1
|
Meyers S, Gielen O, Cools J, Demeyer S. Single-cell CRISPR screening characterizes transcriptional deregulation in T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:3167-3181. [PMID: 38813729 PMCID: PMC11443379 DOI: 10.3324/haematol.2023.284901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of leukemia caused by accumulation of multiple genetic alterations in T-cell progenitors. However, for many genes it remains unknown how their mutations contribute to disease development. We therefore performed two single-cell CRISPR screens in primary pro-T cells ex vivo to study the transcriptional impact of loss-of-function alterations in T-ALL and correlate this with effects on cell fitness. The various perturbations were clustered based on their effects on E2F/MYC or STAT/NOTCH signatures, which play a defining role in driving T-cell proliferation. Many of the perturbations resulted in positive effects on the STAT and NOTCH signatures and were predicted to behave as haploinsufficient tumor suppressors in T-ALL. Additionally, Spi1 was identified as an essential gene for pro-T-cell survival, associated with deregulation of the MYC signature and epigenetic consequences. In contrast, Bcl11b was identified as a strong tumor suppressor gene in immature T lymphocytes, associated with deregulation of NF-kB and JAK/STAT signaling. We found a correlation between BCL11B expression level and JAK/STAT pathway mutations in T-ALL patients and demonstrated oncogenic cooperation between Bcl11b inactivation and JAK3 hyperactivation in pro-T cells. Altogether, these single-cell CRISPR screens in pro-T cells provide fundamental insights into the mechanisms of transcriptional deregulation caused by genetic alterations in T-ALL.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| |
Collapse
|
2
|
Wang CP, Ferreira JE, Placek A, Aguayo-Hiraldo P, Raca G, Wood BL, Miller KP, Coates T, Freyer DR, Kovach AE. A de novo germline RUNX1 variant preceding development of concurrent T-lymphoblastic leukemia and myelodysplastic syndrome. Leuk Lymphoma 2024; 65:1357-1361. [PMID: 38733629 DOI: 10.1080/10428194.2024.2347577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 05/13/2024]
Abstract
Germline variants of the RUNX1 gene are associated with RUNX1 Familial Platelet Disorder with Associated Myeloid Malignancies (RUNX1-FPDMM), which is characterized by an increased risk of developing myelodysplastic syndrome (MDS) and/or acute myeloid leukemia. Patients with FPDMM have also been described to develop B- or T-cell acute lymphoblastic leukemia. We present a pediatric patient with RUNX1-FPDMM that evolved into concurrent MDS and T-cell acute lymphoblastic leukemia after a decade of monitoring with serial blood counts. We aim to highlight the treatment challenges and clinical decision-making that may be anticipated in this unique disorder, as well as the potentially curative role for allogenic hematopoietic stem cell transplant in the first complete remission.
Collapse
Affiliation(s)
- Cassandra P Wang
- Children's Hospital Los Angeles, Cancer and Blood Disease Institute, Los Angeles, CA, USA
| | - Juanita E Ferreira
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Alexander Placek
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Paibel Aguayo-Hiraldo
- Children's Hospital Los Angeles, Cancer and Blood Disease Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Transplantation and Cellular Therapy, Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karin P Miller
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas Coates
- Children's Hospital Los Angeles, Cancer and Blood Disease Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David R Freyer
- Children's Hospital Los Angeles, Cancer and Blood Disease Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Baumgärtner LAF, Ettich J, Balles H, Lapp DJ, Mossner S, Bassenge C, Ouzin M, Hanenberg H, Scheller J, Floss DM. Unpaired cysteine insertions favor transmembrane dimerization and induce ligand-independent constitutive cytokine receptor signaling. Biol Chem 2024; 405:531-544. [PMID: 38695485 DOI: 10.1515/hsz-2023-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024]
Abstract
Naturally occurring gain-of-function (GOF) mutants have been identified in patients for a variety of cytokine receptors. Although this constitutive activation of cytokine receptors is strongly associated with malignant disorders, ligand-independent receptor activation is also a useful tool in synthetic biology e.g. to improve adoptive cellular therapies with genetically modified T-cells. Balanced Interleukin (IL-)7 signaling via a heterodimer of IL-7 receptor (IL-7Rα) and the common γ-chain (γc) controls T- and B-cell development and expansion, whereas uncontrolled IL-7 signaling can drive acute lymphoid leukemia (ALL) development. The ALL-driver mutation PPCL in the transmembrane domain of IL-7Rα is a mutational insertion of the four amino acids proline-proline-cysteine-leucine and leads to ligand-independent receptor dimerization and constitutive activation. We showed here in the cytokine-dependent pre-B-cell line Ba/F3 that the PPCL-insertion in a synthetic version of the IL-7Rα induced γc-independent STAT5 and ERK phosphorylation and also proliferation of the cells and that booster-stimulation by arteficial ligands additionally generated non-canonical STAT3 phosphorylation via the synthetic IL-7Rα-PPCL-receptors. Transfer of the IL-7Rα transmembrane domain with the PPCL insertion into natural and synthetic cytokine receptor chains of the IL-6, IL-12 and Interferon families also resulted in constitutive receptor signaling. In conclusion, our data suggested that the insertion of the mutated PPCL IL-7Rα transmembrane domain is an universal approach to generate ligand-independent, constitutively active cytokine receptors.
Collapse
Affiliation(s)
- Lynn Affrica Felicitas Baumgärtner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Helene Balles
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dorothee Johanna Lapp
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Christin Bassenge
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Meryem Ouzin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Doreen Manuela Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. PIM1 is a potential therapeutic target for the leukemogenic effects mediated by JAK/STAT pathway mutations in T-ALL/LBL. NPJ Precis Oncol 2024; 8:152. [PMID: 39033228 PMCID: PMC11271448 DOI: 10.1038/s41698-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Precursor T-cell neoplasms (T-ALL/LBL) are aggressive hematological malignancies that arise from the malignant transformation of immature thymocytes. Despite the JAK/STAT pathway is recurrently altered in these neoplasms, there are not pharmacological inhibitors officially approved for the treatment of T-ALL/LBL patients that present oncogenic JAK/STAT pathway mutations. In the effort to identify potential therapeutic targets for those patients, we followed an alternative approach and focused on their transcriptional profile. We combined the analysis of molecular data from T-ALL/LBL patients with the generation of hematopoietic cellular models to reveal that JAK/STAT pathway mutations are associated with an aberrant transcriptional profile. Specifically, we demonstrate that JAK/STAT pathway mutations induce the overexpression of the PIM1 gene. Moreover, we show that the pan-PIM inhibitor, PIM447, significantly reduces the leukemogenesis, as well as the aberrant activation of c-MYC and mTOR pathways in cells expressing different JAK/STAT pathway mutations, becoming a potential therapeutic opportunity for a relevant subset of T-ALL/LBL patients.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| |
Collapse
|
5
|
Lin Q, Cai B, Ke R, Chen L, Ni X, Liu H, Lin X, Wang B, Shan X. Integrative bioinformatics and experimental validation of hub genetic markers in acne vulgaris: Toward personalized diagnostic and therapeutic strategies. J Cosmet Dermatol 2024; 23:1777-1799. [PMID: 38268224 DOI: 10.1111/jocd.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Acne vulgaris is a widespread chronic inflammatory dermatological condition. The precise molecular and genetic mechanisms of its pathogenesis remain incompletely understood. This research synthesizes existing databases, targeting a comprehensive exploration of core genetic markers. METHODS Gene expression datasets (GSE6475, GSE108110, and GSE53795) were retrieved from the GEO. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were conducted using GSVA for pathway assessment and clusterProfiler for GO and KEGG analyses. PPI networks and immune cell infiltration were analyzed using the STRING database and ssGSEA, respectively. We investigated the correlation between hub gene biomarkers and immune cell infiltration using Spearman's rank analysis. ROC curve analysis validated the hub genes' diagnostic accuracy. miRNet, TarBase v8.0, and ChEA3 identified miRNA/transcription factor-gene interactions, while DrugBank delineated drug-gene interactions. Experiments utilized HaCaT cells stimulated with Propionibacterium acnes, treated with retinoic acid and methotrexate, and evaluated using RT-qPCR, ELISA, western blot, lentiviral transduction, CCK-8, wound-healing, and transwell assays. RESULTS There were 104 genes with consistent differences across the three datasets of paired acne and normal skin. Functional analyses emphasized the significant enrichment of these DEGs in immune-related pathways. PPI network analysis pinpointed hub genes PTPRC, CXCL8, ITGB2, and MMP9 as central players in acne pathogenesis. Elevated levels of specific immune cell infiltration in acne lesions corroborated the inflammatory nature of the disease. ROC curve analysis identified the acne diagnostic potential of four hub genes. Key miRNAs, particularly hsa-mir-124-3p, and central transcription factors like TFEC were noted as significant regulators. In vitro validation using HaCaT cells confirmed the upregulation of hub genes following Propionibacterium acnes exposure, while CXCL8 knockdown reduced pro-inflammatory cytokines, cell proliferation, and migration. DrugBank insights led to the exploration of retinoic acid and methotrexate, both of which mitigated gene expression upsurge and inflammatory mediator secretion. CONCLUSION This comprehensive study elucidated pivotal genes associated with acne pathogenesis, notably PTPRC, CXCL8, ITGB2, and MMP9. The findings underscore potential biomarkers, therapeutic targets, and the therapeutic potential of agents like retinoic acid and methotrexate. The congruence between bioinformatics and experimental validations suggests promising avenues for personalized acne treatments.
