of diagnostic, prognostic and therapeutic relevance in SMZL and NMZL.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Cell Differentiation
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/therapy
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Processing, Post-Translational
- Splenic Neoplasms/diagnosis
- Splenic Neoplasms/genetics
- Splenic Neoplasms/metabolism
- Splenic Neoplasms/therapy
Collapse
Affiliation(s)
- Valeria Spina
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Davide Rossi
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
17
|
Lymphoma Heterogeneity: Three Different Histological Pictures and One Unique Clone. Case Rep Hematol 2016; 2016:3947510. [PMID: 27867670 PMCID: PMC5102716 DOI: 10.1155/2016/3947510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
We report a patient who developed up to three different lymphomas with the same clonal IGH rearrangement. She was first diagnosed of splenic zone marginal lymphoma and relapsed for the first time with Hodgkin lymphoma histology and later with diffuse large B-cell lymphoma histology. Subsequent biopsies and analysis of clonally rearranged IGH genes helped to elucidate the clonal relationship between the three histologies and to confirm a common origin from the three tissue histologies. An integrated diagnosis should always be performed in order to achieve the most accurate diagnosis and be able to choose the best therapeutic options for our patients.
Collapse
|
18
|
Appanna R, Kg S, Xu MH, Toh YX, Velumani S, Carbajo D, Lee CY, Zuest R, Balakrishnan T, Xu W, Lee B, Poidinger M, Zolezzi F, Leo YS, Thein TL, Wang CI, Fink K. Plasmablasts During Acute Dengue Infection Represent a Small Subset of a Broader Virus-specific Memory B Cell Pool. EBioMedicine 2016; 12:178-188. [PMID: 27628668 PMCID: PMC5078588 DOI: 10.1016/j.ebiom.2016.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023] Open
Abstract
Dengue is endemic in tropical countries worldwide and the four dengue virus serotypes often co-circulate. Infection with one serotype results in high titers of cross-reactive antibodies produced by plasmablasts, protecting temporarily against all serotypes, but impairing protective immunity in subsequent infections. To understand the development of these plasmablasts, we analyzed virus-specific B cell properties in patients during acute disease and at convalescence. Plasmablasts were unrelated to classical memory cells expanding in the blood during early recovery. We propose that only a small subset of memory B cells is activated as plasmablasts during repeat infection and that plasmablast responses are not representative of the memory B cell repertoire after dengue infection. Antibody sequences and functions were analyzed in longitudinal acute and convalescent samples from dengue patients Plasmablast antibodies were virus glycoprotein-specific whereas memory B cell-derived antibodies bound to more viral proteins plasmablasts seem to be activated from only a small subset of memory B cells
Antibody-mediated immune memory is orchestrated by various B cell types that are relevant during different phases after an infection. Antibody-secreting cells or so-called plasmablasts are generated from activated specific memory B cell a few days after re-infection. However, little in known whether the antibodies produced by these plasmablasts are relevant for protection in humans and whether the parent memory B cells are further maintained in the memory pool, possibly as affinity-matured versions of the original clones. This is important in the context of vaccination since the repertoires of individual B cell subsets could represent biomarkers to assess efficacy and long-term protection. In addition, the generation of “protective” B cell subsets could potentially be influenced by vaccine design and by the use of adjuvants. We studied the relationship of plasmablasts and memory B cells in longitudinal blood samples from dengue patients. Dengue virus (DENV) has four serotypes and pre-existing antibodies can be cross-protective or can enhance disease after a heterologous infection via Fc-gamma-receptor-mediated uptake of virus-antibody complexes. B cell memory can therefore be both beneficial and detrimental. Here we studied plasmablasts and DENV-specific memory B cells and their relationship and protective potential by assessing antibody sequences and monoclonal antibodies. We found that both populations produced largely serotype cross-neutralizing antibodies, whereas more plasmablast antibodies were neutralizing. Few plasmablast clones could be found in the memory pool, suggesting that only a subset of memory B cells is activated during acute disease and that a separate repertoire of cells is retained as longer-term memory. In this study we started to dissect the complexity of B cell immune memory to dengue infection and the finding can inform further investigations into which immune cell subsets are disease-enhancing after a heterologous infection.
