1
|
Qu Y, Zeng A, Cheng Y, Li S. Natural killer cell memory: challenges and opportunities for cancer immunotherapy. Cancer Biol Ther 2024; 25:2376410. [PMID: 38987282 PMCID: PMC11238922 DOI: 10.1080/15384047.2024.2376410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Substantial advancements have been made in recent years in comprehending immune memory, which enhances the secondary response through prior infections. The ability of vertebrate T and B lymphocytes to exhibit classic recall responses has long been regarded as a distinguishing characteristic. However, natural killer (NK) cells have been found to acquire immunological memory in a manner akin to T and B cells. The fundamental principles derived from the investigation of NK cell memory offer novel insights into innate immunity and have the potential to pave the way for innovative strategies to enhance therapeutic interventions against multiple diseases including cancer. Here, we reviewed the fundamental characteristics, memory development and regulatory mechanism of NK cell memory. Moreover, we will conduct a comprehensive evaluation of the accomplishments, obstacles, and future direction pertaining to the utilization of NK cell memory in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuhua Qu
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anhui Zeng
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Cheng
- Department of Disinfection Supply Center, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengchun Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Voigt S. Cytomegalovirus in haematopoietic cell transplantation - The troll is still there. Best Pract Res Clin Haematol 2024; 37:101565. [PMID: 39396255 DOI: 10.1016/j.beha.2024.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Patients undergoing allogeneic haematopoietic cell transplantation are prone to complications caused by viral infections. Cytomegalovirus (CMV) considerably impacts transplantation as it frequently requires antiviral intervention that evokes substantial side effects depending on the antiviral drug. Intermittent antiviral treatment may become necessary if CMV DNAemia cannot be permanently suppressed, and drug resistance may emerge that hampers and prolongs treatment. Despite sedulous endeavours, vaccination against CMV is not yet available. This review concisely summarises current approaches in managing CMV infection comprising risk factors, diagnostics including indications for resistance testing, and therapeutic options from antiviral drugs to virus-specific T cells.
Collapse
Affiliation(s)
- Sebastian Voigt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Arellano-Ballestero H, Zubiak A, Dally C, Orchard K, Alrubayyi A, Charalambous X, Michael M, Torrance R, Eales T, Das K, Tran MGB, Sabry M, Peppa D, Lowdell MW. Proteomic and phenotypic characteristics of memory-like natural killer cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e008717. [PMID: 39032940 PMCID: PMC11261707 DOI: 10.1136/jitc-2023-008717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.
Collapse
Affiliation(s)
| | - Agnieszka Zubiak
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Chris Dally
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | | | - Trinity Eales
- Cancer Institute, University College London, London, UK
| | | | - Maxine G. B. Tran
- Department of Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - May Sabry
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Mark W. Lowdell
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| |
Collapse
|
4
|
Preechanukul A, Saiprom N, Rochaikun K, Moonmueangsan B, Phunpang R, Ottiwet O, Kongphrai Y, Wapee S, Janon R, Dunachie S, Kronsteiner B, Chantratita N. Metabolic requirements of CD160 expressing memory-like NK cells in Gram-negative bacterial infection. Clin Transl Immunology 2024; 13:e1513. [PMID: 38957437 PMCID: PMC11218174 DOI: 10.1002/cti2.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024] Open
Abstract
Objective Unique metabolic requirements accompany the development and functional fates of immune cells. How cellular metabolism is important in natural killer (NK) cells and their memory-like differentiation in bacterial infections remains elusive. Methods Here, we utilise our established NK cell memory assay to investigate the metabolic requirement for memory-like NK cell formation and function in response to the Gram-negative intracellular bacteria Burkholderia pseudomallei (BP), the causative agent of melioidosis. Results We demonstrate that CD160+ memory-like NK cells upon BP stimulation upregulate glucose and amino acid transporters in a cohort of recovered melioidosis patients which is maintained at least 3-month post-hospital admission. Using an in vitro assay, human BP-specific CD160+ memory-like NK cells show metabolic priming including increased expression of glucose and amino acid transporters with elevated glucose uptake, increased mTOR activation and mitochondrial membrane potential upon BP re-stimulation. Antigen-specific and cytokine-induced IFN-γ production of this memory-like NK cell subset are highly dependent on oxidative phosphorylation (OXPHOS) with some dependency on glycolysis, whereas the formation of CD160+ memory-like NK cells in vitro is dependent on fatty acid oxidation and OXPHOS and further increased by metformin. Conclusion This study reveals the link between metabolism and cellular function of memory-like NK cells, which can be exploited for vaccine design and for monitoring protection against Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Anucha Preechanukul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine Mahidol University Bangkok Thailand
- Division of Infection and Immunity University College London London UK
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Kitilak Rochaikun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Boonthanom Moonmueangsan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Orawan Ottiwet
- Department of Medical Technology and Clinical Pathology Mukdahan Hospital Mukdahan Thailand
| | - Yuphin Kongphrai
- Department of Medical Technology and Clinical Pathology Mukdahan Hospital Mukdahan Thailand
| | - Soonthon Wapee
- Department of Medical Technology and Clinical Pathology Mukdahan Hospital Mukdahan Thailand
| | - Rachan Janon
- Department of Medicine Mukdahan Hospital Mukdahan Thailand
| | - Susanna Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit Mahidol University Bangkok Thailand
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine University of Oxford Oxford UK
- Nuffield Department of Clinical Medicine, NDM Centre for Global Health Research University of Oxford Oxford UK
- Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine University of Oxford Oxford UK
- Nuffield Department of Clinical Medicine, NDM Centre for Global Health Research University of Oxford Oxford UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine Mahidol University Bangkok Thailand
- Mahidol-Oxford Tropical Medicine Research Unit Mahidol University Bangkok Thailand
| |
Collapse
|
5
|
Saliba RM, Lee SJ, Carpenter PA, Hill GR, Lee CJ, Alousi A, Daher M, Chen G, Champlin RE, Rezvani K, Shpall EJ, Mehta RS. Mycophenolate mofetil is associated with inferior overall survival in cytomegalovirus-seropositive patients with acute myeloid leukemia undergoing hematopoietic cell transplantation. Haematologica 2024; 109:2321-2325. [PMID: 38426274 PMCID: PMC11215377 DOI: 10.3324/haematol.2023.284501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie J Lee
- Fred Hutchinson Cancer Center, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Paul A Carpenter
- Fred Hutchinson Cancer Center, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA; Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children's Hospital, Seattle, WA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Houston, TX
| | - Catherine J Lee
- Fred Hutchinson Cancer Center, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - George Chen
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rohtesh S Mehta
- Fred Hutchinson Cancer Center, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA.
| |
Collapse
|
6
|
Lauruschkat CD, Muchsin I, Rein AF, Erhard F, Grathwohl D, Dölken L, Köchel C, Nehmer A, Falk CS, Grigoleit GU, Einsele H, Wurster S, Kraus S. Impaired T cells and "memory-like" NK-cell reconstitution is linked to late-onset HCMV reactivation after letermovir cessation. Blood Adv 2024; 8:2967-2979. [PMID: 38315873 PMCID: PMC11302378 DOI: 10.1182/bloodadvances.2023012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (alloSCT) is the only cure for many hematologic malignancies. However, alloSCT recipients are susceptible to opportunistic pathogens, such as human cytomegalovirus (HCMV). Letermovir prophylaxis has revolutionized HCMV management, but the challenge of late HCMV reactivations has emerged. Immunological surrogates of clinically significant HCMV infection (csCMVi) after discontinuation of letermovir remain to be defined. Therefore, we studied natural killer (NK)-cell reconstitution along with the global and HCMV pp65-specific T-cell repertoire of 24 alloSCT recipients at 7 time points before (day +90) and after (days +120-270) cessation of letermovir prophylaxis. Patients who experienced csCMVi had lower counts of IFN-γ+ HCMV-specific CD4+ and CD8+ T cells than HCMV controllers. Furthermore, patients with csCMVi displayed late impairment of NK-cell reconstitution, especially suppression of "memory-like" CD159c+CD56dim NK-cell counts that preceded csCMVi events in most patients. Moreover, several surrogates of immune reconstitution were associated with the severity of HCMV manifestation, with patients suffering from HCMV end-organ disease and/or refractory HCMV infection harboring least HCMV-specific T cells and "memory-like" NK cells. Altogether, our findings establish an association of delayed or insufficient proliferation of both HCMV-specific T cells and "memory-like" NK cells with csCMVi and the severity of HCMV manifestations after discontinuation of letermovir prophylaxis.
