1
|
Wu Q, Zhang Y, Yuan B, Huang Y, Jiang L, Liu F, Yan P, Cheng J, Long Z, Jiang X. Influence of genetic co-mutation on chemotherapeutic outcome in NPM1-mutated and FLT3-ITD wild-type AML patients. Cancer Med 2024; 13:e70102. [PMID: 39126219 PMCID: PMC11316012 DOI: 10.1002/cam4.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) gene-mutated acute myeloid leukemia (NPM1mut AML) is classified as a subtype with a favorable prognosis. However, some patients fail to achieve a complete remission or relapse after intensified chemotherapy. Genetic abnormalities in concomitant mutations contribute to heterogeneous prognosis of NPM1mut AML patients. METHODS In this study, 91 NPM1-mutated and FLT3-ITD wild-type (NPM1mut/FLT3-ITDwt) AML patients with intermediate-risk karyotype were enrolled to analyze the impact of common genetic co-mutations on chemotherapeutic outcome. RESULTS Our data revealed that TET1/2 (52/91, 57.1%) was the most prevalent co-mutation in NPM1mut AML patients, followed by IDH1/2 (36/91, 39.6%), DNMT3A (35/91, 38.5%), myelodysplastic syndrome related genes (MDS-related genes) (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and ZRSR2 genes) (35/91, 38.5%), FLT3-TKD (27/91, 29.7%) and GATA2 (13/91, 14.3%) mutations. Patients with TET1/2mut exhibited significantly worse relapse-free survival (RFS) (median, 28.7 vs. not reached (NR) months; p = 0.0382) compared to patients with TET1/2wt, while no significant difference was observed in overall survival (OS) (median, NR vs. NR; p = 0.3035). GATA2mut subtype was associated with inferior OS (median, 28 vs. NR months; p < 0.0010) and RFS (median, 24 vs. NR months; p = 0.0224) compared to GATA2wt. By multivariate analysis, GATA2mut and MDS-related genesmut were independently associated with worse survival. CONCLUSION Mutations in TET1/2, GATA2 and MDS-related genes were found to significantly influence the chemotherapeutic outcome of patients with NPM1mut AML. The findings of our study have significant clinical implications for identifying patients who have an adverse response to frontline chemotherapy and provide a novel reference for further prognostic stratification of NPM1mut/FLT3-ITDwt AML patients.
Collapse
Affiliation(s)
- Quan Wu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujiao Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Baoyi Yuan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yun Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ling Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fang Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ping Yan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiaying Cheng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiquan Long
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xuejie Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
2
|
Han X, Liu W, Kang Z, Li D. Prognostic significance of GATA2 in patients with MDS/AML: a systematic review and meta-analysis. Ann Hematol 2024:10.1007/s00277-024-05899-2. [PMID: 39026028 DOI: 10.1007/s00277-024-05899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
GATA2 deficiency syndrome is a heterogeneous disorder characterized by a high risk of developing myelodysplastic syndrome (MDS)/acute myeloid leukaemia (AML). We conducted a meta-analysis of the literature to explore the prognostic significance of GATA2 mutations in patients diagnosed with MDS/AML, as previous studies have yielded conflicting findings regarding the impact of GATA2 mutations on patient outcomes. We conducted a comprehensive literature search of databases such as PubMed, Embase, the Cochrane Library, and the Web of Science to obtain studies on the prognostic significance of GATA2 mutations in patients with MDS/AML that were published through January 2024. We extracted the hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), disease-free survival (DFS), and event-free survival (EFS). The meta-analysis was conducted by choosing either a fixed-effect model or a random-effect model, depending on the variability observed among the studies. A total of 13 cohort studies were included in the final meta-analysis, including 2714 patients with MDS, of whom 644 had GATA2 mutations. The results revealed that GATA2 mutations had an adverse impact on OS (HR = 1.54, 95% CI = 1.08-2.18, P = 0.02) and EFS (HR = 1.32, 95% CI = 1.01-1.72, P = 0.04), but no significant effect on DFS (HR = 1.21, 95% CI = 0.89-1.64, P = 0.23). GATA2 mutations were associated with a significantly shorter OS in MDS patients (HR = 2.56, 95% CI = 1.42-4.06, P = 0.002) but not in AML patients (HR = 1.08, 95% CI = 0.92-1.26, P = 0.37). Our meta-analysis revealed that GATA2 mutations are associated with unfavourable outcomes in patients with MDS/AML. Furthermore, patients harbouring these mutations should be prioritized for aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Xueya Han
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, 24 Fukang Road, Nankai, Tianjin, China
| | - Wei Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, 24 Fukang Road, Nankai, Tianjin, China
| | - Zhongyu Kang
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, 24 Fukang Road, Nankai, Tianjin, China
| | - Daihong Li
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, 24 Fukang Road, Nankai, Tianjin, China.
