1
|
Busa D, Herudkova Z, Hyl J, Vlazny J, Sokol F, Matulova K, Folta A, Hynst J, Vojtova L, Kren L, Repko M, Racil Z, Mayer J, Culen M. Robust acute myeloid leukemia engraftment in humanized scaffolds using injectable biomaterials and intravenous xenotransplantation. Mol Oncol 2025; 19:1371-1385. [PMID: 39840700 PMCID: PMC12077274 DOI: 10.1002/1878-0261.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Patient-derived xenografts (PDXs) can be improved by implantation of a humanized niche. Nevertheless, the overall complexity of the current protocols, as well as the use of specific biomaterials and procedures, limits the wider adoption of this approach. Here, we identify the essential minimum steps required to create the humanized scaffolds and achieve successful acute myeloid leukemia (AML) engraftment. We compared seven biomaterials, which included both published and custom-designed materials. The highest level of bone marrow niche was achieved with extracellular matrix gels and custom collagen fiber, both of which allowed for a simple non-surgical implantation. The biomaterial selection did not influence the following AML infiltration. Regarding xenotransplantation, standard intravenous administration produced the most robust engraftment, even for two out of four otherwise non-engrafting AML samples. In contrast, direct intra-scaffold xenotransplantation did not offer any advantage. In summary, we demonstrate that the combination of an injectable biomaterial for scaffold creation plus an intravenous route for AML xenotransplantation provide the most convenient and robust approach to produce AML PDX using a humanized niche.
Collapse
Affiliation(s)
- Daniel Busa
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Zdenka Herudkova
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jan Hyl
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jakub Vlazny
- Department of PathologyUniversity Hospital BrnoCzech Republic
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Filip Sokol
- Department of PathologyUniversity Hospital BrnoCzech Republic
| | - Kvetoslava Matulova
- Department of PathologyUniversity Hospital BrnoCzech Republic
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Adam Folta
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoCzech Republic
| | - Jakub Hynst
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Lucy Vojtova
- Central European Institute of TechnologyBrno Institute of TechnologyCzech Republic
| | - Leos Kren
- Department of PathologyUniversity Hospital BrnoCzech Republic
- Department of Pathology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Martin Repko
- Orthopedic ClinicUniversity Hospital BrnoCzech Republic
- Department of Orthopedic Surgery, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Zdenek Racil
- Department of Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Martin Culen
- Department of Internal Medicine, Hematology and Oncology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoCzech Republic
| |
Collapse
|
2
|
Renou L, Sun W, Friedrich C, Galant K, Conrad C, Consalus A, Plantier E, Schallmoser K, Krisch L, Barroca V, Devanand S, Dechamps N, Reinisch A, Martinovic J, Magnani A, Faivre L, Lewandowski D, Calvo J, Perie L, Kosmider O, Pflumio F. Orchestration of human multi-lineage hematopoietic cell development by humanized in vivo bone marrow models. Hemasphere 2025; 9:e70120. [PMID: 40265169 PMCID: PMC12012840 DOI: 10.1002/hem3.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 04/24/2025] Open
Abstract
Hematopoiesis develops in the bone marrow (BM) where multiple interactions regulate the differentiation and preservation of hematopoietic stem and progenitor cells (HSPCs). Immune-deficient murine models have enabled the analysis of molecular and cellular regulation of human HSPCs, but the physiology of these models is questioned as human hematopoietic cells develop in xenogenic microenvironments. In this study, we thoroughly characterized a humanized (h) in vivo BM model, developed from fetal (F/) and post-natal (P-N/) mesenchymal stromal cell (MSC) differentiation (called hOssicles [hOss]), in which human hematopoietic cells are generated following the transplantation of CD34+ cells. Serial isolation and transplant experiments of hMSCs and HSPCs from hOss revealed the dynamic nature of these hBM niches. hOss modified human hematopoietic development by modulating myeloid/lymphoid cell production and HSPC levels, with no major transcriptional changes in HSPCs at the single-cell level. Clonal tracking using genetic barcodes highlighted hematopoietic cell cross-talks between the endogenous murine BM and hOss and differences in clonal myeloid/multipotent cell production between F/hOss and P-N/hOss, uncovering ontogeny-related impact of the BM on human hematopoietic cell production.
Collapse
Affiliation(s)
- Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Wenjie Sun
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie CurieParisFrance
| | - Chloe Friedrich
- Institut Cochin, CNRS UMR8104, INSERM U1016Université Paris CitéParisFrance
| | - Klaudia Galant
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Cecile Conrad
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie CurieParisFrance
| | - Anne Consalus
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Evelia Plantier
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Katharina Schallmoser
- Department for Transfusion Medicine and GMP UnitParacelsus Medical UniversitySalzburgAustria
| | - Linda Krisch
- Department for Transfusion Medicine and GMP UnitParacelsus Medical UniversitySalzburgAustria
| | - Vilma Barroca
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Animal Experimentation PlatformIRCM, CEAFontenay‐aux‐RosesFrance
| | - Saryami Devanand
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Animal Experimentation PlatformIRCM, CEAFontenay‐aux‐RosesFrance
| | - Nathalie Dechamps
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- Flow Cytometry PlatformIRCM, CEAFontenay‐aux‐RosesFrance
| | - Andreas Reinisch
- Department of Internal Medicine, Division of HematologyMedical University of GrazGrazAustria
- Department of Blood Group Serology and Transfusion MedicineMedical University of GrazGrazAustria
| | | | | | - Lionel Faivre
- Cell Therapy UnitAP‐HP, Saint Louis HospitalParisFrance
| | - Daniel Lewandowski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| | - Leila Perie
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie CurieParisFrance
| | - Olivier Kosmider
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Institut Cochin, CNRS UMR8104, INSERM U1016Université Paris CitéParisFrance
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
- Université Paris‐Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LSHL/iRCM/IBFJFontenay‐aux‐RosesFrance
| |
Collapse
|
3
|
Liu W, Dou C, Zhang C, Chen P, Zhang S, Wang R, Han Q, Zhao H, Li D. PX-478 induces apoptosis in acute myeloid leukemia under hypoxia by inhibiting the PI3K/AKT/mTOR pathway through downregulation of GBE1. Biochem Pharmacol 2024; 230:116620. [PMID: 39528073 DOI: 10.1016/j.bcp.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy characterized by limited therapeutic options and a pronounced tendency for relapse. PX-478, a novel inhibitor of hypoxia-inducible factor 1-alpha (HIF-1α), has demonstrated antitumor activity across various cancer models, but its specific role in AML remains unexplored. This study aimed to explore the potential target and mechanism of PX-478-induced AML cell apoptosis. First, PX-478 induced AML cell apoptosis in vitro under hypoxia via modulation of the Bcl-2 family and activation of the mitochondria-mediated caspase cascade, exhibiting a concentration-dependent effect. Additionally, in vivo administration of PX-478 led to notable inhibition of subcutaneous AML xenograft growth in mice, coupled with increased tumor cell apoptosis. RNA sequencing and cellular studies revealed downregulation of the PI3K/AKT/mTOR signaling pathway in PX-478-treated cells. Consistently, cellular studies also implicated PI3K/AKT/mTOR pathway in PX-478-induced AML cell apoptosis. Furthermore, by screening for RNA sequencing differential genes and subsequent experimental verification, Glycogen branching enzyme 1 (GBE1) may be involved in PX-478-induced apoptosis in AML cells. We found that inhibiting GBE1 expression in AML cells (siGBE1) led to downregulation of the PI3K/AKT/mTOR pathway and induced apoptosis. In experiments using AML cells with reduced GBE1 expression (shGBE1), PX-478 treatment did not further downregulate the pathway or enhance apoptosis. Re-expression of GBE1 in shGBE1 cells alleviated apoptosis and reduced PX-478- induced apoptosis and pathway downregulation. In conclusion, our findings provide convincing evidence that PX-478 induces apoptosis by inhibiting the PI3K/AKT/mTOR pathway through downregulation of GBE1 in AML cells.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Apoptosis/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Down-Regulation/drug effects
- Animals
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Mice
- Phosphatidylinositol 3-Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Cell Line, Tumor
- Mice, Nude
- Xenograft Model Antitumor Assays/methods
- Antineoplastic Agents/pharmacology
- Mice, Inbred BALB C
- Female
- Male
- Naphthyridines
Collapse
Affiliation(s)
- Wenjing Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Chunhui Dou
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, Shandong, China
| | - Ping Chen
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Shu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Renxiang Wang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, Shandong, China
| | - Qing Han
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Hongyu Zhao
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| | - Daqi Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
4
|
de Janon A, Mantalaris A, Panoskaltsis N. Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:895-904. [PMID: 36947817 PMCID: PMC7614371 DOI: 10.4049/jimmunol.2200836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023]
Abstract
Hematoimmunopoiesis takes place in the adult human bone marrow (BM), which is composed of heterogeneous niches with complex architecture that enables tight regulation of homeostatic and stress responses. There is a paucity of representative culture systems that recapitulate the heterogeneous three-dimensional (3D) human BM microenvironment and that can endogenously produce soluble factors and extracellular matrix that deliver culture fidelity for the study of both normal and abnormal hematopoiesis. Native BM lymphoid populations are also poorly represented in current in vitro and in vivo models, creating challenges for the study and treatment of BM immunopathology. BM organoid models leverage normal 3D organ structure to recreate functional niche microenvironments. Our focus herein is to review the current state of the art in the use of 3D BM organoids, focusing on their capacities to recreate critical quality attributes of the in vivo BM microenvironment for the study of human normal and abnormal hematopoiesis.