Collapse
Affiliation(s)
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
| | - Alice Felicitas Rein
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
- Helmholtz-Institute for RNA-based Infection Research, Würzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Anne Nehmer
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Christine Susanne Falk
- Institute of Transplant Immunology, Medizinische Hochschule Hanover, Hanover, Germany
- German Center for Infection Research, TTU-IICH, Hanover, Germany
- German Center for Lung Diseases, BREATH Site, Hanover, Germany
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| |
Collapse
|
7
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
8
|
Prall TM, Karl JA, Varghese JM, Baker DA, Minor NR, Raveendran M, Harris RA, Rogers J, Wiseman RW, O’Connor DH. Complete Genomic Assembly of Mauritian Cynomolgus Macaque Killer Ig-like Receptor and Natural Killer Group 2 Haplotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1754-1765. [PMID: 38639635 PMCID: PMC11102026 DOI: 10.4049/jimmunol.2300856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.
Collapse
Affiliation(s)
- Trent M. Prall
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Julie A. Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Joshua M. Varghese
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Nicholas R. Minor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jeffery Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Roger W. Wiseman
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI
| |
Collapse
|
9
|
Li S, Xiao Y, Jia M. Prior cytomegalovirus reactivation may lead to worse bacterial bloodstream infection outcomes in HSCT patients. Transpl Immunol 2024; 84:102038. [PMID: 38518827 DOI: 10.1016/j.trim.2024.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) reactivation is common after transplantation, and may further augment natural killer (NK) cell activity, which has a protective role through both innate and adaptive immune responses. Bacterial bloodstream infections (BBSIs) are a common cause of morbidity and mortality in patients following allo-HSCT. Therefore, we hypothesized that CMV reactivation might play a role in the outcomes of patients with BBSI after allo-HSCT. OBJECTIVES We investigated the role of CMV reactivation in the clinical outcomes of patients with BBSI after allo-HSCT. STUDY DESIGN A total of 101 BBSI patients (45 non-CMV reactivation [NCR] and 56 CMV reactivation [CR]) were included in the study following allo-HSCT. Clinical and laboratory findings were reviewed, and differences were tested using the Chi-square (χ2) test. Multivariate Cox regression analysis was used to calculate hazard ratios for between-group comparisons of clinical outcomes. RESULTS CMV reactivation had a negative prognostic impact on the clinical outcomes of BBSI patients following allo-HSCT with regard to the 1-year overall survival time (HR, 3.583; 95% CI, 1.347-9.533; P = 0.011). In 56 BBSI patients with CMV reactivation following allo-HSCT, the 1-year mortality among those in whom CMV was reactivated first (CRF) was significantly elevated (56.5% vs. 18.2%, P = 0.003) compared with patients in whom the BBSIs occurred first (BOF). CONCLUSIONS CMV reactivation in BBSI patients is related to higher mortality 1-year after allo-HSCT. Further studies on a larger cohort are needed to better understanding the mechanism of CMV reactivation influence.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Xiao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
10
|
McNitt SA, Dick JK, Hernandez Castaneda M, Sangala JA, Pierson M, Macchietto M, Burrack KS, Crompton PD, Seydel KB, Hamilton SE, Hart GT. Phenotype and function of IL-10 producing NK cells in individuals with malaria experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593687. [PMID: 38798324 PMCID: PMC11118352 DOI: 10.1101/2024.05.11.593687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Collapse
|
11
|
Aguilar OA, Fong LK, Lanier LL. ITAM-based receptors in natural killer cells. Immunol Rev 2024; 323:40-53. [PMID: 38411263 PMCID: PMC11102329 DOI: 10.1111/imr.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The ability of cells of the immune system to acquire features such as increased longevity and enhanced secondary responses was long thought to be restricted to cells of the adaptive immune system. Natural killer (NK) cells have challenged this notion by demonstrating that they can also gain adaptive features. This has been observed in both humans and mice during infection with cytomegalovirus (CMV). The generation of adaptive NK cells requires antigen-specific recognition of virally infected cells through stimulatory NK receptors. These receptors lack the ability to signal on their own and rather rely on adaptor molecules that contain ITAMs for driving signals. Here, we highlight our understanding of how these receptors influence the production of adaptive NK cells and propose areas in the field that merit further investigation.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| | - Lam-Kiu Fong
- Dept. of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Dept. of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
13
|
Yandamuri SS, Filipek B, Lele N, Cohen I, Bennett JL, Nowak RJ, Sotirchos ES, Longbrake EE, Mace EM, O’Connor KC. A Noncanonical CD56dimCD16dim/- NK Cell Subset Indicative of Prior Cytotoxic Activity Is Elevated in Patients with Autoantibody-Mediated Neurologic Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:785-800. [PMID: 38251887 PMCID: PMC10932911 DOI: 10.4049/jimmunol.2300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology. NK cells from NMOSD patients and MG patients with elevated disease burden exhibited reduced ADCC and CD56dimCD16hi NK cells, along with an elevated frequency of CD56dimCD16dim/- NK cells. We determined that ADCC induces a similar phenotypic shift in vitro. Bulk RNA sequencing distinguished the CD56dimCD16dim/- population from the canonical CD56dimCD16hi cytotoxic and CD56hiCD16- immunomodulatory subsets, as well as CD56hiCD16+ NK cells. Multiparameter immunophenotyping of NK cell markers, functional proteins, and receptors similarly showed that the CD56dimCD16dim/- subset exhibits a unique profile while still maintaining expression of characteristic NK markers CD56, CD94, and NKp44. Notably, expression of perforin and granzyme is reduced in comparison with CD56dimCD16hi NK cells. Moreover, they exhibit elevated trogocytosis capability, HLA-DR expression, and many chemokine receptors, including CCR7. In contrast with NMOSD and MG, myelin oligodendrocyte glycoprotein Ab disease NK cells did not exhibit functional, phenotypic, or transcriptomic perturbations. In summary, CD56dimCD16dim/- NK cells are a distinct peripheral blood immune cell population in humans elevated upon prior cytotoxic activity by the CD56dimCD16hi NK cell subset. The elevation of this subset in NMOSD and MG patients suggests prior ADCC activity.
Collapse
Affiliation(s)
- Soumya S. Yandamuri
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
| | - Beata Filipek
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz; Lodz, Poland
| | - Nikhil Lele
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Inessa Cohen
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus; Aurora, CO, United States
| | - Richard J. Nowak
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Elias S. Sotirchos
- Department of Neurology, Johns Hopkins University; Baltimore, MD, United States
| | - Erin E. Longbrake
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center; New York, NY, United States
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
| |
Collapse
|
14
|
Perri V, Zingaropoli MA, Pasculli P, Ciccone F, Tartaglia M, Baione V, Malimpensa L, Ferrazzano G, Mastroianni CM, Conte A, Ciardi MR. The Impact of Cytomegalovirus Infection on Natural Killer and CD8+ T Cell Phenotype in Multiple Sclerosis. BIOLOGY 2024; 13:154. [PMID: 38534424 DOI: 10.3390/biology13030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Multiple sclerosis (MS) is a debilitating neurological disease that has been classified as an immune-mediated attack on myelin, the protective sheath of nerves. Some aspects of its pathogenesis are still unclear; nevertheless, it is generally established that viral infections influence the course of the disease. Cytomegalovirus (CMV) is a major pathogen involved in alterations of the immune system, including the expansion of highly differentiated cytotoxic CD8+ T cells and the accumulation of adaptive natural killer (NK) cells expressing high levels of the NKG2C receptor. In this study, we evaluated the impact of latent CMV infection on MS patients through the characterization of peripheral NK cells, CD8+ T cells, and NKT-like cells using flow cytometry. We evaluated the associations between immune cell profiles and clinical features such as MS duration and MS progression, evaluated using the Expanded Disability Status Scale (EDSS). We showed that NK cells, CD8+ T cells, and NKT-like cells had an altered phenotype in CMV-infected MS patients and displayed high levels of the NKG2C receptor. Moreover, in MS patients, increased NKG2C expression levels were found to be associated with higher EDSS scores. Overall, these results support the hypothesis that CMV infection imprints the immune system by modifying the phenotype and receptor repertoire of NK and CD8+ T cells, suggesting a detrimental role of CMV on MS progression.