Collapse
Affiliation(s)
- Qian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Lu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinjian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Tesio M. Editorial: Tyrosine kinases and phosphatases in T- cell malignancies. Front Oncol 2024; 14:1372133. [PMID: 38371621 PMCID: PMC10874103 DOI: 10.3389/fonc.2024.1372133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Affiliation(s)
- Melania Tesio
- U111, Lymphoma-Immuno Biology, Centre International de Recherche en Infectiologie, Lyon, France
| |
Collapse
|
7
|
Salmond RJ. Targeting Protein Tyrosine Phosphatases to Improve Cancer Immunotherapies. Cells 2024; 13:231. [PMID: 38334623 PMCID: PMC10854786 DOI: 10.3390/cells13030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in immunotherapy have brought significant therapeutic benefits to many cancer patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches, meaning that further targets are required to increase the number of patients who benefit from these technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role in the regulation of cancer cell biology and the immune response. In this review, we summarize the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs in cancer cells and discuss recent data showing that several of these enzymes act as intracellular immune checkpoints that suppress effective tumour immunity. We highlight new data showing that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors as anti-cancer drugs.
Collapse
Affiliation(s)
- Robert J Salmond
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
8
|
Chen D, Huang J, Xiao S, Cheng G, Liu Y, Zhao T, Chen C, Yi Y, Peng Y, Cao J. Synthesis, anti-leukemia activity, and molecular docking of novel 3,16-androstenedione derivatives. Steroids 2023; 199:109290. [PMID: 37549776 DOI: 10.1016/j.steroids.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
In this study, we synthesized androsta-4,14-diene-3,16-dione, 12β-hydroxyandrosta-4,14-diene-3,16-dione, and other 3,16-androstenedione derivatives from commercially available dehydroepiandrosterone as a starting material in 9-13 steps with high yields. The bioactivity of the obtained compounds was evaluated. Compounds 14a and 23a were shown to have high antitumor activity against acute lymphoblastic leukemia cell lines Nalm-6 and BALL-1, respectively. Network pharmacology analysis showed that the anti-leukemia activity of compounds 14a and 23a might be related to the JAK2, ABL1 protein, and PI3K/Akt signaling pathways. The molecular docking of compounds 14a and 23a identified possible active sites, with the lowest docking scores for PTGS2 and MAPK14, respectively. In addition, the absorption, distribution, metabolism, and excretion prediction results revealed the drug-likeness of the two compounds. Therefore, compounds 14a and 23a should be considered anti-leukemia candidates in future studies.
Collapse
Affiliation(s)
- Dongjie Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiaying Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caixia Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongxin Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yungui Peng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Fischer A, Lersch R, de Andrade Krätzig N, Strong A, Friedrich MJ, Weber J, Engleitner T, Öllinger R, Yen HY, Kohlhofer U, Gonzalez-Menendez I, Sailer D, Kogan L, Lahnalampi M, Laukkanen S, Kaltenbacher T, Klement C, Rezaei M, Ammon T, Montero JJ, Schneider G, Mayerle J, Heikenwälder M, Schmidt-Supprian M, Quintanilla-Martinez L, Steiger K, Liu P, Cadiñanos J, Vassiliou GS, Saur D, Lohi O, Heinäniemi M, Conte N, Bradley A, Rad L, Rad R. In vivo interrogation of regulatory genomes reveals extensive quasi-insufficiency in cancer evolution. CELL GENOMICS 2023; 3:100276. [PMID: 36950387 PMCID: PMC10025556 DOI: 10.1016/j.xgen.2023.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Mathias J. Friedrich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Hsi-Yu Yen
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Liz Kogan
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Majdaddin Rezaei
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Juan J. Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Mayerle
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Mathias Heikenwälder
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - George S. Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0PT, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
11
|
Mura G, Karaca Atabay E, Menotti M, Martinengo C, Ambrogio C, Giacomello G, Arigoni M, Olivero M, Calogero RA, Chiarle R, Voena C. Regulation of CD45 phosphatase by oncogenic ALK in anaplastic large cell lymphoma. Front Oncol 2023; 12:1085672. [PMID: 36698412 PMCID: PMC9869957 DOI: 10.3389/fonc.2022.1085672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Anaplastic Large Cell Lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma frequently driven by the chimeric tyrosine kinase NPM-ALK, generated by the t (2,5)(p23;q35) translocation. While ALK+ ALCL belongs to mature T cell lymphomas, loss of T cell identity is observed in the majority of ALCL secondary to a transcriptional and epigenetic repressive program induced by oncogenic NPM-ALK. While inhibiting the expression of T cell molecules, NPM-ALK activates surrogate TCR signaling by directly inducing pathways downstream the TCR. CD45 is a tyrosine phosphatase that plays a central role in T cell activation by controlling the TCR signaling and regulating the cytokine responses through the JAK/STAT pathway and exists in different isoforms depending on the stage of T-cell maturation, activation and differentiation. ALK+ ALCL cells mainly express the isoform CD45RO in keeping with their mature/memory T cell phenotype. Because of its regulatory effect on the JAK/STAT pathway that is essential for ALK+ ALCL, we investigated whether CD45 expression was affected by oncogenic ALK. We found that most ALK+ ALCL cell lines express the CD45RO isoform with modest CD45RA expression and that NPM-ALK regulated the expression of these CD45 isoforms. Regulation of CD45 expression was dependent on ALK kinase activity as CD45RO expression was increased when NPM-ALK kinase activity was inhibited by treatment with ALK tyrosine kinase inhibitors (TKIs). Silencing ALK expression through shRNA or degradation of ALK by the PROTAC TL13-112 caused upregulation of CD45RO both at mRNA and protein levels with minimal changes on CD45RA, overall indicating that oncogenic ALK downregulates the expression of CD45. CD45 repression was mediated by STAT3 as demonstrated by ChIP-seq data on ALCL cells treated with the ALK-TKI crizotinib or cells treated with a STAT3 degrader. Next, we found that knocking-out CD45 with the CRISPR/Cas9 system resulted in increased resistance to ALK TKI treatment and CD45 was down-regulated in ALCL cells that developed resistance in vitro to ALK TKIs. Overall, these data suggest that CD45 expression is regulated by ALK via STAT3 and acts as a rheostat of ALK oncogenic signaling and resistance to TKI treatment in ALCL.
Collapse
Affiliation(s)
- Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elif Karaca Atabay
- Department of Pathology, Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Gloria Giacomello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
12
|
Lv Z, Wang T, Cao X, Sun M, Qu Y. The role of receptor‐type protein tyrosine phosphatases in cancer. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhengyuan Lv
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
- Central Laboratory, Translational Medicine Research Center The Affiliated Jiangning Hospital with Nanjing Medical University Nanjing China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Mengting Sun
- Biobank of Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
13
|
Drobna‐Śledzińska M, Maćkowska‐Maślak N, Jaksik R, Kosmalska M, Szarzyńska B, Lejman M, Sędek Ł, Szczepański T, Taghon T, Van Vlierberghe P, Witt M, Dawidowska M. Multiomics to investigate the mechanisms contributing to repression of PTPRC and SOCS2 in pediatric T-ALL: Focus on miR-363-3p and promoter methylation. Genes Chromosomes Cancer 2022; 61:720-733. [PMID: 35778917 PMCID: PMC9796420 DOI: 10.1002/gcc.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.