Collapse
Affiliation(s)
- Alejandro de Janon
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- National Institute for Bioprocessing Research and Training, Ireland
| | - Nicki Panoskaltsis
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Department of Haematology, St. James’s Hospital Dublin, Ireland
| |
Collapse
|
5
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
6
|
Wang A, Chen Y, Shi L, Li M, Li L, Wang S, Wang C. Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med 2022; 20:288. [PMID: 35761379 PMCID: PMC9235226 DOI: 10.1186/s12967-022-03456-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Chemoresistance serves as a huge obstacle for acute myeloid leukemia (AML) patients. To counteract the chemoresistance in AML cells, we discussed the role of maternally expressed gene 3 (MEG3) in arabinocytosine (AraC) chemoresistance in AML cells. Methods MEG3, microRNA (miR)-493-5p, methyltransferase-like 3 (METTL3) and MYC expression in AML cells was determined and then their interactions were also analyzed. Then, the viability and apoptosis of AML cells were determined through loss- and gain- function assay. The level of m6A modification in AML cells was examined. AML mouse models were also established to validate the potential roles of MEG3. Results MEG3 and miR-493-5p were downregulated in AML cells, and they were lower in resistant cells than in parental cells. MEG3 led to elevated expression of miR-493-5p which targeted METTL3. METTL3 increased expression of MYC by promoting its m6A levels. Overexpression of MEG3 and miR-493-5p or knockdown of METTL3 inhibited HL-60 and Molm13 cell proliferation and promoted their apoptosis. Overexpressed MEG3 induced heightened sensitivity of AML cells to AraC. However, the suppression of miR-493-5p reversed the effects of overexpressed MEG3 on AML cells. Conclusions Collectively, MEG3 could upregulate miR-493-5p expression and suppress the METTL3/MYC axis through MYC m6A methylation, by which MEG3 promoted the chemosensitivity of AML cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03456-x.
Collapse
Affiliation(s)
- Airong Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yufei Chen
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Luyao Shi
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Mengya Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lingling Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shujuan Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chong Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Zhao Q, Cang H, Wang Z, Hu X, Pan R, Yang Y, Chen Y. Acute Myeloid Leukemia Cells Educate Mesenchymal Stromal Cells toward an Adipogenic Differentiation Propensity with Leukemia Promotion Capabilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2105811. [PMID: 35686138 PMCID: PMC9165478 DOI: 10.1002/advs.202105811] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Indexed: 05/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) are essential elements of the bone marrow (BM) microenvironment, which have been widely implicated in pathways that contribute to leukemia growth and resistance. Recent reports showed genotypic and phenotypic alterations in leukemia patient-derived MSCs, indicating that MSCs might be educated/reprogrammed. However, the results have been inconclusive, possibly due to the heterogeneity of leukemia. Here, the authors report that acute myeloid leukemia (AML) induces MSCs towards an adipogenic differentiation propensity. RNAseq analysis reveal significant upregulation of gene expression enriched in the adipocyte differentiation process and reduction in osteoblast differentiation. The alteration is accompanied by a metabolic switch from glycolysis to a more oxidative phosphorylation-dependent manner. Mechanistic studies identify that AML cell-derived exosomes play a vital role during the AML cell-mediated MSCs education/reprogramming process. Pre-administration of mice BM microenvironment with AML-derived exosomes greatly enhance leukemia engraftment in vivo. The quantitative proteomic analysis identified a list of exosomal protein components that are differently expressed in AML-derived exosomes, which represent an opportunity for novel therapeutic strategies based on the targeting of exosome-based AML cells-MSCs communication. Collectively, the data show that AML-educated MSCs tend to differentiate into adipocytes contributing to disease progression, which suggests complex interactions of leukemia with microenvironment components.
Collapse
Affiliation(s)
- Luwen Zhang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Qiong Zhao
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Hui Cang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Ziqiang Wang
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Xiaojia Hu
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| | - Ruolang Pan
- Zhejiang Provincial Key Laboratory of Cell‐Based Drug and Applied Technology DevelopmentInstitute for Cell‐Based Drug Development of Zhejiang ProvinceS‐Evans BiosciencesHangzhouZhejiang310023China
| | - Yang Yang
- Bone Marrow Transplantation Center, Institute of Hematology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310004China
| | - Ye Chen
- Department of Genetics, and Department of Genetic and Metabolic DiseaseThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouZhejiang310052China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersInstitute of Genetics, Zhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
8
|
Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy. Nat Med 2022; 28:557-567. [PMID: 35241842 PMCID: PMC8938266 DOI: 10.1038/s41591-022-01696-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.
Collapse
|
9
|
Sethakorn N, Heninger E, Sánchez-de-Diego C, Ding AB, Yada RC, Kerr SC, Kosoff D, Beebe DJ, Lang JM. Advancing Treatment of Bone Metastases through Novel Translational Approaches Targeting the Bone Microenvironment. Cancers (Basel) 2022; 14:757. [PMID: 35159026 PMCID: PMC8833657 DOI: 10.3390/cancers14030757] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.
Collapse
Affiliation(s)
- Nan Sethakorn
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Cristina Sánchez-de-Diego
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Adeline B. Ding
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
| | - Ravi Chandra Yada
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Sheena C. Kerr
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - David Kosoff
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua M. Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (N.S.); (E.H.); (C.S.-d.-D.); (A.B.D.); (S.C.K.); (D.K.); (D.J.B.)
- Division of Hematology/Oncology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| |
Collapse
|
10
|
Preciado S, Sirerol-Piquer MS, Muntión S, Osugui L, Martí-Chillón GJ, Navarro-Bailón A, Sepúlveda P, Sánchez-Guijo F. Co-administration of human MSC overexpressing HIF-1α increases human CD34 + cell engraftment in vivo. Stem Cell Res Ther 2021; 12:601. [PMID: 34876206 PMCID: PMC8650423 DOI: 10.1186/s13287-021-02669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo.
Methods Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. Results We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). Conclusions Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02669-z.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mª Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, University of Valencia, Burjassot, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), University of Valencia, Burjassot, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Gerardo J Martí-Chillón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,RETIC TerCel, ISCIII, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.
| |
Collapse
|
11
|
Humanized 3D scaffold xenotransplantation models for Myelodysplastic Syndromes. Exp Hematol 2021; 107:38-50. [DOI: 10.1016/j.exphem.2021.12.395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
|
12
|
Born G, Nikolova M, Scherberich A, Treutlein B, García-García A, Martin I. Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells. J Tissue Eng 2021; 12:20417314211044855. [PMID: 34616539 PMCID: PMC8488506 DOI: 10.1177/20417314211044855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are frequently located around the bone marrow (BM) vasculature. These so-called perivascular niches regulate HSC function both in health and disease, but they have been poorly studied in humans due to the scarcity of models integrating complete human vascular structures. Herein, we propose the stromal vascular fraction (SVF) derived from human adipose tissue as a cell source to vascularize 3D osteoblastic BM niches engineered in perfusion bioreactors. We show that SVF cells form self-assembled capillary structures, composed by endothelial and perivascular cells, that add to the osteogenic matrix secreted by BM mesenchymal stromal cells in these engineered niches. In comparison to avascular osteoblastic niches, vascularized BM niches better maintain immunophenotypically-defined cord blood (CB) HSCs without affecting cell proliferation. In contrast, HSPCs cultured in vascularized BM niches showed increased CFU-granulocyte-erythrocyte-monocyte-megakaryocyte (CFU-GEMM) numbers. The vascularization also contributed to better preserve osteogenic gene expression in the niche, demonstrating that niche vascularization has an influence on both hematopoietic and stromal compartments. In summary, we have engineered a fully humanized and vascularized 3D BM tissue to model native human endosteal perivascular niches and revealed functional implications of this vascularization in sustaining undifferentiated CB HSPCs. This system provides a unique modular platform to explore hemato-vascular interactions in human healthy/pathological hematopoiesis.