Collapse
Affiliation(s)
| | | | - Mei Hui Xu
- Singapore Immunology Network, A*STAR, Singapore
| | | | | | | | | | | | | | - Weili Xu
- Singapore Immunology Network, A*STAR, Singapore
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, Singapore
| | | | | | - Yee Sin Leo
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tun Linn Thein
- Communicable Disease Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore
| | | | - Katja Fink
- Singapore Immunology Network, A*STAR, Singapore.
| |
Collapse
|
19
|
Yan Y, Yi S, Qiu L. [Advances in molecular genetics pathogenesis of splenic marginal zone lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:348-52. [PMID: 27094004 PMCID: PMC7343092 DOI: 10.3760/cma.j.issn.0253-2727.2016.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Lugui Qiu
- Institute of Hematology and Blood Diseases Hospital. CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
20
|
Godoy-Lozano EE, Téllez-Sosa J, Sánchez-González G, Sámano-Sánchez H, Aguilar-Salgado A, Salinas-Rodríguez A, Cortina-Ceballos B, Vivanco-Cid H, Hernández-Flores K, Pfaff JM, Kahle KM, Doranz BJ, Gómez-Barreto RE, Valdovinos-Torres H, López-Martínez I, Rodriguez MH, Martínez-Barnetche J. Lower IgG somatic hypermutation rates during acute dengue virus infection is compatible with a germinal center-independent B cell response. Genome Med 2016; 8:23. [PMID: 26917418 PMCID: PMC4766701 DOI: 10.1186/s13073-016-0276-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The study of human B cell response to dengue virus (DENV) infection is critical to understand serotype-specific protection and the cross-reactive sub-neutralizing response. Whereas the first is beneficial and thus represents the ultimate goal of vaccination, the latter has been implicated in the development of severe disease, which occurs in a small, albeit significant, fraction of secondary DENV infections. Both primary and secondary infections are associated with the production of poly-reactive and cross-reactive IgG antibodies. METHODS To gain insight into the effect of DENV infection on the B cell repertoire, we used VH region high-throughput cDNA sequencing of the peripheral blood IgG B cell compartment of 19 individuals during the acute phase of infection. For 11 individuals, a second sample obtained 6 months later was analyzed for comparison. Probabilities of sequencing antibody secreting cells or memory B cells were estimated using second-order Monte Carlo simulation. RESULTS We found that in acute disease there is an increase in IgG B cell diversity and changes in the relative use of segments IGHV1-2, IGHV1-18, and IGHV1-69. Somewhat unexpectedly, an overall low proportion of somatic hypermutated antibody genes was observed during the acute phase plasmablasts, particularly in secondary infections and those cases with more severe disease. CONCLUSIONS Our data are consistent with an innate-like antiviral recognition system mediated by B cells using defined germ-line coded B cell receptors, which could provide a rapid germinal center-independent antibody response during the early phase of infection. A model describing concurrent T-dependent and T-independent B cell responses in the context of DENV infection is proposed, which incorporates the selection of B cells using hypomutated IGHV segments and their potential role in poly/cross-reactivity. Its formal demonstration could lead to a definition of its potential implication in antibody-dependent enhancement, and may contribute to rational vaccine development efforts.
Collapse
Affiliation(s)
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Gilberto Sánchez-González
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Hugo Sámano-Sánchez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Andrés Aguilar-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Aarón Salinas-Rodríguez
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Bernardo Cortina-Ceballos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Héctor Vivanco-Cid
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Veracruz, México
| | - Karina Hernández-Flores
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Veracruz, México
| | | | | | | | - Rosa Elena Gómez-Barreto
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Humberto Valdovinos-Torres
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Mario H Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México.
