1
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
3
|
Biały S, Siemaszko J, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. Unravelling the potential of TIM-3 gene polymorphism in allogeneic hematopoietic stem cell transplantation - a preliminary study. Transpl Immunol 2024; 85:102084. [PMID: 38992477 DOI: 10.1016/j.trim.2024.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) molecule is a key regulator of the immune response by exerting an inhibitory effect on various types of immune cells. Understanding the role of TIM-3 in hematopoietic stem cell transplantation (HSCT) may improve transplant outcomes. Our study evaluated the potential association between TIM-3 polymorphisms, namely rs1036199 (A > C) or rs10515746 (C > A), changes which are located in exon 3 and the promoter region of the TIM-3 gene, and post-HSCT outcomes. METHODS One-hundred and twenty allogeneic HSCT patients and their respective donors were enrolled and genotyped for TIM-3 single nucleotide polymorphisms (SNPs) using real-time PCR with TaqMan assays. RESULTS We found that the presence of the rare alleles and heterozygous genotypes of studied SNP in recipients tended to protect against or increase the risk for acute graft-versus-host disease (aGvHD). For the rs1036199 polymorphism, recipients with the AC heterozygous genotype (p = 0.0287) or carrying the rarer C allele (p = 0.0334) showed a lower frequency of aGvHD development along all I-IV grades. A similar association was detected for the rs10515746 polymorphism as recipients with the CA genotype (p = 0.0095) or the recessive A allele (p = 0.0117) less frequently developed aGvHD. Furthermore, the rarer A allele of rs10515746 SNP was also associated with a prolonged aGvHD-free survival (p = 0.0424). Cytomegalovirus (CMV) infection was more common in patients transplanted with TIM-3 rs10515746 mismatched donors (p = 0.0229) and this association was also found to be independent of HLA incompatibility and pre-transplant CMV-IgG status. Multivariate analyses confirmed the role of these recessive alleles and donor-recipient TIM-3 incompatibility as an independent factor in aGvHD and CMV development. CONCLUSIONS Polymorphism of TIM-3 molecule may affect the immune response in HSCT patients. The recessive alleles of rs1036199 and rs10515746 SNPs decreased the risk of developing aGvHD. TIM-3 donor-recipient genetic matching may also affect the risk of post-transplant CMV infection, indicating the potential value of genetic profiling in optimizing transplant strategies.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Frederiks CL, Saiz Sierra L, Nierkens S, Mokry M, Nieuwenhuis EE, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal epithelial damage directly promotes galectin-9-driven modulation of T cell behavior. iScience 2024; 27:110072. [PMID: 38883813 PMCID: PMC11176658 DOI: 10.1016/j.isci.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming. In ex vivo co-culture assays, prior intestinal organoid damage resulted in increased T cell activation, proliferation, and migration. We identified galectin-9 (Gal-9) as a key molecule released by damaged organoids. The use of anti-Gal-9 blocking antibodies or CRISPR/Cas9-mediated Gal-9 knock-out prevented intestinal organoid damage-induced T cell proliferation, interferon-gamma release, and migration. Increased levels of Gal-9 were found early after HSCT chemotherapeutic conditioning in the plasma of patients who later developed acute GVHD. Taken together, chemotherapy-induced intestinal damage can influence T cell behavior in a Gal-9-dependent manner which may provide novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Suze A. Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Cynthia L. Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Leire Saiz Sierra
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- University College Roosevelt, Utrecht University, Middelburg 4331CB, the Netherlands
| | - Alan M. Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Paul J. Coffer
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Caroline A. Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| |
Collapse
|
7
|
Socié G, Niederwieser D, von Bubnoff N, Mohty M, Szer J, Or R, Garrett J, Prahallad A, Wilke C, Zeiser R. Prognostic value of blood biomarkers in steroid-refractory or steroid-dependent acute graft-versus-host disease: a REACH2 analysis. Blood 2023; 141:2771-2779. [PMID: 36827620 PMCID: PMC10646803 DOI: 10.1182/blood.2022018579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Systemic steroids are the standard first-line treatment for acute graft-versus-host disease (aGVHD), but ∼50% of patients become steroid-refractory or dependent (SR/D). Ruxolitinib is the only Food and Drug Administration- and European Medicines Agency-approved therapy for patients with SR/D aGVHD. In the phase 3 REACH2 trial (NCT02913261), ruxolitinib demonstrated superior efficacy in SR/D aGVHD, with a significantly higher overall response rate (ORR) on day 28, durable ORR on day 56, and longer median overall survival compared with the best available therapy (BAT). Identifying biomarkers and clinical characteristics associated with increased probability of response can guide treatment decisions. In this exploratory analysis of the REACH2 study (first biomarker study), we developed baseline (pretreatment) and day 14 models to identify patient characteristics and biomarkers (12 aGVHD-associated cytokines/chemokines, 6 immune cell types, and 3 inflammatory proteins) before and during treatment, which affected the probability of response at day 28. Treatment with ruxolitinib, conditioning, skin involvement, and age were strongly associated with an increased likelihood of response in the ≥1 model. Lower levels of most aGVHD and immune cell markers at baseline were associated with an increased probability of response. In the day 14 model, levels of aGVHD markers at day 14, rather than changes from baseline, affected the probability of response. For both models, the bias-corrected area under the receiver operating characteristic values (baseline, 0.73; day 14, 0.80) indicated a high level of correspondence between the fitted and actual outcomes. Our results suggest potential prognostic value of selected biomarkers and patient characteristics.
Collapse
Affiliation(s)
- Gerard Socié
- Assistance Publique Hôpitaux de Paris, Hématologie-Transplantation, Hôpital St Louis, Université de Paris-Cité, Paris, France and INSERM Unité Mixte de Recherche 976, Paris, France
| | | | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mohamad Mohty
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France, Université Sorbonne, Paris, France and INSERM Unité Mixte de Recherche 938, Paris, France
| | - Jeff Szer
- Clinical Haematology, Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Research Center, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - REACH2 investigators
- Assistance Publique Hôpitaux de Paris, Hématologie-Transplantation, Hôpital St Louis, Université de Paris-Cité, Paris, France and INSERM Unité Mixte de Recherche 976, Paris, France
- Division of Hematology and Oncology, University of Leipzig, Leipzig, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France, Université Sorbonne, Paris, France and INSERM Unité Mixte de Recherche 938, Paris, France
- Clinical Haematology, Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Cancer Immunotherapy and Immunobiology Research Center, Hadassah University Hospital, Jerusalem, Israel
- Novartis Pharmaceuticals Corporation, Cambridge, MA
- Novartis Pharma AG, Basel, Switzerland
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Sierra LS, Nierkens S, Mokry M, Nieuwenhuis EES, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal injury promotes Galectin-9-driven modulation of T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538862. [PMID: 37163028 PMCID: PMC10168344 DOI: 10.1101/2023.04.30.538862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior. Chemotherapy treatment using busulfan, fludarabine, and clofarabine led to damage responses in organoids resulting in increased T cell migration, activation, and proliferation in ex- vivo co-culture assays. We identified galectin-9 (Gal-9), a beta-galactoside-binding lectin released by damaged organoids, as a key molecule mediating T cell responses to damage. Increased levels of Gal-9 were also found in the plasma of allo-HCT patients who later developed acute GVHD, supporting the predictive value of the model system in the clinical setting. This study highlights the potential contribution of chemotherapy-induced epithelial damage to the pathogenesis of intestinal GVHD through direct effects on T cell activation and trafficking promoted by galectin-9.