Collapse
Affiliation(s)
- Gordian Born
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| | - Marina Nikolova
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andrés García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| |
Collapse
|
13
|
Breakthrough Science: Hypoxia-Inducible Factors, Oxygen Sensing, and Disorders of Hematopoiesis. Blood 2021; 139:2441-2449. [PMID: 34411243 DOI: 10.1182/blood.2021011043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factors (HIF) were discovered as activators of erythropoietin gene transcription in response to reduced O2 availability. O2-dependent hydroxylation of HIFs on proline and asparagine residues regulates protein stability and transcription activity, respectively. Mutations in genes encoding components of the oxygen sensing pathway cause familial erythrocytosis. Several small molecule inhibitors of HIF prolyl hydroxylases are currently in clinical trials as erythropoiesis stimulating agents. HIFs are overexpressed in bone marrow neoplasms, and the development of HIF inhibitors may improve outcome in these disorders.
Collapse
|
14
|
Leukemia-Induced Cellular Senescence and Stemness Alterations in Mesenchymal Stem Cells Are Reversible upon Withdrawal of B-Cell Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2021; 22:ijms22158166. [PMID: 34360930 PMCID: PMC8348535 DOI: 10.3390/ijms22158166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Leukemic cell growth in the bone marrow (BM) induces a very stressful condition. Mesenchymal stem cells (MSC), a key component of this BM niche, are affected in several ways with unfavorable consequences on hematopoietic stem cells favoring leukemic cells. These alterations in MSC during B-cell acute lymphoblastic leukemia (B-ALL) have not been fully studied. In this work, we have compared the modifications that occur in an in vitro leukemic niche (LN) with those observed in MSC isolated from B-ALL patients. MSC in this LN niche showed features of a senescence process, i.e., altered morphology, increased senescence-associated β-Galactosidase (SA-βGAL) activity, and upregulation of p53 and p21 (without p16 expression), cell-cycle arrest, reduced clonogenicity, and some moderated changes in stemness properties. Importantly, almost all of these features were found in MSC isolated from B-ALL patients. These alterations rendered B-ALL cells susceptible to the chemotherapeutic agent dexamethasone. The senescent process seems to be transient since when leukemic cells are removed, normal MSC morphology is re-established, SA-βGAL expression is diminished, and MSC are capable of re-entering cell cycle. In addition, few cells showed low γH2AX phosphorylation that was reduced to basal levels upon cultivation. The reversibility of the senescent process in MSC must impinge important biological and clinical significance depending on cell interactions in the bone marrow at different stages of disease progression in B-ALL.
Collapse
|
15
|
Bessy T, Itkin T, Passaro D. Bioengineering the Bone Marrow Vascular Niche. Front Cell Dev Biol 2021; 9:645496. [PMID: 33996805 PMCID: PMC8113773 DOI: 10.3389/fcell.2021.645496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
The bone marrow (BM) tissue is the main physiological site for adult hematopoiesis. In recent years, the cellular and matrix components composing the BM have been defined with unprecedent resolution, both at the molecular and structural levels. With the expansion of this knowledge, the possibility of reproducing a BM-like structure, to ectopically support and study hematopoiesis, becomes a reality. A number of experimental systems have been implemented and have displayed the feasibility of bioengineering BM tissues, supported by cells of mesenchymal origin. Despite being known as an abundant component of the BM, the vasculature has been largely disregarded for its role in regulating tissue formation, organization and determination. Recent reports have highlighted the crucial role for vascular endothelial cells in shaping tissue development and supporting steady state, emergency and malignant hematopoiesis, both pre- and postnatally. Herein, we review the field of BM-tissue bioengineering with a particular focus on vascular system implementation and integration, starting from describing a variety of applicable in vitro models, ending up with in vivo preclinical models. Additionally, we highlight the challenges of the field and discuss the clinical perspectives in terms of adoptive transfer of vascularized BM-niche grafts in patients to support recovering hematopoiesis.
Collapse
Affiliation(s)
- Thomas Bessy
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| | - Tomer Itkin
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Diana Passaro
- Leukemia and Niche Dynamics Laboratory, Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
16
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Pievani A, Savoldelli R, Poelchen J, Mattioli E, Anselmi G, Girardot A, Utikal J, Bourdely P, Serafini M, Guermonprez P. Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Front Immunol 2021; 12:631279. [PMID: 33790904 PMCID: PMC8006008 DOI: 10.3389/fimmu.2021.631279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Tissue engineering opens multiple opportunities in regenerative medicine, drug testing, and modeling of the hematopoiesis in health and disease. Recapitulating the organization of physiological microenvironments supporting leukocyte development is essential to model faithfully the development of immune cells. Hematopoietic organs are shaped by spatially organized niches defined by multiple cellular contributions. A shared feature of immune niches is the presence of mesenchymal stromal cells endowed with unique roles in organizing niche development, maintenance, and function. Here, we review challenges and opportunities in harnessing stromal cells for the engineering of artificial immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Pievani
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Roberto Savoldelli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Elisa Mattioli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, Radcliffe Department of Medicine, Medical Research Council, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Girardot
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Pierre Bourdely
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Marta Serafini
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Pierre Guermonprez
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| |
Collapse
|
18
|
Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers (Basel) 2021; 13:507. [PMID: 33572757 PMCID: PMC7865550 DOI: 10.3390/cancers13030507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer commonly metastasizes to bone, resulting in osteolytic lesions and poor patient quality of life. The bone extracellular matrix (ECM) plays a critical role in cancer cell metastasis by means of the physical and biochemical cues it provides to support cellular crosstalk. Current two-dimensional in-vitro models lack the spatial and biochemical complexities of the native ECM and do not fully recapitulate crosstalk that occurs between the tumor and endogenous stromal cells. Engineered models such as bone-on-a-chip, extramedullary bone, and bioreactors are presently used to model cellular crosstalk and bone-tumor cell interactions, but fall short of providing a bone-biomimetic microenvironment. Three-dimensional bioprinting allows for the deposition of biocompatible materials and living cells in complex architectures, as well as provides a means to better replicate biological tissue niches in-vitro. In cancer research specifically, 3D constructs have been instrumental in seminal work modeling cancer cell dissemination to bone and bone-tumor cell crosstalk in the skeleton. Furthermore, the use of biocompatible materials, such as hydroxyapatite, allows for printing of bone-like microenvironments with the ability to be implanted and studied in in-vivo animal models. Moreover, the use of bioprinted models could drive the development of novel cancer therapies and drug delivery vehicles.
Collapse
Affiliation(s)
- Anne M. Hughes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Alexus D. Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Alison B. Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Kristy M. Shine
- Health Design Lab, Jefferson Bioprinting Lab, Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M. Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| |
Collapse
|
19
|
Lennon DP, Somoza RA, Schluchter MA, Caplan AI. The Habitat Assay, a Platform to Study In Vivo Properties of Human Mesenchymal Stem Cells. Tissue Eng Part A 2020; 26:1378-1387. [PMID: 33107389 DOI: 10.1089/ten.tea.2020.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are at the forefront as therapeutic tools for an extensive number of tissue engineering and regenerative medicine applications. MSC differentiation properties have been extensively studied in vitro by this laboratory and many others. The generation and validation of in vivo potency assays would be a valuable tool for the study of cellular properties relevant for in vivo applications. We have developed a unique system, we call the Habitat assay, in which porous ceramic cube carrier loaded with human bone marrow (BM)-MSCs (hMSCs) is subcutaneously implanted into immune-compromised mice. These cells have the capacity to create bone tissue and reconstitute the hematopoietic microenvironment within the "Habitat." These donor-derived hMSCs form bone structures by 3-4 weeks and associate as perivascular MSCs. In this study, we have extensively analyzed data generated with the habitat (ceramic cube in vivo assay) using cells derived from 117 hMSC-donors (iliac aspiration); this analysis provides a validation of the platform as a way to study the in vivo effect of several variables involved in the generation of the bony Habitat. These studies show that passage number and the age of the hMSC donor influence the sequence of in vivo bone formation within the Habitat. These variables have been shown to have an effect on in vitro properties of MSCs; in this study, for the first time, we show these effects to be important on an in vivo setting.
