1
|
Ganuza M, Morales-Hernández A, Van Huizen A, Chabot A, Hall T, Caprio C, Finkelstein D, Kilimann MW, McKinney-Freeman S. Neurobeachin regulates hematopoietic progenitor differentiation and survival by modulating Notch activity. Blood Adv 2024; 8:4129-4143. [PMID: 38905595 PMCID: PMC11345395 DOI: 10.1182/bloodadvances.2023012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) can generate all blood cells. This ability is exploited in HSC transplantation (HSCT) to treat hematologic disease. A clear understanding of the molecular mechanisms that regulate HSCT is necessary to continue improving transplant protocols. We identified the Beige and Chediak-Higashi domain-containing protein (BDCP), Neurobeachin (NBEA), as a putative regulator of HSCT. Here, we demonstrated that NBEA and related BDCPs, including LPS Responsive Beige-Like Anchor Protein (LRBA), Neurobeachin Like 1 (NBEAL1) and Lysosomal Trafficking Regulator (LYST), are required during HSCT to efficiently reconstitute the hematopoietic system of lethally irradiated mice. Nbea knockdown in mouse HSCs induced apoptosis and a differentiation block after transplantation. Nbea deficiency in hematopoietic progenitor cells perturbed the expression of genes implicated in vesicle trafficking and led to changes in NOTCH receptor localization. This resulted in perturbation of the NOTCH transcriptional program, which is required for efficient HSC engraftment. In summary, our findings reveal a novel role for NBEA in the control of NOTCH receptor turnover in hematopoietic cells and supports a model in which BDCP-regulated vesicle trafficking is required for efficient HSCT.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Morales-Hernández
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Alanna Van Huizen
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ashley Chabot
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claire Caprio
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
2
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Hasan T, Pasala AR, Hassan D, Hanotaux J, Allan DS, Maganti HB. Homing and Engraftment of Hematopoietic Stem Cells Following Transplantation: A Pre-Clinical Perspective. Curr Oncol 2024; 31:603-616. [PMID: 38392038 PMCID: PMC10888387 DOI: 10.3390/curroncol31020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Hematopoietic stem-cell (HSC) transplantation (HSCT) is used to treat various hematologic disorders. Use of genetically modified mouse models of hematopoietic cell transplantation has been critical in our fundamental understanding of HSC biology and in developing approaches for human patients. Pre-clinical studies in animal models provide insight into the journey of transplanted HSCs from infusion to engraftment in bone-marrow (BM) niches. Various signaling molecules and growth factors secreted by HSCs and the niche microenvironment play critical roles in homing and engraftment of the transplanted cells. The sustained equilibrium of these chemical and biologic factors ensures that engrafted HSCs generate healthy and durable hematopoiesis. Transplanted healthy HSCs compete with residual host cells to repopulate stem-cell niches in the marrow. Stem-cell niches, in particular, can be altered by the effects of previous treatments, aging, and the paracrine effects of leukemic cells, which create inhospitable bone-marrow niches that are unfavorable for healthy hematopoiesis. More work to understand how stem-cell niches can be restored to favor normal hematopoiesis may be key to reducing leukemic relapses following transplant.
Collapse
Affiliation(s)
- Tanvir Hasan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - Ajay Ratan Pasala
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Dhuha Hassan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - Justine Hanotaux
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - David S. Allan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Harinad B. Maganti
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
4
|
Song T, Yao Y, Papoin J, Sherry B, Diamond B, Gu H, Blanc L, Zou YR. Host factor TIMP1 sustains long-lasting myeloid-biased hematopoiesis after severe infection. J Exp Med 2023; 220:e20230018. [PMID: 37851372 PMCID: PMC10585121 DOI: 10.1084/jem.20230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/10/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Infection is able to promote innate immunity by enhancing a long-term myeloid output even after the inciting infectious agent has been cleared. However, the mechanisms underlying such a regulation are not fully understood. Using a mouse polymicrobial peritonitis (sepsis) model, we show that severe infection leads to increased, sustained myelopoiesis after the infection is resolved. In post-infection mice, the tissue inhibitor of metalloproteinases 1 (TIMP1) is constitutively upregulated. TIMP1 antagonizes the function of ADAM10, an essential cleavage enzyme for the activation of the Notch signaling pathway, which suppresses myelopoiesis. While TIMP1 is dispensable for myelopoiesis under the steady state, increased TIMP1 enhances myelopoiesis after infection. Thus, our data establish TIMP1 as a molecular reporter of past infection in the host, sustaining hyper myelopoiesis and serving as a potential therapeutic target for modulating HSPC cell fate.
Collapse
Affiliation(s)
- Tengfei Song
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yonghong Yao
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Hua Gu
- Laboratory of Molecular Immunology, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
5
|
Crosse EI, Binagui-Casas A, Gordon-Keylock S, Rybtsov S, Tamagno S, Olofsson D, Anderson RA, Medvinsky A. An interactive resource of molecular signalling in the developing human haematopoietic stem cell niche. Development 2023; 150:dev201972. [PMID: 37840454 PMCID: PMC10730088 DOI: 10.1242/dev.201972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Edie I. Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
6
|
Li H, Luo Q, Cai S, Tie R, Meng Y, Shan W, Xu Y, Zeng X, Qian P, Huang H. Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells. Stem Cell Res Ther 2023; 14:117. [PMID: 37122014 PMCID: PMC10150485 DOI: 10.1186/s13287-023-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ye Meng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- School of Medicine, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|
7
|
Ghandhi SA, Morton SR, Shuryak I, Lee Y, Soni RK, Perrier JR, Bakke J, Gahagan J, Bujold K, Authier S, Amundson SA, Brenner DJ, Nishita D, Chang P, Turner HC. Longitudinal multi-omic changes in the transcriptome and proteome of peripheral blood cells after a 4 Gy total body radiation dose to Rhesus macaques. BMC Genomics 2023; 24:139. [PMID: 36944971 PMCID: PMC10031949 DOI: 10.1186/s12864-023-09230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFβ and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.
