1
|
Wu Y, Sun C. Salidroside prevents cadmium chloride-induced DNA damage in human fetal lung fibroblasts. J Trace Elem Med Biol 2024; 86:127521. [PMID: 39243731 DOI: 10.1016/j.jtemb.2024.127521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Cadmium (Cd) is an environmental pollutant and a heavy metal known for its genotoxic effects, which can lead to cancer and other related diseases. Preventing Cd-induced genotoxicity is crucial; however, there is limited research on this topic. Salidroside (SAL), a phenylpropanoid glycoside isolated from Rhodiola rosea L., is a popular medicinal compound with several health benefits. Nevertheless, its therapeutic effect on Cd-induced genotoxicity remains unexplored. METHODS Human fetal lung fibroblasts were treated with 20 μM Cd2+ (CdCl2) for 12 h and 5-20 μM SAL was used to test the anti-DNA damage effect. DNA damage was evaluated using γH2AX expression and the alkaline comet assay. Intracellular reactive oxygen species (ROS) levels were measured using flow cytometry. RESULTS Exposure to 20 μM Cd2+ for 12 h induced significant DNA damage in human fetal lung fibroblasts, and this effect was notably attenuated by SAL treatment. SAL treatment did not decrease ROS levels in cells treated with Cd2+. CONCLUSION SAL effectively prevented Cd2+-induced DNA damage in human fetal lung fibroblasts. However, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- Yufei Wu
- Anglo-Chinese School (International), Singapore
| | - Chuan Sun
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou 310030, China.
| |
Collapse
|
2
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024; 38:5270-5289. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Li Z, Sun A, Wang X, Abulimiti M, Li Z, Li Z. Synthesis and bioactivity evaluation of mirror isomer salidroside derivatives as potent antioxidant and anti-inflammatory agents. Carbohydr Res 2024; 542:109174. [PMID: 38865798 DOI: 10.1016/j.carres.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
A series of derivatives of salidroside with mirror isomer glucose and different phenyl moieties were synthesized by Schmidt glycosylation in satisfactory yields, and their antioxidant and anti-inflammatory activities were evaluated by using LPS-induced RAW264.7 cells. One of the synthesized derivatives ʟ-Sal-4, bearing ʟ-glycosyl and -OMe modification at the phenyl ring, exhibited high activity in inhibiting the production of pro-inflammatory cytokines and oxidative stress biomarker MDA as well as in enhancing the activity of SOD enzyme, compared with the natural product and its corresponding ᴅ-enantiomer. Further proteomic analysis suggested that ʟ-Sal-4 exerted its anti-inflammatory activity through metabolic reprogramming. The in vitro activity showed that ʟ-Sal-4 is a potent antioxidant and anti-inflammatory agent. Our finding indicated that the ʟ-glucose-derived salidroside might be a promising lead compound in the development of salidroside derivatives as therapeutic agents.
Collapse
Affiliation(s)
- Zipeng Li
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Ao Sun
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xin Wang
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Munila Abulimiti
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhongtang Li
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhongjun Li
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315832, PR China.
| |
Collapse
|
4
|
Lai W, Luo R, Tang Y, Yu Z, Zhou B, Yang Z, Brown J, Hong G. Salidroside directly activates HSC70, revealing a new role for HSC70 in BDNF signalling and neurogenesis after cerebral ischemia. Phytother Res 2024; 38:2619-2640. [PMID: 38488455 DOI: 10.1002/ptr.8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 06/13/2024]
Abstract
Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Luo
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuheng Tang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zelin Yang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA, Du W. Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells. Cells 2024; 13:733. [PMID: 38727270 PMCID: PMC11083014 DOI: 10.3390/cells13090733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Peiwen Fei
- Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96812, USA
| | - Dennis W. Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Parinda A. Mehta
- Division of Blood and Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Feng Z, Yang Y, Shi CX, Liu AQ, Wu CL, Liu WQ, Yu SX, Yu HD, Zuo ZF, Liu XZ. Salidroside ameliorates diabetic retinopathy and Müller cell inflammation via the PI3K/Akt/GSK-3β/NF-𝜅B pathway. Mol Vis 2024; 30:1-16. [PMID: 39588324 PMCID: PMC11588348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/07/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose To determine whether salidroside (SAL) modulates inflammatory cytokines in rat retinal Müller cells (rMC-1) in a hyperglycemic environment by investigating the anti-inflammatory mechanisms of SAL in vitro and in vivo. Methods A streptozotocin (STZ)-induced diabetic rat model was established to examine the effects of SAL using hematoxylin and eosin (H&E) staining and immunohistochemistry. rMC-1 cells were grown in 50 mM of high-glucose medium. These simulated diabetic conditions were used to evaluate the anti-inflammatory effects of SAL using a Cell Counting Kit-8 (CCK-8) assay, immunofluorescence staining, western blotting, and real-time polymerase chain reaction (qRT‒PCR). H&E staining was used to analyze the number of ganglion cells in the retina. rMC-1 lysates were processed for qRT‒PCR to measure the steady-state mRNA expression levels of inflammatory markers, such as interleukin 6 (IL-6), interleukin 10 (IL-10), and interleukin 1β (IL-1β). Western blot analysis and immunofluorescence staining were performed to determine the levels of these inflammatory markers. Results Our study showed that SAL reversed retinal ganglion cell loss and attenuated nuclear factor kappa B (NF-𝜅B) p65 translocation to the nucleus in STZ-induced diabetic rats. Incubating rMC-1 in different concentrations of SAL for 24 to 48 h affected cell viability. Furthermore, SAL treatment significantly decreased the protein levels of IL-6, TNF-α, and IL-1β compared with those in cells cultured in high glucose (HG). The mRNA expression levels of IL-6 and IL-1β were considerably reduced after SAL treatment, whereas the mRNA expression levels of IL-10 were significantly increased. Interestingly, the beneficial effects of SAL on HG-treated rMC-1 cells were abolished by the PI3K inhibitor LY294002. Conclusions These results indicate that SAL treatment reduces cytokine activation in cultured rMC-1. Furthermore, SAL prevents diabetic retinopathy (DR), in part, by modulating the PI3K/Akt/GSK-3β/NF-kB pathway to inhibit Müller cell activation. Thus, SAL is expected to be a potential agent for ameliorating the progression of DR.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
- Zhejiang Changzheng Vocational Technical College, Shenyang, China
| | - Yang Yang
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
- Zhejiang Changzheng Vocational Technical College, Shenyang, China