Collapse
Affiliation(s)
- Donald P Lennon
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Schluchter
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I Caplan
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Hack T, Bertram S, Blair H, Börger V, Büsche G, Denson L, Fruth E, Giebel B, Heidenreich O, Klein-Hitpass L, Kollipara L, Sendker S, Sickmann A, Walter C, von Neuhoff N, Hanenberg H, Reinhardt D, Schneider M, Rasche M. Exposure of Patient-Derived Mesenchymal Stromal Cells to TGFB1 Supports Fibrosis Induction in a Pediatric Acute Megakaryoblastic Leukemia Model. Mol Cancer Res 2020; 18:1603-1612. [PMID: 32641517 DOI: 10.1158/1541-7786.mcr-20-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Bone marrow fibrosis (BMF) is a rare complication in acute leukemia. In pediatrics, it predominantly occurs in acute megakaryoblastic leukemia (AMKL) and especially in patients with trisomy 21, called myeloid leukemia in Down syndrome (ML-DS). Defects in mesenchymal stromal cells (MSC) and cytokines specifically released by the myeloid blasts are thought to be the main drivers of fibrosis in the bone marrow niche (BMN). To model the BMN of pediatric patients with AMKL in mice, we first established MSCs from pediatric patients with AMKL (n = 5) and ML-DS (n = 9). Healthy donor control MSCs (n = 6) were generated from unaffected children and adolescents ≤18 years of age. Steady-state analyses of the MSCs revealed that patient-derived MSCs exhibited decreased adipogenic differentiation potential and enrichment of proliferation-associated genes. Importantly, TGFB1 exposure in vitro promoted early profibrotic changes in all three MSC entities. To study BMF induction for longer periods of time, we created an in vivo humanized artificial BMN subcutaneously in immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice, using a mixture of MSCs, human umbilical vein endothelial cell, and Matrigel. Injection of AMKL blasts as producers of TGFB1 into this BMN after 8 weeks induced fibrosis grade I/II in a dose-dependent fashion over a time period of 4 weeks. Thus, our study developed a humanized mouse model that will be instrumental to specifically examine leukemogenesis and therapeutic targets for AMKL blasts in future. IMPLICATIONS: TGFB1 supports fibrosis induction in a pediatric AMKL model generated with patient-derived MSCs. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/10/1603/F1.large.jpg.
Collapse
Affiliation(s)
- Theresa Hack
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Stefanie Bertram
- Department of Pathology, University Hospital Essen, Essen, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Guntram Büsche
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Lora Denson
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Enrico Fruth
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Stephanie Sendker
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Christiane Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany
| | - Markus Schneider
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany.
| | - Mareike Rasche
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, Essen, Germany.
| |
Collapse
|
21
|
Moreno-Jiménez I, Cipitria A, Sánchez-Herrero A, van Tol AF, Roschger A, Lahr CA, McGovern JA, Hutmacher DW, Fratzl P. Human and mouse bones physiologically integrate in a humanized mouse model while maintaining species-specific ultrastructure. SCIENCE ADVANCES 2020; 6:6/44/eabb9265. [PMID: 33115741 PMCID: PMC7608795 DOI: 10.1126/sciadv.abb9265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/31/2020] [Indexed: 05/07/2023]
Abstract
Humanized mouse models are increasingly studied to recapitulate human-like bone physiology. While human and mouse bone architectures differ in multiple scales, the extent to which chimeric human-mouse bone physiologically interacts and structurally integrates remains unknown. Here, we identify that humanized bone is formed by a mosaic of human and mouse collagen, structurally integrated within the same bone organ, as shown by immunohistochemistry. Combining this with materials science techniques, we investigate the extracellular matrix of specific human and mouse collagen regions. We show that human-like osteocyte lacunar-canalicular network is retained within human collagen regions and is distinct to that of mouse tissue. This multiscale analysis shows that human and mouse tissues physiologically integrate into a single, functional bone tissue while maintaining their species-specific ultrastructural differences. These results offer an original method to validate and advance tissue-engineered human-like bone in chimeric animal models, which grow to be eloquent tools in biomedical research.
Collapse
Affiliation(s)
- I Moreno-Jiménez
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - A Cipitria
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - A Sánchez-Herrero
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - A F van Tol
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - C A Lahr
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - J A McGovern
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - D W Hutmacher
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.
| |
Collapse
|
22
|
Zabkiewicz J, Lazenby M, Edwards G, Bygrave CA, Omidvar N, Zhuang L, Knapper S, Guy C, Hills RK, Burnett AK, Alvares CL. Combination of a mitogen-activated protein kinase inhibitor with the tyrosine kinase inhibitor pacritinib combats cell adhesion-based residual disease and prevents re-expansion of FLT3-ITD acute myeloid leukaemia. Br J Haematol 2020; 191:231-242. [PMID: 32394450 DOI: 10.1111/bjh.16665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 01/18/2023]
Abstract
Minimal residual disease (MRD) in acute myeloid leukaemia (AML) poses a major challenge due to drug insensitivity and high risk of relapse. Intensification of chemotherapy and stem cell transplantation are often pivoted on MRD status. Relapse rates are high even with the integration of first-generation FMS-like tyrosine kinase 3 (FLT3) inhibitors in pre- and post-transplant regimes and as maintenance in FLT3-mutated AML. Pre-clinical progress is hampered by the lack of suitable modelling of residual disease and post-therapy relapse. In the present study, we investigated the nature of pro-survival signalling in primary residual tyrosine kinase inhibitor (TKI)-treated AML cells adherent to stroma and further determined their drug sensitivity in order to inform rational future therapy combinations. Using a primary human leukaemia-human stroma model to mimic the cell-cell interactions occurring in patients, the ability of several TKIs in clinical use, to abrogate stroma-driven leukaemic signalling was determined, and a synergistic combination with a mitogen-activated protein kinase (MEK) inhibitor identified for potential therapeutic application in the MRD setting. The findings reveal a common mechanism of stroma-mediated resistance that may be independent of mutational status but can be targeted through rational drug design, to eradicate MRD and reduce treatment-related toxicity.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bridged-Ring Compounds/pharmacology
- Cell Adhesion/drug effects
- Child
- Child, Preschool
- Extracellular Signal-Regulated MAP Kinases
- Female
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Models, Biological
- Neoplasm, Residual
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Joanna Zabkiewicz
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Michelle Lazenby
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Gareth Edwards
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Ceri A Bygrave
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Nader Omidvar
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Lihui Zhuang
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Steve Knapper
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Carol Guy
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Robert K Hills
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Alan K Burnett
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| | - Caroline L Alvares
- Academic Department of Haematology, University of Cardiff, H, eath Park, Cardiff, UK
| |
Collapse
|
23
|
Clara-Trujillo S, Gallego Ferrer G, Gómez Ribelles JL. In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go? Int J Mol Sci 2020; 21:E5747. [PMID: 32796596 PMCID: PMC7460836 DOI: 10.3390/ijms21165747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
In hematological malignancies, leukemias or myelomas, malignant cells present bone marrow (BM) homing, in which the niche contributes to tumor development and drug resistance. BM architecture, cellular and molecular composition and interactions define differential microenvironments that govern cell fate under physiological and pathological conditions and serve as a reference for the native biological landscape to be replicated in engineered platforms attempting to reproduce blood cancer behavior. This review summarizes the different models used to efficiently reproduce certain aspects of BM in vitro; however, they still lack the complexity of this tissue, which is relevant for fundamental aspects such as drug resistance development in multiple myeloma. Extracellular matrix composition, material topography, vascularization, cellular composition or stemness vs. differentiation balance are discussed as variables that could be rationally defined in tissue engineering approaches for achieving more relevant in vitro models. Fully humanized platforms closely resembling natural interactions still remain challenging and the question of to what extent accurate tissue complexity reproduction is essential to reliably predict drug responses is controversial. However, the contributions of these approaches to the fundamental knowledge of non-solid tumor biology, its regulation by niches, and the advance of personalized medicine are unquestionable.
Collapse
Affiliation(s)
- Sandra Clara-Trujillo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| |
Collapse
|
24
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
25
|
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol 2020; 125:151-161. [PMID: 32688117 DOI: 10.1016/j.molimm.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system arising from hematopoietic stem cells. DCs play a key role in the regulation of both adaptive and innate lymphocyte responses. As such, experimental models enabling a thorough analysis of human DCs development and function are needed. Humanized mice models (termed collectively as HIS mice, or human immune system mice models) provide unique opportunities to model human hematopoiesis and tackle the function of human immune cell types in vivo. Here, we review experimental approaches enabling to recapitulate the ontogeny of DC subsets in HIS mice and discuss studies addressing the biology of human DC subsets implementing HIS mice models.