Collapse
Affiliation(s)
- Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Shad R. Morton
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NY New York, 10032 USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - James Bakke
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Janet Gahagan
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Kim Bujold
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Simon Authier
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Denise Nishita
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Polly Chang
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| |
Collapse
|
8
|
Chen Y, Huang H, Zhong W, Li L, Lu Y, Si HB. miR-140-5p protects cartilage progenitor/stem cells from fate changes in knee osteoarthritis. Int Immunopharmacol 2023; 114:109576. [PMID: 36527878 DOI: 10.1016/j.intimp.2022.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022]
Abstract
Cartilage progenitor/stem cells (CPCs) are promising seed cells for cartilage regeneration, but their fate changes and regulatory mechanisms in osteoarthritis (OA) pathogenesis remain unclear. This study aimed to investigate the role and potential mechanism of the microRNA-140-5p (miR-140-5p), whose protective role in knee OA has been confirmed by our previous studies, in OA CPCs fate reprogramming. Firstly, the normal and OA CPCs were isolated, and the fate indicators, miR-140-5p, Jagged1, and Notch signals were detected and analyzed. Then, the effect of miR-140-5p and the Notch pathway on CPCs fate reprogramming and miR-140-5p on Jagged1/Notch signaling was investigated in IL-1β-induced chondrocytes in vitro. Finally, the effect of miR-140-5p on OA CPCs fate reprogramming and the potential mechanisms were validated in OA rats. As a result, CPCs percentage was increased in the mild OA cartilage-derived total chondrocytes while decreased in the advanced OA group. Significant fate changes (including reduced cell viability, migration, chondrogenesis, and increased apoptosis), increased Jagged1 and Notch signals, and reduced miR-140-5p were observed in OA CPCs and associated with OA progression. IL-1β induced OA-like changes in CPCs fate, which could be exacerbated by miR-140-5p inhibitor while alleviated by DAPT (a specific Notch inhibitor) and miR-140-5p mimic. Finally, the in vitro phenomenal and mechanistic findings were validated in OA rats. Overall, miR-140-5p protects CPCs from fate changes via inhibiting Jagged1/Notch signaling in knee OA, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Huang
- Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Wen Zhong
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanrong Lu
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hai-Bo Si
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
9
|
Mimicry of embryonic circulation enhances the hoxa hemogenic niche and human blood development. Cell Rep 2022; 40:111339. [PMID: 36103836 DOI: 10.1016/j.celrep.2022.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Precursors of the adult hematopoietic system arise from the aorta-gonad-mesonephros (AGM) region shortly after the embryonic circulation is established. Here, we develop a microfluidic culture system to mimic the primitive embryonic circulation and address the hypothesis that circulatory flow and shear stress enhance embryonic blood development. Embryonic (HOXA+) hematopoiesis was derived from human pluripotent stem cells and induced from mesoderm by small-molecule manipulation of TGF-β and WNT signaling (SB/CHIR). Microfluidic and orbital culture promoted the formation of proliferative CD34+RUNX1C-GFP+SOX17-mCHERRY+ precursor cells that were released into the artificial circulation from SOX17+ arterial-like structures. Single-cell transcriptomic analysis delineated extra-embryonic (yolk sac) and HOXA+ embryonic blood differentiation pathways. SB/CHIR and circulatory flow enhance hematopoiesis by the formation of proliferative HOXA+RUNX1C+CD34+ precursor cells that differentiate into monocyte/macrophage, granulocyte, erythrocyte, and megakaryocyte progenitors.
Collapse
|
10
|
Sá da Bandeira D, Kilpatrick AM, Marques M, Gomez-Salazar M, Ventura T, Gonzalez ZN, Stefancova D, Rossi F, Vermeren M, Vink CS, Beltran M, Henderson NC, Jung B, van der Linden R, van de Werken HJG, van Ijcken WFJ, Betsholtz C, Forbes SJ, Cuervo H, Crisan M. PDGFRβ + cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Rep 2022; 40:111114. [PMID: 35858557 PMCID: PMC9638014 DOI: 10.1016/j.celrep.2022.111114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved. Here, we show that PDGFRβ is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRβ+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRβ+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro. PDGFRβ deletion affects hematopoietic development in the AGM in vivo The transcriptome and hematopoietic support of the PDGFRβ-KO niche are altered The osteogenic gene profile and differentiation of KO AGM MSCs are affected PDGFRβ+ early embryonic precursors contribute to EC and HSPC lineages in vivo
Collapse
Affiliation(s)
- Diana Sá da Bandeira
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Alastair Morris Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Mario Gomez-Salazar
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Zaniah Nashira Gonzalez
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Dorota Stefancova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Matthieu Vermeren
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Chris Sebastiaan Vink
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Neil Cowan Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Bongnam Jung
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Reinier van der Linden
- Hubrecht Institute, Department van Oudenaarden Quantitative Biology, 3584 Utrecht, the Netherlands
| | - Harmen Jan George van de Werken
- Erasmus MC Cancer Institute, University Medical Center, Cancer Computational Biology Center, and Departments of Urology and Immunology, 3000 Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 Rotterdam, the Netherlands
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Stuart John Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK.
| |
Collapse
|
11
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
12
|
New Insights into the Pathogenesis of Giant Cell Arteritis: Mechanisms Involved in Maintaining Vascular Inflammation. J Clin Med 2022; 11:jcm11102905. [PMID: 35629030 PMCID: PMC9143803 DOI: 10.3390/jcm11102905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The giant cell arteritis (GCA) pathophysiology is complex and multifactorial, involving a predisposing genetic background, the role of immune aging and the activation of vascular dendritic cells by an unknown trigger. Once activated, dendritic cells recruit CD4 T cells and induce their activation, proliferation and polarization into Th1 and Th17, which produce interferon-gamma (IFN-γ) and interleukin-17 (IL-17), respectively. IFN-γ triggers the production of chemokines by vascular smooth muscle cells, which leads to the recruitment of additional CD4 and CD8 T cells and also monocytes that differentiate into macrophages. Recent data have shown that IL-17, IFN-γ and GM-CSF induce the differentiation of macrophage subpopulations, which play a role in the destruction of the arterial wall, in neoangiogenesis or intimal hyperplasia. Under the influence of different mediators, mainly endothelin-1 and PDGF, vascular smooth muscle cells migrate to the intima, proliferate and change their phenotype to become myofibroblasts that further proliferate and produce extracellular matrix proteins, increasing the vascular stenosis. In addition, several defects in the immune regulatory mechanisms probably contribute to chronic vascular inflammation in GCA: a defect in the PD-1/PD-L1 pathway, a quantitative and qualitative Treg deficiency, the implication of resident cells, the role of GM-CSF and IL-6, the implication of the NOTCH pathway and the role of mucosal‑associated invariant T cells and tissue‑resident memory T cells.