| |
Collapse
|
21
|
Bikos V, Karypidou M, Stalika E, Baliakas P, Xochelli A, Sutton LA, Papadopoulos G, Agathangelidis A, Papadopoulou E, Davis Z, Algara P, Kanellis G, Traverse-Glehen A, Mollejo M, Anagnostopoulos A, Ponzoni M, Gonzalez D, Pospisilova S, Matutes E, Piris MA, Papadaki T, Ghia P, Rosenquist R, Oscier D, Darzentas N, Tzovaras D, Belessi C, Hadzidimitriou A, Stamatopoulos K. An Immunogenetic Signature of Ongoing Antigen Interactions in Splenic Marginal Zone Lymphoma Expressing IGHV1-2*04 Receptors. Clin Cancer Res 2015; 22:2032-40. [PMID: 26647217 DOI: 10.1158/1078-0432.ccr-15-1170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Prompted by the extensive biases in the immunoglobulin (IG) gene repertoire of splenic marginal-zone lymphoma (SMZL), supporting antigen selection in SMZL ontogeny, we sought to investigate whether antigen involvement is also relevant post-transformation. EXPERIMENTAL DESIGN We conducted a large-scale subcloning study of the IG rearrangements of 40 SMZL cases aimed at assessing intraclonal diversification (ID) due to ongoing somatic hypermutation (SHM). RESULTS ID was identified in 17 of 21 (81%) rearrangements using the immunoglobulin heavy variable (IGHV)1-2*04 gene versus 8 of 19 (40%) rearrangements utilizing other IGHV genes (P= 0.001). ID was also evident in most analyzed IG light chain gene rearrangements, albeit was more limited compared with IG heavy chains. Identical sequence changes were shared by subclones from different patients utilizing the IGHV1-2*04 gene, confirming restricted ongoing SHM profiles. Non-IGHV1-2*04 cases displayed both a lower number of ongoing SHMs and a lack of shared mutations (per group of cases utilizing the same IGHV gene). CONCLUSIONS These findings support ongoing antigen involvement in a sizable portion of SMZL and further argue that IGHV1-2*04 SMZL may represent a distinct molecular subtype of the disease.
Collapse
Affiliation(s)
- Vasilis Bikos
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Maria Karypidou
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | | | - Panagiotis Baliakas
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aliki Xochelli
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Andreas Agathangelidis
- Division of Experimental Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele and Istituto Scientifico San Raffaele, Milan, Italy
| | | | - Zadie Davis
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Patricia Algara
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | - George Kanellis
- Hematopathology Department, Evangelismos Hospital, Athens, Greece
| | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | | | | | - David Gonzalez
- Section of Haemato-Oncology, Institute of Cancer Research, London, United Kingdom
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Estella Matutes
- Section of Haemato-Oncology, Institute of Cancer Research, London, United Kingdom
| | - Miguel Angel Piris
- Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
| | | | - Paolo Ghia
- Division of Experimental Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele and Istituto Scientifico San Raffaele, Milan, Italy
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Nikos Darzentas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | - Anastasia Hadzidimitriou
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kostas Stamatopoulos
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece. Institute of Applied Biosciences, CERTH, Thessaloniki, Greece. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Fonte E, Agathangelidis A, Reverberi D, Ntoufa S, Scarfò L, Ranghetti P, Cutrona G, Tedeschi A, Xochelli A, Caligaris-Cappio F, Ponzoni M, Belessi C, Davis Z, Piris MA, Oscier D, Ghia P, Stamatopoulos K, Muzio M. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica 2015; 100:1460-8. [PMID: 26294727 DOI: 10.3324/haematol.2014.119933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 08/14/2015] [Indexed: 11/09/2022] Open
Abstract
Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone.
Collapse
Affiliation(s)
- Eleonora Fonte
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy Università degli studi di Pavia, Italy
| | - Andreas Agathangelidis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Daniele Reverberi
- UOC Patologia Molecolare, IRCCS AOU S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Stavroula Ntoufa
- Institute of Applied Biosciences, Centre For Research and Technology Hellas, Thessaloniki, Greece
| | - Lydia Scarfò
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy Department of Onco-Hematology, San Raffaele Hospital, Milano, Italy Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giovanna Cutrona
- UOC Patologia Molecolare, IRCCS AOU S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | - Aliki Xochelli
- Institute of Applied Biosciences, Centre For Research and Technology Hellas, Thessaloniki, Greece
| | - Federico Caligaris-Cappio
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy Department of Onco-Hematology, San Raffaele Hospital, Milano, Italy Università Vita-Salute San Raffaele, Milano, Italy
| | - Maurilio Ponzoni
- Department of Onco-Hematology, San Raffaele Hospital, Milano, Italy
| | | | - Zadie Davis
- Department of Haematology, Royal Bournemouth Hospital, UK
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla and Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, UK
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy Department of Onco-Hematology, San Raffaele Hospital, Milano, Italy Università Vita-Salute San Raffaele, Milano, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre For Research and Technology Hellas, Thessaloniki, Greece Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Marta Muzio
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
23
|
Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors. Leukemia 2015; 29:1587-99. [DOI: 10.1038/leu.2015.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/27/2022]
|
24
|
Abstract
The B cell receptor (BCR) repertoire is highly diverse. Repertoire diversity is achieved centrally by somatic recombination of immunoglobulin (Ig) genes and peripherally by somatic hypermutation and Ig heavy chain class-switching. Throughout these processes, there is selection for functional gene rearrangements, selection against gene combinations resulting in self-reactive BCRs, and selection for BCRs with high affinity for exogenous antigens after challenge. Hence, investigation of BCR repertoires from different groups of B cells can provide information on stages of B cell development and shed light on the etiology of B cell pathologies. In most instances, the third complementarity determining region of the Ig heavy chain (CDR-H3) contributes the majority of amino acids to the antibody/antigen binding interface. Although CDR-H3 spectratype analysis provides information on the overall diversity of BCR repertoires, this fairly simple technique analyzes the relative quantities of CDR-H3 regions of each size, within a range of approximately 10-80 bp, without sequence detail and thus is limited in scope. High-throughput sequencing (HTS) techniques on the Roche 454 GS FLX Titanium system, however, can generate a wide coverage of Ig sequences to provide more qualitative data such as V, D, and J usage as well as detailed CDR3 sequence information. Here we present protocols in detail for CDR-H3 spectratype analysis and HTS of human BCR repertoires.
