1
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Shi W, Liu N, Lu H. Advancements and challenges in immunocytokines: A new arsenal against cancer. Acta Pharm Sin B 2024; 14:4649-4664. [PMID: 39664443 PMCID: PMC11628837 DOI: 10.1016/j.apsb.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/27/2024] [Indexed: 12/13/2024] Open
Abstract
Immunocytokines, employing targeted antibodies to concentrate cytokines at tumor sites, have shown potential advantages such as prolonged cytokine half-lives, mitigated adverse effects, and synergistic antitumor efficacy from both antibody and cytokine components. First, we present an in-depth analysis of the advancements of immunocytokines evaluated in preclinical and clinical applications. Notably, anti-PD-1-based immunocytokines can redirect cytokines to intratumoral CD8+ T cells and reinvigorate them to elicit robust antitumor immune responses. Then, we focus on their molecular structures and action mechanisms, striving to elucidate the correlations between diverse molecular structures and their antitumor efficacy. Moreover, our exploration extends to the realm of novel cytokines, including IL-10, IL-18, and IL-24, unraveling their potential in the construction of immunocytokines. However, safety concerns remain substantial barriers to immunocytokines' development. To address this challenge, we explore potential strategies, such as cytokine engineering and prodrug design, which can foster next-generation immunocytokines development. Overall, this review concentrates on the design of molecular structures in immunocytokines, underscoring the direction and focus of ongoing efforts to improve safety profiles while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Wenqiang Shi
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huili Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Gillard AG, Shin DH, Hampton LA, Lopez-Rivas A, Parthasarathy A, Fueyo J, Gomez-Manzano C. Targeting Innate Immunity in Glioma Therapy. Int J Mol Sci 2024; 25:947. [PMID: 38256021 PMCID: PMC10815900 DOI: 10.3390/ijms25020947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Currently, there is a lack of effective therapies for the majority of glioblastomas (GBMs), the most common and malignant primary brain tumor. While immunotherapies have shown promise in treating various types of cancers, they have had limited success in improving the overall survival of GBM patients. Therefore, advancing GBM treatment requires a deeper understanding of the molecular and cellular mechanisms that cause resistance to immunotherapy. Further insights into the innate immune response are crucial for developing more potent treatments for brain tumors. Our review provides a brief overview of innate immunity. In addition, we provide a discussion of current therapies aimed at boosting the innate immunity in gliomas. These approaches encompass strategies to activate Toll-like receptors, induce stress responses, enhance the innate immune response, leverage interferon type-I therapy, therapeutic antibodies, immune checkpoint antibodies, natural killer (NK) cells, and oncolytic virotherapy, and manipulate the microbiome. Both preclinical and clinical studies indicate that a better understanding of the mechanisms governing the innate immune response in GBM could enhance immunotherapy and reinforce the effects of chemotherapy and radiotherapy. Consequently, a more comprehensive understanding of the innate immune response against cancer should lead to better prognoses and increased overall survival for GBM patients.
Collapse
Affiliation(s)
- Andrew G. Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lethan A. Hampton
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
| | - Andres Lopez-Rivas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, Wang S, Zhang X. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci 2023; 24:11233. [PMID: 37510993 PMCID: PMC10379825 DOI: 10.3390/ijms241411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuang Mei
- Shanghai Tinova Immune Therapeutics Co., Ltd., Shanghai 201413, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaofei Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
5
|
Flietner E, Yu M, Poudel G, Veltri AJ, Zhou Y, Rajagopalan A, Feng Y, Lasho T, Wen Z, Sun Y, Patnaik MM, Callander NS, Asimakopoulos F, Wang D, Zhang J. Molecular characterization stratifies VQ myeloma cells into two clusters with distinct risk signatures and drug responses. Oncogene 2023; 42:1751-1762. [PMID: 37031341 PMCID: PMC10367583 DOI: 10.1038/s41388-023-02684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone marrow and extramedullary sites. We previously characterized a VQ model for human high-risk MM. The various VQ lines display different disease phenotypes and survival rates, suggesting significant intra-model variation. Here, we use whole-exome sequencing and copy number variation (CNV) analysis coupled with RNA-Seq to stratify the VQ lines into corresponding clusters: Group A cells had monosomy chromosome (chr) 5 and overexpressed genes and pathways associated with sensitivity to bortezomib (Btz) treatment in human MM patients. By contrast, Group B VQ cells carried recurrent amplification (Amp) of chr3 and displayed high-risk MM features, including downregulation of Fam46c, upregulation of cancer growth pathways associated with functional high-risk MM, and expression of Amp1q and high-risk UAMS-70 and EMC-92 gene signatures. Consistently, in sharp contrast to Group A VQ cells that showed short-term response to Btz, Group B VQ cells were de novo resistant to Btz in vivo. Our study highlights Group B VQ lines as highly representative of the human MM subset with ultrahigh risk.