| | | | - An-Qi Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chuan-Ling Wu
- Zhejiang Industrial Vocational and Technical College, Shaoxing, Zhejiang, China
| | - Wen-Qiang Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Sheng-Xue Yu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hong-Dan Yu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
7
|
Wang Z, Qiang X, Peng Y, Fu W, Zhao Q, He D. Design and synthesis of salidroside analogs and their bioactivity against septic myocardial injury. Bioorg Chem 2023; 138:106609. [PMID: 37207595 DOI: 10.1016/j.bioorg.2023.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Cardiac tissue suffers much from sepsis, and the incidence of myocardial injury is high in septic patients. The treatment of sepsis myocardial injury (SMI) has been the focus of clinical medicine. Salidroside shows myocardial cell protection, anti-oxidation and anti- inflammation effects, and it is thought as one of the potential compounds to treat sepsis myocardial injury. However, its anti-inflammatory activity is lower and its pharmacokinetic properties are not ideal, which is far from clinical application. Here, a series of salidroside analogs were synthesized, and their bioactivities were evaluated from several aspects, including their anti-oxidant and anti-inflammatory activities in vitro and anti-sepsis myocardial injury activities in vivo. Of all the compounds which synthesized, compounds 2 and 3 exhibited stronger anti-inflammatory activities than the others; after treating LPS-stimulated RAW264.7 or H9c2 cells with each of them, the levels of IL-1β, IL-6 and TNF-α were down-regulated in a dose-dependent manner. In the anti-oxidative stress injury test, compounds 2 and 3 not only markedly increased the survival rate of cells, and but also improved the cellular oxidative stress-related indicators MDA, SOD and cell damage marker LDH in a dose-dependent manner. In the LPS-induced septic rat myocardial injury models (in vivo), the two compounds also showed good bioactivities. They also reduced the expression of IL-1β, IL-6 and TNF-α, and blocked cell damage by suppressing overhauled oxidation in septic rats. In addition, the myocardial injury was significantly improved and the inflammatory infiltration was reduced after treatment with the two compounds. In conclusion, the salidroside analogs (2 and 3) showed promising therapeutical effect on septic myocardial injury in LPS-model rats, and they could be good candidates for clinical trials against inflammation and septic myocardial injury.
Collapse
Affiliation(s)
- Zongyuan Wang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Xin Qiang
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yijie Peng
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Wenjie Fu
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Yu C, Sheng Y, Yu F, Ni H, Qiu A, Huang Y, Qian Z. Foxm1 haploinsufficiency drives clonal hematopoiesis and promotes a stress-related transition to hematologic malignancy in mice. J Clin Invest 2023; 133:e163911. [PMID: 37526082 PMCID: PMC10378147 DOI: 10.1172/jci163911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Clonal hematopoiesis plays a critical role in the initiation and development of hematologic malignancies. In patients with del(5q) myelodysplastic syndrome (MDS), the transcription factor FOXM1 is frequently downregulated in CD34+ cells. In this study, we demonstrated that Foxm1 haploinsufficiency disturbed normal hematopoiesis and conferred a competitive repopulation advantage for a short period. However, it impaired the long-term self-renewal capacity of hematopoietic stem cells, recapitulating the phenotypes of abnormal hematopoietic stem cells observed in patients with MDS. Moreover, heterozygous inactivation of Foxm1 led to an increase in DNA damage in hematopoietic stem/progenitor cells (HSPCs). Foxm1 haploinsufficiency induced hematopoietic dysplasia in a mouse model with LPS-induced chronic inflammation and accelerated AML-ETO9a-mediated leukemogenesis. We have also identified Parp1, an important enzyme that responds to various types of DNA damage, as a target of Foxm1. Foxm1 haploinsufficiency decreased the ability of HSPCs to efficiently repair DNA damage by downregulating Parp1 expression. Our findings suggest that the downregulation of the Foxm1-Parp1 molecular axis may promote clonal hematopoiesis and reduce genome stability, contributing to del(5q) MDS pathogenesis.
Collapse
Affiliation(s)
- Chunjie Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Yue Sheng
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Department of Hematology, Second Xiangya Hospital, Changsha, Hunan, China
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Hongyu Ni
- Department of Pathology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Alan Qiu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Hiroki H, Ishii Y, Piao J, Namikawa Y, Masutani M, Honda H, Akahane K, Inukai T, Morio T, Takagi M. Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep 2023; 13:7588. [PMID: 37165001 PMCID: PMC10172294 DOI: 10.1038/s41598-023-33852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
BCR/ABL1 causes dysregulated cell proliferation and is responsible for chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph1-ALL). In addition to the deregulatory effects of its kinase activity on cell proliferation, BCR/ABL1 induces genomic instability by downregulating BRCA1. PARP inhibitors (PARPi) effectively induce cell death in BRCA-defective cells. Therefore, PARPi are expected to inhibit growth of CML and Ph1-ALL cells showing downregulated expression of BRCA1. Here, we show that PARPi effectively induced cell death in BCR/ABL1 positive cells and suppressed colony forming activity. Prevention of BCR/ABL1-mediated leukemogenesis by PARP inhibition was tested in two in vivo models: wild-type mice that had undergone hematopoietic cell transplantation with BCR/ABL1-transduced cells, and a genetic model constructed by crossing Parp1 knockout mice with BCR/ABL1 transgenic mice. The results showed that a PARPi, olaparib, attenuates BCR/ABL1-mediated leukemogenesis. One possible mechanism underlying PARPi-dependent inhibition of leukemogenesis is increased interferon signaling via activation of the cGAS/STING pathway. This is compatible with the use of interferon as a first-line therapy for CML. Because tyrosine kinase inhibitor (TKI) monotherapy does not completely eradicate leukemic cells in all patients, combined use of PARPi and a TKI is an attractive option that may eradicate CML stem cells.
Collapse
Affiliation(s)
- Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yuko Ishii
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Jinhua Piao
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yui Namikawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
10
|
Li C, Deng H, Liu Z, Lv X, Gao W, Gao Y, Gao J, Hu L. Salidroside protect Chinese hamster V79 cells from genotoxicity and oxidative stress induced by CL-20. Toxicol Res (Camb) 2023; 12:133-142. [PMID: 36866208 PMCID: PMC9972843 DOI: 10.1093/toxres/tfad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.