Collapse
|
9
|
Mohammadpour H, Tsuji T, MacDonald CR, Sarow JL, Rosenheck H, Daneshmandi S, Choi JE, Qiu J, Matsuzaki J, Witkiewicz AK, Attwood K, Blazar BR, Odunsi K, Repasky EA, McCarthy PL. Galectin-3 expression in donor T cells reduces GvHD severity and lethality after allogeneic hematopoietic cell transplantation. Cell Rep 2023; 42:112250. [PMID: 36924493 PMCID: PMC10116561 DOI: 10.1016/j.celrep.2023.112250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/05/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Abundant donor cytotoxic T cells that attack normal host organs remain a major problem for patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). Despite an increase in our knowledge of the pathobiology of acute graft versus host disease (aGvHD), the mechanisms regulating the proliferation and function of donor T cells remain unclear. Here, we show that activated donor T cells express galectin-3 (Gal-3) after allo-HCT. In both major and minor histocompatibility-mismatched models of murine aGvHD, expression of Gal-3 is associated with decreased T cell activation and suppression of the secretion of effector cytokines, including IFN-γ and GM-CSF. Mechanistically, Gal-3 results in activation of NFAT signaling, which can induce T cell exhaustion. Gal-3 overexpression in human T cells prevents severe disease by suppressing cytotoxic T cells in xenogeneic aGvHD models. Together, these data identify the Gal-3-dependent regulatory pathway in donor T cells as a critical component of inflammation in aGvHD.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph L Sarow
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rosenheck
- Department of Medicine, Transplant and Cellular Therapy Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Saeed Daneshmandi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jee Eun Choi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jingxin Qiu
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Junko Matsuzaki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Philip L McCarthy
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
10
|
Qin L, Zheng W, Jiang S, Tang H, Cai M, Chen A, Chen Y. Noninvasive Prediction of Immune Rejection After Liver Transplantation with T cell immunoglobulin domain, and mucin domain-3. Transplant Proc 2022; 54:1881-1886. [DOI: 10.1016/j.transproceed.2022.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 10/16/2022]
|
11
|
Ghorbani MM, Farazmandfar T, Abediankenari S, Hassannia H, Maleki Z, Shahbazi M. Treatment of EAE mice with Treg, G-MDSC and IL-2: a new insight into cell therapy for multiple sclerosis. Immunotherapy 2022; 14:789-798. [PMID: 35678041 DOI: 10.2217/imt-2021-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This study investigates the therapeutic and protective effects of Tregs, myeloid-derived suppressor cells (MDSCs) and IL-2 on multiple sclerosis (MS) disease model. Materials & methods: C57BL/6 mice were immunized to develop an experimental autoimmune encephalomyelitis (EAE) model. We then investigated effects of pre- and post-treatment EAE mice with Tregs, MDSCs and IL-2 on inflammation and demyelination in brain tissue, and on the number of Treg, granulocytic-MDSC and Th-17 cells in spleen. Results: Pre- and post-treatment of EAE mice by Tregs, MDSCs and IL-2 resulted in no weight change, reduced Th-17 cells and suppression of pathological properties. Conclusion: Pre- and post-treatment of immunized mice by Tregs, MDSCs and IL-2 prevent EAE induction.
Collapse
Affiliation(s)
- Mohammad Mehdi Ghorbani
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Touraj Farazmandfar
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Maleki
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Soluble T Cell Immunoglobulin and Mucin Domain-3 (sTIM-3) Predict Graft-Versus-Host Disease (GVHD) in Iranian Allogeneic Hematopoietic Stem Cell Transplantation. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: T cell immunoglobulin and mucin domain-3 (TIM-3) is an immune-checkpoint molecule that is upregulated following allogeneic immune responses and could play an important role in the development and pathogenesis of graft-versus-host disease (GVHD). The soluble form of TIM-3 (sTIM-3) is increased following the upregulation of membranous TIM-3. Objectives: The aim of this study was to evaluate the association between plasma level of sTIM-3 and acute GVHD (aGVHD) incidence in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods: Blood samples were collected from 42 allo-HSCT patients and 20 healthy individuals 2 weeks after allo-HSCT. The plasma level of sTIM-3 was measured using enzyme-linked immunosorbent assay (ELISA). The clinical and demographic data of patients were collected from the clinical documents. Data analysis was evaluated using student t-test and one-way ANOVA tests. P-values less than 0.05 were assumed statistically significant. Results: Among 18 (42.8%) patients with aGVHD symptoms, 10 (23.8%) had severe GVHD and 8 (19%) experienced mild GVHD. Plasma sTIM-3 levels at day +14 were significantly higher in patients who developed aGVHD compared to allo-HSCT patients without GVHD and also the healthy control individuals (P-value = 0.015 and < 0.001). Among the aGVHD patients, the sTIM-3 levels in those with severe GVHD were approximately 2.5 times higher than those with mild GVHD (P-value < 0.001). Conclusions: We have identified a high plasma level of sTIM-3 as a valuable biomarker in predicting the development of acute GVHD, especially severe aGVHD in allo-HSCT patients.
Collapse
|
13
|
Wang N, Chen Z, Zhang F, Zhang Q, Sun L, Lv H, Wang B, Shen J, Zhou X, Chen F, Zhang B, Meng L, Zhou H, Bai Z, Huang J. Intravenous Immunoglobulin Therapy Restores the Quantity and Phenotype of Circulating Dendritic Cells and CD4 + T Cells in Children With Acute Kawasaki Disease. Front Immunol 2022; 13:802690. [PMID: 35222381 PMCID: PMC8866170 DOI: 10.3389/fimmu.2022.802690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Intravenous immunoglobulin (IVIG) showed its therapeutic efficacy on Kawasaki disease (KD). However, the mechanisms by which it reduces systemic inflammation are not completely understood. Dendritic cells (DCs) and T cells play critical roles in the pathogenic processes of immune disorders. Assessing the quantity of DC subsets and T cells and identifying functional molecules present on these cells, which provide information about KD, in the peripheral blood may provide new insights into the mechanisms of immunoglobulin therapy. Methods In total, 54 patients with KD and 27 age-matched healthy controls (HCs) were included in this study. The number, percentage, and phenotype of DC subsets and CD4+ T cells in peripheral blood were analyzed through flow cytometry. Results Patients with KD exhibited fewer peripheral DC subsets and CD4+ T cells than HCs. Human leucocyte antigen-DR (HLA-DR) expression was reduced on CD1c+ myeloid DCs (CD1c+ mDCs), whereas that on plasmacytoid DCs (pDCs) did not change significantly. Both pDCs and CD1c+ mDCs displayed significantly reduced expression of co-stimulatory molecules, including CD40, CD86. pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD. Number of circulating pDC and CD1c+ mDC significantly inversely correlated with plasma interleukin-6 (IL-6) levels in KD patients pre-IVIG treatment. No significant differences were found concerning the DC subsets and CD4+ T cells in patients with KD with and without coronary artery lesions. Importantly, these altered quantity and phenotypes on DC subsets and CD4+ T cells were restored to a great extent post-IVIG treatment. T helper (Th) subsets including Th1 and Th2 among CD4+ T cells did not show alteration pre- and post-IVIG treatment, although the Th1-related cytokine IFN-γ level in plasma increased dramatically in patients with KD pre-IVIG treatment. Conclusions pDCs and CD1c+ mDCs presented an immature or tolerant phenotype in acute stages of KD, IVIG treatment restored the quantity and functional molecules of DCs and CD4+ T cells to distinct levels in vivo, indicating the involvement of DCs and CD4+ T cells in the inflammation in KD. The findings provide insights into the immunomodulatory actions of IVIG in KD.
Collapse
Affiliation(s)
- Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhongyue Chen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Fan Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Qianwen Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Ling Sun
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Bo Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Shen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xufang Zhou
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Feiyan Chen
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Binwei Zhang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Huiting Zhou
- Pediatric Research Institute of Soochow University, Suzhou, China
| | - ZhenJiang Bai
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Resolution of Inflammation in Acute Graft-Versus-Host-Disease: Advances and Perspectives. Biomolecules 2022; 12:biom12010075. [PMID: 35053223 PMCID: PMC8773806 DOI: 10.3390/biom12010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation is an essential reaction of the immune system to infections and sterile tissue injury. However, uncontrolled or unresolved inflammation can cause tissue damage and contribute to the pathogenesis of various inflammatory diseases. Resolution of inflammation is driven by endogenous molecules, known as pro-resolving mediators, that contribute to dampening inflammatory responses, promoting the resolution of inflammation and the recovery of tissue homeostasis. These mediators have been shown to be useful to decrease inflammatory responses and tissue damage in various models of inflammatory diseases. Graft-versus-host disease (GVHD) is a major unwanted reaction following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by an exacerbated inflammatory response provoked by antigen disparities between transplant recipient and donor. There is no fully effective treatment or prophylaxis for GVHD. This review explores the effects of several pro-resolving mediators and discusses their potential use as novel therapies in the context of GVHD.