Collapse
Affiliation(s)
- Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Immunity and Cancer department, INSERM U932, Paris, France
| | - Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM 1149, Hopital Bichat Claude Bernard, France.
| |
Collapse
|
26
|
Rytelewski M, Harutyunyan K, Baran N, Mallampati S, Zal MA, Cavazos A, Butler JM, Konoplev S, El Khatib M, Plunkett S, Marszalek JR, Andreeff M, Zal T, Konopleva M. Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model. Front Oncol 2020; 10:991. [PMID: 32695673 PMCID: PMC7339962 DOI: 10.3389/fonc.2020.00991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis. We utilized intravital fast scanning two-photon phosphorescence lifetime imaging microscopy (FaST-PLIM) in a BCR-ABL B-ALL mouse model to image the extracellular oxygen concentrations (pO2) in leukemic BM, and we related the extracellular oxygen levels to intracellular hypoxia, vascular markers and local leukemia burden. We observed a transient increase in BM pO2 in initial disease stages with intermediate leukemia BM burden, which correlated with an expansion of blood-carrying vascular network in the BM. Yet, we also observed increased formation of intracellular pimonidazole adducts in leukemic BM at the same time. This intermediate stage was followed by a significant decrease of extracellular pO2 and further increase of intracellular hypoxia as leukemia cellularity overwhelmed BM in disease end-stage. Remarkably, treatment of leukemic mice with IACS-010759, a pharmacological inhibitor of mitochondrial Complex I, substantially increased pO2 in the BM with advanced B-ALL, and it alleviated intracellular hypoxia reported by pimonidazole staining. High rates of oxygen consumption by B-ALL cells were confirmed by Seahorse assay including in ex vivo cells. Our results suggest that B-ALL expansion in BM is associated with intense oxidative phosphorylation (OxPhos) leading to the onset of metabolic BM hypoxia despite increased BM vascularization. Targeting mitochondrial respiration may be a novel approach to counteract BM hypoxia in B-ALL and, possibly, tumor hypoxia in other OxPhos-reliant malignancies.
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karine Harutyunyan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saradhi Mallampati
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - M Anna Zal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason M Butler
- Weill Cornell Medicine, Medical School of Biological Sciences, Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Shane Plunkett
- Department of Biochemistry and Biophysics, The University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph R Marszalek
- TRACTION, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tomasz Zal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
27
|
Waclawiczek A, Hamilton A, Rouault-Pierre K, Abarrategi A, Albornoz MG, Miraki-Moud F, Bah N, Gribben J, Fitzgibbon J, Taussig D, Bonnet D. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. J Clin Invest 2020; 130:3038-3050. [PMID: 32364536 PMCID: PMC7260026 DOI: 10.1172/jci133187] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) disrupts the generation of normal blood cells, predisposing patients to hemorrhage, anemia, and infections. Differentiation and proliferation of residual normal hematopoietic stem and progenitor cells (HSPCs) are impeded in AML-infiltrated bone marrow (BM). The underlying mechanisms and interactions of residual hematopoietic stem cells (HSCs) within the leukemic niche are poorly understood, especially in the human context. To mimic AML infiltration and dissect the cellular crosstalk in human BM, we established humanized ex vivo and in vivo niche models comprising AML cells, normal HSPCs, and mesenchymal stromal cells (MSCs). Both models replicated the suppression of phenotypically defined HSPC differentiation without affecting their viability. As occurs in AML patients, the majority of HSPCs were quiescent and showed enrichment of functional HSCs. HSPC suppression was largely dependent on secreted factors produced by transcriptionally remodeled MSCs. Secretome analysis and functional validation revealed MSC-derived stanniocalcin 1 (STC1) and its transcriptional regulator HIF-1α as limiting factors for HSPC proliferation. Abrogation of either STC1 or HIF-1α alleviated HSPC suppression by AML. This study provides a humanized model to study the crosstalk among HSPCs, leukemia, and their MSC niche, and a molecular mechanism whereby AML impairs normal hematopoiesis by remodeling the mesenchymal niche.
Collapse
MESH Headings
- Animals
- Female
- Glycoproteins/genetics
- Glycoproteins/metabolism
- HL-60 Cells
- Hematopoiesis
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Alexander Waclawiczek
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ashley Hamilton
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Farideh Miraki-Moud
- Haemato-Oncology Unit, Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | - Nourdine Bah
- Bioinformatic Core Facility, Francis Crick Institute, London, United Kingdom
| | - John Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - David Taussig
- Haemato-Oncology Unit, Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
28
|
Liu Z, Liu H, He J, Lin P, Tong Q, Yang J. Myeloma cells shift osteoblastogenesis to adipogenesis by inhibiting the ubiquitin ligase MURF1 in mesenchymal stem cells. Sci Signal 2020; 13:13/633/eaay8203. [PMID: 32457115 DOI: 10.1126/scisignal.aay8203] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The suppression of bone formation is a hallmark of multiple myeloma. Myeloma cells inhibit osteoblastogenesis from mesenchymal stem cells (MSCs), which can also differentiate into adipocytes. We investigated myeloma-MSC interactions and the effects of such interactions on the differentiation of MSCs into adipocytes or osteoblasts using single-cell RNA sequencing, in vitro coculture, and subcutaneous injection of MSCs and myeloma cells into mice. Our results revealed that the α4 integrin subunit on myeloma cells stimulated vascular cell adhesion molecule-1 (VCAM1) on MSCs, leading to the activation of protein kinase C β1 (PKCβ1) signaling and repression of the muscle ring-finger protein-1 (MURF1)-mediated ubiquitylation of peroxisome proliferator-activated receptor γ2 (PPARγ2). Stabilized PPARγ2 proteins enhanced adipogenesis and consequently reduced osteoblastogenesis from MSCs, thus suppressing bone formation in vitro and in vivo. These findings reveal that suppressed bone formation is a direct consequence of myeloma-MSC contact that promotes the differentiation of MSCs into adipocytes at the expense of osteoblasts. Thus, this study provides a potential strategy for treating bone resorption in patients with myeloma by counteracting tumor-MSC interactions.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Hematologic Malignancy, Research Institute Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jin He
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Hematologic Malignancy, Research Institute Houston Methodist Hospital, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Center for Hematologic Malignancy, Research Institute Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
29
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|
30
|
Côme C, Balhuizen A, Bonnet D, Porse BT. Myelodysplastic syndrome patient-derived xenografts: from no options to many. Haematologica 2020; 105:864-869. [PMID: 32193253 PMCID: PMC7109759 DOI: 10.3324/haematol.2019.233320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christophe Côme
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Alexander Balhuizen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark .,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
31
|
Dupard SJ, Grigoryan A, Farhat S, Coutu DL, Bourgine PE. Development of Humanized Ossicles: Bridging the Hematopoietic Gap. Trends Mol Med 2020; 26:552-569. [PMID: 32470383 DOI: 10.1016/j.molmed.2020.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/16/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Ectopic 'humanized ossicles' (hOss) are miniaturized, engineered human bone organs in mice displaying a similar structure and function to native mouse bones. However, they are composed of human mesenchymal derived cells forming a humanized bone marrow niche. This in vivo reconstitution of human skeletal and hematopoietic compartments provides an opportunity to investigate the cellular and molecular processes involved in their establishment and functions in a human setting. However, current hOs strategies vary in their engineering methods and their downstream applications, undermining comprehensive exploitation of their potential. This review describes the specificities of the hOs models and highlights their potential and limits. Ultimately, we propose directions for the development of hOss as a technological platform for human hematopoietic studies.
Collapse
Affiliation(s)
- Steven J Dupard
- Laboratory for Cell, Tissue, and Organ engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden
| | - Ani Grigoryan
- Laboratory for Cell, Tissue, and Organ engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden
| | - Stephanie Farhat
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Daniel L Coutu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Paul E Bourgine
- Laboratory for Cell, Tissue, and Organ engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
32
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
33
|
Yu K, Yin Y, Ma D, Lu T, Wei D, Xiong J, Zhou Z, Zhang T, Zhang S, Fang Q, Wang J. Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 2020; 80:106008. [PMID: 31978797 DOI: 10.1016/j.intimp.2019.106008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/03/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is immune to the chemotherapy-induced apoptosis as a result of the protection of bone marrow mesenchymal stromal cells (BMSCs). However, the precise underlying mechanism of such protection remains unclear so far. In this experiment, protein tyrosine phosphatase 2 (Shp2), which was encoded by the PTPN11 gene, was highly expressed in BMSCs of the newly diagnosed and the recurrent B-ALL patients. The plasmid-induced (including Shp2 E76K) Shp2 activation in BMSCs (Shp2-activated BMSCs) markedly increased the BMSCs-mediated resistance of leukemia cells both in vitro and in vivo. Additionally, studies in vitro suggested that, the expression of vascular cell adhesion molecule 1 (VCAM-1) was markedly up-regulated in Shp2-activated BMSCs, and VCAM-1 expression in BMSCs of B-ALL patients was negatively correlated with Shp2 expression. Down-regulation of VCAM-1 in BMSCs using siRNA reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs. As for the molecular mechanism, the PI3K/AKT pathway mediated the regulation of VCAM-1 by Shp2. Blocking the very late antigen-4 (VLA-4) by antibodies in CCRF-SB cells dramatically reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs, and decreased the adhesion effects of both CCRF-SB cells and BMSCs. In conclusion, Shp2 activation in BMSCs up-regulates VCAM-1 expression through increasing the PI3K/AKT phosphorylation level, and targeting the VCAM-1/VLA-4 signaling may serve as a clinically relevant mechanism to overcome the BMSCs-mediated chemoresistance of B-ALL cells.