Collapse
Affiliation(s)
- Cunzhi Li
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Wenzhi Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| |
Collapse
|
11
|
Lee AQ, Konishi H, Duong C, Yoshida S, Davis RR, Van Dyke JE, Ijiri M, McLaughlin B, Kim K, Li Y, Beckett L, Nitin N, McPherson JD, Tepper CG, Satake N. A distinct subpopulation of leukemia initiating cells in acute precursor B lymphoblastic leukemia: quiescent phenotype and unique transcriptomic profile. Front Oncol 2022; 12:972323. [PMID: 36212452 PMCID: PMC9533407 DOI: 10.3389/fonc.2022.972323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023] Open
Abstract
In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia stem cells (LSCs) is believed to drive population expansion and tumor growth. Failing to eliminate LSCs may result in disease relapse regardless of the amount of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to identify and characterize them. Acute precursor B lymphoblastic leukemia (B-ALL) cells derived from patients were incubated with fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose (NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by glucose uptake were then serially transplanted into mice and evaluated for leukemia initiating capacity. Gene expression profiles of these cells were characterized using RNA-Sequencing (RNA-Seq). A distinct population of NBDG-low cells was identified in patient B-ALL samples. These cells are a small population (1.92% of the entire leukemia population), have lower HLA expression, and are smaller in size (4.0 to 7.0 μm) than the rest of the leukemia population. All mice transplanted with NBDG-low cells developed leukemia between 5 and 14 weeks, while those transplanted with NBDG-high cells did not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-low mouse model resulted in successful leukemia development. NBDG-medium (NBDG-med) populations also developed leukemia. Interestingly, comprehensive molecular characterization of NBDG-low and NBDG-med cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a distinct profile of 2,162 differentially-expressed transcripts (DETs) (p<0.05) with 70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs showed distinct segregation of NBDG-low from NBDG-med and NBDG-high groups with marked transcription expression alterations in the NBDG-low group consistent with cancer survival. In conclusion, A unique subpopulation of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These cells, despite their quiescence characteristics, once transplanted in mice, showed potent leukemia initiating capacity. Although NBDG-med cells also initiated leukemia, gene expression profiling revealed a distinct signature that clearly distinguishes NBDG-low cells from NBDG-med and the rest of the leukemia populations. These results suggest that NBDG-low cells may represent quiescent LSCs. These cells can be activated in the appropriate environment in vivo, showing leukemia initiating capacity. Our study provides insight into the biologic mechanisms of B-ALL initiation and survival.
Collapse
Affiliation(s)
- Alex Q. Lee
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Hiroaki Konishi
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Connie Duong
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Sakiko Yoshida
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Ryan R. Davis
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Jonathan E. Van Dyke
- Flow Cytometry Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Masami Ijiri
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Bridget McLaughlin
- Flow Cytometry Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Yueju Li
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Laurel Beckett
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Nitin Nitin
- Departments of Food Science & Technology and Biological & Agricultural Engineering, University of California (UC) Davis, Davis, CA, United States
| | - John D. McPherson
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Clifford G. Tepper
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Noriko Satake, ; Clifford G. Tepper,
| | - Noriko Satake
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Noriko Satake, ; Clifford G. Tepper,
| |
Collapse
|
12
|
Cui Z, Jin N, Amevor FK, Shu G, Du X, Kang X, Ning Z, Deng X, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Wang X, Han X, Feng J, Zhao X. Dietary Supplementation of Salidroside Alleviates Liver Lipid Metabolism Disorder and Inflammatory Response to Promote Hepatocyte Regeneration via PI3K/AKT/Gsk3-β Pathway. Poult Sci 2022; 101:102034. [PMID: 35926351 PMCID: PMC9356167 DOI: 10.1016/j.psj.2022.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-β, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1β, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-β pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China; College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Ningning Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xincheng Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center of Razi County, Tibet Autonomous Region, P. R. China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guizhou province, P. R. China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, P. R. China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China.
| |
Collapse
|
13
|
Wu L, Chatla S, Lin Q, Chowdhury FA, Geldenhuys W, Du W. Quinacrine-CASIN combination overcomes chemoresistance in human acute lymphoid leukemia. Nat Commun 2021; 12:6936. [PMID: 34836965 PMCID: PMC8626516 DOI: 10.1038/s41467-021-27300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/11/2021] [Indexed: 01/30/2023] Open
Abstract
Chemoresistance posts a major hurdle for treatment of acute leukemia. There is increasing evidence that prolonged and intensive chemotherapy often fails to eradicate leukemic stem cells, which are protected by the bone marrow niche and can induce relapse. Thus, new therapeutic approaches to overcome chemoresistance are urgently needed. By conducting an ex vivo small molecule screen, here we have identified Quinacrine (QC) as a sensitizer for Cytarabine (AraC) in treating acute lymphoblastic leukemia (ALL). We show that QC enhances AraC-mediated killing of ALL cells, and subsequently abrogates AraC resistance both in vitro and in an ALL-xenograft model. However, while combo AraC+QC treatment prolongs the survival of primary transplanted recipients, the combination exhibits limited efficacy in secondary transplanted recipients, consistent with the survival of niche-protected leukemia stem cells. Introduction of Cdc42 Activity Specific Inhibitor, CASIN, enhances the eradication of ALL leukemia stem cells by AraC+QC and prolongs the survival of both primary and secondary transplanted recipients without affecting normal long-term human hematopoiesis. Together, our findings identify a small-molecule regimen that sensitizes AraC-mediated leukemia eradication and provide a potential therapeutic approach for better ALL treatment.
Collapse
Affiliation(s)
- Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Chang Z, Wang Y, Liu C, Smith W, Kong L. Natural Products for Regulating Macrophages M2 Polarization. Curr Stem Cell Res Ther 2021; 15:559-569. [PMID: 31120001 DOI: 10.2174/1574888x14666190523093535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.
Collapse
Affiliation(s)
- Zhen Chang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Chang Liu
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
15
|
Yang Z, Huang X, Lai W, Tang Y, Liu J, Wang Y, Chu K, Brown J, Hong G. Synthesis and identification of a novel derivative of salidroside as a selective, competitive inhibitor of monoamine oxidase B with enhanced neuroprotective properties. Eur J Med Chem 2020; 209:112935. [PMID: 33097301 DOI: 10.1016/j.ejmech.2020.112935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Salidroside [(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-hydroxyphenethoxy)tetrahy-dro-2H-pyran-3,4,5-triol] is an antioxidant, anti-inflammatory and neuroprotective agent, but its drug-like properties are unoptimized and its mechanism of actions is uncertain. We synthesized twenty-six novel derivatives of salidroside and examined them in CoCl2-treated PC12 cells using MTT assay. pOBz, synthesized by esterifying the phenolic hydroxyl group of salidroside with benzoyl chloride, was one of five derivatives that were more cytoprotective than salidroside, with an EC50 of 0.038 μM versus 0.30 μM for salidroside. pOBz was also more lipophilic, with log P of 1.44 versus -0.89 for salidroside. Reverse virtual docking predicted that pOBz would bind strongly with monoamine oxidase (MAO) B by occupying its entrance and substrate cavities, and by interacting with the inter-cavity gating residue Ile199 and Tyr435 of the substrate cavity. Enzymatic studies confirmed that pOBz competitively inhibited the activity of purified human MAO-B (Ki = 0.041 μM versus Ki = 0.92 μM for salidroside), and pOBz was highly selective for MAO-B over MAO-A. In vivo, pOBz inhibited cerebral MAO activity after middle cerebral artery occlusion with reperfusion in rats, and it reduced cerebral infarct volume, improved neurological function and NeuN expression, and inhibited complement C3 expression and apoptosis. Our results suggest that pOBz is a structurally novel type of competitive and selective MAO-B inhibitor, with potent neuroprotective properties after cerebral ischemia-reperfusion injury in rats.