Collapse
|
13
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Wu G, Cheng Zhang C. Membrane protein CAR promotes hematopoietic regeneration upon stress. Haematologica 2021; 106:2180-2190. [PMID: 32586901 PMCID: PMC8327706 DOI: 10.3324/haematol.2019.243998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Adult hematopoietic stem cells (HSC) are quiescent most of the time, and how HSC switch from quiescence to proliferation following hematopoietic stress is unclear. Here we demonstrate that upon stress the coxsackievirus and adenovirus receptor CAR (also known as CXADR) is upregulated in HSC and critical for HSC entry into the cell cycle. Wild-type HSC were detected with more rapid repopulation ability than the CAR knockout counterparts. After fluorouracil treatment, CAR knockout HSC had lower levels of Notch1 expression and elevated protein level of Numb, a Notch antagonist. The Notch signaling inhibitor DAPT, dominant negative form of MAML (a transcriptional coactivator of Notch), or dominant negative mutant of LNX2 (an E3 ligase that acts on Numb and binds to CAR), all were capable of abrogating the function of CAR in HSC. We conclude that CAR activates Notch1 signaling by downregulating Numb protein expression to facilitate entry of quiescent HSC into the cell cycle during regeneration.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells' Role in Tumor Progression. Stem Cell Rev Rep 2021; 18:228-240. [PMID: 34244971 DOI: 10.1007/s12015-021-10195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Tumor invasion and metastasis remain the leading causes of mortality for patients with cancer despite current treatment strategies. In some cancer types, recurrence is considered inevitable due to the lack of effective anti-metastatic therapies. Recent studies across many cancer types demonstrate a close relationship between cancer-initiating cells (CICs) and metastasis, as well as general cancer progression. First, this review describes CICs' contribution to cancer progression. Then we discuss our recent understanding of mechanisms through which CICs promote tumor invasion and metastasis by examining the role of CICs in each stage. Finally, we examine the current understanding of CICs' contribution to therapeutic resistance and recent developments in CIC-targeting drugs. We believe this understanding is key to advancing anti-CIC clinical therapeutics.
Collapse
|
16
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
17
|
Lemarié M, Bottardi S, Mavoungou L, Pak H, Milot E. IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling. PLoS Genet 2021; 17:e1009478. [PMID: 33770102 PMCID: PMC8026084 DOI: 10.1371/journal.pgen.1009478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induction of this second group of NOTCH activated genes is unknown. We analyzed the combined effect of IKAROS abrogation and NOTCH signaling on the expression of NOTCH activated genes in erythroid cells. In IKAROS-deleted cells, we observed that many of these genes were either overexpressed or no longer responsive to NOTCH signaling. IKAROS is then required for the organization of bivalent chromatin and poised transcription of NOTCH activated genes belonging to either of the aforementioned groups. Furthermore, we show that IKAROS-dependent poised organization of the NOTCH target Cdkn1a is also required for its adequate induction upon genotoxic insults. These results highlight the critical role played by IKAROS in establishing bivalent chromatin and transcriptional poised state at target genes for their activation by NOTCH or other stress signals. NOTCH1 deregulation can favor hematological malignancies. In addition to RBP-Jκ/NICD/MAML1, other regulators are required for the measured activation of NOTCH target genes. IKAROS is a known repressor of many NOTCH targets. Since it can also favor transcriptional activation and control gene expression levels, we questioned whether IKAROS could participate to the activation of specific NOTCH target genes. We are reporting that upon NOTCH induction, the absence of IKAROS impairs the measured activation of two groups of NOTCH target genes: (i) those overexpressed and characterized by an additive effect imposed by the absence of IKAROS and NOTCH induction; and (ii) those ‘desensitized’ and no more activated by NOTCH. At genes of both groups, IKAROS controls the timely recruitment of the chromatin remodelers CHD4 and BRG1. IKAROS then influences the activation of these genes through the organization of chromatin and poised transcription or through transcriptional elongation control. The importance of the IKAROS controlled and measured activation of genes is not limited to NOTCH signaling as it also characterizes Cdkn1a expression upon genotoxic stress. Thus, these results provide a new perspective on the importance of IKAROS for the adequate cellular response to stress, whether imposed by NOTCH or genotoxic insults.
Collapse
Affiliation(s)
- Maud Lemarié
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Helen Pak
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
18
|
Lakhan R, Rathinam CV. Deficiency of Rbpj Leads to Defective Stress-Induced Hematopoietic Stem Cell Functions and Hif Mediated Activation of Non-canonical Notch Signaling Pathways. Front Cell Dev Biol 2021; 8:622190. [PMID: 33569384 PMCID: PMC7868433 DOI: 10.3389/fcell.2020.622190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Deregulated notch signaling has been associated with human pathobiology. However, functions of notch pathways in hematopoiesis remain incompletely understood. Here, we ablated canonical notch pathways, through genetic deletion of Rbpj, in hematopoietic stem cells (HSCs). Our data identified that loss of canonical notch results in normal adult HSC pool, at steady state conditions. However, HSC maintenance and functions in response to radiation-, chemotherapy-, and cytokine- induced stress were compromised in the absence of canonical notch. Rbpj deficient HSCs exhibit decreased proliferation rates and elevated expression of p57Kip2. Surprisingly, loss of Rbpj resulted in upregulation of key notch target genes and augmented binding of Hes1 to p57 and Gata2 promoters. Further molecular analyses identified an increase in notch activity, elevated expression and nuclear translocation of Hif proteins, and augmented binding of Hif1α to Hes1 promoter in the absence of Rbpj. These studies, for the first time, identify a previously unknown role for non-canonical notch signaling and establish a functional link between Hif and Notch pathways in hematopoiesis.
Collapse
Affiliation(s)
- Ram Lakhan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chozha V Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Stem Cell and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Fidanza A, Stumpf PS, Ramachandran P, Tamagno S, Babtie A, Lopez-Yrigoyen M, Taylor AH, Easterbrook J, Henderson BEP, Axton R, Henderson NC, Medvinsky A, Ottersbach K, Romanò N, Forrester LM. Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood 2020; 136:2893-2904. [PMID: 32614947 PMCID: PMC7862875 DOI: 10.1182/blood.2020006229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/20/2020] [Indexed: 01/19/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro-generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.
Collapse
Affiliation(s)
- Antonella Fidanza
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, Uniklinik Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Prakash Ramachandran
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ann Babtie
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom; and
| | - Martha Lopez-Yrigoyen
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - A Helen Taylor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Easterbrook
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Beth E P Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Axton
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lesley M Forrester
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Kang YA, Pietras EM, Passegué E. Deregulated Notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia. J Exp Med 2020; 217:133549. [PMID: 31886826 PMCID: PMC7062512 DOI: 10.1084/jem.20190787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 11/04/2022] Open
Abstract
Targeting commonly altered mechanisms in leukemia can provide additional treatment options. Here, we show that an inducible pathway of myeloid regeneration involving the remodeling of the multipotent progenitor (MPP) compartment downstream of hematopoietic stem cells (HSCs) is commonly hijacked in myeloid malignancies. We establish that differential regulation of Notch and Wnt signaling transiently triggers myeloid regeneration from HSCs in response to stress, and that constitutive low Notch and high Wnt activity in leukemic stem cells (LSCs) maintains this pathway activated in malignancies. We also identify compensatory crosstalk mechanisms between Notch and Wnt signaling that prevent damaging HSC function, MPP production, and blood output in conditions of high Notch and low Wnt activity. Finally, we demonstrate that restoring Notch and Wnt deregulated activity in LSCs attenuates disease progression. Our results uncover a mechanism that controls myeloid regeneration and early lineage decisions in HSCs and could be targeted in LSCs to normalize leukemic myeloid cell production.