Collapse
Affiliation(s)
- Evan Flietner
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Govinda Poudel
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adhithi Rajagopalan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yubin Feng
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Yuqian Sun
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Natalie S Callander
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA.
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
6
|
Rybchenko VS, Aliev TK, Panina AA, Kirpichnikov MP, Dolgikh DA. Targeted Cytokine Delivery for Cancer Treatment: Engineering and Biological Effects. Pharmaceutics 2023; 15:pharmaceutics15020336. [PMID: 36839658 PMCID: PMC9960319 DOI: 10.3390/pharmaceutics15020336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Anti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications. Due to their high specificity and affinity, tumor-specific monoclonal antibodies or their antigen-binding fragments are capable of delivering fused cytokines to tumors and, therefore, of decreasing the number and severity of side effects, as well as of enhancing the therapeutic index. The present review surveys the actual antibody-cytokine fusion protein (immunocytokine) formats, their targets, mechanisms of action, and anti-tumor and other biological effects. Special attention is paid to the formats designed to prevent the off-target cytokine-receptor interactions, potentially inducing side effects. Here, we describe preclinical and clinical data and the efficacy of the antibody-mediated cytokine delivery approach, either as a single therapy or in combination with other agents.
Collapse
Affiliation(s)
- Vladislav S Rybchenko
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Teimur K Aliev
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna A Panina
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A Dolgikh
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
7
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
8
|
Abstract
The activation of the cGAS-STING pathway has tremendous potential to improve anti-tumor immunity by generating type I interferons. In recent decades, we have witnessed that producing dsDNA upon various stimuli is an initiative factor, triggering the cGAS-SING pathway for a defensive host. The understanding of both intracellular cascade reaction and the changes of molecular components gains insight into type I IFNs and adaptive immunity. Based on the immunological study, the STING-cGAS pathway is coupled to cancer biotherapy. The most challenging problem is the limited therapeutic effect. Therefore, people view 5, 6-dimethylxanthenone-4-acetic acid, cyclic dinucleotides and various derivative as cGAS-STING pathway agonists. Even so, these agonists have flaws in decreasing biotherapeutic efficacy. Subsequently, we exploited agonist delivery systems (nanocarriers, microparticles and hydrogels). The article will discuss the activation of the cGAS-STING pathway and underlying mechanisms, with an introduction of cGAS-STING agonists, related clinical trials and agonist delivery systems.