Collapse
Affiliation(s)
- Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Cheng M, Li J, Song J, Song H, Chen Y, Tang H, Wei H, Sun R, Tian Z, Wang X, Peng H. RORα is required for expansion and memory maintenance of ILC1s via a lymph node-liver axis. Cell Rep 2024; 43:113786. [PMID: 38363684 DOI: 10.1016/j.celrep.2024.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.
Collapse
Affiliation(s)
- Ming Cheng
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiarui Li
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiaxi Song
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Song
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Chen
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Tang
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xianwei Wang
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Hui Peng
- The Institute of Immunology and the Key Laboratory of Immune Response and Immunotherapy, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
16
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
17
|
Di Vito C, Coianiz N, Calvi M, Terzoli S, Zaghi E, Puccio S, Frigo A, Mariotti J, De Philippis C, Mannina D, Sarina B, Mineri R, Le-Trilling VTK, Trilling M, Castagna L, Bramanti S, Santoro A, Mavilio D. Persistence of KIR neg NK cells after haploidentical hematopoietic stem cell transplantation protects from human cytomegalovirus infection/reactivation. Front Immunol 2024; 14:1266051. [PMID: 38268918 PMCID: PMC10806243 DOI: 10.3389/fimmu.2023.1266051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) is a therapeutic option to cure patients affected by hematologic malignancies. The kinetics and the quality of immune-reconstitution (IR) impact the clinical outcome of h-HSCT and limit the onset of life-threatening Human Cytomegalovirus (HCMV) infection/reactivation. Natural Killer (NK) cells are the first lymphocytes that recover after h-HSCT and they can provide rapid innate immune responses against opportunistic pathogens. By performing a longitudinal single-cell analysis of multiparametric flow-cytometry data, we show here that the persistence at high frequencies of CD158b1b2jneg/NKG2Apos/NKG2Cneg/NKp30pos/NKp46pos (KIRneg) NK cells is associated with HCMV infection/reactivation control. These KIRneg NK cells are "unlicensed", and are not terminal-differentiated lymphocytes appearing early during IR and mainly belonging to CD56bright/CD16neg and CD56bright/CD16pos subsets. KIRneg NK cells are enriched in oxidative and glucose metabolism pathways, produce interferon-γ, and are endowed with potent antiviral activity against HCMV ex vivo. Decreased frequencies of KIRneg NK cells early during IR are associated with clinically relevant HCMV replication. Taken together, our findings indicate that the prolonged persistence of KIRneg NK cells after h-HSCT could serve as a biomarker to better predict HCMV infection/reactivation. This phenomenon also paves the way to optimize anti-viral immune responses by enriching post-transplant donor lymphocyte infusions with KIRneg NK cells.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara De Philippis
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniele Mannina
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Sarina
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luca Castagna
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefania Bramanti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Armando Santoro
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
18
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Dybko J, Giordano U, Pilch J, Mizera J, Borkowski A, Dereń-Wagemann I. Evaluating the Impact of Post-Transplant Cyclophosphamide and Anti-Thymocyte Globulin on CMV Reactivation Following Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Literature Review. J Clin Med 2023; 12:7765. [PMID: 38137835 PMCID: PMC10743888 DOI: 10.3390/jcm12247765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Anti-thymocyte globulin (ATG) and post-transplantation cyclophosphamide (PTCy) are two frequently utilised strategies in graft-versus-host disease (GvHD) prophylaxis following allogeneic hematopoietic cell transplantation (allo-HCT), currently approved for different recipient-donor settings. In addition, being efficacious in preventing GvHD owing to their T-cell depleting capacity, the employment of these two agents increases the risk of infections, including CMV reactivation, which stands as one of the most common and serious infections following allo-HCT. We performed a systematic literature review of articles published until 1 September 2023, through PubMed, MEDLINE, and Scopus, with the main endpoint being CMV reactivation after PTCy or ATG allo-HCT. The majority of the studies included in the analysis provide supporting evidence for a reduced risk of CMV reactivations following the use of PTCy compared to ATG, although not all findings reached statistical significance. Additionally, it appears that utilising a haploidentical donor leads to a higher incidence of CMV infections and clinically significant CMV infections (CS-CMVis) compared to other donor settings in PTCy allo-HCT. This study aims to compare the risk of CMV infections following allo-HCT in patients who have received either ATG or PTCy as GvHD prophylaxis and discuss other factors that could influence the infectious outcomes of patients who have undergone allo-HCT.
Collapse
Affiliation(s)
- Jarosław Dybko
- Lower Silesia Centre for Oncology, Pulmonology and Hematology in Wrocław, 53-439 Wroclaw, Poland; (J.D.); (I.D.-W.)
- Department of Oncology and Hematology, Faculty of Medicine, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ugo Giordano
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.M.)
| | - Justyna Pilch
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.M.)
| | - Jakub Mizera
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.M.)
| | - Artur Borkowski
- Department of Nuclear Medicine and Endocrine Oncology, M. Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland;
| | - Izabela Dereń-Wagemann
- Lower Silesia Centre for Oncology, Pulmonology and Hematology in Wrocław, 53-439 Wroclaw, Poland; (J.D.); (I.D.-W.)
| |
Collapse
|
20
|
Orta-Resendiz A, Petitdemange C, Schmutz S, Jacquelin B, Novault S, Huot N, Müller-Trutwin M. Deep phenotyping characterization of human unconventional CD8 +NKG2A/C + T cells among T and NK cells by spectral flow cytometry. STAR Protoc 2023; 4:102734. [PMID: 38032799 PMCID: PMC10711235 DOI: 10.1016/j.xpro.2023.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Here, we present a protocol for setting three spectral flow cytometry panels for the characterization of human unconventional CD8+NKG2A/C+ T cells as well as other T and natural killer cell subsets. We describe steps for standardizing, preparing, and staining the cells, the experimental setup, and the final data analysis. This protocol should be advantageous in various settings including immunophenotyping of limited samples, immune function evaluation/monitoring, as well as research in oncology, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France.
| | - Caroline Petitdemange
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France.
| | - Béatrice Jacquelin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Nicolas Huot
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France.
| |
Collapse
|
21
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Mikanik F, Izadpanah A, Parkhideh S, Shahbaz Ghasabeh A, Roshandel E, Hajifathali A, Gharehbaghian A. Cytokine-Induced Memory-Like NK Cells: Emerging strategy for AML immunotherapy. Biomed Pharmacother 2023; 168:115718. [PMID: 37857247 DOI: 10.1016/j.biopha.2023.115718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease developed from the malignant expansion of myeloid precursor cells in the bone marrow and peripheral blood. The implementation of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) has improved outcomes associated with AML, but relapse, along with suboptimal outcomes, is still a common scenario. In the past few years, exploring new therapeutic strategies to optimize treatment outcomes has occurred rapidly. In this regard, natural killer (NK) cell-based immunotherapy has attracted clinical interest due to its critical role in immunosurveillance and their capabilities to target AML blasts. NK cells are cytotoxic innate lymphoid cells that mediate anti-viral and anti-tumor responses by producing pro-inflammatory cytokines and directly inducing cytotoxicity. Although NK cells are well known as short-lived innate immune cells with non-specific responses that have limited their clinical applications, the discovery of cytokine-induced memory-like (CIML) NK cells could overcome these challenges. NK cells pre-activated with the cytokine combination IL-12/15/18 achieved a long-term life span with adaptive immunity characteristics, termed CIML-NK cells. Previous studies documented that using CIML-NK cells in cancer treatment is safe and results in promising outcomes. This review highlights the current application, challenges, and opportunities of CIML-NK cell-based therapy in AML.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Shahbaz Ghasabeh
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Nabekura T, Deborah EA, Tahara S, Arai Y, Love PE, Kako K, Fukamizu A, Muratani M, Shibuya A. Themis2 regulates natural killer cell memory function and formation. Nat Commun 2023; 14:7200. [PMID: 37938555 PMCID: PMC10632368 DOI: 10.1038/s41467-023-42578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Elfira Amalia Deborah
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Saeko Tahara
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Arai
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Koichiro Kako
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
23
|
Bi W, Kraft A, Engelskircher S, Mischke J, Witte M, Klawonn F, van Ham M, Cornberg M, Wedemeyer H, Hengst J, Jänsch L. Proteomics reveals a global phenotypic shift of NK cells in HCV patients treated with direct-acting antivirals. Eur J Immunol 2023; 53:e2250291. [PMID: 37515498 DOI: 10.1002/eji.202250291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Chronic hepatitis C virus (HCV) infections compromise natural killer (NK)-cell immunity. Direct-acting antivirals (DAA) effectively eliminate HCV, but the long-term effects on NK cells in cured patients are debated. We conducted a proteomic study on CD56+ NK cells of chronic HCV-infected patients before and 1 year after DAA therapy. Donor-variation was observed in NK-cell proteomes of HCV-infected patients, with 46 dysregulated proteins restored after DAA therapy. However, 30% of the CD56+ NK-cell proteome remained altered 1 year post-therapy, indicating a phenotypic shift with low donor-variation. NK cells from virus-negative cured patients exhibited global regulation of RNA-processing and pathways related to "stimuli response", "chemokine signaling", and "cytotoxicity regulation". Proteomics identified downregulation of vesicle transport components (CD107a, COPI/II complexes) and altered receptor expression profiles, indicating an inhibited NK-cell phenotype. Yet, activated NK cells from HCV patients before and after therapy effectively upregulated IFN-γ and recruited CD107a. Conversely, reduced surface expression levels of Tim-3 and 2B4 were observed before and after therapy. In conclusion, this study reveals long-term effects on the CD56+ NK-cell compartment in convalescent HCV patients 1 year after therapy, with limited abundance of vesicle transport complexes and surface receptors, associated with a responsive NK-cell phenotype.