Collapse
Affiliation(s)
- Yoon-A Kang
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California San Francisco, San Francisco, CA
| | - Eric M Pietras
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California San Francisco, San Francisco, CA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California San Francisco, San Francisco, CA
| |
Collapse
|
21
|
Vizán P, Gutiérrez A, Espejo I, García-Montolio M, Lange M, Carretero A, Lafzi A, de Andrés-Aguayo L, Blanco E, Thambyrajah R, Graf T, Heyn H, Bigas A, Di Croce L. The Polycomb-associated factor PHF19 controls hematopoietic stem cell state and differentiation. SCIENCE ADVANCES 2020; 6:eabb2745. [PMID: 32821835 PMCID: PMC7406347 DOI: 10.1126/sciadv.abb2745] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Adult hematopoietic stem cells (HSCs) are rare multipotent cells in bone marrow that are responsible for generating all blood cell types. HSCs are a heterogeneous group of cells with high plasticity, in part, conferred by epigenetic mechanisms. PHF19, a subunit of the Polycomb repressive complex 2 (PRC2), is preferentially expressed in mouse hematopoietic precursors. Here, we now show that, in stark contrast to results published for other PRC2 subunits, genetic depletion of Phf19 increases HSC identity and quiescence. While proliferation of HSCs is normally triggered by forced mobilization, defects in differentiation impede long-term correct blood production, eventually leading to aberrant hematopoiesis. At molecular level, PHF19 deletion triggers a redistribution of the histone repressive mark H3K27me3, which notably accumulates at blood lineage-specific genes. Our results provide novel insights into how epigenetic mechanisms determine HSC identity, control differentiation, and are key for proper hematopoiesis.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arantxa Gutiérrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc García-Montolio
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin Lange
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ana Carretero
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Atefeh Lafzi
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Luisa de Andrés-Aguayo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Roshana Thambyrajah
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Anna Bigas
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- CIBERONC, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08003, Spain
| |
Collapse
|
22
|
Kulkarni R, Kale V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Front Cell Dev Biol 2020; 8:611. [PMID: 32754597 PMCID: PMC7366553 DOI: 10.3389/fcell.2020.00611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) could have several fates in the body; viz. self-renewal, differentiation, migration, quiescence, and apoptosis. These fate decisions play a crucial role in maintaining homeostasis and critically depend on the interaction of the HSCs with their micro-environmental constituents. However, the physiological cues promoting these interactions in vivo have not been identified to a great extent. Intense research using various in vitro and in vivo models is going on in various laboratories to understand the mechanisms involved in these interactions, as understanding of these mechanistic would greatly help in improving clinical transplantations. However, though these elegant studies have identified the molecular interactions involved in the process, harnessing these interactions to the recipients' benefit would ultimately depend on manipulation of environmental cues initiating them in vivo: hence, these need to be identified at the earliest. HSCs reside in the bone marrow, which is a very complex tissue comprising of various types of stromal cells along with their secreted cytokines, extra-cellular matrix (ECM) molecules and extra-cellular vesicles (EVs). These components control the HSC fate decision through direct cell-cell interactions - mediated via various types of adhesion molecules -, cell-ECM interactions - mediated mostly via integrins -, or through soluble mediators like cytokines and EVs. This could be a very dynamic process involving multiple transient interactions acting concurrently or sequentially, and the adhesion molecules involved in various fate determining situations could be different. If the switch mechanisms governing these dynamic states in vivo are identified, they could be harnessed for the development of novel therapeutics. Here, in addition to reviewing the adhesion molecules involved in the regulation of HSCs, we also touch upon recent advances in our understanding of the physiological cues known to initiate specific adhesive interactions of HSCs with the marrow stromal cells or ECM molecules and EVs secreted by them.
Collapse
Affiliation(s)
- Rohan Kulkarni
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
23
|
Shallis RM, Bewersdorf JP, Boddu PC, Zeidan AM. Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia. Expert Rev Anticancer Ther 2019; 19:717-729. [PMID: 31422721 DOI: 10.1080/14737140.2019.1652095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The Hedgehog (HH) pathway constitutes a collection of signaling molecules which critically influence embryogenesis. In adults, however, the HH pathway remains integral to the proliferation, maintenance, and apoptosis of adult stem cells including hematopoietic stem cells. Areas covered: We discuss the current understanding of the HH pathway as it relates to normal hematopoiesis, the pathology of acute myeloid leukemia (AML), the rationale for and data from combination therapies including HH pathway inhibitors, and ultimately the prospects that might offer promise in targeting this pathway in AML. Expert opinion: Efforts to target the HH pathway have been focused on impeding this disposition and restoring chemosensitivity to conventional myeloid neoplasm therapies. The year 2018 saw the first approval of a HH pathway inhibitor (glasdegib) for AML, though for an older population and in combination with an uncommonly-used therapy. Several other clinical trials with agents targeting modulators of HH signaling in AML and MDS are underway. Further study and understanding of the interplay between the numerous aspects of HH signaling and how it relates to the augmented survival of AML will provide a more reliable substrate for therapeutic strategies in patients with this poor-risk disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Prajwal C Boddu
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University , New Haven , CT , USA
| |
Collapse
|
24
|
Qin Y, Fang K, Lu N, Hu Y, Tian Z, Zhang C. Interferon gamma inhibits the differentiation of mouse adult liver and bone marrow hematopoietic stem cells by inhibiting the activation of notch signaling. Stem Cell Res Ther 2019; 10:210. [PMID: 31311586 PMCID: PMC6636148 DOI: 10.1186/s13287-019-1311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The paradigm of hematopoietic stem and progenitor cells (HSPCs) has become accepted ever since the discovery of adult mouse liver hematopoietic stem cells and their multipotent characteristics that give rise to all blood cells. However, differences between bone marrow (BM) and liver hematopoietic stem cells and the hematopoietic microenvironment remain poorly understood. In addition, the regulation of the liver hematopoietic system remains unknown. METHODS Clone formation assays were used to confirm that the proliferation of adult mouse liver and bone marrow HSPCs. Model mice with different interferon gamma (IFN-γ) levels and a co-culture system were used to detect the differentiation of liver HSPCs. The γ-secretase inhibitor (GSI) and the JAK/STAT inhibitor ruxolitinib and cell culture assays were used to explore the molecular mechanism by which IFN-γ impairs HSPC proliferation and differentiation. RESULTS The colony-forming activity of liver and bone marrow HSPCs was inhibited by IFN-γ. Model mice with different IFN-γ levels showed that the differentiation of liver HSPCs was impaired by IFN-γ. Using a co-culture system comprising liver HSPCs, we found that IFN-γ inhibited the development of liver hematopoietic stem cells into γδT cells. We then demonstrated that IFN-γ might impair liver HSPC differentiation by inhibiting the activation of the notch signaling via the JAK/STAT signaling pathway. CONCLUSIONS IFN-γ inhibited the proliferation of liver-derived HSPCs. IFN-γ also impaired the differentiation of long-term hematopoietic stem cells (LT-HSCs) into short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MPPs) and the process from LSK (Lineage-Sca-1+c-Kit+) cells to γδT cells. Importantly, we proposed that IFN-γ might inhibit the activation of notch signaling through the JAK/STAT signaling pathway and thus impair the differentiation process of mouse adult liver and BM hematopoietic stem cells.