| |
Collapse
|
3
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
4
|
Robbins DJ, Pavletich TS, Patil AT, Pahopos D, Lasarev M, Polaki US, Gahvari ZJ, Bresnick EH, Matson DR. Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia. Blood Adv 2024; 8:80-92. [PMID: 38029365 PMCID: PMC10787255 DOI: 10.1182/bloodadvances.2023011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.
Collapse
Affiliation(s)
- Daniel J. Robbins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Tatiana S. Pavletich
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Apoorva T. Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Demetra Pahopos
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Usha S. Polaki
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| | - Daniel R. Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
5
|
West RR, Bauer TR, Tuschong LM, Embree LJ, Calvo KR, Tillo D, Davis J, Holland SM, Hickstein DD. A novel GATA2 distal enhancer mutation results in MonoMAC syndrome in 2 second cousins. Blood Adv 2023; 7:6351-6363. [PMID: 37595058 PMCID: PMC10587712 DOI: 10.1182/bloodadvances.2023010458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Mutations in the transcription factor GATA2 can cause MonoMAC syndrome, a GATA2 deficiency disease characterized by several findings, including disseminated nontuberculous mycobacterial infections, severe deficiencies of monocytes, natural killer cells, and B lymphocytes, and myelodysplastic syndrome. GATA2 mutations are found in ∼90% of patients with a GATA2 deficiency phenotype and are largely missense mutations in the conserved second zinc-finger domain. Mutations in an intron 5 regulatory enhancer element are also well described in GATA2 deficiency. Here, we present a multigeneration kindred with the clinical features of GATA2 deficiency but lacking an apparent GATA2 mutation. Whole genome sequencing revealed a unique adenine-to-thymine variant in the GATA2 -110 enhancer 116,855 bp upstream of the GATA2 ATG start site. The mutation creates a new E-box consensus in position with an existing GATA-box to generate a new hematopoietic regulatory composite element. The mutation segregates with the disease in several generations of the family. Cell type-specific allelic imbalance of GATA2 expression was observed in the bone marrow of a patient with higher expression from the mutant-linked allele. Allele-specific overexpression of GATA2 was observed in CRISPR/Cas9-modified HL-60 cells and in luciferase assays with the enhancer mutation. This study demonstrates overexpression of GATA2 resulting from a single nucleotide change in an upstream enhancer element in patients with MonoMAC syndrome. Patients in this study were enrolled in the National Institute of Allergy and Infectious Diseases clinical trial and the National Cancer Institute clinical trial (both trials were registered at www.clinicaltrials.gov as #NCT01905826 and #NCT01861106, respectively).
Collapse
Affiliation(s)
- Robert R. West
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas R. Bauer
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura M. Tuschong
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J. Embree
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Desiree Tillo
- Genomics Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
7
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
8
|
Li Y, Liu Y, Gao X, Zhao W, Zhou F, Liu H, Wang W. Identification of novel PIEZO1::CBFA2T3 and INO80C::SETBP1 fusion genes in an acute myeloid leukemia patient by RNA-seq. Mol Biol Rep 2023; 50:1961-1966. [PMID: 36472727 DOI: 10.1007/s11033-022-08138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fusion genes are recurrent molecular aberrations in acute myeloid leukemia, with significant diagnostic and therapeutic value. The identification of novel fusion genes provides advanced biomarkers for diagnosis and facilitates the discovery of drug targets. METHODS Bone marrow sample was extracted from an acute myeloid leukemia patient and RNA-sequencing was performed. Several bioinformatic methods, including differential analysis and Gene Set Enrichment Analysis (GSEA) pathway analyses were conducted based on the expression data. RESULTS Two novel fusion genes, PIEZO1::CBFA2T3 and INO80C::SETBP1, were identified by RNA-seq. Differential analysis found that SETBP1 and CBFA2T3 were overexpressed, and GSEA analysis showed the activation of immune-related pathways. These findings indicate dysfunction of the fusion related- genes and possible pathogenic effect of the fusion genes. CONCLUSION We reported a male AML patient with presence of PIEZO1::CBFA2T3 and INO80C::SETBP1 fusion genes.