Collapse
|
15
|
Yin J, Li L, Wang C, Zhang Y. Increased Galectin-9 expression, a prognostic biomarker of aGVHD, regulates the immune response through the Galectin-9 induced MDSC pathway after allogeneic hematopoietic stem cell transplantation. Int Immunopharmacol 2020; 88:106929. [PMID: 32889240 DOI: 10.1016/j.intimp.2020.106929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding soluble lectin family member that exerts its primary biological functions via specific glycoconjugate interactions. Gal-9 expression is closely related to tumor occurrence, development, metastasis and prognosis. In transplant immunology, a high level of Gal-9 expression has been shown to markedly reduce the severity of acute graft rejection and effectively prolong survival time in organ and bone marrow transplantation (BMT) models. The main mechanism of Gal-9-mediated immunoregulation involves the Tim-3/Gal-9 axis in T cells. However, myeloid-derived suppressor cell (MDSC) accumulation in transgenic mice with persistently high Gal-9 expression was observed in a model of lung inflammation, indicating that a potential immunosuppressive mechanism distinct from the Gal-9/Tim-3 axis might exist. In the present study, increased Gal-9 expression and MDSC frequencies before acute graft-versus-host disease (aGVHD) onset were observed in patients who developed aGVHD. Patients with higher Gal-9 expression (≥14.8417 ng/ml) exhibited reduced overall survival and increased cumulative incidences of GVHD at +100 day. We considered the elevated Gal-9 expression before aGVHD onset a secondary inflammatory response. This increase might be part of a negative feedback pathway corresponding to aGVHD pathogenesis. Additionally, a high Gal-9 concentration induced MDSC proliferation in vivo and in vitro. Gal-9-induced MDSCs (G9-MDSCs) suppressed T cell proliferation and activation. An infusion of G9-MDSCs into a graft contributed to the successful control of severe aGVHD and long-term survival in an allogeneic (allo)-BMT mouse model. Thus, we speculated that increased Gal-9 expression after allo-hematopoietic stem cell transplantation is a potential prognostic biomarker of aGVHD. The Gal-9-associated immunosuppressive effects on aGVHD development might occurr through G9-MDSCs and were independent of the Gal-9/Tim-3 axis.
Collapse
Affiliation(s)
- Jin Yin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Lin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Chunyan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China.
| |
Collapse
|
16
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Yegin ZA, Can F, Aydın Kaynar L, Gökçen S, Eren Sadioğlu R, Özkurt ZN, Karacaoğlu Ö. Pre-transplant sTIM-3 levels may have a predictive impact on transplant outcome in acute leukemia patients. ACTA ACUST UNITED AC 2020; 25:125-133. [PMID: 32153257 DOI: 10.1080/16078454.2020.1738097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3) is considered as a negative regulator of T-cell driven immune response. This study is planned to investigate the prognostic role of pre-transplant soluble TIM-3 (sTIM-3) levels in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Methods: Pre-transplant serum sTIM-3 levels were measured in 177 allo-HSCT recipients [median age: 36(16-66) years; male/female: 111/66]. Results: Pre-transplant sTIM-3 levels were significantly higher in acute myeloid leukemia (AML) patients compared to acute lymphoblastic leukemia (ALL) patients (p = 0.01). Pre-transplant sTIM-3 levels were significantly lower in patients with abnormal cytogenetics (p = 0.017). Pre-transplant sTIM-3 levels were significantly higher in patients who developed viral hemorrhagic cystitis (p = 0.034). A positive correlation was demonstrated between sTIM-3 levels and acute graft versus host disease (GvHD) grade (p = 0.013; r = 0.299). Overall survival (OS) was not statistically different between low- and high-TIM-3 groups (%35.2 vs %20.4; p > 0.05). Primary diagnosis (p = 0.042), sinusoidal obstruction syndrome (p < 0.001), acute GvHD (p = 0.001), chronic GvHD (p = 0.009) and post-transplant relapse (p = 0.003) represented significant impact on OS. Discussion: Increased sTIM-3 levels in AML patients seem to be compatible with the previous reports. The inhibitor role of TIM-3 in cellular immune response may be a possible explanation for the association of sTIM-3 with viral infections and GvHD. However, the main challenge remains to be the ambiguous association of pre-transplant sTIM-3 levels and post-transplant complications, as allo-HSCT recipients are expected to represent donor genetic features in the post-transplant setting. Conclusion: Further studies are warranted to clarify the particular role of sTIM-3 in the allo-HSCT setting.
Collapse
Affiliation(s)
- Zeynep Arzu Yegin
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Ferda Can
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Lale Aydın Kaynar
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Sanem Gökçen
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Rezzan Eren Sadioğlu
- Department of Internal Medicine, Gazi University School of Medicine, Ankara, Turkey
| | - Zübeyde Nur Özkurt
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Özlem Karacaoğlu
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Blockade of T-cell immunoglobulin and mucin domain-containing molecule 3 aggravates T-helper cell 1 polarization in immune thrombocytopenia. Blood Coagul Fibrinolysis 2019; 30:133-139. [PMID: 31090595 DOI: 10.1097/mbc.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: An increased T-helper cell (Th) 1/Th2 ratio in the peripheral blood has been proposed to correlate with the disease activity of immune thrombocytopenia (ITP). T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is a Th1-associated cell surface molecule that regulates Th1 responses and promotes tolerance. Consequently, we aimed to determine whether the regulation of TIM-3 expression is likely to be a promising therapeutic approach for ITP. In the present study, we investigated the immunomodulatory activities of TIM-3 in human peripheral blood mononuclear cell (PBMC) cultures. Levels of interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin (IL)-4, IL-5, IL-2, and IL-10 were determined in PBMCs from 11 ITP patients and 10 healthy patients after TIM-3 antibody administration for 48 h. The proliferation of PBMCs was examined by cell counting kit-8 assay. Flow cytometry was used to observe apoptosis by staining cells with annexin V-fluorescein isothiocyanate/propidine iodide. PBMCs from ITP patients secreted higher amounts of IFN-γ than those from control patients but paradoxically expressed lower levels of TIM-3. Depletion of TIM-3 in PBMCs in vitro using a TIM-3 antibody enhanced IFN-γ secretion, directly demonstrating that TIM-3 expression on human T cells regulates proliferation and IFN-γ secretion. Failure to upregulate the T-cell expression of TIM-3 may represent a novel intrinsic defect that contributes to the pathogenesis of ITP.
Collapse
|
19
|
Wang S, Li M, Sun F, Chen C, Ye J, Li D, Qian J, Du M. Altered frequency and function of spleen CTLA-4+Tim-3+ T cells are associated with miscarriage†. Biol Reprod 2019; 104:410-417. [PMID: 31329823 DOI: 10.1093/biolre/ioz076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/31/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with several immune adaptations in both systemic and local maternal-fetal interface to allow the growth of semi-allogeneic conceptus. A failure in maternal immune tolerance to the fetus may result in abnormal pregnancies, such as recurrent spontaneous abortion. The regulation of T-cell homeostasis during pregnancy has important implications for maternal tolerance and immunity. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and T-cell immunoglobulin mucin-3 (Tim-3) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here we described the lower frequency of splenic T cells co-expressing CTLA-4 and Tim-3 accompanied by higher levels of proinflammatory but lower anti-inflammatory cytokines production in abortion-prone mouse model. Blockade of CTLA-4 and Tim-3 pathways leaded to the dysfunction of splenic T cells. By the higher expression during normal pregnancy, CTLA-4 and Tim-3 co-expression on splenic T cells linked to immunosuppressive phenotype. As the spleen is an important site for peripheral immune activation, our data suggest potential noninvasive biomarkers and therapeutic targets for miscarriage.