Collapse
Affiliation(s)
- Yuhong Qin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Keke Fang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Yuan Hu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019; 2019:2141475. [PMID: 31198425 PMCID: PMC6526542 DOI: 10.1155/2019/2141475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to create in vitro models of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review how in vitro differentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.
Collapse
|
26
|
The frequency of NOTCH1 variants in T-acute lymphoblastic leukemia/lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma among Jordanian patients. Ann Diagn Pathol 2019; 39:53-58. [PMID: 30718223 DOI: 10.1016/j.anndiagpath.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 11/23/2022]
Abstract
The transmembrane receptor NOTCH1 is thought to be associated with the development and progression of T-acute lymphoblastic leukemia (T-ALL)/T-lymphoblastic lymphoma (T-LBL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). The current study aimed to characterize NOTCH1 expression and elucidate the variants in the functional PEST domain of the receptor in T-ALL/LBL and CLL/SLL. The nuclear expression of NOTCH1 protein was detected in 25% and 5% of cases of T-ALL/LBL and CLL/SLL, respectively, whereas cytoplasmic expression was detected in 33.3% and 15% cases, respectively. The frequency of variants in T-ALL/LBL was 33%, whereas 40% of CLL/SLL cases possessed variants. Four novel variants were identified; three of which were non-synonymous and one common variant c.7280_7280delG between T-ALL/LBL and CLL/SLL cases. The previously described variant, c.7541_7542delCT, was detected in 3 cases of CLL/SLL. These results provide support for the contribution of NOTCH1 in the etiology of these types of cancers.
Collapse
|
27
|
Kumar A, Lee JH, Suknuntha K, D'Souza SS, Thakur AS, Slukvin II. NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. THE JOURNAL OF IMMUNOLOGY 2018; 202:770-776. [PMID: 30578305 DOI: 10.4049/jimmunol.1801027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer the potential to serve as a versatile and scalable source of T cells for immunotherapies, which could be coupled with genetic engineering technologies to meet specific clinical needs. To improve T cell production from hPSCs, it is essential to identify cell subsets that are highly enriched in T cell progenitors and those stages of development at which NOTCH activation induces the most potent T cells. In this study, we evaluated the efficacy of T cell production from cell populations isolated at different stages of hematopoietic differentiation, including mesoderm, hemogenic endothelium (HE), and multipotent hematopoietic progenitors. We demonstrate that KDRhiCD31- hematovascular mesodermal progenitors (HVMPs) with definitive hematopoietic potential produce the highest numbers of T cells when cultured on OP9-DLL4 as compared with downstream progenitors, including HE and multipotent hematopoietic progenitors. In addition, we found that T cells generated from HVMPs have the capacity to expand for 6-7 wk in vitro, in comparison with T cells generated from HE and hematopoietic progenitors, which could only be expanded for 4-5 wk. Demonstrating the critical need of NOTCH activation at the HVMP stage of hematopoietic development to establish robust T cell production from hPSCs may aid in establishing protocols for the efficient off-the-shelf production and expansion of T cells for treating hematologic malignancies.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Jeong Hee Lee
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Kran Suknuntha
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Saritha S D'Souza
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Abir S Thakur
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715; .,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53707; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
28
|
Pérez Saturnino A, Lust K, Wittbrodt J. Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Development 2018; 145:dev.169698. [PMID: 30337377 PMCID: PMC6240314 DOI: 10.1242/dev.169698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo. Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages. Summary: Mutually exclusive activity of Notch and Atoh7 in the ciliary marginal zone gives rise to two distinct lineages resulting in specification of the full complement of cell types in medaka retina.
Collapse
Affiliation(s)
- Alicia Pérez Saturnino
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
29
|
Human Teratoma-Derived Hematopoiesis Is a Highly Polyclonal Process Supported by Human Umbilical Vein Endothelial Cells. Stem Cell Reports 2018; 11:1051-1060. [PMID: 30344010 PMCID: PMC6234902 DOI: 10.1016/j.stemcr.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) ensure a life-long regeneration of the blood system and are therefore an important source for transplantation and gene therapy. The teratoma environment supports the complex development of functional HSCs from human pluripotent stem cells, which is difficult to recapitulate in culture. This model mimics various aspects of early hematopoiesis, but is restricted by the low spontaneous hematopoiesis rate. In this study, a feasible protocol for robust hematopoiesis has been elaborated. We achieved a significant increase of the teratoma-derived hematopoietic population when teratomas were generated in the NSGS mouse, which provides human cytokines, together with co-injection of human umbilical vein endothelial cells. Since little is known about hematopoiesis in teratomas, we addressed localization and clonality of the hematopoietic lineage. Our results indicate that early human hematopoiesis is closely reflected in teratoma formation, and thus highlight the value of this model. Robust human hematopoiesis in teratomas with co-injected HUVECs in NSGS mice Hematopoietic progenitors localize inside vascular structures in teratomas CD45+ cells are present in mesenchymal tissue in teratomas Teratoma formation and subsequent hematopoiesis are polyclonal events
Collapse
|
30
|
Duarte S, Woll PS, Buza-Vidas N, Chin DWL, Boukarabila H, Luís TC, Stenson L, Bouriez-Jones T, Ferry H, Mead AJ, Atkinson D, Jin S, Clark SA, Wu B, Repapi E, Gray N, Taylor S, Mutvei AP, Tsoi YL, Nerlov C, Lendahl U, Jacobsen SEW. Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. Blood 2018; 131:1712-1719. [PMID: 29339402 PMCID: PMC5909886 DOI: 10.1182/blood-2017-06-788505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.