Collapse
Affiliation(s)
- Zelin Yang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Xin Huang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Wenfang Lai
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yuheng Tang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Yingzheng Wang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Kedan Chu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - John Brown
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
16
|
Sa L, Wei X, Huang Q, Cai Y, Lu D, Mei R, Hu X. Contribution of salidroside to the relieve of symptom and sign in the early acute stage of osteoarthritis in rat model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112883. [PMID: 32315736 DOI: 10.1016/j.jep.2020.112883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Rhodiola has been used to treat cough, hemoptysis, fever, pain, bruise and other symptoms which are related to injury and inflammation over a thousand years in traditional Tibetan medicine. Salidroside (p-hydroxyphenethyl-β-D-glucoside) is one of the most potent bioactive ingredients of the genus Rhodiola. AIM OF STUDY The present study aimed to explore whether salidroside could alleviate the clinical symptom and sign in the early acute stage of osteoarthritis (OA) in monosodium iodoacetate (MIA) rat model, and its underlying mechanisms. MATERIALS AND METHODS Osteoarthritis (OA) was induced in rat knees by intra-articular injection of MIA; simultaneously salidroside was administered by intravenous injection. Pain behaviors were evaluated by knee-bend test, hind limb weight-bearing asymmetry and hind paw mechanical withdrawal threshold. The joint swelling was determined by the difference of knee joint diameter. Inflammatory exudates in synovial fluid were evaluated by leukocyte counting and protein content. Cytokines, chemokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS) markers were determined by Enzyme-linked immunosorbent assay (ELISA) and colorimetric assay in synovial fluid. Pro-inflammatory gene expressions in synovial tissue were detected by quantitative real time RT-PCR (qRT-PCR). Nuclear factor kappa-B (NF-κB) DNA binding assay and western blot were used to determine NF-κB activation and ROS marker protein expression in synovial tissue. Glycosaminoglycan (GAG) content in the cartilage was measured by dimethylmethylene blue method. Hematoxylin and eosin (H&E), Safranin O-fast green and a modified Mankin grading system were used to evaluate the histology of articular cartilage. RESULTS Salidroside could alleviate pain and joint swelling in the early acute stage of OA in rat model, reduced the number of leukocytes, total protein content, proinflammatory mediators and ROS/RNS markers in synovial fluid, down regulated the expression of proinflammatory genes in synovium, inhibited the activation of NF- κ B and oxidative stress response in synovium, promoted the synthesis of cartilage GAG, prevented the loss of proteoglycan and chondrocyte degeneration. CONCLUSIONS Salidroside effectively alleviates acute symptom and sign of OA in rat model by its anti-inflammatory and antioxidant affects to inhibit synovial inflammation, which provides a new strategy to prevent the onset and progression of OA.
Collapse
Affiliation(s)
- Lina Sa
- Department of Physiology, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaoli Wei
- Medical Experiment Center, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Qian Huang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affifiliated Hospital, Zhejiang University School of Medicine, NO.79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Yanchun Cai
- Department of Physiology, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Daigang Lu
- Department of Orthopaedic Surgery, Honghui Hospital, Xi'an Jiaotong University School of Medicine, NO.555, Youyi East Road, Xi'an, Shaanxi Province, 710054, China
| | - Ruhuan Mei
- Medical Experiment Center, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaolan Hu
- Department of Physiology, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
17
|
The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Cells 2020; 9:cells9092040. [PMID: 32900001 PMCID: PMC7565932 DOI: 10.3390/cells9092040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages.
Collapse
|
18
|
Lin Q, Wu L, Ma Z, Chowdhury FA, Mazumder HH, Du W. Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function. JCI Insight 2020; 5:133365. [PMID: 32434992 DOI: 10.1172/jci.insight.133365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
NOD-like receptor 12 (NLRP12) is a member of the nucleotide-binding domain and leucine-rich repeat containing receptor inflammasome family that plays a central role in innate immunity. We previously showed that DNA damage upregulated NLRP12 in hematopoietic stem cells (HSCs) of mice deficient in the DNA repair gene Fanca. However, the role of NLRP12 in HSC maintenance is not known. Here, we show that persistent DNA damage-induced NLRP12 improves HSC function in both mouse and human models of DNA repair deficiency and aging. Specifically, treatment of Fanca-/- mice with the DNA cross-linker mitomycin C or ionizing radiation induces NLRP12 upregulation in phenotypic HSCs. NLRP12 expression is specifically induced by persistent DNA damage. Functionally, knockdown of NLRP12 exacerbates the repopulation defect of Fanca-/- HSCs. Persistent DNA damage-induced NLRP12 was also observed in the HSCs from aged mice, and depletion of NLRP12 in these aged HSCs compromised their self-renewal and hematopoietic recovery. Consistently, overexpression of NLRP12 substantially improved the long-term repopulating function of Fanca-/- and aged HSCs. Finally, persistent DNA damage-induced NLRP12 maintains the function of HSCs from patients with FA or aged donors. These results reveal a potentially novel role of NLRP12 in HSC maintenance and suggest that NLRP12 targeting has therapeutic potential in DNA repair disorders and aging.