Collapse
Affiliation(s)
| | | | - Roman Jaksik
- Department of Systems Biology and EngineeringSilesian University of TechnologyGliwicePoland
| | - Maria Kosmalska
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland
| | - Bronisława Szarzyńska
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland,Polish Stem Cells BankWarsawPoland
| | - Monika Lejman
- Laboratory of Genetic DiagnosticsMedical University of LublinLublinPoland
| | - Łukasz Sędek
- Department of Microbiology and ImmunologyZabrze, Medical University of Silesia in KatowiceZabrzePoland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and OncologyMedical University of Silesia in KatowiceZabrzePoland
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium,Cancer Research Institute GhentGhentBelgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute GhentGhentBelgium,Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Michał Witt
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland
| | | |
Collapse
|
14
|
Wang X, Huang Y, Li S, Zhang H. Integrated machine learning methods identify FNDC3B as a potential prognostic biomarker and correlated with immune infiltrates in glioma. Front Immunol 2022; 13:1027154. [PMID: 36275754 PMCID: PMC9582524 DOI: 10.3389/fimmu.2022.1027154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent discoveries have revealed that fibronectin type III domain containing 3B (FNDC3B) acts as an oncogene in various cancers; however, its role in glioma remains unclear. Methods In this study, we comprehensively investigated the expression, prognostic value, and immune significance of FNDC3B in glioma using several databases and a variety of machine learning algorithms. RNA expression data and clinical information of 529 patients from the Cancer Genome Atlas (TCGA) and 1319 patients from Chinese Glioma Genome Atlas (CGGA) databases were downloaded for further investigation. To evaluate whether FNDC3B expression can predict clinical prognosis of glioma, we constructed a clinical nomogram to estimate long-term survival probabilities. The predicted nomogram was validated by CGGA cohorts. Differentially expressed genes (DEGs) were detected by the Wilcoxon test based on the TCGA-LGG dataset and the weighted gene co-expression network analysis (WGCNA) was implemented to identify the significant module associated with the expression level of FNDC3B. Furthermore, we investigated the correlation between FNDC3B with cancer immune infiltrates using TISIDB, ESTIMATE, and CIBERSORTx. Results Higher FNDC3B expression displayed a remarkably worse overall survival and the expression level of FNDC3B was an independent prognostic indicator for patients with glioma. Based on TCGA LGG dataset, a co-expression network was established and the hub genes were identified. FNDC3B expression was positively correlated to the tumor-infiltrating lymphocytes and immune infiltration score, and high FNDC3B expression was accompanied by the increased expression of B7-H3, PD-L1, TIM-3, PD-1, and CTLA-4. Moreover, expression of FNDC3B was significantly associated with infiltrating levels of several types of immune cells and most of their gene markers in glioma. Conclusion This study demonstrated that FNDC3B may be involved in the occurrence and development of glioma and can be regarded as a promising prognostic and immunotherapeutic biomarker for the treatment of glioma.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shanshan Li
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Hong Zhang,
| |
Collapse
|
15
|
Dai M, Sun H, Zhao L, Wu Q, You B, Xu F, Liao J, Zhu S, Li Z, Yao Y, Nair V, Liao M. Duck CD8 + T Cell Response to H5N1 Highly Pathogenic Avian Influenza Virus Infection In Vivo and In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:979-990. [PMID: 35940633 PMCID: PMC10613577 DOI: 10.4049/jimmunol.2101147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/29/2022] [Indexed: 11/01/2023]
Abstract
Domestic ducks are the important host for H5N1 highly pathogenic avian influenza virus (HPAIV) infection and epidemiology, but little is known about the duck T cell response to H5N1 AIV infection. In infection experiments of mallard ducks, we detected significantly increased CD8+ cells and augmented expression of cytotoxicity-associated genes, including granzyme A and IFN-γ, in PBMCs from 5 to 9 d postinfection when the virus shedding was clearly decreased, which suggested the importance of the duck cytotoxic T cell response in eliminating H5N1 infection in vivo. Intriguingly, we found that a CD8high+ population of PBMCs was clearly upregulated in infected ducks from 7 to 9 d postinfection compared with uninfected ducks. Next, we used Smart-Seq2 technology to investigate the heterogeneity and transcriptional differences of the duck CD8+ cells. Thus, CD8high+ cells were likely to be more responsive to H5N1 AIV infection, based on the high level of expression of genes involved in T cell responses, activation, and proliferation, including MALT1, ITK, LCK, CD3E, CD247, CFLAR, IL-18R1, and IL-18RAP. More importantly, we have also successfully cultured H5N1 AIV-specific duck T cells in vitro, to our knowledge, for the first time, and demonstrated that the CD8high+ population was increased with the duck T cell activation and response in vitro, which was consistent with results in vivo. Thus, the duck CD8high+ cells represent a potentially effective immune response to H5N1 AIV infection in vivo and in vitro. These findings provide novel insights and direction for developing effective H5N1 AIV vaccines.
Collapse
Affiliation(s)
- Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China;
| | - Hui Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Zhao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qingxin Wu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bowen You
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fengxiang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiayu Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sufang Zhu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; and
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; and
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China;
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
16
|
Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function. Cell Rep 2022; 39:111006. [PMID: 35767951 DOI: 10.1016/j.celrep.2022.111006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
T cells depend on the phosphatase CD45 to initiate T cell receptor signaling. Although the critical role of CD45 in T cells is established, the mechanisms controlling function and localization in the membrane are not well understood. Moreover, the regulation of specific CD45 isoforms in T cell signaling remains unresolved. By using unbiased mass spectrometry, we identify the tetraspanin CD53 as a partner of CD45 and show that CD53 controls CD45 function and T cell activation. CD53-negative T cells (Cd53-/-) exhibit substantial proliferation defects, and Cd53-/- mice show impaired tumor rejection and reduced IFNγ-producing T cells compared with wild-type mice. Investigation into the mechanism reveals that CD53 is required for CD45RO expression and mobility. In addition, CD53 is shown to stabilize CD45 on the membrane and is required for optimal phosphatase activity and subsequent Lck activation. Together, our findings reveal CD53 as a regulator of CD45 activity required for T cell immunity.