Collapse
Affiliation(s)
- Sara Duarte
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Clinical Hematology Department, University Hospital Center of Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Petter S Woll
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Natalija Buza-Vidas
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Desmond Wai Loon Chin
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Hanane Boukarabila
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tiago C Luís
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Stenson
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tiphaine Bouriez-Jones
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Ferry
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Deborah Atkinson
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shaobo Jin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Sally-Ann Clark
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emmanouela Repapi
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Taylor
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anders P Mutvei
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Yat Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
31
|
Coppin E, Florentin J, Vasamsetti SB, Arunkumar A, Sembrat J, Rojas M, Dutta P. Splenic hematopoietic stem cells display a pre-activated phenotype. Immunol Cell Biol 2018; 96:10.1111/imcb.12035. [PMID: 29526053 PMCID: PMC6379147 DOI: 10.1111/imcb.12035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Splenic hematopoiesis is crucial to the pathogenesis of diseases including myocardial infarction and atherosclerosis. The spleen acts as a reservoir of myeloid cells, which are quickly expelled out in response to acute inflammation. In contrast to the well-defined bone marrow hematopoiesis, the cellular and molecular components sustaining splenic hematopoiesis are poorly understood. Surprisingly, we found that, unlike quiescent bone marrow hematopoietic stem cells (HSC), most of splenic HSC are in the G1 phase in C57BL/6 mice. Moreover, splenic HSC were enriched for genes involved in G0-G1 transition and expressed lower levels of genes responsible for G1-S transition. These data indicate that, at steady state, splenic HSC are pre-activated, which may expedite their cell cycle entry in emergency conditions. Consistently, in the acute phase of septic shock induced by LPS injection, splenic HSC entered the S-G2-M phase, whereas bone marrow HSC did not. Mobilization and transplantation experiments displayed that bone marrow HSC, once in the spleen, acquired cell cycle status similar to splenic HSC, strongly suggesting that the splenic microenvironment plays an important role in HSC pre-activation. In addition, we found that myeloid translocation gene 16 (Mtg16) deficiency in C57BL/6 mice resulted in significantly increased S-G2-M entry of splenic but not bone marrow HSC, suggesting that Mtg16 is an intrinsic negative regulator of G1-S transition in splenic HSC. Altogether, this study demonstrates that compared to bone marrow, splenic HSC are in a pre-activated state, which is driven by extracellular signals provided by splenic microenvironment and HSC intrinsic factor Mtg16.
Collapse
Affiliation(s)
- Emilie Coppin
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Jonathan Florentin
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Sathish Babu Vasamsetti
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA 15261, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA 15261, USA
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh Medical Center, BST 1720.1, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Arulmozhivarman G, Kräter M, Wobus M, Friedrichs J, Bejestani EP, Müller K, Lambert K, Alexopoulou D, Dahl A, Stöter M, Bickle M, Shayegi N, Hampe J, Stölzel F, Brand M, von Bonin M, Bornhäuser M. Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells. Sci Rep 2017; 7:12084. [PMID: 28935977 PMCID: PMC5608703 DOI: 10.1038/s41598-017-12360-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of small molecules that either increase the number and/or enhance the activity of human hematopoietic stem and progenitor cells (hHSPCs) during ex vivo expansion remains challenging. We used an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model and identified histone deacetylase inhibitors (HDACIs), particularly valproic acid (VPA), as significant enhancers of the number of phenotypic HSPCs, both in vivo and during ex vivo expansion. The long-term functionality of these expanded hHSPCs was verified in a xenotransplantation model with NSG mice. Interestingly, VPA increased CD34+ cell adhesion to primary mesenchymal stromal cells and reduced their in vitro chemokine-mediated migration capacity. In line with this, VPA-treated human CD34+ cells showed reduced homing and early engraftment in a xenograft transplant model, but retained their long-term engraftment potential in vivo, and maintained their differentiation ability both in vitro and in vivo. In summary, our data demonstrate that certain HDACIs lead to a net expansion of hHSPCs with retained long-term engraftment potential and could be further explored as candidate compounds to amplify ex-vivo engineered peripheral blood stem cells.
Collapse
Affiliation(s)
| | - Martin Kräter
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Manja Wobus
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Elham Pishali Bejestani
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Katrin Müller
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Katrin Lambert
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Dimitra Alexopoulou
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Martin Stöter
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nona Shayegi
- Department of Hematology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jochen Hampe
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Friedrich Stölzel
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| | - Malte von Bonin
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany. .,DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
33
|
Winkler AL, Koenig M, Welle A, Trouillet V, Kratzer D, Hussal C, Lahann J, Lee-Thedieck C. Bioinstructive Coatings for Hematopoietic Stem Cell Expansion Based on Chemical Vapor Deposition Copolymerization. Biomacromolecules 2017; 18:3089-3098. [DOI: 10.1021/acs.biomac.7b00743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Joerg Lahann
- Department
of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
34
|
Proinflammatory Signals as Fuel for the Fire of Hematopoietic Stem Cell Emergence. Trends Cell Biol 2017; 28:58-66. [PMID: 28882414 DOI: 10.1016/j.tcb.2017.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) have the extraordinary ability to both self-renew and generate all mature blood cell lineages. The ability to produce or expand patient-derived HSCs in vitro would greatly improve the outcome for patients with blood disorders that are currently treated with allogeneic HSC transplantation. Many laboratories have been working to identify the signals required for HSC emergence in their native environments to apply this knowledge in vitro. Recently, several signals traditionally known to underlie classical inflammation have emerged as essential regulators of HSC development. In this review we synthesize the findings that have established inflammatory cues as key regulators of HSC development.