Collapse
|
9
|
Bruins WSC, Zweegman S, Mutis T, van de Donk NWCJ. Targeted Therapy With Immunoconjugates for Multiple Myeloma. Front Immunol 2020; 11:1155. [PMID: 32636838 PMCID: PMC7316960 DOI: 10.3389/fimmu.2020.01155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The introduction of proteasome inhibitors (PI) and immunomodulatory drugs (IMiD) has markedly increased the survival of multiple myeloma (MM) patients. Also, the unconjugated monoclonal antibodies (mAb) daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7) have revolutionized MM treatment given their clinical efficacy and safety, illustrating the potential of targeted immunotherapy as a powerful treatment strategy for MM. Nonetheless, most patients eventually develop PI-, IMiD-, and mAb-refractory disease because of the selection of resistant MM clones, which associates with a poor prognosis. Accordingly, these patients remain in urgent need of new therapies with novel mechanisms of action. In this respect, mAbs or mAb fragments can also be utilized as carriers of potent effector moieties to specifically target surface antigens on cells of interest. Such immunoconjugates have the potential to exert anti-MM activity in heavily pretreated patients due to their distinct and pleiotropic mechanisms of action. In addition, the fusion of highly cytotoxic compounds to mAbs decreases the off-target toxicity, thereby improving the therapeutic window. According to the effector moiety, immunoconjugates are classified into antibody-drug conjugates, immunotoxins, immunocytokines, or radioimmunoconjugates. This review will focus on the mechanisms of action, safety and efficacy of several promising immunoconjugates that are under investigation in preclinical and/or clinical MM studies. We will also include a discussion on combination therapy with immunoconjugates, resistance mechanisms, and future developments.
Collapse
Affiliation(s)
- Wassilis S C Bruins
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Abstract
New therapies that promote antitumour immunity have been recently developed. Most of these immunomodulatory approaches have focused on enhancing T-cell responses, either by targeting inhibitory pathways with immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to unprecedented successes, only a minority of patients with cancer benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for long-lasting, multilayered tumour control.
Collapse
|
11
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
12
|
Vasilenko EA, Mokhonov VV, Gorshkova EN, Astrakhantseva IV. Bispecific Antibodies: Formats and Areas of Application. Mol Biol 2018. [DOI: 10.1134/s0026893318020176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Li Z, Zhu Y, Li C, Trinh R, Ren X, Sun F, Wang Y, Shang P, Wang T, Wang M, Morrison SL, Zhang J. Anti-VEGFR2-interferon-α2 regulates the tumor microenvironment and exhibits potent antitumor efficacy against colorectal cancer. Oncoimmunology 2017; 6:e1290038. [PMID: 28405526 DOI: 10.1080/2162402x.2017.1290038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Interferon-α (IFNα) has multiple antitumor effects including direct antitumor toxicity and the ability to potently stimulate both innate and adaptive immunity. However, its clinical applications in the treatment of malignancies have been limited because of short half-life and serious adverse reactions when attempting to deliver therapeutically effective doses. To address these issues, we fused IFNα2a to the anti-vascular endothelial growth factor and receptor 2 (VEGFR2) antibody JZA00 with the goal of targeting it to the tumor microenvironment where it can stimulate the antitumor immune response. The fusion protein, JZA01, is effective against colorectal cancer by inhibiting angiogenesis, exhibiting direct cytotoxicity, and activating the antitumor immune response. Although JZA01 exhibited reduced IFNα2 activity in vitro compared with native IFNα2, VEGFR2 targeting permitted efficient antiproliferative, proapoptotic, antiangiogenesis, and immune-stimulating effects against the colorectal tumors HCT-116 and SW620. JZA01 showed in vivo efficacy in NOD-SCID mice-bearing established HCT-116 tumors. In conclusion, this study describes an antitumor immunotherapy that is highly promising for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoting Li
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Yijia Zhu
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Chenchen Li
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Ryan Trinh
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles , Los Angeles, CA, USA
| | - Xueyan Ren
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Fumou Sun
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Youfu Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Pengzhao Shang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Tong Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Min Wang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles , Los Angeles, CA, USA
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
14
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
15
|
Pogue SL, Taura T, Bi M, Yun Y, Sho A, Mikesell G, Behrens C, Sokolovsky M, Hallak H, Rosenstock M, Sanchez E, Chen H, Berenson J, Doyle A, Nock S, Wilson DS. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. PLoS One 2016; 11:e0162472. [PMID: 27611189 PMCID: PMC5017640 DOI: 10.1371/journal.pone.0162472] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity.