Collapse
Affiliation(s)
- Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Yin
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Danna Wei
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Jie Xiong
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Zheng Zhou
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Siyu Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China.
| |
Collapse
|
34
|
Tavakol DN, Tratwal J, Bonini F, Genta M, Campos V, Burch P, Hoehnel S, Béduer A, Alessandrini M, Naveiras O, Braschler T. Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials 2019; 232:119665. [PMID: 31881380 DOI: 10.1016/j.biomaterials.2019.119665] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Modeling the interaction between the supportive stroma and the hematopoietic stem and progenitor cells (HSPC) is of high interest in the regeneration of the bone marrow niche in blood disorders. In this work, we present an injectable co-culture system to study this interaction in a coherent in vitro culture and in vivo transplantation model. We assemble a 3D hematopoietic niche in vitro by co-culture of supportive OP9 mesenchymal cells and HSPCs in porous, chemically defined collagen-coated carboxymethylcellulose microscaffolds (CCMs). Flow cytometry and hematopoietic colony forming assays demonstrate the stromal supportive capacity for in vitro hematopoiesis in the absence of exogenous cytokines. After in vitro culture, we recover a paste-like living injectable niche biomaterial from CCM co-cultures by controlled, partial dehydration. Cell viability and the association between stroma and HSPCs are maintained in this process. After subcutaneous injection of this living artificial niche in vivo, we find maintenance of stromal and hematopoietic populations over 12 weeks in immunodeficient mice. Indeed, vascularization is enhanced in the presence of HSPCs. Our approach provides a minimalistic, scalable, biomimetic in vitro model of hematopoiesis in a microcarrier format that preserves the HSPC progenitor function, while being injectable in vivo without disrupting the cell-cell interactions established in vitro.
Collapse
Affiliation(s)
- Daniel Naveed Tavakol
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Genta
- Laboratory of Microsystems Engineering 4, EPFL, Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Patrick Burch
- Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Sylke Hoehnel
- Sun Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Amélie Béduer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Volumina-Medical SA, Route de la Corniche 5, CH-1066, Epalinges, Switzerland
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Hematology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Hematology Service, Department of Laboratory Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Dondossola E, Alexander S, Holzapfel BM, Filippini S, Starbuck MW, Hoffman RM, Navone N, De-Juan-Pardo EM, Logothetis CJ, Hutmacher DW, Friedl P. Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 2019; 10:10/452/eaao5726. [PMID: 30068572 DOI: 10.1126/scitranslmed.aao5726] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Intravital multiphoton microscopy (iMPM) in mice provides access to cellular and molecular mechanisms of metastatic progression of cancers and the underlying interactions with the tumor stroma. Whereas iMPM of malignant disease has been performed for soft tissues, noninvasive iMPM of solid tumor in the bone is lacking. We combined miniaturized tissue-engineered bone constructs in nude mice with a skin window to noninvasively and repetitively monitor prostate cancer lesions by three-dimensional iMPM. In vivo ossicles developed large central cavities containing mature bone marrow surrounded by a thin cortex and enabled tumor implantation and longitudinal iMPM over weeks. Tumors grew inside the bone cavity and along the cortical bone interface and induced niches of osteoclast activation (focal osteolysis). Interventional bisphosphonate therapy reduced osteoclast kinetics and osteolysis without perturbing tumor growth, indicating dissociation of the tumor-stroma axis. The ossicle window, with its high cavity-to-cortex ratio and long-term functionality, thus allows for the mechanistic dissection of reciprocal epithelial tumor-bone interactions and therapy response.
Collapse
Affiliation(s)
- Eleonora Dondossola
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Stephanie Alexander
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Boris M Holzapfel
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia.,Orthopaedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstraße 11, 97074 Würzburg, Germany
| | - Stefano Filippini
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael W Starbuck
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego and AntiCancer Inc., 7917 Ostrow Street, San Diego, CA 92111, USA
| | - Nora Navone
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elena M De-Juan-Pardo
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Christopher J Logothetis
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia.,ARC Centre in Additive Biomanufacturing, QUT, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. .,Radboud University Nijmegen, Nijmegen, Netherlands.,Cancer Genomics Centre (CGC.nl), 3584 Utrecht, Netherlands
| |
Collapse
|
36
|
Ma Y, Ma J, Zhao Y, Yang K, Zhou J, Gao F, Pan R, Lu G. Comparison of phenotypic markers and neural differentiation potential of human bone marrow stromal cells from the cranial bone and iliac crest. J Cell Physiol 2019; 234:15235-15242. [PMID: 30677139 DOI: 10.1002/jcp.28167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Cellular therapies represent a new frontier in the treatment of neurological diseases. Accumulating evidence from preclinical studies of animal models suggests that mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, are an effective therapy for neurological diseases. In this study, we established human MSC lines from both cranial bone marrow (cBMMSCs) and iliac crest bone marrow (iBMMSCs) from the same donors and found that cBMMSCs show higher expression of neural crest-associated genes than iBMMSCs. Moreover, as observed in both mRNA and protein assays, neurogenic-induced cells from cBMMSCs expressed significantly higher levels of neural markers, such as NESTIN, SLUG, SOX9, and TWIST, than those from iBMMSCs. Thus, cBMMSCs showed a greater tendency than iBMMSCs to differentiate into neuron-like cells.
Collapse
Affiliation(s)
- Yuyuan Ma
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Zhao
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kaichuang Yang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia Zhou
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Faliang Gao
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.,Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| | - Gang Lu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
37
|
Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, Martin I, Schroeder T. Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience 2019; 19:504-513. [PMID: 31442666 PMCID: PMC6710718 DOI: 10.1016/j.isci.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
The generation of humanized ectopic ossicles (hOss) in mice has been proposed as an advanced translational and fundamental model to study the human hematopoietic system. The approach relies on the presence of human bone marrow-derived mesenchymal stromal cells (hMSCs) supporting the engraftment of transplanted human hematopoietic stem and progenitor cells (HSPCs). However, the functional distribution of hMSCs within the humanized microenvironment remains to be investigated. Here, we combined genetic tools and quantitative confocal microscopy to engineer and subsequently analyze hMSCs′ fate and distribution in hOss. Implanted hMSCs reconstituted a humanized environment including osteocytes, osteoblasts, adipocytes, and stromal cells associated with vessels. By imaging full hOss, we identified rare physical interactions between hMSCs and human CD45+/CD34+/CD90+ cells, supporting a functional contact-triggered regulatory role of hMSCs. Our study highlights the importance of compiling quantitative information from humanized organs, to decode the interactions between the hematopoietic and the stromal compartments. Mesenchymal cells can generate human bone organs with tailored molecular signature Mesenchymal cells reconstitute a human niche environment capable of regulating HSPCs
Collapse
Affiliation(s)
- Paul E Bourgine
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland; Department of Clinical Sciences, Lund Stem Cell Center, Lund University, BMC B11, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristin Fritsch
- Department of Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Sebastien Pigeot
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Leo Kunz
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Daniel L Coutu
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Markus G Manz
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland.
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland.