Collapse
|
35
|
Kim TG, Kim S, Jung S, Kim M, Yang B, Lee MG, Kim HP. CCCTC-binding factor is essential to the maintenance and quiescence of hematopoietic stem cells in mice. Exp Mol Med 2017; 49:e371. [PMID: 28857086 PMCID: PMC5579513 DOI: 10.1038/emm.2017.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis involves a series of lineage differentiation programs initiated in hematopoietic stem cells (HSCs) found in bone marrow (BM). To ensure lifelong hematopoiesis, various molecular mechanisms are needed to maintain the HSC pool. CCCTC-binding factor (CTCF) is a DNA-binding, zinc-finger protein that regulates the expression of its target gene by organizing higher order chromatin structures. Currently, the role of CTCF in controlling HSC homeostasis is unknown. Using a tamoxifen-inducible CTCF conditional knockout mouse system, we aimed to determine whether CTCF regulates the homeostatic maintenance of HSCs. In adult mice, acute systemic CTCF ablation led to severe BM failure and the rapid shrinkage of multiple c-Kithi progenitor populations, including Sca-1+ HSCs. Similarly, hematopoietic system-confined CTCF depletion caused an acute loss of HSCs and highly increased mortality. Mixed BM chimeras reconstituted with supporting BM demonstrated that CTCF deficiency-mediated HSC depletion has both cell-extrinsic and cell-intrinsic effects. Although c-Kithi myeloid progenitor cell populations were severely reduced after ablating Ctcf, c-Kitint common lymphoid progenitors and their progenies were less affected by the lack of CTCF. Whole-transcriptome microarray and cell cycle analyses indicated that CTCF deficiency results in the enhanced expression of the cell cycle-promoting program, and that CTCF-depleted HSCs express higher levels of reactive oxygen species (ROS). Importantly, in vivo treatment with an antioxidant partially rescued c-Kithi cell populations and their quiescence. Altogether, our results suggest that CTCF is indispensable for maintaining adult HSC pools, likely by regulating ROS-dependent HSC quiescence.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sueun Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soyeon Jung
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bobae Yang
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Samson M, Corbera-Bellalta M, Audia S, Planas-Rigol E, Martin L, Cid MC, Bonnotte B. Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev 2017; 16:833-844. [DOI: 10.1016/j.autrev.2017.05.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022]
|
37
|
Abstract
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function. In addition, we cover aberrant alterations of Notch signaling in the diseased brain. The aim of this review is to provide an insight into how Notch signaling works in different contexts to control neurogenesis and its potential effects in diagnoses and therapies of neurodegeneration, brain tumors and disorders.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
38
|
Eyre TA, Schuh A. An update for Richter syndrome - new directions and developments. Br J Haematol 2017; 178:508-520. [DOI: 10.1111/bjh.14700] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Toby A. Eyre
- Department of Haematology; Cancer and Haematology Centre; Oxford University Hospitals NHS Trust; Oxford UK
- Early Phase Clinical Trial Unit; Oxford University Hospitals NHS Foundation Trust; Churchill Hospital; Oxford UK
| | - Anna Schuh
- Department of Haematology; Cancer and Haematology Centre; Oxford University Hospitals NHS Trust; Oxford UK
- Early Phase Clinical Trial Unit; Oxford University Hospitals NHS Foundation Trust; Churchill Hospital; Oxford UK
- NIHR BRC Oxford Molecular Diagnostic Centre; Oxford University Hospitals NHS Foundation Trust; Oxford UK
- Department of Oncology; University of Oxford; Oxford UK
| |
Collapse
|
39
|
Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski JP, Molenaar RJ. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim Biophys Acta Rev Cancer 2017; 1868:183-198. [PMID: 28363872 DOI: 10.1016/j.bbcan.2017.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Cornelis J F Van Noorden
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Hetty E Carraway
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Leukemia Program, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Remco J Molenaar
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
40
|
Wharton’s Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review. Stem Cell Rev Rep 2016; 13:35-49. [DOI: 10.1007/s12015-016-9702-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
42
|
Balistreri CR, Madonna R, Melino G, Caruso C. The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases. Ageing Res Rev 2016; 29:50-65. [PMID: 27328278 DOI: 10.1016/j.arr.2016.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway, which is fundamental for the development of all tissues, organs and systems of human body. Recently, a considerable and still growing number of studies have highlighted the contribution of Notch signaling in various pathological processes of the adult life, such as age-related diseases. In particular, the Notch pathway has emerged as major player in the maintenance of tissue specific homeostasis, through the control of proliferation, migration, phenotypes and functions of tissue cells, as well as in the cross-talk between inflammatory cells and the innate immune system, and in onset of inflammatory age-related diseases. However, until now there is a confounding evidence about the related mechanisms. Here, we discuss mechanisms through which Notch signaling acts in a very complex network of pathways, where it seems to have the crucial role of hub. Thus, we stress the possibility to use Notch pathway, the related molecules and pathways constituting this network, both as innovative (predictive, diagnostic and prognostic) biomarkers and targets for personalised treatments for age-related diseases.
Collapse
|
43
|
Developing HSCs become Notch independent by the end of maturation in the AGM region. Blood 2016; 128:1567-77. [PMID: 27421959 DOI: 10.1182/blood-2016-03-708164] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022] Open
Abstract
The first definitive hematopoietic stem cells (dHSCs) in the mouse emerge in the dorsal aorta of the embryonic day (E) 10.5 to 11 aorta-gonad-mesonephros (AGM) region. Notch signaling is essential for early HSC development but is dispensable for the maintenance of adult bone marrow HSCs. How Notch signaling regulates HSC formation in the embryo is poorly understood. We demonstrate here that Notch signaling is active in E10.5 HSC precursors and involves both Notch1 and Notch2 receptors, but is gradually downregulated while they progress toward dHSCs at E11.5. This downregulation is accompanied by gradual functional loss of Notch dependency. Thus, as early as at final steps in the AGM region, HSCs begin acquiring the Notch independency characteristic of adult bone marrow HSCs as part of the maturation program. Our data indicate that fine stage-dependent tuning of Notch signaling may be required for the generation of definitive HSCs from pluripotent cells.
Collapse
|
44
|
Chen JJ, Gao XT, Yang L, Fu W, Liang L, Li JC, Hu B, Sun ZJ, Huang SY, Zhang YZ, Liang YM, Qin HY, Han H. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation. Sci Rep 2016; 6:26003. [PMID: 27188577 PMCID: PMC4870557 DOI: 10.1038/srep26003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lan Yang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Fu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Chang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Hu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhi-Jian Sun
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-Yong Huang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Min Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hong-Yan Qin
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua Han
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
45
|
Bejar MT, Ferrer-Lorente R, Peña E, Badimon L. Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells. FASEB J 2016; 30:2849-59. [PMID: 27150622 DOI: 10.1096/fj.201600204r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
The epicardial adipose tissue (EAT) is a reservoir of adipose-derived stem cells (ASCs), with as yet unknown effects on myocardial and coronary arteries homeostasis. The purpose of this study was to investigate the angiogenic function of epicardial ASCs and their regulation by the common cardiovascular risk factors (CVRFs) affecting heart disease. Epicardial fat was obtained from a rodent model with clustering of CVRFs [Zucker diabetic fatty (ZDF)-Lepr(fa)] rats and from their lean control (ZDF-Crl) littermates without CVRFs, ASCs were isolated, and their function was assessed by proliferation and differentiation assays, flow cytometry, gene expression, and in vivo Matrigel angiogenesis analysis. Epicardial ASCs from both groups showed adipogenic and osteogenic differentiation capacity; however, epicardial ASCs from CVRF animals had a lesser ability to form tubular structures in vitro after endothelial differentiation, as well as a reduced angiogenic potential in vivo compared to control animals. Epicardial ASCs from CVRF rats showed up-regulation of the downstream Notch signaling genes Hes7, Hey1, and Heyl compared with control animals. The inhibition of Notch signaling by conditioning epicardial ASCs from CVRF animals with a γ-secretase inhibitor induced a reduction in Hes/Hey gene expression and rescued their angiogenic function in vivo We report for the first time the impact of CVRF burden on the ASCs of EAT and that the defective function is in part caused by increased Notch signaling. Conditioning ASCs by blocking Notch signaling rescues their angiogenic potential.-Bejar, M. T., Ferrer-Lorente, R., Peña, E., Badimon, L. Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells.