Collapse
Affiliation(s)
- Sarah L. Pogue
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
- * E-mail:
| | - Tetsuya Taura
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Mingying Bi
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Yong Yun
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Angela Sho
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Glen Mikesell
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Collette Behrens
- Teva Pharmaceuticals, Global Branded Biologics Division, Sydney, Australia
| | - Maya Sokolovsky
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Hussein Hallak
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Moti Rosenstock
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Eric Sanchez
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - Haiming Chen
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - James Berenson
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - Anthony Doyle
- Teva Pharmaceuticals, Global Branded Biologics Division, Sydney, Australia
| | - Steffen Nock
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - David S. Wilson
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| |
Collapse
|
16
|
Kiefer JD, Neri D. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol Rev 2016; 270:178-92. [PMID: 26864112 PMCID: PMC5154379 DOI: 10.1111/imr.12391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of the immune system for a selective removal of tumor cells represents an attractive strategy for the treatment of metastatic malignancies, which cannot be cured by existing methodologies. In this review, we examine the design and therapeutic potential of immunocytokines and bispecific antibodies, two classes of bifunctional products which can selectively activate the immune system at the tumor site. Certain protein engineering aspects, such as the choice of the antibody format, are common to both classes of therapeutic agents and can have a profound impact on tumor homing performance in vivo of individual products. However, immunocytokines and bispecific antibodies display different mechanisms of action. Future research activities will reveal whether an additive of even synergistic benefit can be obtained from the judicious combination of these two types of biopharmaceutical agents.
Collapse
Affiliation(s)
- Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
17
|
Zeng J, Liu R, Wang J, Fang Y. A bispecific antibody directly induces lymphoma cell death by simultaneously targeting CD20 and HLA-DR. J Cancer Res Clin Oncol 2015; 141:1899-907. [PMID: 25773122 DOI: 10.1007/s00432-015-1949-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
Abstract
PURPOSE Both CD20 and HLA-DR antigens are highly expressed on a variety of B-cell lymphomas and are therapeutic targets in antibody-based lymphoma therapy. The aim of this study was to evaluate the anti-tumor effect of a bispecific antibody CD20-HLA-DR DVD-Ig on B-cell lymphoma. METHODS The gene for bispecific antibody CD20-HLA-DR DVD-Ig was constructed and expressed in FreeStyle™293-F cells, followed by purification. Their functions were characterized for binding to CD20 and HLA-DR and for cytotoxicity against B-cell lymphoma. RESULTS The bispecific antibody CD20-HLA-DR DVD-Ig was engineered using the DNA fragments for the anti-CD20 rituximab and anti-HLA-DR hL243γ1. The CD20-HLA-DR DVD-Ig bound simultaneously to both CD20 and HLA-DR, induced potent complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) against B-cell lymphoma, and elicited homotypic adhesion and actin reorganization. Treatment of a mixture of human whole blood and Raji cells with CD20-HLA-DR DVD-Ig effectively depleted Raji cells and had a little toxicity against normal B cells. CONCLUSION Our data indicated that targeting both CD20 and HLA-DR was an effective way against NHL, suggesting that CD20-HLA-DR DVD-Ig may be a promising therapeutic agent for B-cell lymphoma.
Collapse
Affiliation(s)
- Jing Zeng
- Endocrinology Department, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, People's Republic of China.
- Cancer Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Ran Liu
- Endocrinology Department, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, People's Republic of China
| | - Jinjing Wang
- Endocrinology Department, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, People's Republic of China
| | - Yi Fang
- Endocrinology Department, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with favourable disease outcome in several cohorts of patients with cancer. Finally, new anticancer immunotherapies are being developed that are based on recombinant type I IFNs, type I IFN-encoding vectors and type I IFN-expressing cells.