Collapse
Affiliation(s)
- Yu-Chang Wu
- Randall Division of Cell and Molecular Biophysics, King's College London School of Biomedical Science, London, UK
| | - David Kipling
- Department of Pathology, Cardiff University, Cardiff, UK
| | - Deborah Dunn-Walters
- Department of Immunobiology, King's College London School of Medicine, Strand, London, SE1 9RT, UK.
| |
Collapse
|
25
|
Johnston SA, Thamm DH, Legutki JB. The immunosignature of canine lymphoma: characterization and diagnostic application. BMC Cancer 2014; 14:657. [PMID: 25199568 PMCID: PMC4168252 DOI: 10.1186/1471-2407-14-657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Background Cancer diagnosis in both dogs and humans is complicated by the lack of a non-invasive diagnostic test. To meet this clinical need, we apply the recently developed immunosignature assay to spontaneous canine lymphoma as clinical proof-of-concept. Here we evaluate the immunosignature as a diagnostic for spontaneous canine lymphoma at both at initial diagnosis and evaluating the disease free interval following treatment. Methods Sera from dogs with confirmed lymphoma (B cell n = 38, T cell n = 11) and clinically normal dogs (n = 39) were analyzed. Serum antibody responses were characterized by analyzing the binding pattern, or immunosignature, of serum antibodies on a non-natural sequence peptide microarray. Peptides were selected and tested for the ability to distinguish healthy dogs from those with lymphoma and to distinguish lymphoma subtypes based on immunophenotype. The immunosignature of dogs with lymphoma were evaluated for individual signatures. Changes in the immunosignatures were evaluated following treatment and eventual relapse. Results Despite being a clonal disease, both an individual immunosignature and a generalized lymphoma immunosignature were observed in each dog. The general lymphoma immunosignature identified in the initial set of dogs (n = 32) was able to predict disease status in an independent set of dogs (n = 42, 97% accuracy). A separate immunosignature was able to distinguish the lymphoma based on immunophenotype (n = 25, 88% accuracy). The individual immunosignature was capable of confirming remission three months following diagnosis. Immunosignature at diagnosis was able to predict which dogs with B cell lymphoma would relapse in less than 120 days (n = 33, 97% accuracy). Conclusion We conclude that the immunosignature can serve as a multilevel diagnostic for canine, and potentially human, lymphoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-657) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen Albert Johnston
- Center for Innovations in Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5901, USA.
| | | | | |
Collapse
|
26
|
Baliakas P, Strefford JC, Bikos V, Parry M, Stamatopoulos K, Oscier D. Splenic marginal-zone lymphoma: ontogeny and genetics. Leuk Lymphoma 2014; 56:301-10. [PMID: 24798744 DOI: 10.3109/10428194.2014.919636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Splenic marginal-zone lymphoma (SMZL) is a rare tumor that has recently emerged as a prototype for how the interplay between genetics and environment shapes the natural history of lymphomas. Indeed, the recent identification of molecular immunogenetic subgroups within SMZL may prove to be relevant not only for the sub-classification of the disease but also for improved understanding of the underlying biology. In contrast to other B-cell lymphomas, SMZL lacks a characteristic genetic lesion, although the majority of cases harbor genomic aberrations, as recently revealed by high-throughput studies that identified recurrent genetic aberrations, several in pathways related to marginal-zone differentiation and B-cell signaling. Here we provide an overview of recent research into the molecular and cellular biology of SMZL and related disorders, with special emphasis on immunogenetics and genomic aberrations, and discuss the value of molecular and cellular markers for the diagnosis and differential diagnosis of these entities.