Collapse
Affiliation(s)
- Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Zhilin Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Habibul Hasan Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
19
|
Bai XL, Deng XL, Wu GJ, Li WJ, Jin S. Rhodiola and salidroside in the treatment of metabolic disorders. Mini Rev Med Chem 2019; 19:1611-1626. [PMID: 31481002 DOI: 10.2174/1389557519666190903115424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Over the past three decades, the knowledge gained about the mechanisms that underpin the potential use of Rhodiola in stress- and ageing-associated disorders has increased, and provided a universal framework for studies that focused on the use of Rhodiola in preventing or curing metabolic diseases. Of particular interest is the emerging role of Rhodiola in the maintenance of energy homeostasis. Moreover, over the last two decades, great efforts have been undertaken to unravel the underlying mechanisms of action of Rhodiola in the treatment of metabolic disorders. Extracts of Rhodiola and salidroside, the most abundant active compound in Rhodiola, are suggested to provide a beneficial effect in mental, behavioral, and metabolic disorders. Both in vivo and ex vivo studies, Rhodiola extracts and salidroside ameliorate metabolic disorders when administered acutely or prior to experimental injury. The mechanism involved includes multi-target effects by modulating various synergistic pathways that control oxidative stress, inflammation, mitochondria, autophagy, and cell death, as well as AMPK signaling that is associated with possible beneficial effects on metabolic disorders. However, evidence-based data supporting the effectiveness of Rhodiola or salidroside in treating metabolic disorders is limited. Therefore, a comprehensive review of available trials showing putative treatment strategies of metabolic disorders that include both clinical effective perspectives and fundamental molecular mechanisms is warranted. This review highlights studies that focus on the potential role of Rhodiola extracts and salidroside in type 2 diabetes and atherosclerosis, the two most common metabolic diseases.
Collapse
Affiliation(s)
- Xiang-Li Bai
- Department of Clinical Laboratory, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiu-Ling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guang-Jie Wu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| | - Wen-Jing Li
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| |
Collapse
|
20
|
Wang Y, Smith W, Hao D, He B, Kong L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol 2019; 70:459-466. [PMID: 30861466 DOI: 10.1016/j.intimp.2019.02.050] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Macrophages, as crucial cellular components of innate immunity, are characterized by possessing high plasticity and an abnormal ability to differentiate in response to numerous stimuli. Given this, macrophages show extreme heterogeneity under both physiological and pathological conditions. Typically, macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2) depending on their environment. The relative functions of these two subtypes are almost exactly opposed to one another. Recent studies have suggested that some naturally occurring compounds can exert regulatory effects on the progression of macrophage polarization, which implies that they could be promising therapeutic tools to treat relevant diseases. Therefore, in our current review, we summarize recent studies on several naturally occurring compounds that may possess the ability to regulate macrophage polarization and explore the associated molecular mechanisms.
Collapse
Affiliation(s)
- Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China; Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dingjun Hao
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China.
| |
Collapse
|
21
|
Zhang P, Li W, Wang L, Liu H, Gong J, Wang F, Chen X. Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription. Front Pharmacol 2018; 9:209. [PMID: 29593538 PMCID: PMC5858519 DOI: 10.3389/fphar.2018.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/23/2018] [Indexed: 01/11/2023] Open
Abstract
Aim: Salidroside is an active compound extracted from Rhodiola rosea which is used to alleviate fatigue and enhance endurance in high altitude regions. Some studies have demonstrated that salidroside can affect precursor cell differentiation in hematopoietic stem cells, erythrocytes, and osteoblasts. The aim of this study was to investigate the effect of salidroside on myoblast differentiation and to explore the underlying molecular mechanisms of this effect. Methods: C2C12 myoblast cells were treated with different concentrations of salidroside in differentiation media. Real-time PCR, Western blotting, and immunofluorescence assay were employed to evaluate the effects of salidroside on C2C12 differentiation. RNA interference was used to reveal the important role of Myf5 in myogenesis inhibited by salidroside. Chromatin Immunoprecipitation and dual-luciferase reporter assay were utilized to explore the underlying mechanisms of salidroside-induced upregulation of Myf5. Results: We found that salidroside inhibits myogenesis by downregulating MyoD and myogenin, preserves undifferentiated reserve cell pools by upregulating Myf5. Knocking down Myf5 expression significantly rescued the myogenesis inhibited by salidroside. The effect of salidroside on myogenesis was associated with increased phosphorylated Smad3 (p-Smad3). Both SIS3 (Specific inhibitor of p-Smad3) and dominant negative Smad3 plasmid (DN-Smad3) attenuated the inhibitory effect of salidroside on C2C12 differentiation. Moreover, the induction of Myf5 transcription by salidroside was dependent on a Smad-binding site in the promoter region of Myf5 gene. Conclusion and Implications: Our findings identify a novel role and mechanism for salidroside in regulating myogenesis through p-Smad3-induced Myf5 transcription, which may have implications for its further application in combating degenerative muscular diseases caused by depletion of muscle stem cells, such as Duchenne muscular dystrophy or sarcopenia.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjiong Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lu Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Hongju Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jing Gong
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Fei Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
22
|
Liu X, Wen S, Yan F, Liu K, Liu L, Wang L, Zhao S, Ji X. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflammation 2018; 15:39. [PMID: 29426336 PMCID: PMC5807735 DOI: 10.1186/s12974-018-1081-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Following stroke, microglia can be driven to the "classically activated" pro-inflammatory (M1) phenotype and the "alternatively activated" anti-inflammatory (M2) phenotype. Salidroside (SLDS) is known to inhibit inflammation and to possess protective effects in neurological diseases, but to date, the exact mechanisms involved in these processes after stroke have yet to be elucidated. The purpose of this study was to determine the effects of SLDS on neuroprotection and microglial polarization after stroke. METHODS Male adult C57/BL6 mice were subjected to focal transient cerebral ischemia followed by intravenous SLDS injection. The optimal dose was determined by evaluation of cerebral infarct volume and neurological functions. RT-PCR and immunostaining were performed to assess microglial polarization. A transwell system and a direct-contact coculture system were used to elucidate the effects of SLDS-induced microglial polarization on oligodendrocyte differentiation and neuronal survival. RESULTS SLDS significantly reduced cerebral infarction and improved neurological function after cerebral ischemia. SLDS treatment reduced the expression of M1 microglia/macrophage markers and increased the expression of M2 microglia/macrophage markers after stroke and induced primary microglia from M1 phenotype to M2 phenotype. Furthermore, SLDS treatment enhanced microglial phagocytosis and suppressed microglial-derived inflammatory cytokine release. Cocultures of oligodendrocytes and SLDS-treated M1 microglia resulted in increased oligodendrocyte differentiation. Moreover, SLDS protected neurons against oxygen glucose deprivation by promoting microglial M2 polarization. CONCLUSIONS These data demonstrate that SLDS protects against cerebral ischemia by modulating microglial polarization. An understanding of the mechanisms involved in SLDS-mediated microglial polarization may lead to new therapeutic opportunities after stroke.