Collapse
Affiliation(s)
- Maria Teresa Bejar
- Cardiovascular Research Center, Consejo Superior de Investigaciones Cientificas-Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Li T, Guo B, Gao Y, Yu QH, Li JJ, Xian WJ, Jiang S, Zheng QC, Zhang Y. Tumor necrosis factor-alpha up-regulates expression of Jagged-1 and induces epithelial-mesenchymal transition in rat cholangiocytes in vitro. Shijie Huaren Xiaohua Zazhi 2016; 24:1806-1811. [DOI: 10.11569/wcjd.v24.i12.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of tumor necrosis factor-alpha (TNF-α) in the epithelial-mesenchymal transition (EMT) process in rat cholangiocytes in vitro.
METHODS: Primary rat cholangiocytes were treated with TNF-α (10 ng/mL) alone, TNF-α plus nuclear factor kappa B (NF-κB) inhibitor PDTC (50 µmol/L), or PDTC alone for 72 h. The expression of Jagged-1, mesenchymal markers [fibroblast-specific protein-1 (FSP-1), Vimentin and α-SMA] as well as epithelial marker CK19 was detected by Western blot. NF-κB binding activity was measured by EMSA. Migration ability and morphological changes of cholangiocytes were also examined.
RESULTS: In the TNF-α alone group, the protein levels of Jagged-1, FSP-1, Vimentin and α-SMA were up-regulated compared to control cells, whereas the expression of CK19 was down-regulated. The migration ability of cholangiocytes was increased and their shape changed from stone-like to fiber-like. For the TNF-α plus PTCD group and the PTCD alone group, no significant changes in EMT markers as well as migration ability were observed compared to control cells.
CONCLUSION: TNF-α is able to increase the expression of Jagged-1 and induce EMT in rat cholangiocytes in vitro possibly through activation of NF-κB signaling.
Collapse
|
47
|
Weiss-Gayet M, Starck J, Chaabouni A, Chazaud B, Morlé F. Notch Stimulates Both Self-Renewal and Lineage Plasticity in a Subset of Murine CD9High Committed Megakaryocytic Progenitors. PLoS One 2016; 11:e0153860. [PMID: 27089435 PMCID: PMC4835090 DOI: 10.1371/journal.pone.0153860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/05/2016] [Indexed: 01/24/2023] Open
Abstract
This study aimed at reinvestigating the controversial contribution of Notch signaling to megakaryocytic lineage development. For that purpose, we combined colony assays and single cells progeny analyses of purified megakaryocyte-erythroid progenitors (MEP) after short-term cultures on recombinant Notch ligand rDLL1. We showed that Notch activation stimulated the SCF-dependent and preferential amplification of Kit+ erythroid and bipotent progenitors while favoring commitment towards the erythroid at the expense of megakaryocytic lineage. Interestingly, we also identified a CD9High MEP subset that spontaneously generated almost exclusively megakaryocytic progeny mainly composed of single megakaryocytes. We showed that Notch activation decreased the extent of polyploidization and maturation of megakaryocytes, increased the size of megakaryocytic colonies and surprisingly restored the generation of erythroid and mixed colonies by this CD9High MEP subset. Importantly, the size increase of megakaryocytic colonies occurred at the expense of the production of single megakaryocytes and the restoration of colonies of alternative lineages occurred at the expense of the whole megakaryocytic progeny. Altogether, these results indicate that Notch activation is able to extend the number of divisions of MK-committed CD9High MEPs before terminal maturation while allowing a fraction of them to generate alternative lineages. This unexpected plasticity of MK-committed progenitors revealed upon Notch activation helps to better understand the functional promiscuity between megakaryocytic lineage and hematopoietic stem cells.
Collapse
Affiliation(s)
- Michèle Weiss-Gayet
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - Joëlle Starck
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - Azza Chaabouni
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
| | - François Morlé
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon1, Villeurbanne, France
- INSERM U1217, Villeurbanne, France
- CNRS UMR 5310, Villeurbanne, France
- * E-mail:
| |
Collapse
|
48
|
Kanz D, Konantz M, Alghisi E, North TE, Lengerke C. Endothelial-to-hematopoietic transition: Notch-ing vessels into blood. Ann N Y Acad Sci 2016; 1370:97-108. [DOI: 10.1111/nyas.13030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Dirk Kanz
- Department of Stem Cell and Regenerative Biology; Harvard University; Boston Massachusetts
| | - Martina Konantz
- Department of Biomedicine; University Hospital Basel; Basel Switzerland
| | - Elisa Alghisi
- Department of Biomedicine; University Hospital Basel; Basel Switzerland
| | - Trista E. North
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts
- Harvard Stem Cell Institute; Cambridge Massachusetts
| | - Claudia Lengerke
- Department of Biomedicine; University Hospital Basel; Basel Switzerland
- Division of Hematology; University Hospital Basel; Basel Switzerland
| |
Collapse
|
49
|
Zhang HM, Li Q, Zhu X, Liu W, Hu H, Liu T, Cheng F, You Y, Zhong Z, Zou P, Li Q, Chen Z, Guo AY. miR-146b-5p within BCR-ABL1-Positive Microvesicles Promotes Leukemic Transformation of Hematopoietic Cells. Cancer Res 2016; 76:2901-11. [PMID: 27013199 DOI: 10.1158/0008-5472.can-15-2120] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
Abstract
Evidence is accumulating that extracellular microvesicles (MV) facilitate progression and relapse in cancer. Using a model in which MVs derived from K562 chronic myelogenous leukemia (CML) cells transform normal hematopoietic transplants into leukemia-like cells, we defined the underlying mechanisms of this process through gene-expression studies and network analyses of transcription factors (TF) and miRNAs. We found that antitumor miRNAs were increased and several defense pathways were initiated during the early phases of oncogenic transformation. Later, oncomiRs and genes involved in cell cycle, DNA repair, and energy metabolism pathways were upregulated. Regulatory network analyses revealed that a number of TFs and miRNAs were responsible for the pathway dysregulation and the oncogenic transformation. In particular, we found that miR-146b-5p, which was highly expressed in MVs, coordinated the regulation of cancer-related genes to promote cell-transforming processes. Notably, treatment of recipient cells with MV derived from K562 cells expressing mimics of miR-146b-5p revealed that it accelerated the transformation process in large part by silencing the tumor-suppressor NUMB High levels of miR-146b-5p also enhanced reactive oxygen species levels and genome instability of recipient cells. Taken together, our finding showed how upregulation of oncogenic miRNAs in MVs promote hematopoetic cells to a leukemic state, as well as a demonstration for TF and miRNA coregulatory analysis in exploring the dysregulation of cancers and discovering key factors. Cancer Res; 76(10); 2901-11. ©2016 AACR.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Liu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Teng Liu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Colombo M, Mirandola L, Reidy A, Suvorava N, Konala V, Chiaramonte R, Grizzi F, Rahman RL, Jenkins MR, Nugyen DD, Dalhbeck S, Cobos E, Figueroa JA, Chiriva-Internati M. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis. Int Rev Immunol 2016; 34:188-99. [PMID: 25901861 DOI: 10.3109/08830185.2015.1027629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano , Milano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|