Collapse
Affiliation(s)
- Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University , Uppsala , Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Clonotypic analysis of immunoglobulin heavy chain sequences in patients with Waldenström's macroglobulinemia: correlation with MYD88 L265P somatic mutation status, clinical features, and outcome. BIOMED RESEARCH INTERNATIONAL 2014; 2014:809103. [PMID: 25197661 PMCID: PMC4147361 DOI: 10.1155/2014/809103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/12/2014] [Indexed: 01/09/2023]
Abstract
We performed IGH clonotypic sequence analysis in WM in order to determine whether a preferential IGH gene rearrangement was observed and to assess IGHV mutational status in blood and/or bone marrow samples from 36 WM patients. In addition we investigated the presence of MYD88 L265P somatic mutation. After IGH VDJ locus amplification, monoclonal VDJ rearranged fragments were sequenced and analyzed. MYD88 L265P mutation was detected by AS-PCR. The most frequent family usage was IGHV3 (74%); IGHV3-23 and IGHV3-74 segments were used in 26% and 17%, respectively. Somatic hypermutation was seen in 91% of cases. MYD88 L265P mutation was found in 65,5% of patients and absent in the 3 unmutated. These findings did not correlate with clinical findings and outcome. Conclusion. IGH genes' repertoire differed in WM from those observed in other B-cell disorders with a recurrent IGHV3-23 and IGHV3-74 usage; monoclonal IGHV was mutated in most cases, and a high but not omnipresent prevalence of MYD88 L265P mutation was observed. In addition, the identification of 3 patients with unmutated IGHV gene segments, negative for the MYD88 L265P mutation, could support the hypothesis that an extra-germinal B-cell may represent the originating malignant cell in this minority of WM patients.
Collapse
|
28
|
Brisou G, Verney A, Wenner T, Baseggio L, Felman P, Callet-Bauchu E, Coiffier B, Berger F, Salles G, Traverse-Glehen A. A restricted IGHV gene repertoire in splenic marginal zone lymphoma is associated with autoimmune disorders. Haematologica 2014; 99:e197-8. [PMID: 24997147 DOI: 10.3324/haematol.2014.107680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gabriel Brisou
- Hospices Civils de Lyon, Service d'Hématologie, Lyon Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon
| | - Aurélie Verney
- Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon
| | - Thomas Wenner
- Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon
| | - Lucile Baseggio
- Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon Laboratoire d'Hématologie Cellulaire, Lyon
| | | | | | | | - Françoise Berger
- Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon Service d'Anatomie Pathologique, Centre Hospitalier Lyon Sud 69495 Pierre-Bénite, France
| | - Gilles Salles
- Hospices Civils de Lyon, Service d'Hématologie, Lyon Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon
| | - Alexandra Traverse-Glehen
- Université Lyon 1, UMR CNRS 5239 Equipe "lymphoproliférations B indolentes", Lyon Service d'Anatomie Pathologique, Centre Hospitalier Lyon Sud 69495 Pierre-Bénite, France
| |
Collapse
|
29
|
Cryptic polyreactivity of IgG expressed by splenic marginal zone B-cell lymphoma. Mol Immunol 2014; 60:54-61. [DOI: 10.1016/j.molimm.2014.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/09/2023]
|
30
|
Rizzo D, Chauzeix J, Trimoreau F, Woillard JB, Genevieve F, Bouvier A, Labrousse J, Poli C, Guerin E, Dmytruk N, Remenieras L, Feuillard J, Gachard N. IgM peak independently predicts treatment-free survival in chronic lymphocytic leukemia and correlates with accumulation of adverse oncogenetic events. Leukemia 2014; 29:337-45. [PMID: 24943833 DOI: 10.1038/leu.2014.198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/24/2023]
Abstract
We examined the significance of IgM peaks in chronic lymphocytic leukemia (CLL), including its association with newly reported MYD88, BIRC3, NOTCH1 and SF3B1 mutations. A total of 27, 25, 41 and 57 patients with monoclonal IgM or IgG peaks (IgM and IgG groups), hypogammaglobulinemia (Hypo-γ group) and normal immunoglobulin serum levels (normal-γ group) were, respectively, included. IgM peaks were mainly associated with Binet stage C and the del(17p). Biased usage of IGHV3-48 was shared by both IgM and IgG groups. IGHV3-74 and IGHV4-39 gene rearrangements were specific for IgM and IgG peaks, respectively. SF3B1, NOTCH1, MYD88 and BIRC3 mutation frequencies were 12%, 4%, 2% and 2%, respectively, being over-represented in IgM, IgG and Hypo-γ groups for SF3B1, and being equal between normal-γ and IgM groups for MYD88. Overall, 76%, 87%, 49% and 42% of cases from IgM, IgG, Hypo-γ and normal-γ groups had at least one intermediate or poor prognosis genetic marker, respectively. By multivariate analysis, IgM peaks were associated with shorter treatment-free survival independently from any other univariate poor prognosis biological parameters, including IgG peaks, Hypo-γ, IGHV status, SF3B1 mutations, cytogenetics and lymphocytosis. Therefore, as with IgG peaks, IgM peaks aggravated the natural course of CLL, with increased accumulation of adverse genetic events.