Collapse
Affiliation(s)
- Songcun Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Mengdie Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Fengrun Sun
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Chunqin Chen
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - JiangFeng Ye
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Jinfeng Qian
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, P.R. China
| |
Collapse
|
20
|
Thangavelu G, Lee YC, Loschi M, Schaechter KM, Feser CJ, Koehn BH, Nowak EC, Zeiser R, Serody JS, Murphy WJ, Munn DH, Chambon P, Noelle RJ, Blazar BR. Dendritic Cell Expression of Retinal Aldehyde Dehydrogenase-2 Controls Graft-versus-Host Disease Lethality. THE JOURNAL OF IMMUNOLOGY 2019; 202:2795-2805. [PMID: 30885956 DOI: 10.4049/jimmunol.1800899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023]
Abstract
Recent studies have underscored the critical role of retinoic acid (RA) in the development of lineage-committed CD4 and CD8 T cells in vivo. We have shown that under acute graft-versus-host disease (GVHD) inflammatory conditions, RA is upregulated in the intestine and is proinflammatory, as GVHD lethality was attenuated when donor allogeneic T cells selectively expressed a dominant negative RA receptor α that blunted RA signaling. RA can function in an autocrine and paracrine fashion, and as such, the host cell lineage responsible for the production of RA metabolism and the specific RA-metabolizing enzymes that potentiate GVHD severity are unknown. In this study, we demonstrate that enhancing RA degradation in the host and to a lesser extent donor hematopoietic cells by overexpressing the RA-catabolizing enzyme CYP26A1 reduced GVHD. RA production is facilitated by retinaldehyde isoform-2 (RALDH2) preferentially expressed in dendritic cells (DCs). Conditionally deleted RA-synthesizing enzyme RALDH2 in host or to a lesser extent donor DCs reduced GVHD lethality. Improved survival in recipients with RALDH2-deleted DCs was associated with increased T cell death, impaired T effector function, increased regulatory T cell frequency, and augmented coinhibitory molecule expression on donor CD4+ T cells. In contrast, retinaldehydrogenase isoform-1 (RALDH1) is dominantly expressed in intestinal epithelial cells. Unexpectedly, conditional host intestinal epithelial cells RALDH1 deletion failed to reduce GVHD. These data demonstrate the critical role of both donor and especially host RALDH2+ DCs in driving murine GVHD and suggest RALDH2 inhibition or CYP26A1 induction as novel therapeutic strategies to prevent GVHD.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Yu-Chi Lee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH 03756
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - K Melanie Schaechter
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Colby J Feser
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Brent H Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Elizabeth C Nowak
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH 03756
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg, 79106 Freiburg, Germany
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 79106
| | - William J Murphy
- Department of Dermatology, Center for Comparative Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817
| | - David H Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, GA 30912; and
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, 67404 Illkirch Cedex, France
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH 03756
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
21
|
Kumar S, Leigh ND, Cao X. The Role of Co-stimulatory/Co-inhibitory Signals in Graft-vs.-Host Disease. Front Immunol 2018; 9:3003. [PMID: 30627129 PMCID: PMC6309815 DOI: 10.3389/fimmu.2018.03003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapeutic approach for various hematologic and immunologic ailments. Despite the beneficial impact of allo-HCT, its adverse effects cause severe health concerns. After transplantation, recognition of host cells as foreign entities by donor T cells induces graft-vs.-host disease (GVHD). Activation, proliferation and trafficking of donor T cells to target organs and tissues are critical steps in the pathogenesis of GVHD. T cell activation is a synergistic process of T cell receptor (TCR) recognition of major histocompatibility complex (MHC)-anchored antigen and co-stimulatory/co-inhibitory signaling in the presence of cytokines. Most of the currently used therapeutic regimens for GVHD are based on inhibiting the allogeneic T cell response or T-cell depletion (TCD). However, the immunosuppressive drugs and TCD hamper the therapeutic potential of allo-HCT, resulting in attenuated graft-vs.-leukemia (GVL) effect as well as increased vulnerability to infection. In view of the drawback of overbroad immunosuppression, co-stimulatory, and co-inhibitory molecules are plausible targets for selective modulation of T cell activation and function that can improve the effectiveness of allo-HCT. Therefore, this review collates existing knowledge of T cell co-stimulation and co-inhibition with current research that may have the potential to provide novel approaches to cure GVHD without sacrificing the beneficial effects of allo-HCT.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nicholas D Leigh
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
22
|
He FC, Holtan SG. Biomarkers in Graft-Versus-Host Disease: from Prediction and Diagnosis to Insights into Complex Graft/Host Interactions. Curr Hematol Malig Rep 2018; 13:44-52. [DOI: 10.1007/s11899-018-0433-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Burwitz BJ, Wu HL, Abdulhaqq S, Shriver-Munsch C, Swanson T, Legasse AW, Hammond KB, Junell SL, Reed JS, Bimber BN, Greene JM, Webb GM, Northrup M, Laub W, Kievit P, MacAllister R, Axthelm MK, Ducore R, Lewis A, Colgin LMA, Hobbs T, Martin LD, Ferguson B, Thomas CR, Panoskaltsis-Mortari A, Meyers G, Stanton JJ, Maziarz RT, Sacha JB. Allogeneic stem cell transplantation in fully MHC-matched Mauritian cynomolgus macaques recapitulates diverse human clinical outcomes. Nat Commun 2017; 8:1418. [PMID: 29127275 PMCID: PMC5681693 DOI: 10.1038/s41467-017-01631-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a critically important therapy for hematological malignancies, inborn errors of metabolism, and immunodeficiency disorders, yet complications such as graft-vs.-host disease (GvHD) limit survival. Development of anti-GvHD therapies that do not adversely affect susceptibility to infection or graft-vs.-tumor immunity are hampered by the lack of a physiologically relevant, preclinical model of allogeneic HSCT. Here we show a spectrum of diverse clinical HSCT outcomes including primary and secondary graft failure, lethal GvHD, and stable, disease-free full donor engraftment using reduced intensity conditioning and mobilized peripheral blood HSCT in unrelated, fully MHC-matched Mauritian-origin cynomolgus macaques. Anti-GvHD prophylaxis of tacrolimus, post-transplant cyclophosphamide, and CD28 blockade induces multi-lineage, full donor chimerism and recipient-specific tolerance while maintaining pathogen-specific immunity. These results establish a new preclinical allogeneic HSCT model for evaluation of GvHD prophylaxis and next-generation HSCT-mediated therapies for solid organ tolerance, cure of non-malignant hematological disease, and HIV reservoir clearance.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Helen L Wu
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Tonya Swanson
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Katherine B Hammond
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Stephanie L Junell
- Division of Medical Physics, Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Justin M Greene
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Gabriela M Webb
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Mina Northrup
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Wolfram Laub
- Division of Medical Physics, Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Rhonda MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Rebecca Ducore
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Anne Lewis
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Lois M A Colgin
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Theodore Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Lauren D Martin
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Betsy Ferguson
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Charles R Thomas
- Division of Medical Physics, Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Gabrielle Meyers
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jeffrey J Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Richard T Maziarz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| |
Collapse
|
24
|
O'Neill RE, Du W, Mohammadpour H, Alqassim E, Qiu J, Chen G, McCarthy PL, Lee KP, Cao X. T Cell-Derived CD70 Delivers an Immune Checkpoint Function in Inflammatory T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2017; 199:3700-3710. [PMID: 29046346 DOI: 10.4049/jimmunol.1700380] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
The CD27-CD70 pathway is known to provide a costimulatory signal, with CD70 expressed on APCs and CD27 functions on T cells. Although CD70 is also expressed on activated T cells, it remains unclear how T cell-derived CD70 affects T cell function. Therefore, we have assessed the role of T cell-derived CD70 using adoptive-transfer models, including autoimmune inflammatory bowel disease and allogeneic graft-versus-host disease. Surprisingly, compared with wild-type T cells, CD70-/- T cells caused more severe inflammatory bowel disease and graft-versus-host disease and produced higher levels of inflammatory cytokines. Mechanistic analyses reveal that IFN-γ induces CD70 expression in T cells, and CD70 limits T cell expansion via a regulatory T cell-independent mechanism that involves caspase-dependent T cell apoptosis and upregulation of inhibitory immune checkpoint molecules. Notably, T cell-intrinsic CD70 signaling contributes, as least in part, to the inhibitory checkpoint function. Overall, our findings demonstrate for the first time, to our knowledge, that T cell-derived CD70 plays a novel immune checkpoint role in inhibiting inflammatory T cell responses. This study suggests that T cell-derived CD70 performs a critical negative feedback function to downregulate inflammatory T cell responses.
Collapse
Affiliation(s)
- Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Emad Alqassim
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - George Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
25
|
唐 映, 徐 加. Tim-3在肝脏疾病中的调节作用. Shijie Huaren Xiaohua Zazhi 2017; 25:2080-2087. [DOI: 10.11569/wcjd.v25.i23.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T淋巴细胞免疫球蛋白黏蛋白分子(T-cell immunoglobulin domain and mucin domain-containing molecule, Tim)-3是Tim家族中的一员, 为近年来新发现的一种在辅助Ⅰ型T淋巴细胞(Help T cell 1, Th1)上特异性表达的Ⅰ型细胞表面分子. Tim-3作为负性调节因子通过与其配体Galectin-9结合引起细胞死亡, 进而调控Th1型细胞功能. Tim-3还表达于其他类型细胞表面, 如自然杀伤细胞、树突状细胞和单核细胞, 对自身免疫性疾病和其他免疫介导的疾病进行免疫调控. 对Tim-3在不同细胞不同免疫条件下的功能以及如何调节进行研究, 将有利于研发Tim-3的潜在治疗作用. 近年来大量研究显示Tim-3通道与肝脏疾病发生发展有着密切关系, 本文就其在肝脏疾病中的调节作用做一总结.