Collapse
|
17
|
Lin Z, Huang X, Ji X, Tian N, Gan Y, Ke L. Analysis of multiple databases identifies crucial genes correlated with prognosis of hepatocellular carcinoma. Sci Rep 2022; 12:9002. [PMID: 35637248 PMCID: PMC9151754 DOI: 10.1038/s41598-022-13159-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Despite advancements made in the therapeutic strategies on hepatocellular carcinoma (HCC), the survival rate of HCC patient is not satisfactory enough. Therefore, there is an urgent need for the valuable prognostic biomarkers in HCC therapy. In this study, we aimed to screen hub genes correlated with prognosis of HCC via multiple databases. 117 HCC-related genes were obtained from the intersection of the four databases. We subsequently identify 10 hub genes (JUN, IL10, CD34, MTOR, PTGS2, PTPRC, SELE, CSF1, APOB, MUC1) from PPI network by Cytoscape software analysis. Significant differential expression of hub genes between HCC tissues and adjacent tissues were observed in UALCAN, HCCDB and HPA databases. These hub genes were significantly associated with immune cell infiltrations and immune checkpoints. The hub genes were correlated with clinical parameters and survival probability of HCC patients. 147 potential targeted therapeutic drugs for HCC were identified through the DGIdb database. These hub genes could be used as novel prognostic biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Zhifeng Lin
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xuqiong Huang
- Medical Administration Division, Affiliated Huadu Hospital, Southern Medical University (People's Hospiatl of Huadu District), Guangzhou, 510800, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Li Ke
- Guangdong Province Key Laboratory of Major Obstetric Diseases, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
18
|
Wei J, Fang D, Zhou W. CCR2 and PTPRC are regulators of tumor microenvironment and potential prognostic biomarkers of lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1419. [PMID: 34733971 PMCID: PMC8506762 DOI: 10.21037/atm-21-3301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Background Tumor microenvironment (TME) plays an essential role in lung adenocarcinoma (LUAD) development and metastasis. With the development of TME research, it has been proved that differences in tumor-infiltrating immune cells (TICs) and gene expression profile are related to the prognosis of cancer. The aim of our study was to identify key genes affecting immune state in TME of LUAD. Methods The RNA-seq data and clinical characteristics of 594 LUAD patients were downloaded from the TCGA database. ImmuneScore, StromalScore and ESTIMATEScore of each LUAD sample were calculated using ESTIMATE algorithm. Based on the median of different scores, LUAD samples were divided into high and low score groups. Differentially expressed genes (DEGs) between groups were obtained, and univariate Cox regression analysis and protein-protein interaction (PPI) network were used to screen the shared DEGs generating in the intersection analysis. Finally, the CIBORSORT algorithm was performed to calculate the relative contents of TICs for each LUAD sample, and the correlation analysis between TICs and key genes was used to determine the influence of key genes to the TME. Results In the presented study, we found that three different scores were positively correlated with the prognosis of LUAD patients, and correlation analysis showed the different scores were closely related to tumor progression and metastasis. After performing the intersection analysis, a total of 585 up-regulated and 107 down-regulated DEGs between the high and low score groups were obtained, all of which were enriched in immune-related functions. Having used univariate COX regression analysis and PPI network, the key genes, CCR2 and PTPRC, affecting the immune status of TME and the prognosis of LUAD were acquired. Analysis based on the CIBERSORT algorithm suggested that CCR2 and PTPRC were correlated with a variety of TICs, and closely related to the clinical characteristics of the LUAD patients. Conclusions Our research showed that CCR2 and PTPRC may be potential prognostic markers in LUAD, which may affect the function of γδT cells and other immune cells by participating in the regulation of TME immune state.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Weijie Zhou
- Department of Clinical Laboratory, Baise Peopl's Hospital, Baise, China
| |
Collapse
|
19
|
Ghahramani N, Shodja J, Rafat SA, Panahi B, Hasanpur K. Integrative Systems Biology Analysis Elucidates Mastitis Disease Underlying Functional Modules in Dairy Cattle. Front Genet 2021; 12:712306. [PMID: 34691146 PMCID: PMC8531812 DOI: 10.3389/fgene.2021.712306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mastitis is the most prevalent disease in dairy cattle and one of the most significant bovine pathologies affecting milk production, animal health, and reproduction. In addition, mastitis is the most common, expensive, and contagious infection in the dairy industry. Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify candidate genes and functional modules associated with mastitis disease. The results were then applied to systems biology analysis via weighted gene coexpression network analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of Genes and Genomes (KEGG), and modeling using machine-learning algorithms. Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794 meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360 meta-genes were found that were significantly enriched as "peroxisome," "NOD-like receptor signaling pathway," "IL-17 signaling pathway," and "TNF signaling pathway" KEGG pathways. The turquoise module (n = 214 genes) and the brown module (n = 57 genes) were identified as critical functional modules associated with mastitis through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified functional modules. Finally, using attribute weighting and machine-learning methods, hub genes that are sufficiently informative in Escherichia coli mastitis were used to optimize predictive models. The constructed model proposed the optimal approach for the meta-genes and validated several high-ranked genes as biomarkers for E. coli mastitis using the decision tree (DT) method. Conclusion: The candidate genes and pathways proposed in this study may shed new light on the underlying molecular mechanisms of mastitis disease and suggest new approaches for diagnosing and treating E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Nooshin Ghahramani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Silva A, Almeida ARM, Cachucho A, Neto JL, Demeyer S, de Matos M, Hogan T, Li Y, Meijerink J, Cools J, Grosso AR, Seddon B, Barata JT. Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood 2021; 138:1040-1052. [PMID: 33970999 PMCID: PMC8462360 DOI: 10.1182/blood.2019000553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tight regulation of IL-7Rα expression is essential for normal T-cell development. IL-7Rα gain-of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL). Although a subset of patients with T-ALL display high IL7R messenger RNA levels and cases with IL7R gains have been reported, the impact of IL-7Rα overexpression, rather than mutational activation, during leukemogenesis remains unclear. In this study, overexpressed IL-7Rα in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ultimately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, including heterogeneity in immunophenotype and genetic subtype between cases, frequent hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT, PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7, but remain sensitive to inhibitors of IL-7R-mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR), palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resembling that of IL-7-stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that high expression of IL-7Rα can promote T-cell tumorigenesis, even in the absence of IL-7Rα mutational activation.
Collapse
Affiliation(s)
- Ana Silva
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Cachucho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João L Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofie Demeyer
- Vlaams Instituut voor Biotechnologie (VIB) Center for Cancer Biology
- Katholieke Universiteit (KU) Leuven Center for Human Genetics, Katholieke Universiteit (VIB-KU) Leuven, Leuven, Belgium
| | - Mafalda de Matos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Yunlei Li
- Department of Pathology Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.; and
| | - Jan Cools
- Vlaams Instituut voor Biotechnologie (VIB) Center for Cancer Biology
| | - Ana Rita Grosso
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Universidade NOVA de Lisboa, Caparica, Portugal
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
22
|
Balasubramanian P, Singh J, Verma D, Kumar R, Bakhshi S, Tanwar P, Singh AR, Chopra A. Prognostic significance of CD45 antigen expression in pediatric acute lymphoblastic leukemia. Blood Cells Mol Dis 2021; 89:102562. [PMID: 33756412 DOI: 10.1016/j.bcmd.2021.102562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/14/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The treatment of pediatric acute lymphoblastic leukemias (ALL) has seen remarkable advances recently. However, relapse occurs in approximately 20% of cases which necessitates identifying additional high risk parameters for treatment intensification. The aim of this study is to assess the prognostic significance of CD45 antigen expression in pediatric ALL. METHODS We studied 363 pediatric patients with B cell precursor-ALL (BCP-ALL) (n = 313) and T-ALL (n = 50). The ratio of median fluorescence intensity of CD45 expressed in leukemic blasts and normal lymphocytes was calculated. The 75th percentile was taken as cut-off to categorise patients into CD45 high and CD45 low groups. RESULTS The 75th percentile was 0.141 in BCP-ALL and 0.548 in T-ALL. In BCP-ALL, there was a statistically significant association of age (≥10 years) (p = 0.027) and National Cancer Institute high risk group (p = 0.001) with high CD45 expression but not in T-ALL. Worse event-free survival (EFS) was seen with high CD45 expression in BCP-ALL (42.17% versus 60.83%, p = 0.0053). In T-ALL, there was no association between CD45 expression and EFS (CD45 high 40.40% versus low 67.35%, p = 0.414). The overall survival (OS) was 70% versus 60% (p = 0.38) in BCP-ALL and the OS was 82% versus 68% (p = 0.16) in T-ALL for CD45 low versus CD45 high groups, respectively. CONCLUSION We conclude that high CD45 surface expression is associated with worse EFS in pediatric BCP-ALL.
Collapse
Affiliation(s)
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Deepak Verma
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Rajive Kumar
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMS, New Delhi, India
| | | | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMS, New Delhi, India.
| |
Collapse
|
23
|
Sarmadi VH, Ahmadloo S, Boroojerdi MH, John CM, Al-Graitte SJR, Lawal H, Maqbool M, Hwa LK, Ramasamy R. Human Mesenchymal Stem Cells-mediated Transcriptomic Regulation of Leukemic Cells in Delivering Anti-tumorigenic Effects. Cell Transplant 2021; 29:963689719885077. [PMID: 32024378 PMCID: PMC7444238 DOI: 10.1177/0963689719885077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of leukemia has become much difficult because of resistance to the
existing anticancer therapies. This has thus expedited the search for alternativ
therapies, and one of these is the exploitation of mesenchymal stem cells (MSCs)
towards control of tumor cells. The present study investigated the effect of
human umbilical cord-derived MSCs (UC-MSCs) on the proliferation of leukemic
cells and gauged the transcriptomic modulation and the signaling pathways
potentially affected by UC-MSCs. The inhibition of growth of leukemic tumor cell
lines was assessed by proliferation assays, apoptosis and cell cycle analysis.