Collapse
Affiliation(s)
- D Rizzo
- 1] Laboratory of Hematology, University Hospital Dupuytren, Limoges, France [2] UMR CNRS 7276, Faculty of Medicine, Limoges, France
| | - J Chauzeix
- 1] Laboratory of Hematology, University Hospital Dupuytren, Limoges, France [2] UMR CNRS 7276, Faculty of Medicine, Limoges, France
| | - F Trimoreau
- Laboratory of Hematology, University Hospital Dupuytren, Limoges, France
| | - J B Woillard
- UMR INSERM S-850, Faculty of Medicine, Limoges, France
| | - F Genevieve
- Laboratory of Hematology, University Hospital, Angers, France
| | - A Bouvier
- Laboratory of Hematology, University Hospital, Angers, France
| | - J Labrousse
- Laboratory of Hematology, University Hospital, Angers, France
| | - C Poli
- 1] Laboratory of Immunology and Allergology, University Hospital, Angers, France [2] UMR Inserm 892, CNRS 6299, Faculty of Medicine, Angers, France
| | - E Guerin
- Laboratory of Hematology, University Hospital Dupuytren, Limoges, France
| | - N Dmytruk
- Clinical Hematology and Cellular Therapy, University Hospital Dupuytren, Limoges, France
| | - L Remenieras
- Clinical Hematology and Cellular Therapy, University Hospital Dupuytren, Limoges, France
| | - J Feuillard
- 1] Laboratory of Hematology, University Hospital Dupuytren, Limoges, France [2] UMR CNRS 7276, Faculty of Medicine, Limoges, France
| | - N Gachard
- 1] Laboratory of Hematology, University Hospital Dupuytren, Limoges, France [2] UMR CNRS 7276, Faculty of Medicine, Limoges, France
| |
Collapse
|
31
|
Thieblemont C, Bertoni F, Copie-Bergman C, Ferreri AJ, Ponzoni M. Chronic inflammation and extra-nodal marginal-zone lymphomas of MALT-type. Semin Cancer Biol 2014; 24:33-42. [DOI: 10.1016/j.semcancer.2013.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
|
32
|
Sangaletti S, Tripodo C, Vitali C, Portararo P, Guarnotta C, Casalini P, Cappetti B, Miotti S, Pinciroli P, Fuligni F, Fais F, Piccaluga PP, Colombo MP. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 2014; 4:110-29. [PMID: 24189145 DOI: 10.1158/2159-8290.cd-13-0276] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered expression of matricellular proteins can become pathogenic in the presence of persistent perturbations in tissue homeostasis. Here, we show that autoimmunity associated with Fas mutation was exacerbated and transitioned to lymphomagenesis in the absence of SPARC (secreted protein acidic rich in cysteine). The absence of SPARC resulted in defective collagen assembly, with uneven compartmentalization of lymphoid and myeloid populations within secondary lymphoid organs (SLO), and faulty delivery of inhibitory signals from the extracellular matrix. These conditions promoted aberrant interactions between neutrophil extracellular traps and CD5(+) B cells, which underwent malignant transformation due to defective apoptosis under the pressure of neutrophil-derived trophic factors and NF-κB activation. Furthermore, this model of defective stromal remodeling during lymphomagenesis correlates with human lymphomas arising in a SPARC-defective environment, which is prototypical of CD5(+) B-cell chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
- Sabina Sangaletti
- 1Molecular Immunology Unit, 2Molecular Targeting Unit, and 3Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan; 4Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo; 5Hematopathology Section, Department of Hematology and Oncology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna; and 6Human Anatomy Section, Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Antigen selection in B-cell lymphomas—Tracing the evidence. Semin Cancer Biol 2013; 23:399-409. [DOI: 10.1016/j.semcancer.2013.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
|
34
|