Collapse
Affiliation(s)
- Wenjie Bi
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Sophie Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Moana Witte
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Frank Klawonn
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Heiner Wedemeyer
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
24
|
Momayyezi P, Bilev E, Ljunggren HG, Hammer Q. Viral escape from NK-cell-mediated immunosurveillance: A lesson for cancer immunotherapy? Eur J Immunol 2023; 53:e2350465. [PMID: 37526136 DOI: 10.1002/eji.202350465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that participate in immune responses against virus-infected cells and tumors. As a countermeasure, viruses and tumors employ strategies to evade NK-cell-mediated immunosurveillance. In this review, we examine immune evasion strategies employed by viruses, focusing on examples from human CMV and severe acute respiratory syndrome coronavirus 2. We explore selected viral evasion mechanisms categorized into three classes: (1) providing ligands for the inhibitory receptor NKG2A, (2) downregulating ligands for the activating receptor NKG2D, and (3) inducing the immunosuppressive cytokine transforming growth factor (TGF)-β. For each class, we draw parallels between immune evasion by viruses and tumors, reviewing potential opportunities for overcoming evasion in cancer therapy. We suggest that in-depth investigations of host-pathogen interactions between viruses and NK cells will not only deepen our understanding of viral immune evasion but also shed light on how NK cells counter such evasion attempts. Thus, due to the parallels of immune evasion by viruses and tumors, we propose that insights gained from antiviral NK-cell responses may serve as valuable lessons that can be leveraged for designing future cancer immunotherapies.
Collapse
Affiliation(s)
- Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Eleni Bilev
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
25
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
26
|
Siemaszko J, Łacina P, Szymczak D, Szeremet A, Majcherek M, Czyż A, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. Significance of HLA-E and its two NKG2 receptors in development of complications after allogeneic transplantation of hematopoietic stem cells. Front Immunol 2023; 14:1227897. [PMID: 37901227 PMCID: PMC10611459 DOI: 10.3389/fimmu.2023.1227897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Transplantation of hematopoietic stem cells (HSCT) is a procedure commonly used in treatment of various haematological disorders which is associated with significantly improved survival rates. However, one of its drawbacks is the possibility of development of post-transplant complications, including acute and chronic graft-versus-host disease (GvHD) or CMV infection. Various studies suggested that NK cells and their receptors may affect the transplant outcome. In the present study, patients and donors were found to significantly differ in the distribution of the NKG2A rs7301582 genetic variants - recipients carried the C allele more often than their donors (0.975 vs 0.865, p<0.0001). Increased soluble HLA-E (sHLA-E) levels detected in recipients' serum 30 days after transplantation seemed to play a prognostic and protective role. It was observed that recipients with higher sHLA-E levels were less prone to chronic GvHD (11.65 vs 6.33 pg/mL, p=0.033) or more severe acute GvHD grades II-IV (11.07 vs 8.04 pg/mL, p=0.081). Our results also showed an unfavourable role of HLA-E donor-recipient genetic incompatibility in CMV infection development after transplantation (OR=5.92, p=0.014). Frequencies of NK cells (both CD56dim and CD56bright) expressing NKG2C were elevated in recipients who developed CMV, especially 30 and 90 days post-transplantation (p<0.03). Percentages of NKG2C+ NK cells lacking NKG2A expression were also increased in these patients. Moreover, recipients carrying a NKG2C deletion characterized with decreased frequency of NKG2C+ NK cells (p<0.05). Our study confirms the importance of NK cells in the development of post-transplant complications and highlights the effect of HLA-E and NKG2C genetic variants, sHLA-E serum concentration, as well as NKG2C surface expression on transplant outcome.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Donata Szymczak
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Szeremet
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Majcherek
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Czyż
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
27
|
van der Ploeg K, Sottile R, Kontopoulos T, Shaffer BC, Papanicolaou GA, Maloy MA, Cho C, Robinson KS, Perales MA, Le Luduec JB, Hsu KC. Emergence of human CMV-induced NKG2C+ NK cells is associated with CD8+ T-cell recovery after allogeneic HCT. Blood Adv 2023; 7:5784-5798. [PMID: 37196646 PMCID: PMC10561005 DOI: 10.1182/bloodadvances.2022008952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
Cytomegalovirus (CMV) infection is associated with the expansion of a mature NKG2C+FcεR1γ- natural killer (NK) cell population. The exact mechanism underlying the emergence of NKG2C+ NK cells, however, remains unknown. Allogeneic hematopoietic cell transplantation (HCT) provides an opportunity to longitudinally study lymphocyte recovery in the setting of CMV reactivation, particularly in patients receiving T-cell-depleted (TCD) allografts. We analyzed peripheral blood lymphocytes from 119 patients at serial time points after infusion of their TCD allograft and compared immune recovery with that in samples obtained from recipients of T-cell-replete (T-replete) (n = 96) or double umbilical cord blood (DUCB) (n = 52) allografts. NKG2C+ NK cells were detected in 92% (45 of 49) of recipients of TCD HCT who experienced CMV reactivation. Although NKG2A+ cells were routinely identifiable early after HCT, NKG2C+ NK cells were identified only after T cells could be detected. T-cell reconstitution occurred at variable times after HCT among patients and predominantly comprised CD8+ T cells. In patients with CMV reactivation, recipients of TCD HCT expressed significantly higher frequencies of NKG2C+ and CD56neg NK cells compared with patients who received T-replete HCT or DUCB transplantation. NKG2C+ NK cells after TCD HCT were CD57+FcεR1γ+ and degranulated significantly more in response to target cells compared with the adaptive the NKG2C+CD57+FcεR1γ- NK cell population. We conclude that the presence of circulating T cells is associated with the expansion of a CMV-induced NKG2C+ NK cell population, a potentially novel example of developmental cooperation between lymphocyte populations in response to viral infection.