BV173 and HL-60 cells were further analyzed using microarray gene expression
profiling. The microarray results were validated by RT-qPCR and western blot
assay for the corresponding expression of genes and proteins. The UC-MSCs
attenuated leukemic cell viability and proliferation in a dose-dependent manner
without inducing apoptosis. Cell cycle analysis revealed that the growth of
tumor cells was arrested at the G0/G1 phase. The
microarray results identified that HL-60 and BV173 share 35 differentially
expressed genes (DEGs) (same expression direction) in the presence of UC-MSCs.
In silico analysis of these selected DEGs indicated a
significant influence in the cell cycle and cell cycle-related biological
processes and signaling pathways. Among these, the expression of DBF4, MDM2,
CCNE2, CDK6, CDKN1A, and CDKN2A was implicated in six different signaling
pathways that play a pivotal role in the anti-tumorigenic activity exerted by
UC-MSCs. The UC-MSCs perturbate the cell cycle process of leukemic cells via
dysregulation of tumor suppressor and oncogene expression.
Collapse
Affiliation(s)
- Vahid Hosseinpour Sarmadi
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Salma Ahmadloo
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Genetics Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohadese Hashem Boroojerdi
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Cini Mathew John
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Satar Jabbar Rahi Al-Graitte
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Medical Microbiology, College of Medicine, University of Kerbala, Kerbala City, Iraq
| | - Hamza Lawal
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Sciences, Bauchi State University, Gadau, Itas-Gadau LGA, Bauchi State 751105 Nigeria
| | - Maryam Maqbool
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ling King Hwa
- Medical Genetics Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
24
|
Dai Q, Zhang G, Yang H, Wang Y, Ye L, Peng L, Shi R, Guo S, He J, Jiang Y. Clinical features and outcome of pediatric acute lymphoblastic leukemia with low peripheral blood blast cell count at diagnosis. Medicine (Baltimore) 2021; 100:e24518. [PMID: 33530278 PMCID: PMC7850651 DOI: 10.1097/md.0000000000024518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Peripheral blood (PB) blast cell count on day 8 of prednisone therapy has been considered one of the strongest predictors of outcome in children with acute lymphoblastic leukemia (ALL). However, little is known about the clinical features and prognostic impact of PB blast cell count at diagnosis in these patients. The aim of this study was to evaluate the relationship between initial PB blast cell count and clinical prognosis of pediatric ALL.The study comprised 367 patients with ALL, aged 0 to 14 years, enrolled and treated using the Chinese Children's Leukemia Group-ALL 2008 protocol between 2011 and 2015. The majority (91.6%) of patients were B-cell precursor ALL (BCP ALL), and 8.4% were T-cell ALL (T-ALL).Patients with BCP ALL in the low PB blast cell count group (<1 × 109/L) had significantly superior survival rates to those in the high count group (≥30 × 109/L). In T-ALL, the low count group showed significantly inferior survival rates compared to both the intermediate count group (1-29.9 × 109/L) and high count group. Multivariate analysis revealed that the initial white blood cell count and minimal residual disease at the end of induction therapy were independently predictive of BCP ALL outcome, while risk stratification was shown to be an independent prognostic factor for T-ALL outcome.These results indicated that low blast cell count in PB at diagnosis was associated with different clinical outcomes in patients with BCP ALL and T-ALL, although it was not an independent outcome predictor by multivariate analysis.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Zhu ZP, Lin LR, Lv TD, Xu CR, Cai TY, Lin J. High expression levels of DEF6 predicts a poor prognosis for patients with clear cell renal cell carcinoma. Oncol Rep 2020; 44:2056-2066. [PMID: 33000227 PMCID: PMC7551049 DOI: 10.3892/or.2020.7736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant tumors and early detection contributes to a better prognosis. Finding new biomarkers for the diagnosis or treatment remains meaningful. DEF6 guanine nucleotide exchange factor (DEF6) is upregulated in ccRCC compared to normal controls, but the relationship between DEF6 expression and prognosis in ccRCC is unclear. Moreover, the potential biological functions of DEF6 in ccRCC remains unclear. In the present study, the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), TISIDB and the clinical database of the Peking University First Hospital were used to analyze DEF6 expression in ccRCC. Immunohistochemistry (IHC), western blotting and reverse transcription-quantitative PCR were used to examine the DEF6 protein and mRNA expression levels in cell lines and clinical samples. Subsequently, the Kaplan-Meier method and Cox regression analyses were used to determine the impact of DEF6 expression on the overall survival of patients alongside other clinical variables in both the TCGA database and the present clinical database. The results showed that both DEF6 mRNA and protein expression levels were upregulated in ccRCC compared to normal controls. The Kaplan-Meier survival analysis showed that patients with high DEF6 expression had poor prognoses from both the TCGA database and the present clinical database. Univariate survival analysis and multivariate survival analysis revealed that DEF6 could be an independent prognostic factor for ccRCC. Additionally, bioinformatics analysis indicated that differentially expressed genes related to DEF6 expression influenced ccRCC by regulating the tumor immune microenvironment. In conclusion, overexpression of DEF6 is significantly correlated with a poor prognosis for patients with ccRCC and DEF6 may influence the biological processes involved with ccRCC by regulating the immune microenvironment.
Collapse
Affiliation(s)
- Zhen-Peng Zhu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan-Ruo Lin
- College of Basic Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Tong-De Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chun-Ru Xu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Tian-Yu Cai
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
26
|
Pan J, Tian X, Huang H, Zhong N. Proteomic Study of Fetal Membrane: Inflammation-Triggered Proteolysis of Extracellular Matrix May Present a Pathogenic Pathway for Spontaneous Preterm Birth. Front Physiol 2020; 11:800. [PMID: 32792973 PMCID: PMC7386131 DOI: 10.3389/fphys.2020.00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Spontaneous preterm birth (sPTB), which predominantly presents as spontaneous preterm labor (sPTL) or prelabor premature rupture of membranes (PPROM), is a syndrome that accounts for 5-10% of live births annually. The long-term morbidity in surviving preterm infants is significantly higher than that in full-term neonates. The causes of sPTB are complex and not fully understood. Human placenta, the maternal and fetal interface, is an environmental core of fetal intrauterine life, mediates fetal oxygen exchange, nutrient uptake, and waste elimination and functions as an immune-defense organ. In this study, the molecular signature of preterm birth placenta was assessed and compared to full-term placenta by proteomic profiling. MATERIALS AND METHODS Four groups of fetal membranes (the amniochorionic membranes), with five cases in each group in the discovery study and 30 cases in each group for validation, were included: groups A: sPTL; B: PPROM; C: full-term birth (FTB); and D: full-term premature rupture of membrane (PROM). Fetal membranes were dissected and used for proteome quantification study. Maxquant and Perseus were used for protein quantitation and statistical analysis. Both fetal membranes and placental villi samples were used to validate proteomic discovery. RESULTS Proteomics analysis of fetal membranes identified 2,800 proteins across four groups. Sixty-two proteins show statistical differences between the preterm and full-term groups. Among these differentially expressed proteins are (1) proteins involved in inflammation (HPGD), T cell activation (PTPRC), macrophage activation (CAPG, CD14, and CD163), (2) cell adhesion (ICAM and ITGAM), (3) proteolysis (CTSG, ELANE, and MMP9), (4) antioxidant (MPO), (5) extracellular matrix (ECM) proteins (APMAP, COL4A1, LAMA2, LMNB1, LMNB2, FBLN2, and CSRP1) and (6) metabolism of glycolysis (PKM and ADPGK), fatty acid synthesis (ACOX1 and ACSL3), and energy biosynthesis (ATP6AP1 and CYBB). CONCLUSION Our molecular signature study of preterm fetal membranes revealed inflammation as a major event, which is inconsistent with previous findings. Proteolysis may play an important role in fetal membrane rupture. Extracellular matrix s have been altered in preterm fetal membranes due to proteolysis. Metabolism was also altered in preterm fetal membranes. The molecular changes in the fetal membranes provided a significant molecular signature for PPROM in preterm syndrome.