Collapse
Affiliation(s)
- Yanling Li
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Liu
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Gao
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiwei Zhao
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghui Zhou
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China.
- Beijing Lu Daopei Institute of Hematology, Beijing, 100076, China.
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100076, China.
| | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Mendes-de-Almeida DP, Andrade FG, dos Santos-Bueno FV, Saraiva Freitas DF, Soares-Lima SC, Zancopé-Oliveira RM, Pombo-de-Oliveira MS. GATA2 variants in patients with non-tuberculous mycobacterial or fungal infections without known immunodeficiencies. Hematol Transfus Cell Ther 2022:S2531-1379(22)00035-9. [DOI: 10.1016/j.htct.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022] Open
|
10
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
11
|
Wang D, Zhang T, Madunić K, de Waard AA, Blöchl C, Mayboroda OA, Griffioen M, Spaapen RM, Huber CG, Lageveen-Kammeijer GSM, Wuhrer M. Glycosphingolipid-Glycan Signatures of Acute Myeloid Leukemia Cell Lines Reflect Hematopoietic Differentiation. J Proteome Res 2022; 21:1029-1040. [PMID: 35168327 PMCID: PMC8981326 DOI: 10.1021/acs.jproteome.1c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aberrant expression of certain glycosphingolipids (GSLs) is associated with the differentiation of acute myeloid leukemia (AML) cells. However, the expression patterns of GSLs in AML are still poorly explored because of their complexity, the presence of multiple isomeric structures, and tedious analytical procedures. In this study, we performed an in-depth GSL glycan analysis of 19 AML cell lines using porous graphitized carbon liquid chromatography-mass spectrometry revealing strikingly different GSL glycan profiles between the various AML cell lines. The cell lines of the M6 subtype showed a high expression of gangliosides with α2,3-sialylation and Neu5Gc, while the M2 and M5 subtypes were characterized by high expression of (neo)lacto-series glycans and Lewis A/X antigens. Integrated analysis of glycomics and available transcriptomics data revealed the association of GSL glycan abundances with the transcriptomics expression of certain glycosyltransferases (GTs) and transcription factors (TFs). In addition, correlations were found between specific GTs and TFs. Our data reveal TFs GATA2, GATA1, and RUNX1 as candidate inducers of the expression of gangliosides and sialylation via regulation of the GTs ST3GAL2 and ST8SIA1. In conclusion, we show that GSL glycan expression levels are associated with hematopoietic AML classifications and TF and GT gene expression. Further research is needed to dissect the regulation of GSL expression and its role in hematopoiesis and associated malignancies.
Collapse
Affiliation(s)
- Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.,Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
12
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
13
|
Koyunlar C, de Pater E. From Basic Biology to Patient Mutational Spectra of GATA2 Haploinsufficiencies: What Are the Mechanisms, Hurdles, and Prospects of Genome Editing for Treatment. Front Genome Ed 2021; 2:602182. [PMID: 34713225 PMCID: PMC8525360 DOI: 10.3389/fgeed.2020.602182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are monogenetic disorders that result in a reduction of mature blood cell formation and predisposition to leukemia. In children with myeloid leukemia the gene most often mutated is Gata binding protein 2 (GATA2) and 80% of patients with GATA2 mutations develop myeloid malignancy before the age of forty. Although GATA2 is established as one of the key regulators of embryonic and adult hematopoiesis, the mechanisms behind the leukemia predisposition in GATA2 haploinsufficiencies is ambiguous. The only curative treatment option currently available is allogeneic hematopoietic stem cell transplantation (allo-SCT). However, allo-SCT can only be applied at a relatively late stage of the disease as its applicability is compromised by treatment related morbidity and mortality (TRM). Alternatively, autologous hematopoietic stem cell transplantation (auto-SCT), which is associated with significantly less TRM, might become a treatment option if repaired hematopoietic stem cells would be available. Here we discuss the recent literature on leukemia predisposition syndromes caused by GATA2 mutations, current knowledge on the function of GATA2 in the hematopoietic system and advantages and pitfalls of potential treatment options provided by genome editing.