Collapse
Affiliation(s)
- Kattria van der Ploeg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian C. Shaffer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Genovefa A. Papanicolaou
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Molly A. Maloy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christina Cho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Kevin S. Robinson
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
28
|
Li P, Li J, Huang H, Chen X, Lin Y, He G, Xu D. The effect of varicella-zoster virus reactivation on the long-term outcomes of patients undergoing allogeneic hematopoietic stem cell transplantation. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:105. [PMID: 37784192 PMCID: PMC10544620 DOI: 10.1186/s41043-023-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND A virus infection may lead the body to produce more immune cells of particular types or stimulate the production of new ones, both of which may have anti-leukemic effects. There has been no research on whether immune cells stimulated by varicella-zoster virus (VZV) infection have anti-leukemic effects. The objective of this investigation is to assess the impact of VZV infection on patients' long-term survival following allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS This retrospective study investigated the association between varicella-zoster virus (VZV) reactivation and outcomes in 219 individuals who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) at the Sun Yat-sen University's First Affiliated Hospital. According to being diagnosed with VZV infection or not, these patients were grouped into two groups. The comparison of cumulative incidence of relapse, non-recurrent mortality, and overall survival (OS) was conducted between the two groups. RESULTS Analyzing multivariate data, VZV reactivation was linked to lower relapse incidence in the group containing all individuals (hazard ratio [HR] = 0.27; 95% confidence interval [CI], 0.12-0.64), patients suffering from acute myeloid leukaemia (HR = 0.10; 95% CI, 0.01-0.83), and patients suffering from acute lymphoblastic leukaemia (HR = 0.25; 95% CI, 0.08-0.77). Moreover, VZV reactivation was linked with decreased non-relapse mortality in all individuals (HR = 0.20; 95% CI, 0.05-0.79), but no statistical significance was found for any disease subgroup. Further, VZV reactivation was an independent predictor for improved OS in the group containing all individuals (HR = 0.10; 95% CI, 0.03-0.29), patients suffering from acute myeloid leukaemia (HR = 0.09; 95% CI, 0.01-0.66), and patients suffering from acute lymphoblastic leukaemia (HR = 0.16; 95% CI, 0.04-0.68). CONCLUSION This is the first study to show that VZV reactivation following allo-HSCT is an independent predictor for lower relapse rates and improved OS, providing novel therapeutic approaches to improve patients' long-term survival following allo-HSCT.
Collapse
Affiliation(s)
- Ping Li
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jingxia Li
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Haoyuan Huang
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiongnong Chen
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yue Lin
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ganlin He
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Duorong Xu
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
30
|
Bordignon MB, Pesce Viglietti AI, Juliá EP, Sanchez MB, Rölle A, Mandó P, Sabatini L, Ostinelli A, Rizzo MM, Barrio MM, Mordoh J, Fainboim L, Levy EM. Phenotypic and functional analysis in HER2+ targeted therapy of human NK cell subpopulation according to the expression of FcεRIγ and NKG2C in breast cancer patients. Cancer Immunol Immunother 2023; 72:2687-2700. [PMID: 37081323 DOI: 10.1007/s00262-023-03448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
Adaptive NK cells constitute an NK cell subpopulation, which expands after human cytomegalovirus (HCMV) infection. This subpopulation has stronger production of cytokines after CD16 stimulation, longer life and persistence than conventional NK cells and are, therefore, interesting tools for cancer immunotherapy. Since there is limited information on adaptive NK cells in cancer patients, we described this population phenotypically and functionally, by flow cytometry, in the context of HER2 + breast cancer (BC) directed therapy. We assessed HCMV status in 78 patients with BC. We found that, similarly to healthy donors (HD), a high proportion of BC patients were HCMV-positive, and nearly 72% of them had an adaptive NK cell subpopulation characterized by the loss of FcεRIγ intracellular adaptor protein or the presence of NKG2C receptor. However, in BC patients, FcεRIγ- and NKG2C + NK cell populations overlapped to a lesser extent than in HD. Otherwise, no profound phenotypic differences were found between BC patients and HD. Although FcεRIγ- or NKG2C + NK cell subsets from BC patients produced more IFN-γ than their FcεRIγ + or NKG2C- NK cell counterparts, IFN-γ production increased only when NK cells simultaneously expressed FcεRIγ- and NKG2C + , whereas in HD the presence of NKG2C marker was sufficient to display greater functionality. Furthermore, in a group of patients treated with chemotherapy and Trastuzumab plus Pertuzumab, FcεRIγ-NKG2C + and FcεRIγ-NKG2C- NK cells retained greater functionality after treatment than FcεRIγ + NKG2C- NK cells. These results suggest that the presence or magnitude of adaptive NK cell subsets might serve as a key determinant for therapeutic approaches based on antibodies directed against tumor antigens.
Collapse
Affiliation(s)
- María B Bordignon
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelén I Pesce Viglietti
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Estefanía P Juliá
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - María B Sanchez
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Pablo Mandó
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana Sabatini
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alexis Ostinelli
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Manglio M Rizzo
- Cancer Immunobiology, Facultad de Ciencias Biomédicas, CONICET, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Derqui, Pilar, Argentina
| | - María M Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas. Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Fainboim
- Laboratorio de Inmunogenética, INIGEM, CONICET-UBA, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Estrella M Levy
- Centro de Investigaciones Oncológicas - Fundación Cáncer FUCA, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
31
|
Shang QN, Yu XX, Xu ZL, Chen YH, Han TT, Zhang YY, Lv M, Sun YQ, Wang Y, Xu LP, Zhang XH, Zhao XY, Huang XJ. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection. Cell Mol Immunol 2023; 20:895-907. [PMID: 37291236 PMCID: PMC10387476 DOI: 10.1038/s41423-023-01046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation remains a common complication and leads to high mortality in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Early natural killer (NK) cell reconstitution may protect against the development of human CMV (HCMV) infection post-HSCT. Our previous data showed that ex vivo mbIL21/4-1BBL-expanded NK cells exhibited high cytotoxicity against leukemia cells. Nevertheless, whether expanded NK cells have stronger anti-HCMV function is unknown. Herein, we compared the anti-HCMV functions of ex vivo expanded NK cells and primary NK cells. Expanded NK cells showed higher expression of activating receptors, chemokine receptors and adhesion molecules; stronger cytotoxicity against HCMV-infected fibroblasts; and better inhibition of HCMV propagation in vitro than primary NK cells. In HCMV-infected humanized mice, expanded NK cell infusion resulted in higher NK cell persistence and more effective tissue HCMV elimination than primary NK cell infusion. A clinical cohort of 20 post-HSCT patients who underwent adoptive NK cell infusion had a significantly lower cumulative incidence of HCMV infection (HR = 0.54, 95% CI = 0.32-0.93, p = 0.042) and refractory HCMV infection (HR = 0.34, 95% CI = 0.18-0.65, p = 0.009) than controls and better NK cell reconstitution on day 30 post NK cell infusion. In conclusion, expanded NK cells exhibit stronger effects than primary NK cells against HCMV infection both in vivo and in vitro.
Collapse
Affiliation(s)
- Qian-Nan Shang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
32
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Chanswangphuwana C, Wudhikarn K, Watanaboonyongcharoen P, Kansuwan P, Sukperm A, Bunworasate U. Prognostic factors and impact of CMV reactivation on acute myeloid leukemia patients after HLA-matched myeloablative allogeneic stem cell transplantation in a high CMV prevalence country. Hematol Transfus Cell Ther 2023; 45 Suppl 2:S51-S56. [PMID: 35172942 PMCID: PMC10433316 DOI: 10.1016/j.htct.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Relapse of acute myeloid leukemia (AML) after allogeneic stem cell transplantation (allo-SCT) leads to dismal outcomes. This study aimed to identify high-risk patients and explore the effects of cytomegalovirus (CMV) reactivation in a high CMV-seropositive population. METHODS The study involved a single-center retrospective cohort in Thailand, analyzing clinical risk factors and CMV-mediated immune responses, correlated with transplant outcomes in AML patients. RESULTS Eighty-five patients with AML in complete remission (CR) undergoing HLA-matched myeloablative allo-SCT between 2011 and February 2021 were enrolled. The relapse rate was 27.1% with the median time of 7 months after transplantation. The 3-year relapse-free-survival (RFS) and overall-survival (OS) were 72.2% and 80.8%, respectively. The disease status (>CR1) and absence of chronic graft-versus-host disease (cGVHD) were independently significant adverse prognostic factors of RFS and OS. Ninety-two percent of recipient-donor pairs were both CMV seropositive. The CMV reactivation occurred in 54.1% of the patients. The clinically significant CMV infection rate was 49.4%. No CMV syndrome/disease or CMV-related mortality occurred. One-year cumulative incidence of relapse among CMV-reactivation and non-reactivation groups were 14.3% and 25.6%, respectively, without a statistically significant difference. Transplantation-related mortality was 11.1%. CONCLUSIONS The transplantation beyond CR1 and absence of cGVHD are powerful prognostic factors associated with inferior RFS and OS. In a high CMV prevalence country, there appears to be no impact of CMV reactivation on relapse in AML patients undergoing an allo-SCT.