Collapse
Affiliation(s)
- Jing Pan
- Sanya Maternity and Child Care Hospital, Sanya, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Sanya, China
| | - Honglei Huang
- Proteomic Core Facility, Oxford University, Oxford, United Kingdom
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
27
|
Campos LW, Pissinato LG, Yunes JA. Deleterious and Oncogenic Mutations in the IL7RA. Cancers (Basel) 2019; 11:cancers11121952. [PMID: 31817502 PMCID: PMC6966522 DOI: 10.3390/cancers11121952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin 7 (IL-7) is a critical cytokine that plays a fundamental role in B- and T-cell development and in acute lymphoblastic leukemia (ALL). Its receptor (IL7R) is a transmembrane heterodimer formed by the IL7Rα and the IL2Rγ chain (γc). The IL7R signals through the JAK/STAT pathway. Loss-of-function mutations and some polymorphisms of the IL7Rα were associated to immunodeficiency and inflammatory diseases, respectively. Gain-of-function mutations were described in T-cell ALL and in high risk precursor B-cell ALL. Most confirmed loss-of-function mutations occur in the extracellular part of the IL7Rα while oncogenic mutations are exclusively found in the extracellular juxtamembrane (EJM) or transmembrane regions. Oncogenic mutations promote either IL7Rα/IL7Rα homodimerization and constitutive signaling, or increased affinity to γc or IL-7. This work presents a review on IL7Rα polymorphisms/mutations and attempts to present a classification based on their structural consequences and resulting biological activity.
Collapse
Affiliation(s)
- Lívia Weijenborg Campos
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - Leonardo Granato Pissinato
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, SP 13083-210, Brazil
| | - José Andrés Yunes
- Centro Infantil Boldrini, Campinas, SP 13083-210, Brazil; (L.W.C.); (L.G.P.)
- Medical Genetics Department, Faculty of Medical Sciences, State University of Campinas, Campinas, SP 13083-894, Brazil
- Correspondence: ; Tel.: +55-19-37875070; Fax: +55-19-3289-3571
| |
Collapse
|
28
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
29
|
Dos Santos NR, Ghysdael J, Tran Quang C. The TCR/CD3 complex in leukemogenesis and as a therapeutic target in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100638. [PMID: 31378701 DOI: 10.1016/j.jbior.2019.100638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) arises from T cell precursors and is characterized by expression of many lineage-specific proteins. While T-cell antigen receptor (TCR) signaling and its strength are central for thymocyte development, mature T cell homeostasis and immune responses, their roles in T-ALL remain undetermined. Indeed, in contrast to mouse models, in which absence of TCR or major histocompatibility complex binding does not impact on leukemogenesis, other mouse models suggest that basal or weak signaling drives leukemia development. However, recent reports indicate that strong TCR signaling can be detrimental to leukemic cells. Indeed, sustained/high level TCR signaling, stimulated by antigen or CD3 antibody, is strongly anti-leukemic in both murine T-ALL expressing endogenous or transgenic TCR and diagnostic T-ALL cases. As discussed, further work should address the efficacy of T-ALL therapeutic targeting with either TCR/CD3 antibodies or TCR-directed chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Nuno R Dos Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Jacques Ghysdael
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405, Orsay, France.
| | - Christine Tran Quang
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405, Orsay, France.
| |
Collapse
|
30
|
Mining TCGA Database for Tumor Microenvironment-Related Genes of Prognostic Value in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2408348. [PMID: 31828095 PMCID: PMC6885833 DOI: 10.1155/2019/2408348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor microenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and immune cells. Thus, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of The Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC. The "Estimation of STromal and Immune cells in MAlignant Tumors using Expression data" algorithm renders the quantification of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association with HCC poor outcomes. These genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be candidate biomarkers for HCC prognosis.
Collapse
|
31
|
|
32
|
Wang K, Chen Y, Zhao Z, Feng M, Zhang S. Identification of potential core genes and miRNAs in testicular seminoma via bioinformatics analysis. Mol Med Rep 2019; 20:4013-4022. [PMID: 31545448 PMCID: PMC6797975 DOI: 10.3892/mmr.2019.10684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Testicular seminoma is one of the most common tumours in the field of urology, and its aetiology is still unclear. The aim of the present study was to identify the factors responsible for the development of testicular cancer and to investigate whether mutations in these genes were primarily congenital or acquired. To identify the key genes and miRNAs linked to testicular seminoma, as well as their potential molecular mechanisms, the GSE15220, GSE1818 and GSE59520 microarray datasets were analysed. A total of 5,195 and 1,163 differentially expressed genes (DEGs) were identified after analysing the GSE15220 and GSE1818 datasets, respectively. Among them, 287 genes were common between the two datasets. Of these, 110 were upregulated and 177 were downregulated. Five differentially expressed microRNAs (miRs; DEMs) that were downregulated in seminoma were identified after analysing the GSE59520 dataset. Following protein-protein interaction network and Gene Ontology analysis, the five nodes with the highest degrees were screened as hub genes. Among them, the high expression of hub genes, such as protein tyrosine phosphatase receptor type C (PTPRC), was associated with worse overall survival. We also predicted the potential target genes of the DEMs. DNA topoisomerase II α (TOP2A), marker of proliferation Ki-67 (MKI67), PTPRC and ubiquitin conjugating enzyme E2 C were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. In addition, hsa-miR-650 and hsa-miR-665 were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. Additionally, TOP2A and MKI67 were strongly associated with the target genes hsa-miR-650 and hsa-miR-665, respectively. We proposed that the hub genes reported in the present study may have a certain impact on cellular proliferation and migration in testicular seminoma. The roles of these hub genes in seminoma may provide novel insight to improve the diagnosis and treatment of patients with seminoma.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Zhao
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Meiying Feng
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
33
|
De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev 2019; 38:100591. [PMID: 31353059 DOI: 10.1016/j.blre.2019.100591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by a variable response to steroids during induction and/or consolidation therapy. Notably, recent work suggested that these differences in glucocorticoid sensitivity might, at least in part, be mediated by hyperactivation of specific oncogenic pathways such as RAS/MEK/ERK, PI3K/AKT and IL7R/JAK/STAT. In this review, we elaborate on putative associations between aberrant signaling, therapy resistance, incidence of relapse and clinical outcome in human T-ALL. Furthermore, we emphasize that this potential association with clinical parameters might also be mediated by the tumor microenvironment as a result of increased sensitivity of leukemic T-cells towards cytokine induced signaling pathway activation. With this in mind, we provide an overview of small molecule inhibitors that might have clinical potential for the treatment of human T-ALL in the near future as a result of their ability to overcome steroid resistance thereby potentially increasing survival rates in this aggressive hematological neoplasm.
Collapse
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
34
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
35
|
Oncogenic basic amino acid insertions at the extracellular juxtamembrane region of IL7RA cause receptor hypersensitivity. Blood 2019; 133:1259-1263. [DOI: 10.1182/blood-2018-09-872945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
36
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
37
|
Time-Series Analysis of Tumorigenesis in a Murine Skin Carcinogenesis Model. Sci Rep 2018; 8:12994. [PMID: 30158594 PMCID: PMC6115443 DOI: 10.1038/s41598-018-31349-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Recent years have witnessed substantial progress in understanding tumor heterogeneity and the process of tumor progression; however, the entire process of the transition of tumors from a benign to metastatic state remains poorly understood. In the present study, we performed a prospective cancer genome-sequencing analysis by employing an experimental carcinogenesis mouse model of squamous cell carcinoma to systematically understand the evolutionary process of tumors. We surgically collected a part of a lesion of each tumor and followed the progression of these tumors in vivo over time. Comparative time-series analysis of the genomes of tumors with different fates, i.e., those that eventually metastasized and regressed, suggested that these tumors acquired and inherited different mutations. These findings suggest that despite the occurrence of an intra-tumor selection event for malignant alteration during the transformation from early- to late-stage papilloma, the fate determination of tumors might be determined at an even earlier stage.