Dimitrov JD, Planchais C, Roumenina LT, Vassilev TL, Kaveri SV, Lacroix-Desmazes S. Antibody polyreactivity in health and disease: statu variabilis. THE JOURNAL OF IMMUNOLOGY 2013; 191:993-9. [PMID: 23873158 DOI: 10.4049/jimmunol.1300880] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An Ab molecule or a BCR that is able to bind multiple structurally unrelated Ags is defined as polyreactive. Polyreactive Abs and BCRs constitute an important part of immune repertoires under physiological conditions and may play essential roles in immune defense and in the maintenance of immune homeostasis. In this review, we integrate and discuss different findings that reveal the indispensable role of Ag-binding polyreactivity in the immune system. First, we describe the functional and molecular characteristics of polyreactive Abs. The following part of the review concentrates on the biological roles attributed to polyreactive Abs and to polyreactive BCRs. Finally, we discuss recent studies that link Ig polyreactivity with distinct pathological conditions.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- INSERM, Unité 872, Centre de Recherche des Cordeliers, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
35
|
Mouse marginal zone B cells harbor specificities similar to human broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A 2013; 110:1422-7. [PMID: 23288906 DOI: 10.1073/pnas.1213713110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of potent, broadly neutralizing HIV antibodies have been isolated from B cells of HIV-infected individuals. VRC01 represents a subset of these antibodies that mediate neutralization with a restricted set of IGHV genes. The memory B cells expressing these antibodies were isolated years after infection; thus, the B-cell subpopulation from which they originated and the extent of participation in the initial HIV antibody response, if any, are unclear. Here we evaluated the frequency of anti-gp120 B cells in follicular (FO) and marginal zone (MZ) B-cell compartments of naïve WT mice and comparable human populations in uninfected individuals. We found that in non-HIV-exposed humans and mice, the majority of gp120-reactive B cells are of naïve and FO phenotype, respectively. Murine FO B cells express a diverse antibody repertoire to recognize gp120. In contrast, mouse MZ B cells recognize gp120 less frequently but preferentially use IGHV1-53 to encode gp120-specific antibodies. Notably, IGHV1-53 shows high identity to human IGHV1-2*02, which has been repeatedly found to encode broadly neutralizing mutated HIV antibodies, such as VRC01. Finally, we show that human MZ-like B cells express IGHV1-2*02, and that IGHV1-53 expression is enriched in mouse MZ B cells. These data suggest that efforts toward developing an HIV vaccine might consider eliciting protective HIV antibody responses selectively from alternative B-cell populations harboring IGHV gene segments capable of producing protective antibodies.
Collapse
|
36
|
Abstract
Follicular lymphoma is a monoclonal B-cell malignancy with each patient's tumor expressing a unique cell surface immunoglobulin (Ig), or B-cell receptor (BCR), that can potentially recognize antigens and/or transduce signals into the tumor cell. Here we evaluated the reactivity of tumor derived Igs for human tissue antigens. Self-reactivity was observed in 26% of tumor Igs (25 of 98). For one follicular lymphoma patient, the recognized self-antigen was identified as myoferlin. This patient's tumor cells bound recombinant myoferlin in proportion to their level of BCR expression, and the binding to myoferlin was preserved despite ongoing somatic hypermutation of Ig variable regions. Furthermore, BCR-mediated signaling was induced after culture of tumor cells with myoferlin. These results suggest that antigen stimulation may provide survival signals to tumor cells and that there is a selective pressure to preserve antigen recognition as the tumor evolves.