Collapse
Affiliation(s)
- Xiangrong Liu
- China-America Institute of Neuroscience, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China
| | - Shaohong Wen
- China-America Institute of Neuroscience, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China
| | - Feng Yan
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China.,Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
| | - Kuan Liu
- China-America Institute of Neuroscience, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China.,Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
| | - Liqiang Liu
- China-America Institute of Neuroscience, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China.,Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China
| | - Lei Wang
- China-America Institute of Neuroscience, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China
| | - Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital University of Medical Sciences, Beijing, 100073, People's Republic of China
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People's Republic of China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, 100053, People's Republic of China. .,Department of Neurosurgery, Xuanwu Hospital, Capital University of Medical Sciences, Beijing, 100053, People's Republic of China. .,Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, People's Republic of China.
| |
Collapse
|
23
|
Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. ACTA ACUST UNITED AC 2017; 3:384-395. [PMID: 30393593 DOI: 10.1007/s40495-017-0106-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Rhodiola rosea extracts have been used as a dietary supplement in healthy populations, including athletes, to non-specifically enhance the natural resistance of the body to both physical and behavior stresses for fighting fatigue and depression. We summarize the information with respect to the new pharmacological activities of Rhodiola rosea extracts and its underlying molecular mechanisms in this review article. Recent findings In addition to its multiplex stress-protective activity, Rhodiola rosea extracts have recently demonstrated its anti-aging, anti-inflammation, immunostimulating, DNA repair and anti-cancer effects in different model systems. Molecular mechanisms of Rhodiola rosea extracts's action have been studied mainly along with one of its bioactive compounds, salidroside. Both Rhodiola rosea extracts and salidroside have contrast molecular mechanisms on cancer and normal physiological functions. For cancer, Rhodiola rosea extracts and salidroside inhibit the mTOR pathway and reduce angiogenesis through down-regulation of the expression of HIF-1α/HIF-2α. For normal physiological functions, Rhodiola rosea extracts and salidroside activate the mTOR pathway, stimulate paracrine function and promote neovascularization by inhibiting PHD3 and stabilizing HIF-1α proteins in skeletal muscles. In contrast to many natural compounds, salidroside is water-soluble and highly bioavailable via oral administration and concentrated in urine by kidney excretion. Summary Rhodiola rosea extracts and salidroside can impose cellular and systemic benefits similar to the effect of positive lifestyle interventions to normal physiological functions and for anti-cancer. The unique pharmacological properties of Rhodiola rosea extracts or salidroside deserve further investigation for cancer chemoprevention, in particular for human urinary bladder cancer.
Collapse
|
24
|
Feng T, Wang L, Zhou N, Liu C, Cui J, Wu R, Jing J, Zhang S, Chen H, Wang S. Salidroside, a scavenger of ROS, enhances the radioprotective effect of Ex-RAD® via a p53-dependent apoptotic pathway. Oncol Rep 2017; 38:3094-3102. [PMID: 28901519 DOI: 10.3892/or.2017.5940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/09/2017] [Indexed: 11/05/2022] Open
Abstract
Salidroside (Sal), the predominant component of a Chinese medicinal herb, Rhodiola rosea L., has become an attractive bioagent due to its significant anti-radiation, antioxidant and immune adjustment effects. We explored the radioprotective effect of Sal to ascertain whether it could enhance the anti-radiation effect of ON 01210.Na (Ex-RAD®) in vivo and in vitro, and elucidate its underlying mechanism. Our data demonstrated that Sal inhibited radiation-induced apoptosis, scavenged reactive oxygen species (ROS), and decreased the DNA damage of human umbilical vein endothelial cells (HUVECs). Sal downregulated the expression of Bax and p53 and increased the ratio of Bcl-2/Bax, which indicated that Sal inhibited the radiation-induced apoptosis through p53-dependent pathways. The radioprotection of the Sal pretreatment was also evidenced by an increasing survival rate of the mice, maintaining antioxidant enzyme levels in the liver, and accelerating hematopoietic recovery. The results suggest that Sal exhibits an excellent radioprotective effect with powerful antioxidant activity in vitro and in vivo. Sal enhanced the radioprotective effect of Ex-RAD by improving the antioxidant effect, the scavenging of ROS, by accelerating hematopoietic recovery and DNA repair as well as by regulating apoptotic and repair signaling pathways. Combined modality treatments were more effective than single-agent treatments, demonstrating the value of multiple-agent radioprotectants.
Collapse
Affiliation(s)
- Tian Feng
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Libin Wang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Nan Zhou
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chang Liu
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiahui Cui
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Rangxin Wu
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Juan Jing
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shengyong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hui Chen
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Siwang Wang
- Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
25
|
Neuroprotective Effects of Salidroside in the MPTP Mouse Model of Parkinson's Disease: Involvement of the PI3K/Akt/GSK3 β Pathway. PARKINSONS DISEASE 2016; 2016:9450137. [PMID: 27738547 PMCID: PMC5050371 DOI: 10.1155/2016/9450137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
The degenerative loss through apoptosis of dopaminergic neurons in the substantia nigra pars compacta plays a primary role in the progression of Parkinson's disease (PD). Our in vitro experiments suggested that salidroside (Sal) could protect against 1-methyl-4-phenylpyridine-induced cell apoptosis in part by regulating the PI3K/Akt/GSK3β pathway. The current study aims to increase our understanding of the protective mechanisms of Sal in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine- (MPTP-) induced PD mouse model. We found that pretreatment with Sal could protect against MPTP-induced increase of the time of turning downwards and climbing down to the floor. Sal also prevented MPTP-induced decrease of locomotion frequency and the increase of the immobile time. Sal provided a protection of in MPTP-induced loss of tyrosine hydroxylase-positive neurons in SNpc and the level of DA, DOPAC, and HVA in the striatum. Furthermore, Sal could increase the phosphorylation level of Akt and GSK3β, upregulate the ratio of Bcl-2/Bax, and inhibit the activation of caspase-3, caspase-6, and caspase-9. These results show that Sal prevents the loss of dopaminergic neurons and the PI3K/Akt/GSK3β pathway signaling pathway may have mediated the protection of Sal against MPTP, suggesting that Sal may be a potential candidate in neuroprotective treatment for PD.