Collapse
|
38
|
Horowitz NA, Akasha D, Rowe JM. Advances in the genetics of acute lymphoblastic leukemia in adults and the potential clinical implications. Expert Rev Hematol 2018; 11:781-791. [DOI: 10.1080/17474086.2018.1509702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Netanel A. Horowitz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Doaa Akasha
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Jacob M. Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
39
|
Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget 2018; 9:22605-22617. [PMID: 29854301 PMCID: PMC5978251 DOI: 10.18632/oncotarget.25194] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current chemotherapy is quite toxic in growing children and more directed therapeutics are being sought. The IL-7R pathway is a major driver of ALL and here we evaluate two drugs directed to that pathway using a model of T cell ALL. Mutant gain-of-function IL-7Rα was transduced into an IL-7-dependent murine thymocyte line conferring ligand-independent survival and growth. JAK1 is associated with IL-7Rα and mediates signaling from the mutant receptor. In vitro, treating the transformed cell line with the JAK1/2 inhibitor ruxolitinib inhibited ligand-independent signaling and induced cell death. Transfer of the transformed cell line into mice resulted in aggressive leukemia and untreated mice succumbed in about three weeks. Treatment with ruxolitinib incorporated into chow showed a potent therapeutic benefit with reduction in leukemic burden and extension of survival. BCL-2 is an anti-apoptotic downstream mediator of the IL-7R survival mechanism. Venetoclax, an inhibitor of BCL-2, showed activity against the transformed cell line in vitro and could be combined with ruxolitinib in vivo. These findings support the therapeutic potential of treating T-ALL by targeting the IL-7R pathway.
Collapse
|
40
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
41
|
Greenplate A, Wang K, Tripathi RM, Palma N, Ali SM, Stephens PJ, Miller VA, Shyr Y, Guo Y, Reddy NM, Kozhaya L, Unutmaz D, Chen X, Irish JM, Davé UP. Genomic Profiling of T-Cell Neoplasms Reveals Frequent JAK1 and JAK3 Mutations With Clonal Evasion From Targeted Therapies. JCO Precis Oncol 2018; 2018. [PMID: 30079384 PMCID: PMC6072266 DOI: 10.1200/po.17.00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The promise of precision oncology is that identification of genomic alterations will direct the rational use of molecularly targeted therapy. This approach is particularly applicable to neoplasms that are resistant to standard cytotoxic chemotherapy, like T-cell leukemias and lymphomas. In this study, we tested the feasibility of targeted next-generation sequencing in profiles of diverse T-cell neoplasms and focused on the therapeutic utility of targeting activated JAK1 and JAK3 in an index case. Patients and Methods Using Foundation One and Foundation One Heme assays, we performed genomic profiling on 91 consecutive T-cell neoplasms for alterations in 405 genes. The samples were sequenced to high uniform coverage with an Illumina HiSeq and averaged a coverage depth of greater than 500× for DNA and more than 8M total pairs for RNA. An index case of T-cell prolymphocytic leukemia (T-PLL), which was analyzed by targeted next-generation sequencing, is presented. T-PLL cells were analyzed by RNA-seq, in vitro drug testing, mass cytometry, and phospho-flow. Results One third of the samples had genomic aberrations in the JAK-STAT pathway, most often composed of JAK1 and JAK3 gain-of-function mutations. We present an index case of a patient with T-PLL with a clonal JAK1 V658F mutation that responded to ruxolitinib therapy. After relapse developed, an expanded clone that harbored mutant JAK3 M511I and downregulation of the phosphatase, CD45, was identified. We demonstrate that the JAK missense mutations were activating, caused pathway hyperactivation, and conferred cytokine hypersensitivity. Conclusion These results underscore the utility of profiling occurrences of resistance to standard regimens and support JAK enzymes as rational therapeutic targets for T-cell leukemias and lymphomas.
Collapse
Affiliation(s)
| | - Kai Wang
- Foundation Medicine, Cambridge, MA. Origimed, Shanghai, China
| | | | | | | | | | | | - Yu Shyr
- Vanderbilt University Medical Center, Nashville, TN
| | - Yan Guo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | - Xueyan Chen
- University of Washington Medical Center, Seattle, WA
| | | | - Utpal P Davé
- R.L. Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
42
|
Johansson P, Klein-Hitpass L, Choidas A, Habenberger P, Mahboubi B, Kim B, Bergmann A, Scholtysik R, Brauser M, Lollies A, Siebert R, Zenz T, Dührsen U, Küppers R, Dürig J. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 2018; 8:11. [PMID: 29352181 PMCID: PMC5802577 DOI: 10.1038/s41408-017-0036-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/19/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy with a median survival of the patients of less than two years. Besides characteristic chromosomal translocations, frequent mutations affect the ATM gene, JAK/STAT pathway members, and epigenetic regulators. We here performed a targeted mutation analysis for 40 genes selected from a RNA sequencing of 10 T-PLL in a collection of 28 T-PLL, and an exome analysis of five further cases. Nonsynonymous mutations were identified in 30 of the 40 genes, 18 being recurrently mutated. We identified recurrently mutated genes previously unknown to be mutated in T-PLL, which are SAMHD1, HERC1, HERC2, PRDM2, PARP10, PTPRC, and FOXP1. SAMHD1 regulates cellular deoxynucleotide levels and acts as a potential tumor suppressor in other leukemias. We observed destructive mutations in 18% of cases as well as deletions in two further cases. Taken together, we identified additional genes involved in JAK/STAT signaling (PTPRC), epigenetic regulation (PRDM2), or DNA damage repair (SAMHD1, PARP10, HERC1, and HERC2) as being recurrently mutated in T-PLL. Thus, our study considerably extends the picture of pathways involved in molecular pathogenesis of T-PLL and identifies the tumor suppressor gene SAMHD1 with ~20% of T-PLL affected by destructive lesions likely as major player in T-PLL pathogenesis.
Collapse
Affiliation(s)
- Patricia Johansson
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. .,Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anke Bergmann
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martina Brauser
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Lollies
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Reiner Siebert
- Institute for Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig Holstein, Kiel, Germany.,Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm, Germany
| | - Thorsten Zenz
- Department of Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
43
|
PTPRG and PTPRC modulate nilotinib response in chronic myeloid leukemia cells. Oncotarget 2018; 9:9442-9455. [PMID: 29507701 PMCID: PMC5823647 DOI: 10.18632/oncotarget.24253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
The introduction of second-generation tyrosine kinase inhibitors (TKIs) targeting the protein-tyrosine kinase (PTK) BCR-ABL1 has improved treatment response in chronic myeloid leukemia (CML). However, in some patients response still remains suboptimal. Protein-tyrosine phosphatases (PTPs) are natural counter-actors of PTK activity and can affect TKI sensitivity, but the impact of PTPs on treatment response to second-generation TKIs is unknown. We assessed the mRNA expression level of 38 PTPs in 66 newly diagnosed CML patients and analyzed the potential relation with treatment outcome after 9 months of nilotinib medication. A significantly positive association with response was observed for higher PTPN13, PTPRA, PTPRC (also known as CD45), PTPRG, and PTPRM expression. Selected PTPs were then subjected to a functional analysis in CML cell line models using PTP gene knockout by CRISPR/Cas9 technology or PTP overexpression. These analyses revealed PTPRG positively and PTPRC negatively modulating nilotinib response. Consistently, PTPRG negatively and PTPRC positively affected BCR-ABL1 dependent transformation. We identified BCR-ABL1 signaling events, which were affected by modulating PTP levels or nilotinib treatment in the same direction. In conclusion, the PTP status of CML cells is important for the response to second generation TKIs and may help in optimizing therapeutic strategies.
Collapse
|
44
|
Pan Z, Yang M, Huang K, Büsche G, Glage S, Ganser A, Li Z. Flow cytometric characterization of acute leukemia reveals a distinctive "blast gate" of murine T-lymphoblastic leukemia/lymphoma. Oncotarget 2018; 9:2320-2328. [PMID: 29416774 PMCID: PMC5788642 DOI: 10.18632/oncotarget.23410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022] Open
Abstract
Immunophenotypic analysis using multiparameter flow cytometry is an indispensable tool for diagnosis and management of acute leukemia. Mouse models have been widely used for medical research for more than 100 years and are indispensable for leukemia research. However, immunophenotypic analysis of murine leukemia was not always performed in published studies, and blast gating for isolation of blasts was shown only in very few studies. No systemic characterization of all types of murine acute leukemia in large cohorts by flow cytometry has been reported. In this study, we used flow cytometry to comprehensively characterize murine acute leukemia in a large cohort of mice. We found that murine T-lymphoblastic leukemia/lymphoma (T-ALL) exhibits a distinctive “blast gate” (CD45bright) with CD45/side scatter gating that differs from the “blast gate” (CD45dim) of human T-ALL. By contrast, murine B-lymphoblastic leukemia and acute myeloid leukemia show the same blast region (CD45dim) as human leukemia. Using blast cell gating, we for first time detected T-ALL development in FLT3-ITD knock-in mice (incidence: 23%). These leukemic cells were selectively killed by the FLT3 inhibitors crenolanib and midostaurin in vitro. These data suggest that FLT3-ITD plays a potential role in the pathogenesis of T-ALL and that FLT3-ITD inhibition is a therapeutic option in the management of patients with T-ALL. Our gating strategy for immunophenotypic analysis can be used for leukemogenesis and preclinical gene therapy studies in mice and may improve the quality of such analyses.