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
38
|
Gu L, Zhang G, Zhang Y. A novel method to establish glucocorticoid resistant acute lymphoblastic leukemia cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:269. [PMID: 31221196 PMCID: PMC6585113 DOI: 10.1186/s13046-019-1280-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Background Drug-resistant cell lines, established from drug-sensitive cell lines by drug exposure in vitro, are the most useful cancer models in studies on the mechanism of chemoresistance. However, the success rate of the traditional approaches to construct such cell lines is low because a long time is required for the addition of drugs. Methods A cell culture technique was used to establish the drug-resistant cell lines from their parental cells. Molecular and cellular biological techniques including flow cytometry, MTT assay, western blotting, and DNA fingerprinting analysis were used to characterize the drug-resistant cell lines. Nude mice were used for xenograft studies. Results We established novel glucocorticoid (GC)-resistant cell lines from 3 GC-sensitive acute lymphoblastic leukemia (ALL) cell lines. First, we established a novel GC-resistant T-ALL cell line, CEM-C7/HDR, by mimicking the microenvironment of the bone marrow and culturing GC-sensitive CEM-C7–14 cells under hypoxia for 5 weeks with a single dexamethasone (Dex) treatment. The CEM-C7/HDR cells had been cultured continuously in drug-free medium under normoxia for 1 year. The IC50 and resistance index (RI) to Dex were maintained at 60~70 μM and 1500~1800, respectively, which is in consistent with the IC50 and RI of GC-resistant CEM-C1–15 cells. To clarify the reliability of the method, we subcloned CEM-C7–14 cells, and obtained Dex-resistant cell lines, CEM-C7-SC2/HDR and CEM-C7-SC14/HDR, from 2 monoclonal cells of CEM-C7–14 by the same method. Moreover, we obtained two additional Dex-resistant B-ALL cell lines, NALM-6/HDR and HXEX-ALL1/HDR, from NALM-6 and HXEX-ALL1 cells with the same approach. Conclusions CEM-C7/HDR, NALM-6/HDR and HXEX-ALL1/HDR cell lines may serve as useful GC-resistant ALL models for both in vitro and in vivo studies. Culturing under hypoxic condition with a single Dex treatment is a novel and convenient approach for generating stable GC resistant cell lines. Electronic supplementary material The online version of this article (10.1186/s13046-019-1280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Gu
- Laboratory of Hematology/Oncology, Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, No.20, Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China. .,Joint laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, China.
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanle Zhang
- Laboratory of Hematology/Oncology, Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, No.20, Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
39
|
Liu H, He J, Koh SP, Zhong Y, Liu Z, Wang Z, Zhang Y, Li Z, Tam BT, Lin P, Xiao M, Young KH, Amini B, Starbuck MW, Lee HC, Navone NM, Davis RE, Tong Q, Bergsagel PL, Hou J, Yi Q, Orlowski RZ, Gagel RF, Yang J. Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease. Sci Transl Med 2019; 11:eaau9087. [PMID: 31142679 PMCID: PMC6999853 DOI: 10.1126/scitranslmed.aau9087] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 12/26/2022]
Abstract
Osteolytic lesions in multiple myeloma are caused by osteoclast-mediated bone resorption and reduced bone formation. A unique feature of myeloma is a failure of bone healing after successful treatment. We observed adipocytes on trabecular bone near the resorbed area in successfully treated patients. Normal marrow adipocytes, when cocultured with myeloma cells, were reprogrammed and produced adipokines that activate osteoclastogenesis and suppress osteoblastogenesis. These adipocytes have reduced expression of peroxisome proliferator-activated receptor γ (PPARγ) mediated by recruitment of polycomb repressive complex 2 (PRC2), which modifies PPARγ promoter methylation at trimethyl lysine-27 histone H3. We confirmed the importance of methylation in the PPARγ promoter by demonstrating that adipocyte-specific knockout of EZH2, a member of the PRC2, prevents adipocyte reprogramming and reverses bone changes in a mouse model. We validated the strong correlation between the frequency of bone lesions and the expression of EZH2 in marrow adipocytes from patients in remission. These results define a role for adipocytes in genesis of myeloma-associated bone disease and that reversal of adipocyte reprogramming has therapeutic implications.
Collapse
Affiliation(s)
- Huan Liu
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin He
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Su Pin Koh
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuping Zhong
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhiqiang Liu
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathophysiology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yujin Zhang
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zongwei Li
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bjorn T Tam
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behrang Amini
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E Davis
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - P Leif Bergsagel
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Jian Hou
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Rd, Shanghai, People's Republic of China
| | - Qing Yi
- Cancer Center for Hematological Malignancies, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Nakamura N, Kimura T, Nam K, Fujisato T, Iwata H, Tsuji T, Kishida A. Induction of in Vivo Ectopic Hematopoiesis by a Three-Dimensional Structured Extracellular Matrix Derived from Decellularized Cancellous Bone. ACS Biomater Sci Eng 2019; 5:5669-5680. [PMID: 33405698 DOI: 10.1021/acsbiomaterials.8b01491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An in vitro blood production system could be an alternative to blood donation. We constructed a hematopoietic microenvironment using decellularized cancellous bones (DCBs) as scaffolds to sustain hematopoietic stem cells and supporting cells. The subcutaneous implantation of DCBs into mice with or without human mesenchymal stem cells (hMSCs) revealed that regardless of the presence of hMSCs DCBs were recellularized by some host cells and induced hematopoiesis. The ability of DCB to promote hematopoiesis was investigated by focusing on the components and the structure of cancellous bone, specifically reticular and adipose tissues and trabecular bone. Two decellularization methods were used to prepare DCBs. The DCBs differed concerning reticular tissue and adipose tissue. DCBs with these tissues could be recellularized at the original cellular location. An implantation experiment with DCBs revealed that they were very favorable for the persistent homing of hematopoietic stem cells. In addition, DCBs promoted ectopic hematopoiesis. The findings indicate that reticular tissues are important in directing hematopoiesis of DCBs.
Collapse
Affiliation(s)
- Naoko Nakamura
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kwangwoo Nam
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Toshiya Fujisato
- Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Science, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Tsuji
- Center for Developmental Biology, RIKEN, 2-2-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
41
|
Griessinger E, Andreeff M. NSG-S mice for acute myeloid leukemia, yes. For myelodysplastic syndrome, no. Haematologica 2019; 103:921-923. [PMID: 29866886 DOI: 10.3324/haematol.2018.193847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Emmanuel Griessinger
- INSERM U1065, Mediterranean Centre for Molecular Medicine (C3M), Team 4 Leukemia: Molecular Addictions, Resistances & Leukemic Stem Cells, Nice, France .,Faculté de Médecine, Université de Nice Sophia Antipolis, France
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Allenby MC, Panoskaltsis N, Tahlawi A, Dos Santos SB, Mantalaris A. Dynamic human erythropoiesis in a three-dimensional perfusion bone marrow biomimicry. Biomaterials 2019; 188:24-37. [DOI: 10.1016/j.biomaterials.2018.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
|
43
|
Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 2018; 103:1945-1955. [PMID: 30337364 PMCID: PMC6269284 DOI: 10.3324/haematol.2018.197004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment, also known as the bone marrow niche, is a complex network of cell types and acellular factors that supports normal hematopoiesis. For many years, leukemia was believed to be caused by a series of genetic hits to hematopoietic stem and progenitor cells, which transform them to preleukemic, and eventually to leukemic, cells. Recent discoveries suggest that genetic alterations in bone marrow niche cells, particularly in osteogenic cells, may also cause myeloid leukemia in mouse models. The osteogenic niche, which consists of osteoprogenitors, preosteoblasts, mature osteoblasts, osteocytes and osteoclasts, has been shown to play a critical role in the maintenance and expansion of hematopoietic stem and progenitor cells as well as in their oncogenic transformation into leukemia stem/initiating cells. We have recently shown that acute myeloid leukemia cells induce osteogenic differentiation in mesenchymal stromal cells to gain a growth advantage. In this review, we discuss the role of the osteogenic niche in the maintenance of hematopoietic stem and progenitor cells, as well as in their transformation into leukemia cells. We also discuss the signaling pathways that regulate osteogenic niche-hematopoietic stem and progenitor cells or osteogenic niche-leukemic stem/initiating cell interactions in the bone marrow, together with novel approaches for therapeutically targeting these interactions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX .,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Yang SJ, Son JK, Hong SJ, Lee NE, Shin DY, Park SH, An SB, Sung YC, Park JB, Yang HM, Kim SJ. Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells. Biochem Biophys Res Commun 2018; 504:302-308. [PMID: 30190122 DOI: 10.1016/j.bbrc.2018.08.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from numerous tissues including human fetal tissue are currently used in cell therapy and regenerative medicine. Among fetal tissues, the umbilical cord (UC) is one of the sources for both MSCs and endothelial cells (ECs). To establish ectopic vascularized bone tissue formation, UC-derived MSCs and ECs were isolated. UC-MSCs expressing human BMP-2 (hBMP-2-MSCs) were generated using an adenoviral system to promote bone formation. These cells were then transplanted with Matrigel into the subcutaneous tissue of an immune deficient NSG mouse, and bone tissue was analyzed after several weeks. The osteogenic differentiation ability of MSCs was elevated by transduction of the hBMP-2 expressing adenoviral system, and vascularization of bone tissue was enhanced by human umbilical vein endothelial cells (HUVEC). In this study, our results provide evidence that MSCs and HUVECs from human umbilical cord are suitable cells to investigate bone tissue engineering. The results also suggest that the co-transplantation of hBMP2-MSCs and HUVECs may be a simple and efficient strategy for improving tissue generation and angiogenesis in bone tissue engineering using stem cells.