Collapse
Affiliation(s)
- Chantiya Chanswangphuwana
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand.
| | - Kitsada Wudhikarn
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Phandee Watanaboonyongcharoen
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Patsita Kansuwan
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Autcharaporn Sukperm
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Udomsak Bunworasate
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Akahoshi Y, Nakasone H, Takenaka K, Yamasaki S, Nakamura M, Doki N, Tanaka M, Ozawa Y, Uchida N, Ara T, Nakamae H, Ota S, Onizuka M, Yano S, Tanaka J, Fukuda T, Kanda Y, Atsuta Y, Kako S, Yanada M, Arai Y. CMV reactivation after allogeneic HCT is associated with a reduced risk of relapse in acute lymphoblastic leukemia. Blood Adv 2023; 7:2699-2708. [PMID: 36661335 PMCID: PMC10333743 DOI: 10.1182/bloodadvances.2022009376] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Cytomegalovirus reactivation (CMVR) after allogeneic hematopoietic cell transplantation (HCT) is a frequent complication related to survival outcomes; however, its impact on relapse remains unclear, especially in acute lymphoblastic leukemia (ALL). In this nationwide retrospective study, we included patients with acute myeloid leukemia (AML) and ALL in the first or second complete remission who underwent their first HCT using a pre-emptive strategy for CMVR. Because 90% of cases with CMVR had occurred by day 64 and 90% of cases with grades 2 to 4 acute graft-versus-host disease (GVHD) had occurred by day 58, a landmark point was set at day 65. In landmark analyses, 3793 patients with AML and 2213 patients with ALL who survived without relapse for at least 65 days were analyzed. Multivariate analyses showed that CMVR was associated with a lower incidence of relapse in both AML (hazard ratio [HR], 0.81; 95% confidence interval [CI], 0.69-0.95; P = .009) and ALL (HR, 0.81; 95% CI, 0.66-0.99; P = .045). These findings were confirmed when CMVR was used as the time-dependent covariate. Moreover, our study suggests that the protective effect of CMVR on relapse was independent of acute GVHD. A post-hoc subgroup analysis of combined AML and ALL showed that CMVR had a mild antileukemia effect without effect modification, in contrast to the impact of CMVR on NRM. Our findings may provide important implications for strategies used for CMV prophylaxis after HCT.
Collapse
Affiliation(s)
- Yu Akahoshi
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Satoshi Yamasaki
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Momoko Nakamura
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Aichi, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Shingo Yano
- Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takahiro Fukuda
- Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Aichi, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Aichi, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masamitsu Yanada
- Department of Haematology and Cell Therapy, Aichi Cancer Centre, Aichi, Japan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Li X, Liang H, Fan J. Prospects of Cytomegalovirus-Specific T-Cell Receptors in Clinical Diagnosis and Therapy. Viruses 2023; 15:1334. [PMID: 37376633 DOI: 10.3390/v15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for widespread infections worldwide. In immunocompetent individuals it is typically latent, while infection or reactivation in immunocompromised individuals can result in severe clinical symptoms or even death. Although there has been significant progress in the treatment and diagnosis of HCMV infection in recent years, numerous shortcomings and developmental limitations persist. There is an urgent need to develop innovative, safe, and effective treatments, as well as to explore early and timely diagnostic strategies for HCMV infection. Cell-mediated immune responses are the primary factor controlling HCMV infection and replication, but the protective role of humoral immune responses remains controversial. T-cells, key effector cells of the cellular immune system, are critical for clearing and preventing HCMV infection. The T-cell receptor (TCR) lies at the heart of T-cell immune responses, and its diversity enables the immune system to differentiate between self and non-self. Given the significant influence of cellular immunity on human health and the indispensable role of the TCR in T-cell immune responses, we posit that the impact of TCR on the development of novel diagnostic and prognostic methods, as well as on patient monitoring and management of clinical HCMV infection, will be far-reaching and profound. High-throughput and single-cell sequencing technologies have facilitated unprecedented quantitative detection of TCR diversity. With these current sequencing technologies, researchers have already obtained a vast number of TCR sequences. It is plausible that in the near future studies on TCR repertoires will be instrumental in assessing vaccine efficacy, immunotherapeutic strategies, and the early diagnosis of HCMV infection.
Collapse
Affiliation(s)
- Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
36
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
37
|
Lauruschkat CD, Muchsin I, Rein A, Erhard F, Grathwohl D, Dölken L, Köchel C, Falk CS, Einsele H, Wurster S, Grigoleit GU, Kraus S. CD4+ T cells are the major predictor of HCMV control in allogeneic stem cell transplant recipients on letermovir prophylaxis. Front Immunol 2023; 14:1148841. [PMID: 37234158 PMCID: PMC10206124 DOI: 10.3389/fimmu.2023.1148841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) causes significant morbidity and mortality in allogeneic stem cell transplant (alloSCT) recipients. Recently, antiviral letermovir prophylaxis during the first 100 days after alloSCT replaced PCR-guided preemptive therapy as the primary standard of care for HCMV reactivations. Here, we compared NK-cell and T-cell reconstitution in alloSCT recipients receiving preemptive therapy or letermovir prophylaxis in order to identify potential biomarkers predicting prolonged and symptomatic HCMV reactivation. Methods To that end, the NK-cell and T-cell repertoire of alloSCT recipients managed with preemptive therapy (n=32) or letermovir prophylaxis (n=24) was characterized by flow cytometry on days +30, +60, +90 and +120 after alloSCT. Additionally, background-corrected HCMV-specific T-helper (CD4+IFNγ+) and cytotoxic (CD8+IFNγ+CD107a+) T cells were quantified after pp65 stimulation. Results Compared to preemptive therapy, letermovir prophylaxis prevented HCMV reactivation and decreased HCMV peak viral loads until days +120 and +365. Letermovir prophylaxis resulted in decreased T-cell numbers but increased NK-cell numbers. Interestingly, despite the inhibition of HCMV, we found high numbers of "memory-like" (CD56dimFcεRIγ- and/or CD159c+) NK cells and an expansion of HCMV-specific CD4+ and CD8+ T cells in letermovir recipients. We further compared immunological readouts in patients on letermovir prophylaxis with non/short-term HCMV reactivation (NSTR) and prolonged/symptomatic HCMV reactivation (long-term HCMV reactivation, LTR). Median HCMV-specific CD4+ T-cell frequencies were significantly higher in NSTR patients (day +60, 0.35 % vs. 0.00 % CD4+IFNγ+/CD4+ cells, p=0.018) than in patients with LTR, whereas patients with LTR had significantly higher median regulatory T-cell (Treg) frequencies (day +90, 2.2 % vs. 6.2 % CD4+CD25+CD127dim/CD4+ cells, p=0.019). ROC analysis confirmed low HCMV specific CD4+ (AUC on day +60: 0.813, p=0.019) and high Treg frequencies (AUC on day +90: 0.847, p=0.021) as significant predictors of prolonged and symptomatic HCMV reactivation. Discussion Taken together, letermovir prophylaxis delays HCMV reactivation and alters NK- and T-cell reconstitution. High numbers of HCMV-specific CD4+ T cells and low numbers of Tregs seem to be pivotal to suppress post-alloSCT HCMV reactivation during letermovir prophylaxis. Administration of more advanced immunoassays that include Treg signature cytokines might contribute to the identification of patients at high-risk for long-term and symptomatic HCMV reactivation who might benefit from prolonged administration of letermovir.