Collapse
|
19
|
Dimopoulos MA, Richardson PG, Moreau P, Anderson KC. Current treatment landscape for relapsed and/or refractory multiple myeloma. Nat Rev Clin Oncol 2014; 12:42-54. [PMID: 25421279 DOI: 10.1038/nrclinonc.2014.200] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent developments in the treatment of multiple myeloma have led to improvements in response rates and to increased survival; however, relapse is inevitable in almost all patients. Recurrence of myeloma is typically more aggressive with each relapse, leading to the development of treatment-refractory disease, which is associated with a shorter survival. Several phase II and III trials have demonstrated the efficacy of recently approved agents in the setting of relapsed and/or refractory multiple myeloma, including immunomodulatory agents, such as lenalidomide and pomalidomide, and proteasome inhibitors, such as bortezomib and carfilzomib. Currently, however, there is no standard treatment for patients with relapsed and/or refractory disease. This Review discusses the current treatment landscape for patients with relapsed and/or refractory multiple myeloma and highlights disease-related and patient-related factors--such as pre-existing comorbidities or toxicities--that are important considerations for clinicians when selecting an appropriate treatment regimen.
Collapse
Affiliation(s)
- Meletios A Dimopoulos
- Department of Clinical Therapeutics, University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528 Athens, Greece
| | - Paul G Richardson
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA 02115, USA
| | - Philippe Moreau
- Haematology Department, University Hôspital Hôtel-Dieu, 44093 Nantes Cedex 01, France
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, 44 Binney Street, Dana 1B02, Boston, MA 02115, USA
| |
Collapse
|
20
|
Young PA, Morrison SL, Timmerman JM. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety. Semin Oncol 2014; 41:623-36. [PMID: 25440607 DOI: 10.1053/j.seminoncol.2014.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results.
Collapse
Affiliation(s)
- Patricia A Young
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sherie L Morrison
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | - John M Timmerman
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
21
|
Rossi DL, Rossi EA, Cardillo TM, Goldenberg DM, Chang CH. A new class of bispecific antibodies to redirect T cells for cancer immunotherapy. MAbs 2014; 6:381-91. [PMID: 24492297 PMCID: PMC3984327 DOI: 10.4161/mabs.27385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/22/2013] [Accepted: 12/01/2013] [Indexed: 12/31/2022] Open
Abstract
Various constructs of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise in both preclinical and clinical studies. The single-chain variable fragment (scFv)-based formats, including bispecific T-cell engager (BiTE) and dual-affinity re-targeting (DART), which provide monovalent binding to both CD3 on T cells and to the target antigen on tumor cells, can exhibit rapid blood clearance and neurological toxicity due to their small size (~55 kDa). Herein, we describe the generation, by the modular DOCK-AND-LOCK™) (DNL™) method, of novel T-cell redirecting bispecific antibodies, each comprising a monovalent anti-CD3 scFv covalently conjugated to a stabilized dimer of different anti-tumor Fabs. The potential advantages of this design include bivalent binding to tumor cells, a larger size (~130 kDa) to preclude renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. These prototypes were purified to near homogeneity, and representative constructs were shown to provoke the formation of immunological synapses between T cells and their target tumor cells in vitro, resulting in T-cell activation and proliferation, as well as potent T-cell mediated anti-tumor activity. In addition, in vivo studies in NOD/SCID mice bearing Raji Burkitt lymphoma or Capan-1 pancreatic carcinoma indicated statistically significant inhibition of tumor growth compared with untreated controls.