Collapse
|
26
|
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 2017; 276:97-111. [PMID: 28258697 DOI: 10.1111/imr.12520] [Citation(s) in RCA: 604] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/19/2016] [Indexed: 12/13/2022]
Abstract
Immunotherapy is being increasingly recognized as a key therapeutic modality to treat cancer and represents one of the most exciting treatments for the disease. Fighting cancer with immunotherapy has revolutionized treatment for some patients and therapies targeting the immune checkpoint molecules such as CTLA-4 and PD-1 have achieved durable responses in melanoma, renal cancer, Hodgkin's diseases and lung cancer. However, the success rate of these treatments has been low and a large number of cancers, including colorectal cancer remain largely refractory to CTLA-4 and PD-1 blockade. This has provided impetus to identify other co-inhibitory receptors that could be exploited to enhance response rates of current immunotherapeutic agents and achieve responses to the cancers that are refectory to immunotherapy. Tim-3 is a co-inhibitory receptor that is expressed on IFN-g-producing T cells, FoxP3+ Treg cells and innate immune cells (macrophages and dendritic cells) where it has been shown to suppress their responses upon interaction with their ligand(s). Tim-3 has gained prominence as a potential candidate for cancer immunotherapy, where it has been shown that in vivo blockade of Tim-3 with other check-point inhibitors enhances anti-tumor immunity and suppresses tumor growth in several preclinical tumor models. This review discusses the recent findings on Tim-3, the role it plays in regulating immune responses in different cell types and the rationale for targeting Tim-3 for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Madhumita Das
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Chen Zhu
- Discovery Biology, Research and Development, Sanofi US, Cambridge, MA, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
27
|
Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, Kane LP, Lu B. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. Int J Mol Sci 2017; 18:ijms18030645. [PMID: 28300768 PMCID: PMC5372657 DOI: 10.3390/ijms18030645] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapy has produced impressive clinical results in recent years. Despite the success of the checkpoint blockade strategies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1), a large portion of cancer patients have not yet benefited from this novel therapy. T cell immunoglobulin and mucin domain 3 (TIM-3) has been shown to mediate immune tolerance in mouse models of infectious diseases, alloimmunity, autoimmunity, and tumor Immunity. Thus, targeting TIM-3 emerges as a promising approach for further improvement of current immunotherapy. Despite a large amount of experimental data showing an immune suppressive function of TIM-3 in vivo, the exact mechanisms are not well understood. To enable effective targeting of TIM-3 for tumor immunotherapy, further in-depth mechanistic studies are warranted. These studies will also provide much-needed insight for the rational design of novel combination therapy with other checkpoint blockers. In this review, we summarize key evidence supporting an immune regulatory role of TIM-3 and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Min Yang
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
- Department of Immunology, School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China.
| | - Abbey Turner
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Chunling Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Robert L Ferris
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Lawrence P Kane
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Binfeng Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
28
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Huang F, Chen M, Chen W, Gu J, Yuan J, Xue Y, Dang J, Su W, Wang J, Zadeh HH, He X, Rong L, Olsen N, Zheng SG. Human Gingiva-Derived Mesenchymal Stem Cells Inhibit Xeno-Graft-versus-Host Disease via CD39-CD73-Adenosine and IDO Signals. Front Immunol 2017; 8:68. [PMID: 28210258 PMCID: PMC5288353 DOI: 10.3389/fimmu.2017.00068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/16/2017] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells have the capacity to maintain immune homeostasis and prevent autoimmunity. We recently reported that human-derived gingival mesenchymal stem cells (GMSCs) have strong capacity to suppress immune responses and T cell-mediated collagen-induced arthritis in animals. However, it is unclear whether these cells can suppress human T cell-mediated diseases. Here, we used a xenogenic GVHD model in the NOD/SCID mouse, which is a useful preclinical construct for evaluating the therapeutic and translational potential of this approach for applications in human disease. We found that GMSCs potently suppressed the proliferation of PBMC and T cells in vitro. Co-transfer of GMSC with human PBMC significantly suppressed human cell engraftment and markedly prolonged the mouse survival. Moreover, we demonstrated that GMSCs inhibited human PBMC-initiated xenogenic responses via CD39/CD73/adenosine and IDO signals. These findings suggest the potential for GMSCs to suppress human immune responses in immune system-mediated diseases, offering a potential clinical option to be used for modulating GVHD and autoimmune diseases.
Collapse
Affiliation(s)
- Feng Huang
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Weiqian Chen
- Division of Rheumatology, Penn State Hershey College of Medicine , Hershey, PA , USA
| | - Jian Gu
- Division of Rheumatology, Penn State Hershey College of Medicine , Hershey, PA , USA
| | - Jia Yuan
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Yaoqiu Xue
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Junlong Dang
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Wenru Su
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Julie Wang
- Division of Rheumatology, Penn State Hershey College of Medicine , Hershey, PA , USA
| | - Homayoun H Zadeh
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, University of Southern California Ostrow School of Dentistry , Los Angeles, CA , USA
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Limin Rong
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University , Guangzhou , China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Hershey College of Medicine , Hershey, PA , USA
| | - Song Guo Zheng
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Penn State Hershey College of Medicine, Hershey, PA, USA
| |
Collapse
|
30
|
Ansari AW, Khan MA, Schmidt RE, Broering DC. Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunol Lett 2017; 183:8-16. [PMID: 28119073 DOI: 10.1016/j.imlet.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Alloantigen-specific T-cell triggered immunopathological events are responsible for rapid allograft rejection. The co-signaling pathways orchestrated by co-stimulatory and co-inhibitory molecules are critical for optimal T-cell effector function. Therefore, selective blockade of pathways that control T-cell immunity may offer an attractive therapeutic strategy to manipulate cell mediated allogenic responses. For example, CD28, CTLA-4 and CD154 receptor blockade have proven beneficial in maintaining T-cell tolerance against transplanted organs in experimental animal models as well as in clinical trials. Conversely, induction of co-inhibitory molecules may result in suppressed effector function. There are several other potential molecules that are known to induce immune tolerance are currently under consideration for clinical studies. In this review, we provide a comprehensive and updated analysis of co-stimulatory and co-inhibitory molecules, their therapeutic potential to prevent graft rejection, and to further improve their long-term survival.
Collapse
Affiliation(s)
- Abdul W Ansari
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| | - Mohammad A Khan
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg Str.1, D-30625 Hannover, Germany
| | - Dieter C Broering
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
31
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
32
|
Zeiser R, Socié G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation. Br J Haematol 2016; 175:191-207. [PMID: 27619472 DOI: 10.1111/bjh.14295] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication of allogeneic haematopoietic cell transplantation (allo-HCT). Here we discuss the aGVHD pathophysiology initiated by multiple signals that cause alloreactive T-cell activation. The outcome of such donor T-cell activation is influenced by T-cell receptor-signal strength, anatomical location, co-stimulatory/co-inhibitory signals and differentiation stage (naive, effector/memory) of T-cells. Additionally, cross-priming of T cells to antigens expressed by pathogens can contribute to aGVHD-mediated tissue injury. In addition to the properties of donor T-cell activation, highly specialized tissue resident cell types, such as innate lymphoid cells, antigen-presenting cells, immune regulatory cells and various intestinal cell populations are critically involved in aGVHD pathogenesis. The role of the thymus and secondary lymphoid tissue injury, non-haematopoietic cells, intestinal microflora, cytokines, chemokines, microRNAs, metabolites and kinases in aGVHD pathophysiology will be highlighted. Acute GVHD pathogenic mechanisms will be connected to novel therapeutic approaches under development for, and tested in, the clinic.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Centre, Freiburg, Germany.