Collapse
|
37
|
Gachard N, Parrens M, Soubeyran I, Petit B, Marfak A, Rizzo D, Devesa M, Delage-Corre M, Coste V, Laforêt MP, de Mascarel A, Merlio JP, Bouabdhalla K, Milpied N, Soubeyran P, Schmitt A, Bordessoule D, Cogné M, Feuillard J. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 2012; 27:183-9. [DOI: 10.1038/leu.2012.257] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Famà R, Ciardullo C, Greco M, Cresta S, Piranda D, Holmes A, Fabbri G, Messina M, Rinaldi A, Wang J, Agostinelli C, Piccaluga PP, Lucioni M, Tabbò F, Serra R, Franceschetti S, Deambrogi C, Daniele G, Gattei V, Marasca R, Facchetti F, Arcaini L, Inghirami G, Bertoni F, Pileri SA, Deaglio S, Foà R, Dalla-Favera R, Pasqualucci L, Rabadan R, Gaidano G. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. ACTA ACUST UNITED AC 2012; 209:1537-51. [PMID: 22891273 PMCID: PMC3428941 DOI: 10.1084/jem.20120904] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a B cell malignancy of unknown pathogenesis, and thus an orphan of targeted therapies. By integrating whole-exome sequencing and copy-number analysis, we show that the SMZL exome carries at least 30 nonsilent gene alterations. Mutations in NOTCH2, a gene required for marginal-zone (MZ) B cell development, represent the most frequent lesion in SMZL, accounting for ∼20% of cases. All NOTCH2 mutations are predicted to cause impaired degradation of the NOTCH2 protein by eliminating the C-terminal PEST domain, which is required for proteasomal recruitment. Among indolent B cell lymphoproliferative disorders, NOTCH2 mutations are restricted to SMZL, thus representing a potential diagnostic marker for this lymphoma type. In addition to NOTCH2, other modulators or members of the NOTCH pathway are recurrently targeted by genetic lesions in SMZL; these include NOTCH1, SPEN, and DTX1. We also noted mutations in other signaling pathways normally involved in MZ B cell development, suggesting that deregulation of MZ B cell development pathways plays a role in the pathogenesis of ∼60% SMZL. These findings have direct implications for the treatment of SMZL patients, given the availability of drugs that can target NOTCH, NF-κB, and other pathways deregulated in this disease.
Collapse
Affiliation(s)
- Davide Rossi
- Division of Hematology and 9 Laboratory of Medical Informatics, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bikos V, Stalika E, Baliakas P, Darzentas N, Davis Z, Traverse-Glehen A, Dagklis A, Kanellis G, Anagnostopoulos A, Tsaftaris A, Ponzoni M, Berger F, Felman P, Ghia P, Papadaki T, Oscier D, Belessi C, Stamatopoulos K. Selection of antigen receptors in splenic marginal-zone lymphoma: further support from the analysis of the immunoglobulin light-chain gene repertoire. Leukemia 2012; 26:2567-9. [PMID: 22858907 DOI: 10.1038/leu.2012.207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Prabakaran P, Chen W, Singarayan MG, Stewart CC, Streaker E, Feng Y, Dimitrov DS. Expressed antibody repertoires in human cord blood cells: 454 sequencing and IMGT/HighV-QUEST analysis of germline gene usage, junctional diversity, and somatic mutations. Immunogenetics 2012; 64:337-50. [PMID: 22200891 PMCID: PMC6953429 DOI: 10.1007/s00251-011-0595-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/05/2011] [Indexed: 12/16/2022]
Abstract
Human cord blood cell-derived IgM antibodies are important for the neonate immune responses and construction of germline-based immunoglobulin libraries. Several previous studies of a relatively small number of sequences found that they exhibit restrictions in the usage of germline genes and in the diversity of the variable heavy chain complementarity determining region 3 compared to adults. To further characterize such restrictions on a larger scale and to compare the early B-cell diversity to adult IgM repertoires, we performed 454 sequencing and IMGT/HighV-QUEST analysis of cord blood IG libraries from two babies and determined germline gene usage, V-D-J rearrangement, VHCDR3 diversity, and somatic mutations to characterize human neonate repertoire. Most of the germline subgroups were identified with frequencies comparable to those present in the adult IgM repertoire except for the IGHV1-2 gene that was preferentially expressed in the cord blood cells. The gene usage diversity contributed to 1,430 unique IGH V-D-J rearrangement patterns while the exonuclease trimming and N region addition at the V-D-J junctions along with gene diversity created a wide range of VHCDR3 with different lengths and sequence variability. We observed a lower degree of somatic mutations in the CDR and framework regions of antibodies from cord blood cells compared to adults. These results provide insights into the characteristics of human cord blood antibody repertoires, which have gene usage diversity and VHCDR3 lengths similar to that of the adult IgM repertoire but differ significantly in some of the gene usages, V-D-J rearrangements, junctional diversity, and somatic mutations.
Collapse
Affiliation(s)
- Ponraj Prabakaran
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Bldg 469, Rm 150B, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Human poly- and cross-reactive anti-viral antibodies and their impact on protection and pathology. Immunol Res 2012; 53:148-61. [DOI: 10.1007/s12026-012-8268-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from February 2011 to August 2011. J Hematop 2011. [DOI: 10.1007/s12308-011-0112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|