Collapse
Affiliation(s)
- Cansu Koyunlar
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
14
|
Takai J, Shimada T, Nakamura T, Engel JD, Moriguchi T. Gata2 heterozygous mutant mice exhibit reduced inflammatory responses and impaired bacterial clearance. iScience 2021; 24:102836. [PMID: 34471858 PMCID: PMC8390858 DOI: 10.1016/j.isci.2021.102836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases continually pose global medical challenges. The transcription factor GATA2 establishes gene networks and defines cellular identity in hematopoietic stem/progenitor cells and in progeny committed to specific lineages. GATA2-haploinsufficient patients exhibit a spectrum of immunodeficiencies associated with bacterial, viral, and fungal infections. Despite accumulating clinical knowledge of the consequences of GATA2 haploinsufficiency in humans, it is unclear how GATA2 haploinsufficiency compromises host anti-infectious defenses. To address this issue, we examined Gata2-heterozygous mutant (G2 Het) mice as a model for human GATA2 haploinsufficiency. In vivo inflammation imaging and cytokine multiplex analysis demonstrated that G2 Het mice had attenuated inflammatory responses with reduced levels of inflammatory cytokines, particularly IFN-γ, IL-12p40, and IL-17A, during lipopolysaccharide-induced acute inflammation. Consequently, bacterial clearance was significantly impaired in G2 Het mice after cecal ligation and puncture-induced polymicrobial peritonitis. These results provide direct molecular insights into GATA2-directed host defenses and the pathogenic mechanisms underlying observed immunodeficiencies in GATA2-haploinsufficient patients.
Collapse
Affiliation(s)
- Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Takashi Shimada
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - James Douglas Engel
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| |
Collapse
|
15
|
Allele-specific expression of GATA2 due to epigenetic dysregulation in CEBPA double-mutant AML. Blood 2021; 138:160-177. [PMID: 33831168 DOI: 10.1182/blood.2020009244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.
Collapse
|
16
|
Fu YK, Tan Y, Wu B, Dai YT, Xu XG, Pan MM, Chen ZW, Qiao N, Wu J, Jiang L, Lu J, Chen B, Rein A, Izraeli S, Sun XJ, Huang JY, Huang QH, Chen Z, Chen SJ. Gata2-L359V impairs primitive and definitive hematopoiesis and blocks cell differentiation in murine chronic myelogenous leukemia model. Cell Death Dis 2021; 12:568. [PMID: 34078881 PMCID: PMC8173010 DOI: 10.1038/s41419-021-03826-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
GATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation. We established a Gata2-L359V knockin mouse model in which the homozygous Gata2-L359V mutation caused major defects in primitive erythropoiesis with an accumulation of erythroid precursors and severe anemia, leading to embryonic lethality around E11.5. During adult life, the Gata2-L359V heterozygous mice exhibited a notable decrease in bone marrow (BM) recovery under stress induction with cytotoxic drug 5-fluorouracil. Using RNA sequencing, it was revealed that homozygous Gata2-L359V suppressed genes related to embryonic hematopoiesis in yolk sac, while heterozygous Gata2-L359V dysregulated genes related to cell cycle and proliferation in BM Lin-Sca1+c-kit+ cells. Furthermore, through chromatin immunoprecipitation sequencing and transactivation experiments, we found that this mutation enhanced the DNA-binding capacity and transcriptional activities of Gata2, which was likely associated with the altered expression of some essential genes during embryonic and adult hematopoiesis. In mice model harboring BCR/ABL, single-cell RNA-sequencing demonstrated that Gata2-L359V induced additional gene expression profile abnormalities and partially affected cell differentiation at the early stage of myelomonocytic lineage, evidenced by the increase of granulocyte-monocyte progenitors and monocytosis. Taken together, our study unveiled that Gata2-L359V mutation induces defective hematopoietic development and blocks the differentiation of CML cells.