| | - Gerard Socié
- Haematology Stem cell transplant Unit, Saint Louis Hospital, APHP, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Li XL, Yao Y, Yang BY, Xu LJ, Liu B, Che M, Zhu YB, Wu XJ, Wu DP. [The role of Tim-3 mRNA in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:469-73. [PMID: 27431070 PMCID: PMC7348329 DOI: 10.3760/cma.j.issn.0253-2727.2016.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the role of Tim-3 gene expression in acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS Patients after allo-HSCT were retrospectively analyzed, this cohort of patients were divided into different groups according to disease states (grade 0-Ⅰ aGVHD group, grade Ⅱ-Ⅳ aGVHD group, improved aGVHD group) and time periods (+14-+30 d, +31-+60 d, +61-+100 d) to compare PBMC Tim-3 mRNA expression and plasma IFN-γ, IL-2 concentrations among them. RESULTS RT-PCR showed that in grade 0-Ⅰ aGVHD group, Tim-3 mRNA expression in patients +31-+60 d (7.24±2.79) was significantly higher than that in patients + 14-+ 30 d (4.60±1.66) and + 61-+ 100 d (3.86±1.36) (P<0.05). Tim-3 mRNA expressions of grade Ⅱ-Ⅳ aGVHD group in patients +14-+30 d, +31-+60 d, +61-+100 d were 9.54± 3.05, 10.14±3.28, 12.82±4.20, respectively, which in both +14-+30 d and +61-+100 d were significantly higher than that of grade 0-Ⅰ aGVHD and improved aGVHD groups (P<0.05). In patients +31-+60 d, Tim-3 expression of grade Ⅱ-Ⅳ aGVHD group was higher than improved aGVHD group (2.49±0.89), while no statistical difference when compared with grade 0-Ⅰ aGVHD group (7.24±2.79). In grade Ⅱ-Ⅳ aGVHD group, Tim-3 mRNA expression manifested no statistical difference among grades or organ involved (P>0.05). ELISA results showed that plasma IFN-γ and IL-2 concentrations were higher in grade Ⅱ-Ⅳ aGVHD group than of other groups, while no significant difference existed between grade 0-Ⅰ aGVHD and improved aGVHD groups (P<0.05). CONCLUSION Tim-3 played an important role in the process of aGVHD.
Collapse
Affiliation(s)
- X L Li
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Clinical Medicine Center, Suzhou 215006, China
| | | | | | | | | | | | | | | | - D P Wu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Clinical Medicine Center, Suzhou 215006, China
| |
Collapse
|
34
|
The Role of Biomarkers in the Diagnosis and Risk Stratification of Acute Graft-versus-Host Disease: A Systematic Review. Biol Blood Marrow Transplant 2016; 22:1552-1564. [PMID: 27158050 DOI: 10.1016/j.bbmt.2016.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an increasingly used curative modality for hematologic malignancies and other benign conditions. Attempts to reduce morbidity and mortality and improve survival in patients undergoing HCT are crucial. The ability to diagnose acute graft-versus-host disease (aGVHD) in a timely manner, or to even predict aGVHD before clinical manifestations, along with the accurate stratification of these patients, are critical steps to improve the treatment and outcomes of these patients. Many novel biomarkers that may help achieve these goals have been studied recently. This overview is intended to assist clinicians and investigators by providing a comprehensive review and analytical interpretation of the current knowledge concerning aGVHD and biomarkers likely to prove useful in diagnosis and risk stratification of this condition, along with the difficulties that hamper this approach.
Collapse
|
35
|
Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, Anderson AC, Kuchroo VK, Behar SM. TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathog 2016; 12:e1005490. [PMID: 26967901 PMCID: PMC4788425 DOI: 10.1371/journal.ppat.1005490] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we evaluate the role of the inhibitory receptor T cell immunoglobulin and mucin domain–containing-3 (TIM3) during chronic M. tuberculosis infection. We find that TIM3 expressing T cells accumulate during chronic infection, co-express other inhibitory receptors including PD1, produce less IL-2 and TNF but more IL-10, and are functionally exhausted. Finally, we show that TIM3 blockade restores T cell function and improves bacterial control, particularly in chronically infected susceptible mice. These data show that T cell immunity is suboptimal during chronic M. tuberculosis infection due to T cell exhaustion. Moreover, in chronically infected mice, treatment with anti-TIM3 mAb is an effective therapeutic strategy against tuberculosis. Tuberculosis is a leading cause of morbidity and mortality across the globe. Fortunately, most people infected with M. tuberculosis mount a protective immune response and only a small fraction develops active disease. Impairment of immunity late during the course of disease can lead to bacterial recrudescence; however, why immunity fails is poorly understood. We investigated whether T cell exhaustion develops and contributes to immunological impairment during disease. Our studies provide definitive evidence that CD4+ T cells become functionally exhausted early after infection, and subsequently, CD8+ T cells also show signs of dysfunction. T cell exhaustion in both subsets was associated with the expression of multiple inhibitory receptors. Exhausted T cells expressed TIM3 plus other inhibitory receptors (e.g., PD1, TIM3, Lag-3, and 2B4), TIM3+PD1+ T cells were more likely to be poor producers of IL-2, IFNγ, and TNF and instead produce IL-10. Evaluation of gene expression by Nanostring confirmed that TIM3+PD1+ T cells in the lungs of infected mice had a transcriptional profile characteristic of exhausted T cells. Thus, this phenotype identified T cells that were truly exhausted and correlates well with previously established paradigm that co-expression of TIM3 with other inhibitory receptors such as PD1 contributes to impairment of T cell function during chronic inflammatory conditions. Most importantly, treatment of chronically infected mice with blocking antibodies specific for TIM3 led to a significant gain in bacterial control. Treatment was associated with an increase in IL-2, IFNγ, and TNF production by T cells. Based on this key result, we infer that TIM3-mediated T cell exhaustion impairs host resistance to M. tuberculosis. Thus, these data suggest that blockade of inhibitory T cell signals has the potential to be a therapeutic strategy against tuberculosis. The data in our report significantly advances our current knowledge of the biology of TIM3, the role of inhibitory T cell receptors during chronic infection, and the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Miye K. Jacques
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chen Zhu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katherine M. Steblenko
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Britni L. Stowell
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Asaf Madi
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ana C. Anderson
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vijay K. Kuchroo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wang S, Zhu X, Xu Y, Zhang D, Li Y, Tao Y, Piao H, Li D, Du M. Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+T cells to induce Type 2 helper T cell (Th2) bias at the maternal–fetal interface. Hum Reprod 2016; 31:700-11. [DOI: 10.1093/humrep/dew019] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
|
37
|
Michonneau D, Sagoo P, Breart B, Garcia Z, Celli S, Bousso P. The PD-1 Axis Enforces an Anatomical Segregation of CTL Activity that Creates Tumor Niches after Allogeneic Hematopoietic Stem Cell Transplantation. Immunity 2016; 44:143-154. [DOI: 10.1016/j.immuni.2015.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
|
38
|
Phong BL, Avery L, Sumpter TL, Gorman JV, Watkins SC, Colgan JD, Kane LP. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation. J Exp Med 2015; 212:2289-304. [PMID: 26598760 PMCID: PMC4689164 DOI: 10.1084/jem.20150388] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/21/2015] [Indexed: 12/24/2022] Open
Abstract
Phong et al. show that depending on the expression of p-Lyn, mast cell activation by antigen can result in dichotomous effects on mast cell function and signaling that can be accentuated by Tim-3 ligation. T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.
Collapse
Affiliation(s)
- Binh L Phong
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261 Graduate Program in Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lyndsay Avery
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261 Infectious Disease and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jacob V Gorman
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - John D Colgan
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
39
|
Downregulation of T cell immunoglobulin and mucin protein 3 in the pathogenesis of intracranial aneurysm. Inflammation 2015; 38:368-74. [PMID: 25342285 DOI: 10.1007/s10753-014-0040-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Evidence has shown that inflammation acts as a critical contributor to the pathogenesis of intracranial aneurysm (IA), a potentially devastating clinical problem. T cell immunoglobulin and mucin protein 3 (Tim-3) is a negative regulatory molecule and plays important roles in the inflammation process. In the current study, we investigated the expression of Tim-3 and its correlation with tumor necrosis factor alpha (TNF-α) in IA patients. Data showed that both messenger RNA (mRNA) level and protein level of Tim-3 were significantly decreased in CD4+ T cells and CD8+ T cells from IA patients than from healthy controls (P < 0.001). However, expression of Tim-3 was not altered in monocytes between patients and healthy donors. Further analyses revealed that patients with ruptured aneurysm had significantly lower level of Tim-3 in CD8+ T cells than those with un-ruptured aneurysm. In addition, a negative correlation between serum level of TNF-α and the expression of Tim-3 in CD4+ T cells was observed in IA patients. Similar correlation was also identified in CD8+ T cells from IA patients. Our study suggests that Tim-3 may participate in the development and progression of IA by probably its negative regulation on TNF-α.