Collapse
Affiliation(s)
| | - Edmund A Rossi
- Immunomedics, Inc; Morris Plains, NJ USA
- IBC Pharmaceuticals, Inc; Morris Plains, NJ USA
| | | | - David M Goldenberg
- Immunomedics, Inc; Morris Plains, NJ USA
- IBC Pharmaceuticals, Inc; Morris Plains, NJ USA
- Garden State Cancer Center; Center for Molecular Medicine and Immunology; Morris Plains, NJ USA
| | - Chien-Hsing Chang
- Immunomedics, Inc; Morris Plains, NJ USA
- IBC Pharmaceuticals, Inc; Morris Plains, NJ USA
| |
Collapse
|
22
|
Houldsworth J, Guttapalli A, Thodima V, Yan XJ, Mendiratta G, Zielonka T, Nanjangud G, Chen W, Patil S, Mato A, Brown JR, Rai K, Chiorazzi N, Chaganti RSK. Genomic imbalance defines three prognostic groups for risk stratification of patients with chronic lymphocytic leukemia. Leuk Lymphoma 2013; 55:920-8. [PMID: 24047479 DOI: 10.3109/10428194.2013.845882] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Array comparative genomic hybridization (aCGH) has yet to be fully leveraged in a prognostic setting in chronic lymphocytic leukemia (CLL). Genomic imbalance was assessed in 288 CLL specimens using a targeted array. Based on 20 aberrations in a hierarchical manner, all 228 treatment-naive specimens were classified into a group with poor outcome (20.6%) exhibiting at least one aberration that was univariately associated with adverse outcome (gain: 2p, 3q, 8q, 17q, loss: 7q, 8p, 11q, 17p, 18p), good outcome (32.5%) showing 13q14 loss without any of the other 10 aberrations (gain: 1p, 7p, 12, 18p, 18q, 19, loss: 4p, 5p, 6q, 7p) or intermediate outcome (remainder). The three groups were significantly separated with respect to time to first treatment and overall survival (p < 0.001), and validation of the stratification scheme was performed in two independent datasets. Gain of 3q and 8q, and 17p loss were determined to be independent unfavorable prognostic biomarkers. TP53, NOTCH1 and SF3B1 mutations correlated with the presence of one poor outcome aCGH marker, at a considerably higher frequency than when only considering poor risk aberrations routinely detected by fluorescence in situ hybridization (FISH). These data support genomic imbalance evaluation in CLL by aCGH to assist in risk stratification.
Collapse
|
23
|
The Development of Bispecific Hexavalent Antibodies as a Novel Class of DOCK-AND-LOCKTM (DNLTM) Complexes. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
24
|
Interferon-λ1 linked to a stabilized dimer of Fab potently enhances both antitumor and antiviral activities in targeted cells. PLoS One 2013; 8:e63940. [PMID: 23696859 PMCID: PMC3655979 DOI: 10.1371/journal.pone.0063940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/08/2013] [Indexed: 01/09/2023] Open
Abstract
The type III interferons (IFNs), comprising IFN-λ1, IFN-λ2, and IFN-λ3, behave similarly to IFN-α in eliciting antiviral, antitumor, and immune-modulating activities. Due to their more restricted cellular targets, IFN-λs are attractive as potential alternatives to existing therapeutic regimens based on IFN-αs. We have applied the DOCK-AND-LOCK™ method to improve the anti-proliferative potency of IFN-λ1 up to 1,000-fold in targeted cancer cell lines by tethering stabilized Fab dimers, derived from hRS7 (humanized anti-Trop-2), hMN-15 (humanized anti-CEACAM6), hL243 (humanized anti-HLA-DR), and c225 (chimeric anti-EGFR), to IFN-λ1 site-specifically, resulting in novel immunocytokines designated (E1)-λ1, (15)-λ1, (C2)-λ1, and (c225)-λ1, respectively. Targeted delivery of IFN-λ1 via (15)-λ1 or (c225)-λ1 to respective antigen-expressing cells also significantly increased antiviral activity when compared with non-targeting (C2)-λ1, as demonstrated in human lung adenocarcinoma cell line A549 by (15)-λ1 against encephalomyocarditis virus (EC50 = 22.2 pM versus 223 pM), and in human hepatocarcinoma cell line Huh-7 by (c225)-λ1 against hepatitis C virus (EC50 = 0.56 pM versus 91.2 pM). These promising results, which are attributed to better localization and stronger binding of IFN-λ1 to antibody-targeted cells, together with the favorable pharmacokinetic profile of (E1)-λ1 in mice (T1/2 = 8.6 h), support further investigation of selective prototypes as potential antiviral and antitumor therapeutic agents.