Collapse
|
26
|
Sharma N, Mishra KP, Ganju L. Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors. Arch Virol 2016; 161:3331-3344. [PMID: 27581807 DOI: 10.1007/s00705-016-3034-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023]
Abstract
Dengue is an arboviral disease with no effective therapy available. Therefore, there is an urgent need to find a potent antiviral agent against dengue virus (DENV). In the present study, salidroside, a main bioactive compound of Rhodiola rosea, was evaluated for its antiviral potential against DENV serotype-2 infection and its effect on host innate immune factors. Antiviral effects of salidroside were examined in DENV-infected cells by western blotting, flow cytometry and real-time PCR. Its underlying mechanism involved in antiviral action was determined by evaluating expression of host innate immune factors including RIG-I, IRF-3, IRF-7, PKR, P-eIF2α and NF-κB. Salidroside potently inhibited DENV infection by decreasing DENV envelope protein expression more than tenfold. Salidroside exerts its antiviral activity by increasing expression of RNA helicases such as RIG-I, thereby initiating a downstream signaling cascade that induces upregulation of IRF-3 and IRF-7. It prevents viral protein synthesis by increasing the expression of PKR and P-eIF2α while decreasing NF-κB expression. It was also found to induce the expression of IFN-α. In addition, the number of NK cells and CD8+ T cells were also found to be increased by salidroside treatment in human PBMCs, which are important in limiting DENV replication during early stages of infection. The findings presented here suggest that salidroside exhibits antiviral activity against DENV by inhibiting viral protein synthesis and boosting host immunity by increasing the expression of host innate immune factors and hence could be considered for the development of an effective therapeutic agent against DENV infection.
Collapse
Affiliation(s)
- Navita Sharma
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054, India
| | - K P Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Lilly Ganju
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
27
|
Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells. Sci Rep 2016; 6:22167. [PMID: 26916217 PMCID: PMC4768158 DOI: 10.1038/srep22167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
The prominent role of Fanconi anemia (FA) proteins involves homologous recombination (HR) repair. Poly[ADP-ribose] polymerase1 (PARP1) functions in multiple cellular processes including DNA repair and PARP inhibition is an emerging targeted therapy for cancer patients deficient in HR. Here we show that PARP1 activation in hematopoietic stem and progenitor cells (HSPCs) in response to genotoxic or oxidative stress attenuates HSPC exhaustion. Mechanistically, PARP1 controls the balance between HR and non-homologous end joining (NHEJ) in double strand break (DSB) repair by preventing excessive NHEJ. Disruption of the FA core complex skews PARP1 function in DSB repair and led to hyper-active NHEJ in Fanca−/− or Fancc−/− HSPCs. Re-expression of PARP1 rescues the hyper-active NHEJ phenotype in Brca1−/−Parp1−/− but less effective in Fanca−/−Parp1−/− cells. Inhibition of NHEJ prevents myeloid/erythroid pathologies associated with synthetic lethality. Our results suggest that hyper-active NHEJ may select for “synthetic lethality” resistant and pathological HSPCs.
Collapse
|
28
|
Chuang ML, Wu TC, Wang YT, Wang YC, Tsao TCY, Wei JCC, Chen CY, Lin IF. Adjunctive Treatment with Rhodiola Crenulata in Patients with Chronic Obstructive Pulmonary Disease--A Randomized Placebo Controlled Double Blind Clinical Trial. PLoS One 2015; 10:e0128142. [PMID: 26098419 PMCID: PMC4476627 DOI: 10.1371/journal.pone.0128142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/21/2015] [Indexed: 12/01/2022] Open
Abstract
UNLABELLED Chronic obstructive pulmonary disease (COPD) is a low grade systemic inflammatory disease characterized by dyspnea and exercise intolerance even under standard therapy. Rhodiola crenulata (RC) has been shown to exert anti-inflammatory effects and to enhance exercise endurance, thereby having the potential to treat COPD. In this 12-week, randomized, double-blind, placebo-controlled clinical trial, 57 patients with stable moderate-to-severe COPD aged 70±8.8 years were given RC (250 mg twice/day) (n=38) or a placebo (250 mg twice/day) (n=19) in addition to their standard regimen. There were no significant differences in anthropometrics, quality of life, lung function, six-minute walk and incremental exercise tests between the two groups at enrollment. Over the 12 weeks, RC was well tolerated, significantly reduced triceps skin thickness (Δ=-1 mm, p=.04), change of FEV1 (4.5%, p=.03), and improved workload (Δ=10%, p=.01); although there were no significant differences in these factors between the two groups. However, there were significant between-group differences in tidal volume and ventilation-CO2-output ratio at peak exercise (both p=.05), which were significantly related to peak work rate (both p<.0001). RC tended to protect against acute exacerbation of COPD (p=.1) but not other measurements. RC did not improve the six-minute walk test distance but significantly improved tidal breathing and ventilation efficiency, most likely through improvements in work rate. Further studies with a larger patient population are needed in order to confirm these findings. TRIAL REGISTRATION ClinicalTrials.gov number NCT02242461.
Collapse
Affiliation(s)
- Ming-Lung Chuang
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chin Wu
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yau-Tung Wang
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yau-Chen Wang
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Thomas C.-Y. Tsao
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Chinese Medicine Clinical Trial Center, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Yin Chen
- Chinese Medicine Clinical Trial Center, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - I-Feng Lin
- Institute and Department of Public Health, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Lai W, Zheng Z, Zhang X, Wei Y, Chu K, Brown J, Hong G, Chen L. Salidroside-Mediated Neuroprotection is Associated with Induction of Early Growth Response Genes (Egrs) Across a Wide Therapeutic Window. Neurotox Res 2015; 28:108-21. [PMID: 25911293 DOI: 10.1007/s12640-015-9529-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/26/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Salidroside exhibits anti-inflammatory, anti-oxidative, and anti-apoptotic properties. To identify whether salidroside might be a candidate for treating ischemic stroke, we investigated the effects of salidroside or vehicle, given daily for 6 days, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for either 1 or 48 h in rats. Salidroside reduced cerebral infarct volume and significantly improved neurological scores whether started after 1 or 48 h of reperfusion. Microarray analysis showed that 20 % (133/678) of the genes down-regulated by ischemia and 1 h of reperfusion were up-regulated by salidroside, whereas 13 % (105/829) of the genes induced by ischemia-reperfusion were inhibited by salidroside, suggesting that salidroside can reverse effects of ischemia-reperfusion on gene expression. The main enriched functional categories induced by salidroside were genes related to synaptic plasticity, whereas salidroside inhibited genes related to inflammation. Induction of Egr1, Egr2, Egr4, and Arc by salidroside was confirmed by qRT-PCR and western blotting in ischemic brains treated after either 1 or 48 h of reperfusion. The potential protective role of Egr4 in salidroside-mediated neuroprotection was subsequently investigated in CoCl2-treated PC12 cells. Egr4 was dose-dependently induced by salidroside in PC12 cells, and depleting Egr4 with target-specific siRNA increased caspase-3 activity and Bax, but decreased Bcl-xl, which were reversed by salidroside. Finally, we confirmed that salidroside inhibited the Bax/Bcl-xl-related apoptosis after MCAO with reperfusion. In conclusion, salidroside is highly neuroprotective with a wide therapeutic time window after ischemia-reperfusion injury in the rat, and this partially involves induction of Egrs, leading to inhibition of Bax/Bcl-xl-related apoptosis.