Collapse
|
40
|
Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Front Immunol 2015; 6:418. [PMID: 26347741 PMCID: PMC4544156 DOI: 10.3389/fimmu.2015.00418] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Collapse
Affiliation(s)
- Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
41
|
Abstract
Tim-3 is a member of the T cell immunoglobulin and mucin domain (Tim) family of proteins, which are expressed by several cell types in the immune system, including CD4 and CD8 T cells activated under certain conditions. These molecules are generally thought to act as receptors for multiple ligands and thus to function by engaging intracellular signaling pathways in a ligand-dependent manner. In recent years, the function of the Tim-3 protein has been studied in some detail, particularly with respect to its role in the regulation of CD4 and CD8 T cell responses. Here, we review the structural features of Tim-3, known ligands for this molecule and the links established between Tim-3 and signal transduction pathways. In addition, we review the current literature regarding the role of Tim-3 in the regulation of effector responses by CD4 and CD8 T cells. Overall, findings published thus far strongly support the conclusion that Tim-3 functions to inhibit T cell responses, particularly under conditions involving chronic stimulation. Conversely, some reports have provided evidence that Tim-3 can stimulate T cells under conditions involving acute stimulation, suggesting that the role of Tim-3 may vary depending on context. Further study of Tim-3 is likely to advance our understanding of how CD4 and CD8 T cell responses are regulated and could uncover novel approaches for manipulating T cell function for therapeutic benefit.
Collapse
|
42
|
B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood 2015; 125:3335-46. [PMID: 25814530 DOI: 10.1182/blood-2014-09-603357] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
Abstract
Members of the B7 family have been shown to be important for regulating immune responses by providing either positive or negative costimulatory signals. The function of B7-H3 has been controversial. We show that B7-H3 is upregulated in graft-versus-host disease (GVHD) target organs, including the colon, liver, and lung. Infusion of allogeneic donor T cells into B7-H3(-/-) vs wild-type (WT) recipients resulted in increased GVHD lethality associated with increased T-cell proliferation, colonic inflammatory cytokines, and destruction of epithelial barriers. Allogeneic B7-H3(-/-) vs WT donor T cells also had increased T-cell proliferation and GVHD lethality associated with increased proliferation and cytokine secretion in the spleen, intraepithelial lymphocyte inflammatory cytokines, and intestinal permeability. Both resting and activated regulatory T cells (Tregs) lack B7-H3 messenger RNA. Consistent with these data, GVHD was augmented in recipients of B7-H3(-/-) Treg-depleted grafts. In two delayed lymphocyte infusion (DLI) models, T cells lacking B7-H3 are capable of providing graft-versus-leukemia (GVL) effects. We conclude that B7-H3 is responsible for providing a negative costimulatory signal. Our studies provide support for developing and testing new therapies directed toward the B7-H3 pathway, including approaches to augment host B7-H3 early after bone marrow transplantation to prevent GVHD and to develop potent antagonistic antibodies later after transplant to facilitate DLI-mediated GVL without GVHD complications.
Collapse
|
43
|
Liu Y, Ji H, Zhang Y, Shen X, Gao F, He X, Li GA, Busuttil RW, Kuchroo VK, Kupiec-Weglinski JW. Recipient T cell TIM-3 and hepatocyte galectin-9 signalling protects mouse liver transplants against ischemia-reperfusion injury. J Hepatol 2015; 62:563-72. [PMID: 25450716 PMCID: PMC4336640 DOI: 10.1016/j.jhep.2014.10.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS By binding to T cell immunoglobulin mucin-3 (TIM-3) on activated Th1 cells, galectin-9 (Gal-9) negatively regulates Th1-type alloimmunity. Although T cells contribute to hepatic ischemia-reperfusion injury (IRI), it is unknown whether negative T cell-dependent TIM-3 co-stimulation may rescue IR-stressed orthotopic liver transplants from innate immunity-driven inflammation. METHODS We used wild type (WT) and TIM-3 transgenic (Tg) mice (C57BL/6) as liver donors and recipients in a clinically-relevant model of hepatic cold storage (20 h at 4°C in UW solution) and syngeneic orthotopic liver transplantation (OLT). RESULTS Orthotopic liver transplants in WT or TIM-3Tg→TIM-3Tg groups were resistant against IR-stress, evidenced by preserved hepatocellular function (serum ALT levels) and liver architecture (Suzuki's score). In contrast, orthotopic liver transplants in WT or TIM-3Tg→WT groups were susceptible to IRI. TIM-3 induction in circulating CD4+ T cells of the recipient: (1) depressed T-bet/IFN-γ, while amplifying GATA3 and IL-4/IL-10 expression in orthotopic liver transplants; (2) promoted T cell exhaustion (PD-1, LAG-3) phenotype; and (3) depressed neutrophil and macrophage infiltration/function in orthotopic liver transplants. In parallel studies, we documented for the first time that Gal-9, a natural TIM-3 ligand, was produced primarily by and released from IR-stressed hepatocytes, both in vivo and in vitro. Moreover, exogenous recombinant Gal-9 (rGal-9) potentiated liver resistance against IRI by depressing T cell activation and promoting apoptosis of CD4+ T cells. CONCLUSIONS Harnessing TIM-3/Gal-9 signalling at the T cell-hepatocyte interface facilitates homeostasis in IR-stressed orthotopic liver transplants. Enhancing anti-oxidant hepatocyte Gal-9 potentiates liver IR-resistance. Negative regulation by recipient TIM-3+CD4+ cells provides evidence for cytoprotective functions of a discrete T cell subset, which should be spared when applying T cell-targeted immunosuppression in transplant recipients.
Collapse
Affiliation(s)
- Yuanxing Liu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Yu Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuda Shen
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Feng Gao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Xiangyi He
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gabriella A. Li
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
44
|
Abstract
Over the past 5 years, many novel approaches to early diagnosis, prevention, and treatment of acute graft-versus-host disease (aGVHD) have been translated from the bench to the bedside. In this review, we highlight recent discoveries in the context of current aGVHD care. The most significant innovations that have already reached the clinic are prophylaxis strategies based upon a refinement of our understanding of key sensors, effectors, suppressors of the immune alloreactive response, and the resultant tissue damage from the aGVHD inflammatory cascade. In the near future, aGVHD prevention and treatment will likely involve multiple modalities, including small molecules regulating immunologic checkpoints, enhancement of suppressor cytokines and cellular subsets, modulation of the microbiota, graft manipulation, and other donor-based prophylaxis strategies. Despite long-term efforts, major challenges in treatment of established aGVHD still remain. Resolution of inflammation and facilitation of rapid immune reconstitution in those with only a limited response to corticosteroids is a research arena that remains rife with opportunity and urgent clinical need.
Collapse
|
45
|
Zhu LP, Wang PJ, Liu J, Li LJ, Li ZG, Jiang HY, Feng BS. Galectin-9 and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2014; 22:515-520. [DOI: 10.11569/wcjd.v22.i4.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Galectin-9 (Gal-9), a beta-galactoside binding lectin, is a tandem-repeat-type member of the galectin family which can specifically recognize and bind to galactosidase associated with diverse biological processes. Gal-9 is widely expressed in various tissues, plays a role in cell growth, polarization, adhesion, aggregation, and apoptosis, and has important functions in inflammatory diseases, autoimmune diseases, tumors, and infections. Our recent studies showed that Gal-9 is strongly associated with the genesis and development of inflammatory bowel disease. Here we will review the progress in understanding the role of Gal-9 in the pathogenesis of inflammatory bowel disease.