Collapse
Affiliation(s)
- Ya-Kai Fu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China ,grid.415869.7Present Address: Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Bo Wu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences and SJTU School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Xiao-Guang Xu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Meng-Meng Pan
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Zhi-Wei Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Niu Qiao
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jing Wu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Lu Jiang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jing Lu
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Bing Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Avigail Rein
- grid.12136.370000 0004 1937 0546Cancer Research Center, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Izraeli
- grid.12136.370000 0004 1937 0546Division of Pediatric Hemato-Oncology, Schneider Children’s Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiao-Jian Sun
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jin-Yan Huang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Qiu-Hua Huang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Zhu Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Human GATA2 mutations and hematologic disease: how many paths to pathogenesis? Blood Adv 2021; 4:4584-4592. [PMID: 32960960 DOI: 10.1182/bloodadvances.2020002953] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023] Open
Abstract
The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example, germline variation in GATA2, encoding a vital transcriptional regulator of multilineage hematopoiesis, creates a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2 deficiency syndrome. More than 300 GATA2 variants representing missense, truncating, and noncoding enhancer mutations have been documented. Although these variants can diminish GATA2 expression and/or function, the functional ramifications of many variants are unknown. Studies using genetic rescue and knockin mouse systems have established that GATA2 mutations differentially affect molecular processes in distinct target genes and within a single target cell. Considering that target genes for a transcription factor can differ in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell type specific, the context-dependent consequences of GATA2 mutations in experimental systems portend the complex phenotypes and interindividual variation of GATA2 deficiency syndrome. This review documents GATA2 human genetics and the state of efforts to traverse from physiological insights to pathogenic mechanisms.
Collapse
|
18
|
Wang M, Wang R, Wang H, Chen C, Qin J, Gao X, Yu L. Difference in gene mutation profile in patients with refractory/relapsed versus newly diagnosed acute myeloid leukemia based on targeted next-generation sequencing. Leuk Lymphoma 2021; 62:2416-2427. [PMID: 33913388 DOI: 10.1080/10428194.2021.1919661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have reported the genetic mutation profile in previously untreated acute myeloid leukemia (AML) patients using a targeted NGS screening method. In this study, we evaluated the characteristics and prognostic significance of gene mutations in refractory/relapsed (R/R) AML patients by comparing their gene mutation spectrum to those newly diagnosed. The frequencies of tumor suppressor mutations were increased, while the mutation frequencies of nucleophosmin and spliceosome complex were decreased in relapsed AML. The frequency of FLT3-ITD mutation was increased, while that of CEBPA biallelic mutation decreased in refractory AML. Activated signaling mutations predicted a lower complete remission rate. FLT3-ITD mutation predicted an inferior overall survival after relapse. DNMT3A mutation predicted an inferior relapse-free survival in R/R AML. These findings may shed light on the molecular mechanism study of leukemia refractory or relapse and provide new guidance for the dynamic risk assessment of AML.
Collapse
Affiliation(s)
- Mengzhen Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Chongjian Chen
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Jiayue Qin
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Wang H, Cui B, Sun H, Zhang F, Rao J, Wang R, Zhao S, Shen S, Liu Y. Aberrant GATA2 Activation in Pediatric B-Cell Acute Lymphoblastic Leukemia. Front Pediatr 2021; 9:795529. [PMID: 35087776 PMCID: PMC8787225 DOI: 10.3389/fped.2021.795529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol 2020; 33:101197. [PMID: 33038986 PMCID: PMC7388796 DOI: 10.1016/j.beha.2020.101197] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.
Collapse
|
21
|
van Lier YF, de Bree GJ, Jonkers RE, Roelofs JJTH, Ten Berge IJM, Rutten CE, Nur E, Kuijpers TW, Hazenberg MD, Zeerleder SS. Allogeneic hematopoietic cell transplantation in the management of GATA2 deficiency and pulmonary alveolar proteinosis. Clin Immunol 2020; 218:108522. [PMID: 32682923 DOI: 10.1016/j.clim.2020.108522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Human hematopoiesis is critically dependent on the transcription factor GATA2. Patients with GATA2 deficiency typically present with myelodysplastic syndrome, reduced numbers of monocytes, NK cells and B cells, and/or opportunistic infections. Here, we present two families that harbor distinct GATA2 mutations with highly variable onset and course of disease. We discuss the use of allogeneic hematopoietic cell transplantation in these patients, especially as treatment for pulmonary alveolar proteinosis.