Collapse
Affiliation(s)
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Alice Rein
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Wuerzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Christine Susanne Falk
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
- TTU-IICH, German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- BREATH Site, German Center for Lung Research (DZL), Hannover-Braunschweig, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
38
|
Dahlvang JD, Dick JK, Sangala JA, Kennedy PR, Pomeroy EJ, Snyder KM, Moushon JM, Thefaine CE, Wu J, Hamilton SE, Felices M, Miller JS, Walcheck B, Webber BR, Moriarity BS, Hart GT. Ablation of SYK Kinase from Expanded Primary Human NK Cells via CRISPR/Cas9 Enhances Cytotoxicity and Cytokine Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1108-1122. [PMID: 36881874 PMCID: PMC10073313 DOI: 10.4049/jimmunol.2200488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- James D. Dahlvang
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jenna K. Dick
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jules A. Sangala
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Philippa R. Kennedy
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J. Pomeroy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin M. Snyder
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Juliette M. Moushon
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire E. Thefaine
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianming Wu
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Sara E. Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Felices
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruce Walcheck
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Beau R. Webber
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Geoffrey T. Hart
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Lead contact
| |
Collapse
|
39
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
40
|
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications. Arch Immunol Ther Exp (Warsz) 2023; 71:9. [PMID: 36899273 PMCID: PMC10004456 DOI: 10.1007/s00005-023-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Marzec-Przyszlak
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
41
|
Wang H, Wang A, Chen M, Gong M, Wu X, Zhen J, Lu Y. Abnormalities by Multicolor Flow Cytometry for Detection of Minimal Residual Disease in Recipients of Allo-HSCT Originating from Donors: A Cohort Study. Turk J Haematol 2023; 40:18-27. [PMID: 36718627 PMCID: PMC9979734 DOI: 10.4274/tjh.galenos.2022.2022.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Objective In minimal residual disease (MRD) analysis after allogeneic hematopoietic stem cell transplantation (allo-HSCT), abnormal immunophenotyping is commonly considered as evidence of a secondary recurrence or complications, leading to overtreatment. We aimed to confirm whether such phenotypic abnormality might originate from donors using multicolor flow cytometry (MFC). Materials and Methods The MRD of bone marrow specimens of 3395 patients who had received allo-HSCT were analyzed using the conventional two-tube, eight-color MFC panel. The frequencies of abnormal immunophenotypes were also evaluated in three groups of patients without malignancies. Results The frequency of new abnormal polymorphisms was 0.088% (3/3395) among patients who received allo-HSCT. The abnormal cells seen in three patients in complete remission were Fcγ receptor IIIB (FcγRIIIB) gene deletion (CD16- neutrophils), CD2-CD159a-CD159c+ natural killer (NK) cells, and monoclonal B lymphocytosis (MBL), respectively. In addition, abnormal T-cells (CD4+CD8+) were detected in one donor before allo-HSCT. Identical abnormalities were found in the peripheral blood of the corresponding donors of the three patients via MFC. Among the individuals without malignancies, the incidence of FcγRIIIB deletion was 0.2% (11/5256), that of NK cells with the absence of CD2 and single-positive CD159c was 0.05% (1/2000), that of monoclonal CD4/CD8 double-positive T-cells was 0.05% (1/2000), and that of MBL was 1.3% (14/1100). The frequency of NK cells with the absence of CD2 was 1.3% (1/79) and with CD8dim was 14% (11/79) in NK cell lymphoma. The following abnormalities could be identified by the two-tube, eight-color MFC panel: cκ/cλ/CD19/CD5/CD20/ CD38/CD45/CD56 (adding CD10 and CD34 as the ninth and tenth colors) and CD16+CD56/CD5/CD3/CD7/CD4/CD8/CD2/CD45 (adding CD117 as the ninth color). Conclusion Abnormalities in recipients of allo-HSCT detected by MRD analysis may originate from their donors. Screening of donor specimens with a suitable two-tube, eight- to ten-color MFC panel may be a promising method for minimizing misdiagnoses.
Collapse
Affiliation(s)
- Hui Wang
- Hebei Yanda Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Langfang, China,* Address for Correspondence: Hebei Yanda Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Langfang, China E-mail:
| | - Aixian Wang
- Hebei Yanda Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Langfang, China
| | - Man Chen
- Beijing Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Beijing, China
| | - Meiwei Gong
- Hebei Yanda Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Langfang, China
| | - Xueying Wu
- Hebei Yanda Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Langfang, China
| | - Junyi Zhen
- Hebei Yanda Lu Daopei Hospital, Department of Pathology and Laboratory Medicine, Langfang, China
| | - Yue Lu
- Hebei Yanda Lu Daopei Hospital, Department of Stem Cell Transplantation, Langfang, China
| |
Collapse
|
42
|
Schwab L, Bühler S, Biedritzky A, Schmidt M, Andre MC. Optimized flow cytometry panel for the detection and analysis of human tumor-induced memory-like NK cells. J Immunol Methods 2023; 515:113439. [PMID: 36758895 DOI: 10.1016/j.jim.2023.113439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Recent studies indicate that under certain conditions such as viral infection or exposure to pro-inflammatory cytokines, NK cells may acquire features of adaptive immune cells. In this context, various forms of adaptive NK cells have been described, i.e. "liver-resident" memory-like NK cells, cytomegalovirus (CMV)-induced memory NK cells and interleukin (IL)12/15/18 cytokine-induced memory-like (CIML)-NK cells. We recently provided evidence that upon a 7-day co-culture with irradiated leukemia specimens NK cells can exhibit a memory-like phenotype with substantial anti-leukemic functionality. Here, we propose an antibody panel that allows the identification of subtle changes in the activation status and maturation during memory cell conversion of these so-called tumor-induced memory-like (TIML)-NK cells but also the comparison of those with other forms of memory NK cells. As tremendous efforts are currently undertaken to evaluate the clinical benefit of adoptive cell transfer of various forms of NK cells, we here delineate the process of our panel design in detail to provide future researchers with the means to optimize the flow cytometric analysis of various forms of memory NK cells within their clinical trial protocols.
Collapse
Affiliation(s)
- Lisa Schwab
- University Children's Hospital, Dep. of Pediatric Hematology and Oncology, University of Tuebingen, Germany
| | - Sarah Bühler
- University Children's Hospital, Dep. of Pediatric Hematology and Oncology, University of Tuebingen, Germany
| | - Anna Biedritzky
- University Children's Hospital, Dep. of Pediatric Hematology and Oncology, University of Tuebingen, Germany
| | - Marina Schmidt
- University Children's Hospital, Dep. of Pediatric Hematology and Oncology, University of Tuebingen, Germany
| | - Maya C Andre
- University Children's Hospital, Dep. of Pediatric Hematology and Oncology, University of Tuebingen, Germany; Division of Respiratory and Critical Care Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Dizaji Asl K, Rafat A, Mazloumi Z, Valipour B, Movassaghpour A, Talebi M, Mahdavi M, Tayefi Nasrabadi H, Nozad Charoudeh H. Cord blood stem cell-generated KIR +NK cells effectively target leukemia cell lines. Hum Immunol 2023; 84:98-105. [PMID: 36396515 DOI: 10.1016/j.humimm.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Acute lymphoid (ALL) and myeloid leukemia (AML) are known to be invasive and highly lethal hematological malignancies. Because current treatments are insufficient and have a variety of side effects, researchers are looking for new and more effective therapeutic methods. Interestingly, ongoing efforts to find the best approach to optimize NK cell anti-leukemia potential shed light on the successful treatment of cancer. Mature KIR+NK cells ability to remove HLA Class-I deficient cells has been exploited in cancer immunotherapy. Here, we generated KIR+NK cells from cord blood stem cells using IL-2 and IL-15 cytokines. Our finding underlined the importance of KIR expression in the cytotoxic function of NK cells. Taken together, this study presented an effective in vitro method for the expansion and differentiation of KIR+NK cells using cytokines without any feeder cells. Furthermore, the presented culture condition could be useful for the generation of mature and pure NK cells from limited numbers of CD34+ cord blood cells and might be used as a novel method to improve the current state of cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
44
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
45
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
46
|
Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: Physiological and pathological influences. Front Immunol 2023; 14:1087155. [PMID: 36742337 PMCID: PMC9896005 DOI: 10.3389/fimmu.2023.1087155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells represent a critical defense against viral infections and cancers. NK cells require integration of activating and inhibitory NK cell receptors to detect target cells and the balance of these NK cell inputs defines the global NK cell response. The sensitivity of the response is largely defined by interactions between self-major histocompatibility complex class I (MHC-I) molecules and specific inhibitory NK cell receptors, so-called NK cell education. Thus, NK cell education is a crucial process to generate tuned effector NK cell responses in different diseases. In this review, we discuss the relationship between NK cell education and physiologic factors (type of self-MHC-I, self-MHC-I allelic variants, variant of the self-MHC-I-binding peptides, cytokine effects and inhibitory KIR expression) underlying NK cell education profiles (effector function or metabolism). Additionally, we describe the broad-spectrum of effector educated NK cell functions on different pathologies (such as HIV-1, CMV and tumors, among others).