Collapse
Affiliation(s)
- Zengkai Pan
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Min Yang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Kezhi Huang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Kundrotas G, Gasperskaja E, Slapsyte G, Gudleviciene Z, Krasko J, Stumbryte A, Liudkeviciene R. Identity, proliferation capacity, genomic stability and novel senescence markers of mesenchymal stem cells isolated from low volume of human bone marrow. Oncotarget 2017; 7:10788-802. [PMID: 26910916 PMCID: PMC4905439 DOI: 10.18632/oncotarget.7456] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/05/2016] [Indexed: 12/16/2022] Open
Abstract
Human bone marrow mesenchymal stem cells (hBM-MSCs) hold promise for treating incurable diseases and repairing of damaged tissues. However, hBM-MSCs face the disadvantages of painful invasive isolation and limited cell numbers. In this study we assessed characteristics of MSCs isolated from residual human bone marrow transplantation material and expanded to clinically relevant numbers at passages 3-4 and 6-7. Results indicated that early passage hBM-MSCs are genomically stable and retain identity and high proliferation capacity. Despite the chromosomal stability, the cells became senescent at late passages, paralleling the slower proliferation, altered morphology and immunophenotype. By qRT-PCR array profiling, we revealed 13 genes and 33 miRNAs significantly differentially expressed in late passage cells, among which 8 genes and 30 miRNAs emerged as potential novel biomarkers of hBM-MSC aging. Functional analysis of genes with altered expression showed strong association with biological processes causing cellular senescence. Altogether, this study revives hBM as convenient source for cellular therapy. Potential novel markers provide new details for better understanding the hBM-MSC senescence mechanisms, contributing to basic science, facilitating the development of cellular therapy quality control, and providing new clues for human disease processes since senescence phenotype of the hematological patient hBM-MSCs only very recently has been revealed.
Collapse
Affiliation(s)
- Gabrielis Kundrotas
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania.,Biobank, National Cancer Institute, Vilnius, Lithuania
| | - Evelina Gasperskaja
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Grazina Slapsyte
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | | | - Jan Krasko
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | | | | |
Collapse
|
46
|
Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Blood 2017; 131:421-425. [PMID: 29187379 DOI: 10.1182/blood-2017-07-797597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common γ chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.
Collapse
|
47
|
Progenitor B-1 B-cell acute lymphoblastic leukemia is associated with collaborative mutations in 3 critical pathways. Blood Adv 2017; 1:1749-1759. [PMID: 29296821 DOI: 10.1182/bloodadvances.2017009837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
B-1 and B-2 lymphocytes are derived from distinct developmental pathways and represent layered arms of the innate and adaptive immune systems, respectively. In contrast to a majority of murine B-cell malignancies, which stain positive with the B220 antibody, we discovered a novel form of B-cell leukemia in NUP98-PHF23 (NP23) transgenic mice. The immunophenotype (Lin- B220- CD19+ AA4.1+) was identical to that of progenitor (pro) B-1 cells, and VH gene usage was skewed toward 3' V regions, similar to murine fetal liver B cells. Moreover, the gene expression profile of these leukemias was most similar to that of fetal liver pro-B fraction BC, a known source of B-1 B cells, further supporting a pro-B-1 origin of these leukemias. The NP23 pro-B-1 acute lymphoblastic leukemias (ALLs) acquired spontaneous mutations in both Bcor and Janus kinase (Jak) pathway (Jak1/2/3 and Stat5a) genes, supporting a hypothesis that mutations in 3 critical pathways (stem-cell self-renewal, B-cell differentiation, and cytokine signaling) collaborate to induce B-cell precursor (BCP) ALL. Finally, the thymic stromal lymphopoietin (Tslp) cytokine is required for murine B-1 development, and chromosomal rearrangements resulting in overexpression of the TSLP receptor (CRLF2) are present in some patients with high-risk BCP-ALL (referred to as CRLF2r ALL). Gene expression profiles of NP23 pro-B-1 ALL were more similar to that of CRLF2r ALL than non-CRLF2r ALL, and analysis of VH gene usage from patients with CRLF2r ALL demonstrated preferential usage of VH regions used by human B-1 B cells, leading to the suggestion that this subset of patients with BCP-ALL has a malignancy of B-1, rather than B-2, B-cell origin.
Collapse
|
48
|
Li Q, Li B, Hu L, Ning H, Jiang M, Wang D, Liu T, Zhang B, Chen H. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia. Oncotarget 2017; 8:34687-34697. [PMID: 28410228 PMCID: PMC5471003 DOI: 10.18632/oncotarget.16670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 03/17/2017] [Indexed: 01/12/2023] Open
Abstract
The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL.
Collapse
Affiliation(s)
- Qian Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Botao Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Liangding Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Min Jiang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Danhong Wang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Tingting Liu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Crabtree NM, Moore JH, Bowyer JF, George NI. Multi-class computational evolution: development, benchmark evaluation and application to RNA-Seq biomarker discovery. BioData Min 2017; 10:13. [PMID: 28450890 PMCID: PMC5404302 DOI: 10.1186/s13040-017-0134-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background A computational evolution system (CES) is a knowledge discovery engine that can identify subtle, synergistic relationships in large datasets. Pareto optimization allows CESs to balance accuracy with model complexity when evolving classifiers. Using Pareto optimization, a CES is able to identify a very small number of features while maintaining high classification accuracy. A CES can be designed for various types of data, and the user can exploit expert knowledge about the classification problem in order to improve discrimination between classes. These characteristics give CES an advantage over other classification and feature selection algorithms, particularly when the goal is to identify a small number of highly relevant, non-redundant biomarkers. Previously, CESs have been developed only for binary class datasets. In this study, we developed a multi-class CES. Results The multi-class CES was compared to three common feature selection and classification algorithms: support vector machine (SVM), random k-nearest neighbor (RKNN), and random forest (RF). The algorithms were evaluated on three distinct multi-class RNA sequencing datasets. The comparison criteria were run-time, classification accuracy, number of selected features, and stability of selected feature set (as measured by the Tanimoto distance). The performance of each algorithm was data-dependent. CES performed best on the dataset with the smallest sample size, indicating that CES has a unique advantage since the accuracy of most classification methods suffer when sample size is small. Conclusion The multi-class extension of CES increases the appeal of its application to complex, multi-class datasets in order to identify important biomarkers and features. Electronic supplementary material The online version of this article (doi:10.1186/s13040-017-0134-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathaniel M Crabtree
- Bioinformatics, Department of Information Science, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences Joint Bioinformatics Graduate Program, Little Rock, AR USA
| | - Jason H Moore
- Division of Informatics, Department of Biostatistics and Epidemiology, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021 USA
| | - John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, AR USA
| | - Nysia I George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, FDA, Jefferson, AR USA
| |
Collapse
|
50
|
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129:1113-1123. [PMID: 28115373 PMCID: PMC5363819 DOI: 10.1182/blood-2016-10-706465] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy caused by the accumulation of genomic lesions that affect the development of T cells. For many years, it has been established that deregulated expression of transcription factors, impairment of the CDKN2A/2B cell-cycle regulators, and hyperactive NOTCH1 signaling play prominent roles in the pathogenesis of this leukemia. In the past decade, systematic screening of T-ALL genomes by high-resolution copy-number arrays and next-generation sequencing technologies has revealed that T-cell progenitors accumulate additional mutations affecting JAK/STAT signaling, protein translation, and epigenetic control, providing novel attractive targets for therapy. In this review, we provide an update on our knowledge of T-ALL pathogenesis, the opportunities for the introduction of targeted therapy, and the challenges that are still ahead.
Collapse
Affiliation(s)
- Tiziana Girardi
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Carmen Vicente
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jan Cools
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|