Collapse
Affiliation(s)
- Seung-Jip Yang
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin Kyung Son
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Jun Hong
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Na-Eun Lee
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Du Yeon Shin
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Hoon Park
- SL BIGEN Inc, Korea Bio Park, Seongnam, Gyeonggi, Republic of Korea
| | - Seong Beom An
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Young Chul Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jae Berm Park
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Heung-Mo Yang
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; APR Lab Inc, Seoul, Republic of Korea.
| | - Sung Joo Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
45
|
Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers (Basel) 2018; 10:E182. [PMID: 29867053 PMCID: PMC6025347 DOI: 10.3390/cancers10060182] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
46
|
Wagner F, Holzapfel BM, McGovern JA, Shafiee A, Baldwin JG, Martine LC, Lahr CA, Wunner FM, Friis T, Bas O, Boxberg M, Prodinger PM, Shokoohmand A, Moi D, Mazzieri R, Loessner D, Hutmacher DW. Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials 2018; 171:230-246. [PMID: 29705656 DOI: 10.1016/j.biomaterials.2018.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Existing preclinical murine models often fail to predict effects of anti-cancer drugs. In order to minimize interspecies-differences between murine hosts and human bone tumors of in vivo xenograft platforms, we tissue-engineered a novel orthotopic humanized bone model. METHODS Orthotopic humanized tissue engineered bone constructs (ohTEBC) were fabricated by 3D printing of medical-grade polycaprolactone scaffolds, which were seeded with human osteoblasts and embedded within polyethylene glycol-based hydrogels containing human umbilical vein endothelial cells (HUVECs). Constructs were then implanted at the femur of NOD-scid and NSG mice. NSG mice were then bone marrow transplanted with human CD34 + cells. Human osteosarcoma (OS) growth was induced within the ohTEBCs by direct injection of Luc-SAOS-2 cells. Tissues were harvested for bone matrix and marrow morphology analysis as well as tumor biology investigations. Tumor marker expression was analyzed in the humanized OS and correlated with the expression in 68 OS patients utilizing tissue micro arrays (TMA). RESULTS After harvesting the femurs micro computed tomography and immunohistochemical staining showed an organ, which had all features of human bone. Around the original mouse femur new bone trabeculae have formed surrounded by a bone cortex. Staining for human specific (hs) collagen type-I (hs Col-I) showed human extracellular bone matrix production. The presence of nuclei staining positive for human nuclear mitotic apparatus protein 1 (hs NuMa) proved the osteocytes residing within the bone matrix were of human origin. Flow cytometry verified the presence of human hematopoietic cells. After injection of Luc-SAOS-2 cells a primary tumor and lung metastasis developed. After euthanization histological analysis showed pathognomic features of osteoblastic OS. Furthermore, the tumor utilized the previously implanted HUVECS for angiogenesis. Tumor marker expression was similar to human patients. Moreover, the recently discovered musculoskeletal gene C12orf29 was expressed in the most common subtypes of OS patient samples. CONCLUSION OhTEBCs represent a suitable orthotopic microenvironment for humanized OS growth and offers a new translational direction, as the femur is the most common location of OS. The newly developed and validated preclinical model allows controlled and predictive marker studies of primary bone tumors and other bone malignancies.
Collapse
Affiliation(s)
- Ferdinand Wagner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstraße 4, 80337 Munich, Germany; Department of Orthopedics for the University of Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077 Bad Abbach, Germany
| | - Boris M Holzapfel
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Jeremy G Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Laure C Martine
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Christoph A Lahr
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Felix M Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Onur Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Melanie Boxberg
- Institute of Pathology, Klinikum Rechts der Isar, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Peter M Prodinger
- Department of Orthopedic Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ali Shokoohmand
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Davide Moi
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Roberta Mazzieri
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Daniela Loessner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA; Institute for Advanced Study, Technical University Munich, Lichtenbergstraße 2a, 85748 Garching, Munich, Germany.
| |
Collapse
|
47
|
Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci 2018; 75:1377-1391. [PMID: 29222645 PMCID: PMC5852194 DOI: 10.1007/s00018-017-2725-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.
Collapse
Affiliation(s)
- Marie Goulard
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
| | - Christine Dosquet
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
- Cell Biology Department, APHP, Saint Louis Hospital, Paris, France
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
48
|
Douam F, Ploss A. The use of humanized mice for studies of viral pathogenesis and immunity. Curr Opin Virol 2018; 29:62-71. [PMID: 29604551 DOI: 10.1016/j.coviro.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Humanized mice, that is, animals engrafted with human tissues and/or expressing human genes, have been instrumental in improving our understanding of the pathogenesis and immunological processes that define some of the most challenging human-tropic viruses. In particular, mice engrafted with components of a human immune system (HIS) offer unprecedented opportunities for mechanistic studies of human immune responses to infection. Here, we provide a brief overview of the current panel of HIS mouse models available and cite recent examples of how such humanized animals have been used to study immune responses and pathogenesis elicited by human-tropic viruses. Finally, we will outline some of the challenges that lay ahead and strategies to improve and refine humanized mice with the goal of more accurately recapitulating human immune responses to viral infection.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
49
|
Hu X, Mei S, Meng W, Xue S, Jiang L, Yang Y, Hui L, Chen Y, Guan MX. CXCR4-mediated signaling regulates autophagy and influences acute myeloid leukemia cell survival and drug resistance. Cancer Lett 2018; 425:1-12. [PMID: 29574276 DOI: 10.1016/j.canlet.2018.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 02/04/2023]
Abstract
CXCR4 surface expression is considered an independent prognostic factor for disease relapse and survival in acute myeloid leukemia (AML) patients. Herein, we investigated targetable autophagy-related mechanisms of CXCR4 for AML therapy. Our experiments show that activation of CXCR4 signaling in AML cells increases autophagic activity and decreases cytarabine-induced apoptosis. Accordingly, combined use of autophagy inhibitors significantly increased the sensitivity of AML cells to cytarabine in vitro and in vivo. Moreover, expression of autophagy-related protein SIRT1 was correlated with SDF-1α-CXCR4 signaling, which interacts with autophagy proteins, such as ATG5 and LC3. Furthermore, in primary human AML samples, high CXCR4 expression was associated with elevated expression levels of SIRT1 and other autophagy-related proteins. Collectively, our data suggest new roles of SDF-1α-CXCR4 signaling on autophagy induction in AML cells, which further promoted their survival under stress. Targeting the SDF-1α-CXCR4-autophagy signaling may contribute to an enhanced efficacy of active treatments.
Collapse
Affiliation(s)
- Xiaojia Hu
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Mei
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenfang Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shihang Xue
- Ningbo No.4 Hospital, Ningbo, Zhejiang, China
| | - Lejian Jiang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanlan Hui
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Kornblau SM, Ruvolo PP, Wang RY, Battula VL, Shpall EJ, Ruvolo VR, McQueen T, Qui Y, Zeng Z, Pierce S, Jacamo R, Yoo SY, Le PM, Sun J, Hail N, Konopleva M, Andreeff M. Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica 2018; 103:810-821. [PMID: 29545342 PMCID: PMC5927978 DOI: 10.3324/haematol.2017.172429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) support acute myeloid leukemia (AML) cell survival in the bone marrow (BM) microenvironment. Protein expression profiles of AML-derived MSC are unknown. Reverse phase protein array analysis was performed to compare expression of 151 proteins from AML-MSC (n=106) with MSC from healthy donors (n=71). Protein expression differed significantly between the two groups with 19 proteins over-expressed in leukemia stromal cells and 9 over-expressed in normal stromal cells. Unbiased hierarchical clustering analysis of the samples using these 28 proteins revealed three protein constellations whose variation in expression defined four MSC protein expression signatures: Class 1, Class 2, Class 3, and Class 4. These cell populations appear to have clinical relevance. Specifically, patients with Class 3 cells have longer survival and remission duration compared to other groups. Comparison of leukemia MSC at first diagnosis with those obtained at salvage (i.e. relapse/refractory) showed differential expression of 9 proteins reflecting a shift toward osteogenic differentiation. Leukemia MSC are more senescent compared to their normal counterparts, possibly due to the overexpressed p53/p21 axis as confirmed by high β-galactosidase staining. In addition, overexpression of BCL-XL in leukemia MSC might give survival advantage under conditions of senescence or stress and overexpressed galectin-3 exerts profound immunosuppression. Together, our findings suggest that the identification of specific populations of MSC in AML patients may be an important determinant of therapeutic response.
Collapse
Affiliation(s)
- Steven M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Peter P Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Rui-Yu Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - YiHua Qui
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Sherry Pierce
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Rodrigo Jacamo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Suk-Young Yoo
- Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Phuong M Le
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Jeffrey Sun
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Numsen Hail
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| |
Collapse
|