Collapse
Affiliation(s)
- Wenfang Lai
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mao GX, Xing WM, Wen XL, Jia BB, Yang ZX, Wang YZ, Jin XQ, Wang GF, Yan J. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts. Int J Cosmet Sci 2015; 37:321-8. [PMID: 25639473 DOI: 10.1111/ics.12202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Salidroside, the predominant component of a Chinese herbal medicine, Rhodiola rosea L., becomes an attractive bio-agent due to its multifunction. Although it is well proposed that this herbal medicine may have photoprotective effect according to the folk hearsay, the direct supportive experimental evidences linking the drug with skin ageing have rarely been reported so far. The study was conducted to investigate the photoprotective role of salidrosdie and its related mechanisms in vitro. METHODS First, a premature senescence model induced by UVB irradiation (250 mJ cm(-2)) in human dermal fibroblasts (HDFs) was established, and senescent phenotypes were evaluated by cell morphology, cell proliferation, senescence-associated beta-galactosidase (SA-β-gal) activity and cell cycle distribution. Then the photoprotective effect of salidroside was investigated. Cells were pre-treated with various doses of salidroside (1, 5 and 10 μM) followed by the sublethal dosage of UVB exposure and then were harvested for various detections, including senescence-associated phenotypes and molecules, alteration of oxidative stress, matrix metalloproteinase-1 (MMP-1) secretion and inflammatory response. RESULTS Pre-treatment of salidroside dose dependently reversed the senescent state of HDFs induced by UVB as evidenced by elevated cell viability, decreased SA-β-gal activity and relieving of G1/G0 cell cycle arrest. UVB-induced increased protein expression of cyclin-dependent kinase (CDK) inhibitors p21(WAF) (1) and p16(INK) (4) was also repressed by salidrosdie treatment in a dose-dependent manner. Meanwhile, the increment of malondialdehyde (MDA) level in UVB-irradiated HDFs was inhibited upon salidroside treatment. Additionally, salidroside significantly attenuated UVB-induced synthesis of MMP-1 as well as the production of IL-6 and TNF-α in HDFs. CONCLUSION Our data provided the evidences for the protective role of salidroside against UVB-induced premature senescence in HDFs probably via its anti-oxidative property and inhibition on production of MMP-1 and pro-inflammatory cytokines, which indicated its potential utilization as an active ingredient in the preparation of photoprotective formulation.
Collapse
Affiliation(s)
- G-X Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Research Institute of Zhejiang Province, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310013, Zhejiang Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kwon HJ, Kim YS, Hwang JW, Kim CY, Lee SH, Moon SH, Jeon BT, Park PJ. Isolation and identification of an anticancer compound from the bark of Acer tegmentosum Maxim. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
33
|
Salidroside stimulates mitochondrial biogenesis and protects against H₂O₂-induced endothelial dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:904834. [PMID: 24868319 PMCID: PMC4020198 DOI: 10.1155/2014/904834] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.
Collapse
|
34
|
Li X, Erden O, Li L, Ye Q, Wilson A, Du W. Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress. Antioxid Redox Signal 2014; 20:1853-65. [PMID: 24294904 PMCID: PMC3967359 DOI: 10.1089/ars.2013.5600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS A component of the base excision repair pathway, poly(ADP-ribose) polymerase-1 (PARP1) functions in multiple cellular processes, including DNA repair and programmed cell death. We previously showed that Salidroside, a phenylpropanoid glycoside isolated from medicinal plants, prevented the loss of hematopoietic stem cells (HSCs) in native mice and rescued HSCs repopulating in transplanted recipients under oxidative stress. The aim of this study was to investigate the mechanism by which PARP1 activation by Salidroside maintains HSCs under oxidative stress. RESULTS We found that although there were no spontaneous defects in hematopoiesis in Parp1(-/-) mice, oxidative stress compromised the repopulating capacity of Parp1(-/-) HSCs in transplanted recipient mice. A biochemical study using truncated proteins lacking the defined functional domains of PARP1 showed that the tryptophan-glycine-arginine-rich (WGR) domain of PARP1 was critical for Salidroside binding and subsequent PARP1 activation under oxidative stress. Functionally, complementation of Parp1(-/-) HSCs with full-length PARP1WT, but not the PARP1R591K mutant in WGR domain restored Salidroside-stimulated PARP1 activation in vitro. Mechanistically, activated PARP1 by Salidroside enhanced the repopulating capacity of the stressed HSCs by accelerating oxidative DNA damage repair. INNOVATIONS AND CONCLUSION: Our findings reveal the action of mechanism for Salidroside in PARP1 stimulation and a novel role of PARP1 activation in maintaining HSC function under oxidative stress.
Collapse
Affiliation(s)
- Xue Li
- 1 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | | | | | | | | | | |
Collapse
|
35
|
Du W, Amarachintha S, Sipple J, Schick J, Steinbrecher K, Pang Q. Inflammation-mediated notch signaling skews fanconi anemia hematopoietic stem cell differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2806-17. [PMID: 23926327 PMCID: PMC3773980 DOI: 10.4049/jimmunol.1203474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hematopoietic stem cells (HSCs) can either self-renew or differentiate into various types of cells of the blood lineage. Signaling pathways that regulate this choice of self-renewal versus differentiation are currently under extensive investigation. In this study, we report that deregulation of Notch signaling skews HSC differentiation in mouse models of Fanconi anemia (FA), a genetic disorder associated with bone marrow failure and progression to leukemia and other cancers. In mice expressing a transgenic Notch reporter, deletion of the Fanca or Fancc gene enhances Notch signaling in multipotential progenitors (MPPs), which is correlated with decreased phenotypic long-term HSCs and increased formation of MPP1 progenitors. Furthermore, we found an inverse correlation between Notch signaling and self-renewal capacity in FA hematopoietic stem and progenitor cells. Significantly, FA deficiency in MPPs deregulates a complex network of genes in the Notch and canonical NF-κB pathways. Genetic ablation or pharmacologic inhibition of NF-κB reduces Notch signaling in FA MPPs to near wild type level, and blocking either NF-κB or Notch signaling partially restores FA HSC quiescence and self-renewal capacity. These results suggest a functional crosstalk between Notch signaling and NF-κB pathway in regulation of HSC differentiation.
Collapse
Affiliation(s)
- Wei Du
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Jared Sipple
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Jonathan Schick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kris Steinbrecher
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|