Collapse
|
25
|
Rossi EA, Chang CH, Cardillo TM, Goldenberg DM. Optimization of multivalent bispecific antibodies and immunocytokines with improved in vivo properties. Bioconjug Chem 2012; 24:63-71. [PMID: 23116517 DOI: 10.1021/bc300488f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multifunctional antibody-based biologics, such as bispecific antibodies and immunocytokines, can be difficult to produce with sufficient yield and stability, and often exhibit inferior pharmacokinetics. Dock-and-Lock (DNL) is a modular method that combines recombinant engineering with site-specific conjugation, allowing the construction of various complex, yet defined, biostructures with multivalency and multispecificity. The technology platform exploits the natural interaction between two interactive human protein binding domains that are modified to provide covalent fusion. We explored the potential application of a new class of IgG-based DNL modules with an anchor domain fused at the C-terminal end of the kappa light chain (C(k)), instead of the C-terminal end of the Fc. Two C(k)-derived prototypes, an anti-CD22/CD20 bispecific hexavalent antibody, comprising epratuzumab (anti-CD22) and four Fabs of veltuzumab (anti-CD20), and a CD20-targeting immunocytokine, comprising veltuzumab and four molecules of interferon-α2b, were compared to their Fc-derived counterparts. The Ck-based conjugates exhibited superior Fc-effector functions in vitro, as well as improved pharmacokinetics, stability, and anti-lymphoma activity in vivo. These results favor the selection of DNL conjugates with the C(k)-design for future clinical development.
Collapse
|
26
|
Schweighofer CD, Tuchscherer A, Sperka S, Meyer T, Rattel B, Stein S, Ismail S, Elter T, Staib P, Reiser M, Hallek M. Clinical safety and pharmacological profile of the HLA-DR antibody 1D09C3 in patients with B cell chronic lymphocytic leukemia and lymphoma: results from a phase I study. Cancer Immunol Immunother 2012; 61:2367-73. [PMID: 23090290 PMCID: PMC11029561 DOI: 10.1007/s00262-012-1362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
1D09C3 is a human monoclonal IgG4-type antibody against human leukocyte antigen-DR (HLA-DR) which has demonstrated pro-apoptotic activity against lymphoid tumors in vitro and in vivo. We report results from a phase I dose-escalation study which aimed to identify tolerated dosing, and the pharmacokinetic and pharmacodynamic profile of 1D09C3. Fourteen patients with relapsed/refractory B cell type leukemia/lymphoma were treated and followed after up to 4 weekly infusions of 1D09C3, administered in 6 dose levels at 0.25-8 mg/kg/day. Treatment was tolerated well with mostly mild side effects. The most common grade III-IV toxicities were hematological events observed in 4 patients. In one patient, treated at 8.0 mg/kg/day, a dose limiting toxicity occurred, identified as an invasive catheter-related infection. Adverse events resolved completely without long-term sequelae. 1D09C3 reduced peripheral blood B cells and monocytes by a median of 73-81 % in all patients, with a nadir reached 30-60 min after infusion and sustained for <96 h. Granulocytes and natural killer cells predominantly increased with variable time courses. Pharmacokinetic assessments showed detectable drug concentrations at doses 4-8 mg/kg/day and a terminal half-life of 0.7-7.9 h. Effective saturation of HLA-DR on peripheral blood B cells/monocytes was achieved, varying consistently with available serum concentrations and the cell-reducing activity of 1D09C3. In summary, 1D09C3 could be administered safely in patients with advanced B cell malignancies. Pharmacodynamic studies demonstrated a strong dose dependent but transient reduction of peripheral blood B cells and monocytes, consistent with a short drug serum availability.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Drug Administration Schedule
- Female
- Follow-Up Studies
- Granulocytes/drug effects
- Granulocytes/immunology
- HLA-DR Antigens/immunology
- Half-Life
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Maximum Tolerated Dose
- Middle Aged
- Monocytes/drug effects
- Monocytes/immunology
Collapse
Affiliation(s)
- Carmen D Schweighofer
- Department of Internal Medicine I, Center of Integrated Oncology Cologne Bonn, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs), as well as antibody conjugates of protein toxins (immunotoxins) and cytokines (immunocytokines), are showing clinical efficacy, with manageable toxicities, in cancer treatment. AREAS COVERED The utility of an ADC is governed by the antibody and the target, as well as by the drug-linker component of the conjugate. The conjugation site, conjugating group, drug/antibody ratios and site-specific conjugation for product homogeneity are all aspects to consider in optimizing the ADC and enhancing its therapeutic window. Immunotoxin and immunocytokine construction by recombinant methods can be modulated to improve efficacy and reduce toxicity. The Dock-and-Lock (DNL) platform technology provides a flexible approach to assemble mono- or bispecific constructs carrying multiple toxin or cytokine molecules for targeted therapy. EXPERT OPINION Conjugation chemistry and recombinant technologies have had a significant impact on the therapeutic prospects of immunoconjugates, particularly in hematopoietic diseases. Continued concerted efforts from different scientific disciplines are needed, together with newer treatment paradigms, for greater progress in the more challenging therapy of solid tumors.