Collapse
Affiliation(s)
- Yannouck F van Lier
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AII), Cancer Center Amsterdam (CCA), Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Amsterdam UMC Location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - René E Jonkers
- Department of Respiratory Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Ineke J M Ten Berge
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AII), Cancer Center Amsterdam (CCA), Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Caroline E Rutten
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Blood Cell Research, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC location AMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Switzerland and Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
22
|
Soukup AA, Bresnick EH. GATA2 +9.5 enhancer: from principles of hematopoiesis to genetic diagnosis in precision medicine. Curr Opin Hematol 2020; 27:163-171. [PMID: 32205587 PMCID: PMC7331797 DOI: 10.1097/moh.0000000000000576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW By establishing mechanisms that deliver oxygen to sustain cells and tissues, fight life-threatening pathogens and harness the immune system to eradicate cancer cells, hematopoietic stem and progenitor cells (HSPCs) are vital in health and disease. The cell biological framework for HSPC generation has been rigorously developed, yet recent single-cell transcriptomic analyses have unveiled permutations of the hematopoietic hierarchy that differ considerably from the traditional roadmap. Deploying mutants that disrupt specific steps in hematopoiesis constitutes a powerful strategy for deconvoluting the complex cell biology. It is striking that a single transcription factor, GATA2, is so crucial for HSPC generation and function, and therefore it is instructive to consider mechanisms governing GATA2 expression and activity. The present review focuses on an essential GATA2 enhancer (+9.5) and how +9.5 mutants inform basic and clinical/translational science. RECENT FINDINGS +9.5 is essential for HSPC generation and function during development and hematopoietic regeneration. Human +9.5 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. Qualitatively and quantitatively distinct contributions of +9.5 cis-regulatory elements confer context-dependent enhancer activity. The discovery of +9.5 and its mutant alleles spawned fundamental insights into hematopoiesis, and given its role to suppress blood disease emergence, clinical centers test for mutations in this sequence to diagnose the cause of enigmatic cytopenias. SUMMARY Multidisciplinary approaches to discover and understand cis-regulatory elements governing expression of key regulators of hematopoiesis unveil biological and mechanistic insights that provide the logic for innovating clinical applications.
Collapse
|
23
|
Schmidt L, Heyes E, Grebien F. Gain-of-Function Effects of N-Terminal CEBPA Mutations in Acute Myeloid Leukemia. Bioessays 2019; 42:e1900178. [PMID: 31867767 PMCID: PMC7115832 DOI: 10.1002/bies.201900178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the CEBPA gene are present in 10–15% of acute myeloid leukemia (AML) patients. The most frequent type of mutations leads to the expression of an N-terminally truncated variant of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα), termed p30. While initial reports proposed that p30 represents a dominant-negative version of the wild-type C/EBPα protein, other studies show that p30 retains the capacity to actively regulate gene expression. Recent global transcriptomic and epigenomic analyses have advanced the understanding of the distinct roles of the p30 isoform in leukemogenesis. This review outlines direct and indirect effects of the C/EBPα p30 variant on oncogenic transformation of hematopoietic progenitor cells and discusses how studies of N-terminal CEBPA mutations in AML can be extrapolated to identify novel gain-of-function features in oncoproteins that arise from recurrent truncating mutations in transcription factors.