Collapse
|
46
|
Role of lymphocyte activation gene-3 (Lag-3) in conventional and regulatory T cell function in allogeneic transplantation. PLoS One 2014; 9:e86551. [PMID: 24475140 PMCID: PMC3903521 DOI: 10.1371/journal.pone.0086551] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022] Open
Abstract
Lag-3 has emerged as an important molecule in T cell biology. We investigated the role of Lag-3 in conventional T cell (Tcon) and regulatory T cell (Treg) function in murine GVHD with the hypothesis that Lag-3 engagement diminishes alloreactive T cell responses after bone marrow transplantation. We demonstrate that Lag-3 deficient Tcon (Lag-3−/− Tcon) induce significantly more severe GVHD than wild type (WT) Tcon and that the absence of Lag-3 on CD4 but not CD8 T cells is responsible for exacerbating GVHD. Lag-3−/− Tcon exhibited increased activation and proliferation as indicated by CFSE and bioluminescence imaging analyses and higher levels of activation markers such as CD69, CD107a, granzyme B, and Ki-67 as well as production of IL-10 and IFN-g early after transplantation. Lag-3−/− Tcon were less responsive to suppression by WT Treg as compared to WT Tcon. The absence of Lag-3, however, did not impair Treg function as both Lag-3−/− and WT Treg equally suppress the proliferation of Tcon in vitro and in vivo and protect against GVHD. Further, we demonstrate that allogeneic Treg acquire recipient MHC class II molecules through a process termed trogocytosis. As MHC class II is a ligand for Lag-3, we propose a novel suppression mechanism employed by Treg involving the acquisition of host MHC-II followed by the engagement of Lag-3 on T cells. These studies demonstrate for the first time the biologic function of Lag-3 expression on conventional and regulatory T cells in GVHD and identify Lag-3 as an important regulatory molecule involved in alloreactive T cell proliferation and activation after bone marrow transplantation.
Collapse
|
47
|
Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS One 2013; 8:e81799. [PMID: 24339967 PMCID: PMC3858245 DOI: 10.1371/journal.pone.0081799] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 10/26/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectin-9 (Gal-9) induces adhesion and aggregation of certain cell types and inhibits the metastasis of tumor cells. T-cell immunoglobulin–and mucin domain-3–containing molecule 3 (TIM-3) plays a pivotal role in immune regulation. The aim of this study is to investigate Gal-9 and TIM-3 alterations in gastric cancer and their prognostic values. Methods Gal-9 and Tim-3 expression was evaluated using a tissue microarray immunohistochemistry method in 305 gastric cancers, of which 84 had paired adjacent normal samples. Cell lines SGC-7901, BGC-823, MGC-803, MKN45 and GES-1 were also stained. Correlations were analyzed between expression levels of Gal-9 and Tim-3 protein and tumor parameters or clinical outcomes. Results Gal-9 and Tim-3 stained positive on tumor cells in 86.2% (263/305), and 60.0% (183/305) patients with gastric cancer, respectively. Gal-9 expression was significantly higher in cancer than in normal mucosa (P<0.001). Reduced Gal-9 expression was associated with lymph-vascular invasion, lymph node metastasis, distant metastasis and worse TNM staging (P = 0.034, P = 0.009, P = 0.002 and P = 0.043, respectively). In contrast, Tim-3 expression was significantly lower in cancer than in control mucosa (P<0.001). Patients with lymph-vascular invasion had higher expression levels of Tim-3 (P<0.001). Moreover, multivariate analysis shows that both high Gal-9 expression and low Tim-3 expression were significantly associated with long overall survival (P = 0.002, P = 0.010, respectively); the combination of Gal-9 and Tim-3 expression was an independent prognostic predictor for patients with gastric cancer (RR: 0.43; 95%CI: 0.20–0.93). H.pylori infection status was not associated with Gal-9 and Tim-3 expression (P = 0.102, P = 0.565). Conclusion The results suggest that expression of Gal-9 and Tim-3 in tumor cells may be a potential, independent prognostic factor for patients with gastric cancer. Gal-9 and TIM-3 may play an important part in the gastric carcinogenesis.
Collapse
|
48
|
Hansen JA, Hanash SM, Tabellini L, Baik C, Lawler RL, Grogan BM, Storer B, Chin A, Johnson M, Wong CH, Zhang Q, Martin PJ, McDonald GB. A novel soluble form of Tim-3 associated with severe graft-versus-host disease. Biol Blood Marrow Transplant 2013; 19:1323-30. [PMID: 23791624 PMCID: PMC3966623 DOI: 10.1016/j.bbmt.2013.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
The T cell Ig and mucin domain 3 (Tim-3) receptor has been implicated as a negative regulator of adaptive immune responses. We have utilized a proteomic strategy to identify novel proteins associated with graft versus host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). Mass spectrometry analysis of plasma from subjects with mid-gut and upper-gut GVHD compared with those without GVHD identified increased levels of a protein identified with high confidence as Tim-3. A follow-up validation study using an immunoassay to measure Tim-3 levels in individual plasma samples from 127 patients demonstrated significantly higher plasma Tim-3 concentrations in patients with the more severe mid-gut GVHD, compared with those with upper-gut GVHD (P = .005), patients without GVHD (P = .002), and normal controls (P < .0001). Surface expression of Tim-3 was increased on CD8(+) T cells from patients with grade 2 to 4 acute GVHD (P = .01). Mass spectrometry-based profiling of plasma from multiple subjects diagnosed with common diseases provided evidence for restricted release of soluble Tim-3 in the context of GVHD. These findings have mechanistic implications for the development of novel strategies for targeting the Tim-3 immune regulatory pathway as an approach to improving control of GVHD.
Collapse
Affiliation(s)
- John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rouse M, Nagarkatti M, Nagarkatti PS. The role of IL-2 in the activation and expansion of regulatory T-cells and the development of experimental autoimmune encephalomyelitis. Immunobiology 2013; 218:674-82. [PMID: 22954711 PMCID: PMC3582788 DOI: 10.1016/j.imbio.2012.08.269] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects ≈ 400,000 people in the US. It is a chronic, disabling disease with no cure, and the current treatment includes use of immunosuppressive drugs that often exhibit toxic side effects. Thus, there is a pressing need for alternate and more effective treatment strategies that target the components of inflammatory cells. In recent years, regulatory T-cells (Tregs) have been found to play an important role in preventing the development of autoimmunity. Thus, expansion of Tregs in vivo has the therapeutic potential against autoimmune diseases. Because Tregs constitutively express IL-2 receptors (IL-2Rs), we tested the effect of administration of IL-2 on the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). We used IL-2 both before (pre-treatment) or after (post-treatment) immunization with myelin oligodendrocyte glycoprotein (MOG35-55) peptide to induce EAE. The data demonstrated that pre-treatment with a moderate dose of IL-2 caused significant amelioration of EAE. Tissue histopathology of the central nervous system also confirmed the effectiveness of IL-2 pre-treatment by decreasing cellular infiltration in the spinal cord and preserving tissue integrity. IL-2 pretreatment expanded Treg cells while preventing the induction of Th17 during EAE development. In contrast, post-treatment with IL-2 failed to suppress EAE despite induction of Tregs. Together, these studies demonstrate that while expansion of Tregs using IL-2, prior to immunization or the onset of disease, can suppress the immune response, their role is limited after the antigen-specific response is triggered. Because IL-2 is used to treat certain types of cancers, and Tregs have applications in preventing the rejection of transplants, our studies also provide useful information on the use and limitations of Tregs in such clinical manifestations.
Collapse
Affiliation(s)
- Michael Rouse
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
50
|
Li X, Zhao YQ, Li CW, Yuan FL. T cell immunoglobulin-3 as a new therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2012; 16:1145-9. [PMID: 22998573 DOI: 10.1517/14728222.2012.726616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T cell immunoglobulin-3 (Tim-3) is a surface molecule expressed on various cell types of the immune system which plays a central role in immune regulation. Recently, identification of galectin-9 (Gal-9) as a ligand for Tim-3 has established the Tim-3-Gal-9 pathway as an important regulator of Th1 immunity and induction of tolerance. The interaction of Tim-3 with Gal-9 induces cell death; the in vivo blockade of this interaction results in exacerbated autoimmunity and abrogation of tolerance in experimental models, thus establishing Tim-3 as a negative regulatory molecule. A number of previous studies have demonstrated that Tim-3 influences chronic autoimmune diseases, such as multiple sclerosis and systemic lupus erythematosus. In addition, an association between Tim-3 polymorphisms and susceptibility to several autoimmune diseases has been identified in various autoimmune diseases, including rheumatoid arthritis (RA). Recent work has focused on the role of Tim-3 in RA, and the results indicate that Tim-3 may represent a novel target for the treatment of RA. In this article we will discuss the Tim-3 pathway and the therapeutic potential of modulating the Tim-3 pathway in RA.
Collapse
|