Collapse
Affiliation(s)
- Philippe Rascle
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Smith DM, Schafer JR, Tullius B, Witkam L, Paust S. Natural killer cells for antiviral therapy. Sci Transl Med 2023; 15:eabl5278. [PMID: 36599006 DOI: 10.1126/scitranslmed.abl5278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cell-based immunotherapy is being explored for treating infectious diseases, including viral infections. Here, we discuss evidence of NK cell responses to different viruses, ongoing clinical efforts to treat such infections with NK cell products, and review platforms to generate NK cell products.
Collapse
Affiliation(s)
- Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Laura Witkam
- Kiadis Pharma, Sanofi, 1105BP Amsterdam, Netherlands
| | - Silke Paust
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol 2023; 65:101706. [PMID: 36542944 DOI: 10.1016/j.smim.2022.101706] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Department of Medicine and Life Sciences. Univ. Pompeu Fabra. Barcelona, Spain.
| | - Andrea De Maria
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Madrid, Spain.
| |
Collapse
|
49
|
Immunological and virological findings in a patient with exceptional post-treatment control: a case report. Lancet HIV 2023; 10:e42-e51. [PMID: 36354046 DOI: 10.1016/s2352-3018(22)00302-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although antiretroviral therapy (ART) is effective in suppressing viral replication, HIV-1 persists in reservoirs and rebounds after ART has been stopped. However, a very few people (eg, elite and post-treatment controllers) are able to maintain viral loads below detection limits without ART, constituting a realistic model for long-term HIV remission. Here, we describe the HIV control mechanisms of an individual who showed exceptional post-treatment control for longer than 15 years. METHODS We report the case of a Hispanic woman aged 59 years with sexually acquired acute HIV infection, who was included in an immune-mediated primary HIV infection trial involving a short course of ciclosporine A, interleukin-2, granulocyte macrophage colony-stimulating factor, and pegylated interferon alfa, followed by analytical treatment interruption. We did the following viral assays: total and integrated HIV-1 DNA in CD4 T cells and rectal tissue, quantitative viral outgrowth assay, HIV-1 infectivity in peripheral blood mononuclear cells and CD4 T-cell cultures and viral inhibitory activity by natural killer (NK) and CD8 T cells. NK and T-cell phenotypes were determined by flow cytometry. HLA, killer cell immunoglobulin-like receptors, Δ32CCR5, and NKG2C alleles were genotyped. FINDINGS After ART and immunomodulatory treatment, the person maintained undetectable plasma viral load for 15 years. HIV-1 subtype was CFR_02AG, CCR5-tropic. We found progressive reductions in viral reservoir during the 15-year treatment interruption: total HIV DNA (from 4573·50 copies per 106 CD4 T cells to 95·33 copies per 106 CD4 T cells) and integrated DNA (from 85·37 copies per 106 CD4 T cells to 5·25 copies per 106 CD4 T cells). Viral inhibition assays showed strong inhibition of in vitro HIV replication in co-cultures of CD4 T cells with autologous NK or CD8 T cells at 1:2 ratio (75% and 62%, respectively). Co-cultures with NK and CD8 T cells resulted in 93% inhibition. We detected higher-than-reference levels of both NKG2C-memory-like NK cells (46·2%) and NKG2C γδ T cells (64·9%) associated with HIV-1 control. INTERPRETATION We described long-term remission in a woman aged 59 years who was treated during primary HIV infection and has maintained undetectable viral load for 15 years without ART. Replication-competent HIV-1 was isolated. NKG2C-memory-like NK cells and γδ T cells were associated with the control viral replication. Strategies promoting these cells could bring about long-term HIV remission. FUNDING Fondo Europeo para el Desarrollo Regional (FEDER), SPANISH AIDS Research Network (RIS), Fondo de Investigación Sanitaria (FIS), HIVACAT, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CERCA Programme/Generalitat de Catalunya, la Caixa Foundation, and Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC). TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
|
50
|
Rousselière A, Delbos L, Foureau A, Reynaud-Gaubert M, Roux A, Demant X, Le Pavec J, Kessler R, Mornex JF, Messika J, Falque L, Le Borgne A, Boussaud V, Tissot A, Hombourger S, Bressollette-Bodin C, Charreau B. Changes in HCMV immune cell frequency and phenotype are associated with chronic lung allograft dysfunction. Front Immunol 2023; 14:1143875. [PMID: 37187736 PMCID: PMC10175754 DOI: 10.3389/fimmu.2023.1143875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection is common and often severe in lung transplant recipients (LTRs), and it is a risk factor associated with chronic lung allograft dysfunction (CLAD). The complex interplay between HCMV and allograft rejection is still unclear. Currently, no treatment is available to reverse CLAD after diagnosis, and the identification of reliable biomarkers that can predict the early development of CLAD is needed. This study investigated the HCMV immunity in LTRs who will develop CLAD. Methods This study quantified and phenotyped conventional (HLA-A2pp65) and HLA-E-restricted (HLA-EUL40) anti-HCMV CD8+ T (CD8 T) cell responses induced by infection in LTRs developing CLAD or maintaining a stable allograft. The homeostasis of immune subsets (B, CD4T, CD8 T, NK, and γδT cells) post-primary infection associated with CLAD was also investigated. Results At M18 post-transplantation, HLA-EUL40 CD8 T responses were less frequently found in HCMV+ LTRs (21.7%) developing CLAD (CLAD) than in LTRs (55%) keeping a functional graft (STABLE). In contrast, HLA-A2pp65 CD8 T was equally detected in 45% of STABLE and 47.8% of CLAD LTRs. The frequency of HLA-EUL40 and HLA-A2pp65 CD8 T among blood CD8 T cells shows lower median values in CLAD LTRs. Immunophenotype reveals an altered expression profile for HLA-EUL40 CD8 T in CLAD patients with a decreased expression for CD56 and the acquisition of PD-1. In STABLE LTRs, HCMV primary infection causes a decrease in B cells and inflation of CD8 T, CD57+/NKG2C+ NK, and δ2-γδT cells. In CLAD LTRs, the regulation of B, total CD8 T, and δ2+γδT cells is maintained, but total NK, CD57+/NKG2C+ NK, and δ2-γδT subsets are markedly reduced, while CD57 is overexpressed across T lymphocytes. Conclusions CLAD is associated with significant changes in anti-HCMV immune cell responses. Our findings propose that the presence of dysfunctional HCMV-specific HLA-E-restricted CD8 T cells together with post-infection changes in the immune cell distribution affecting NK and γδT cells defines an early immune signature for CLAD in HCMV+ LTRs. Such a signature may be of interest for the monitoring of LTRs and may allow an early stratification of LTRs at risk of CLAD.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Aurore Foureau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Martine Reynaud-Gaubert
- CHU de Marseille, APHM, Hôpital Nord, Service de Pneumologie et Equipe de Transplantation pulmonaire; Marseille, France; Aix-Marseille Université, Marseille, France
| | - Antoine Roux
- Hôpital Foch, Service de pneumologie, Suresnes, France
| | - Xavier Demant
- Hôpital Haut-Lévêque, Service de pneumologie, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et de Transplantation Pulmonaire, Groupe Hospitalier Marie-Lannelongue -Paris Saint Joseph, Le Plessis-Robinson, France
- Université Paris-Saclay, Le Kremlin Bicêtre, France
- UMR_S 999, Université Paris–Sud, Inserm, Groupe hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France
| | - Romain Kessler
- Groupe de transplantation pulmonaire des hôpitaux universitaires de Strasbourg, Inserm-Université de Strasbourg, Strasbourg, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, GHE, Service de Pneumologie, Inserm, Lyon, France
| | - Jonathan Messika
- APHP, Nord-Université Paris Cité, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Loïc Falque
- Service Hospitalier Universitaire Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France
| | | | - Véronique Boussaud
- Service de Pneumologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Sophie Hombourger
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
- *Correspondence: Béatrice Charreau,
| |
Collapse
|