Collapse
Affiliation(s)
- Luisa Schmidt
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Elizabeth Heyes
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, 1210, Austria
| |
Collapse
|
24
|
Shimizu R, Yamamoto M. Quantitative and qualitative impairments in GATA2 and myeloid neoplasms. IUBMB Life 2019; 72:142-150. [PMID: 31675473 DOI: 10.1002/iub.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
GATA2 is a key transcription factor critical for hematopoietic cell development. During the past decade, it became clear that heterozygous germline mutations in the GATA2 gene cause bone marrow failure and primary immunodeficiency syndrome, conditions that lead to a predisposition toward myeloid neoplasms, such as myelodysplastic syndrome, acute myeloid leukemia, and chronic myelomonocytic leukemia. Somatic mutations of the GATA2 gene are also involved in the pathogenesis of myeloid malignancies. Cases with GATA2 gene mutations are divided into two groups, resulting in either a quantitative deficiency or a qualitative defect in the GATA2 protein depending on the mutation position and type. In the former case, GATA2 mRNA expression from the mutant allele is markedly reduced or completely abrogated, and reduced GATA2 protein expression is involved in the pathogenesis. In the latter case, almost equal amounts of structurally abnormal and wildtype GATA2 proteins are predicted to be present and contribute to the pathogenesis. The development of mouse models of these human GATA2-related diseases has been undertaken, which naturally develop myeloid neoplasms.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
25
|
Falconi G, Fabiani E, Criscuolo M, Fianchi L, Finelli C, Cerqui E, Pelosi E, Screnci M, Gurnari C, Zangrilli I, Postorino M, Laurenti L, Piciocchi A, Testa U, Lo-Coco F, Voso MT. Transcription factors implicated in late megakaryopoiesis as markers of outcome after azacitidine and allogeneic stem cell transplantation in myelodysplastic syndrome. Leuk Res 2019; 84:106191. [DOI: 10.1016/j.leukres.2019.106191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 01/07/2023]
|
26
|
Wiggers CR, Baak ML, Sonneveld E, Nieuwenhuis EE, Bartels M, Creyghton MP. AML Subtype Is a Major Determinant of the Association between Prognostic Gene Expression Signatures and Their Clinical Significance. Cell Rep 2019; 28:2866-2877.e5. [DOI: 10.1016/j.celrep.2019.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
|
27
|
Menendez-Gonzalez JB, Sinnadurai S, Gibbs A, Thomas LA, Konstantinou M, Garcia-Valverde A, Boyer M, Wang Z, Boyd AS, Blair A, Morgan RG, Rodrigues NP. Inhibition of GATA2 restrains cell proliferation and enhances apoptosis and chemotherapy mediated apoptosis in human GATA2 overexpressing AML cells. Sci Rep 2019; 9:12212. [PMID: 31434974 PMCID: PMC6704064 DOI: 10.1038/s41598-019-48589-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/07/2019] [Indexed: 11/16/2022] Open
Abstract
GATA2, a zinc finger transcription factor predominantly expressed in hematopoietic cells, acts as an essential regulator of hematopoietic stem cell generation, survival and functionality. Loss and gain of GATA2 expression has been implicated in myelodysplastic syndrome and acute myeloid leukemia (AML) yet the precise biological impact of GATA2 expression on human AML cell fate decisions remains ambiguous. Herein, we performed large-scale bioinformatics that demonstrated relatively frequent GATA2 overexpression in AML patients as well as select human AML (or AML-like) cell lines. By using shRNAi to target GATA2 in these AML cell lines, and an AML cell line expressing normal levels of GATA2, we found that inhibition of GATA2 caused attenuated cell proliferation and enhanced apoptosis exclusively in AML cell lines that overexpress GATA2. We proceeded to pharmacologically inhibit GATA2 in concert with AML chemotherapeutics and found this augmented cell killing in AML cell lines that overexpress GATA2, but not in an AML cell line expressing normal levels of GATA2. These data indicate that inhibition of GATA2 enhances chemotherapy-mediated apoptosis in human AML cells overexpressing GATA2. Thus, we define novel insights into the oncogenic role of GATA2 in human AML cells and suggest the potential utilization of transient GATA2 therapeutic targeting in AML.
Collapse
Affiliation(s)
- Juan Bautista Menendez-Gonzalez
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Samantha Sinnadurai
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Maria Konstantinou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Alfonso Garcia-Valverde
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Magali Boyer
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom
| | - Zhengke Wang
- Providence Veterans Affairs Medical Center, Alpert Medical School, Brown University, Providence, RI 029208, USA
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, Royal Free Hospital, London, NW3 2PF, United Kingdom
- Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, NW3 2QG, United Kingdom
| | - Allison Blair
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, BS34 7QH, United Kingdom
| | - Rhys G Morgan
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Hadyn Ellis Building, Cardiff, CF24 4HQ, United Kingdom.