Collapse
|
28
|
Rossi EA, Goldenberg DM, Chang CH. Complex and defined biostructures with the dock-and-lock method. Trends Pharmacol Sci 2012; 33:474-81. [DOI: 10.1016/j.tips.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/24/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
29
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
30
|
López-Corral L, Sarasquete ME, Beà S, García-Sanz R, Mateos MV, Corchete LA, Sayagués JM, García EM, Bladé J, Oriol A, Hernández-García MT, Giraldo P, Hernández J, González M, Hernández-Rivas JM, San Miguel JF, Gutiérrez NC. SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status. Leukemia 2012; 26:2521-9. [PMID: 22565645 DOI: 10.1038/leu.2012.128] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic events mediating transformation from premalignant monoclonal gammopathies (MG) to multiple myeloma (MM) are unknown. To obtain a comprehensive genomic profile of MG from the early to late stages, we performed high-resolution analysis of purified plasma cells from 20 MGUS, 20 smoldering MM (SMM) and 34 MM by high-density 6.0 SNP array. A progressive increase in the incidence of copy number abnormalities (CNA) from MGUS to SMM and to MM (median 5, 7.5 and 12 per case, respectively) was observed (P=0.006). Gains on 1q, 3p, 6p, 9p, 11q, 19p, 19q and 21q along with 1p, 16q and 22q deletions were significantly less frequent in MGUS than in MM. Although 11q and 21q gains together with 16q and 22q deletions were apparently exclusive of MM status, we observed that these abnormalities were also present in minor subclones in MGUS. Overall, a total of 65 copy number-neutral LOH (CNN-LOH) were detected. Their frequency was higher in active MM than in the asymptomatic entities (P=0.047). A strong association between genetic lesions and fragile sites was also detected. In summary, our study shows an increasing genomic complexity from MGUS to MM and identifies new chromosomal regions involved in CNA and CNN-LOH.
Collapse
Affiliation(s)
- L López-Corral
- Servicio de Hematología del Hospital Universitario de Salamanca, IBMCC (USAL-CSIC) e IBSAL, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 2012; 17:583-90. [PMID: 22289353 DOI: 10.1016/j.drudis.2012.01.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/14/2011] [Accepted: 01/16/2012] [Indexed: 11/20/2022]
Abstract
Several cytokines have been investigated in clinical trials, based on their potent therapeutic activity observed in animal models of cancer and other diseases. However, substantial toxicities are often reported at low doses, thus preventing escalation to therapeutically active regimens. The use of recombinant antibodies or antibody fragments as delivery vehicles promises to enhance greatly the therapeutic index of pro-inflammatory and anti-inflammatory cytokines. This review surveys preclinical and clinical data published in the field of antibody-cytokine fusions (immunocytokines). Molecular determinants (such as molecular format, valence, target antigen), which crucially contribute to immunocytokine performance in vivo, are discussed in the article, as well as recent trends for the combined use of this novel class of biopharmaceuticals with other therapeutic agents.
Collapse
|
32
|
Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23:309-23. [PMID: 22168393 DOI: 10.1021/bc2004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, USA.
| | | | | |
Collapse
|