| |
Collapse
|
28
|
Menendez-Gonzalez JB, Vukovic M, Abdelfattah A, Saleh L, Almotiri A, Thomas LA, Agirre-Lizaso A, Azevedo A, Menezes AC, Tornillo G, Edkins S, Kong K, Giles P, Anjos-Afonso F, Tonks A, Boyd AS, Kranc KR, Rodrigues NP. Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Stem Cell Reports 2019; 13:291-306. [PMID: 31378673 PMCID: PMC6700503 DOI: 10.1016/j.stemcr.2019.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Self Renewal
- Disease Models, Animal
- GATA2 Transcription Factor/antagonists & inhibitors
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
| | - Milica Vukovic
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aloña Agirre-Lizaso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aleksandra Azevedo
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ana Catarina Menezes
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Kay Kong
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Fernando Anjos-Afonso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alex Tonks
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London NW3 2PF, UK; Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
| | - Kamil R Kranc
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
29
|
GATA2 mutations and overexpression in pediatric acute myeloid leukemia. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2019. [DOI: 10.1016/j.phoj.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
Schmidt L, Heyes E, Scheiblecker L, Eder T, Volpe G, Frampton J, Nerlov C, Valent P, Grembecka J, Grebien F. CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex. Leukemia 2019; 33:1608-1619. [PMID: 30679799 PMCID: PMC6612510 DOI: 10.1038/s41375-019-0382-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/28/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
The gene encoding the transcription factor C/EBPα is mutated in 10-15% of acute myeloid leukemia (AML) patients. N-terminal CEBPA mutations cause ablation of full-length C/EBPα without affecting the expression of a shorter oncogenic isoform, termed p30. The mechanistic basis of p30-induced leukemogenesis is incompletely understood. Here, we demonstrate that the MLL1 histone-methyltransferase complex represents a critical actionable vulnerability in CEBPA-mutated AML. Oncogenic C/EBPα p30 and MLL1 show global co-localization on chromatin and p30 exhibits robust physical interaction with the MLL1 complex. CRISPR/Cas9-mediated mutagenesis of MLL1 results in proliferation arrest and myeloid differentiation in C/EBPα p30-expressing cells. In line, CEBPA-mutated hematopoietic progenitor cells are hypersensitive to pharmacological targeting of the MLL1 complex. Inhibitor treatment impairs proliferation and restores myeloid differentiation potential in mouse and human AML cells with CEBPA mutations. Finally, we identify the transcription factor GATA2 as a direct critical target of the p30-MLL1 interaction. Altogether, we show that C/EBPα p30 requires the MLL1 complex to regulate oncogenic gene expression and that CEBPA-mutated AML is hypersensitive to perturbation of the MLL1 complex. These findings identify the MLL1 complex as a potential therapeutic target in AML with CEBPA mutations.
Collapse
Affiliation(s)
- Luisa Schmidt
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Elizabeth Heyes
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | | | - Thomas Eder
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Giacomo Volpe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou, China
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Claus Nerlov
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
31
|
Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, O'Toole SA, Ballinger ML, Gill D, Thomas DM, Mercer TR, Blackburn J. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun 2019; 10:1388. [PMID: 30918253 PMCID: PMC6437215 DOI: 10.1038/s41467-019-09374-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
Fusion genes are a major cause of cancer. Their rapid and accurate diagnosis can inform clinical action, but current molecular diagnostic assays are restricted in resolution and throughput. Here, we show that targeted RNA sequencing (RNAseq) can overcome these limitations. First, we establish that fusion gene detection with targeted RNAseq is both sensitive and quantitative by optimising laboratory and bioinformatic variables using spike-in standards and cell lines. Next, we analyse a clinical patient cohort and improve the overall fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted RNAseq while demonstrating high concordance for patient samples with previous diagnoses. Finally, we show that targeted RNAseq offers additional advantages by simultaneously measuring gene expression levels and profiling the immune-receptor repertoire. We anticipate that targeted RNAseq will improve clinical fusion gene detection, and its increasing use will provide a deeper understanding of fusion gene biology. Rapid and accurate detection of fusion genes is important in cancer diagnostics. Here, the authors demonstrate that targeted RNA sequencing provides fast, sensitive and quantitative gene fusion detection and overcomes the limitations of approaches currently in clinical use.
Collapse
Affiliation(s)
- Erin E Heyer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Danson Wooi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Christina I Selinger
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, 0727, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, 0002, South Africa.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia
| | - Sandra A O'Toole
- St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia.,The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,Australian Clinical Labs, Sydney, 2010, NSW, Australia
| | - Mandy L Ballinger
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Devinder Gill
- Department of Haematology, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia. .,Altius Institute for Biomedical Sciences, Seattle, 98121, WA, USA.
| | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.
| |
Collapse
|
32
|
CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1. Blood Cancer J 2019; 9:33. [PMID: 30850577 PMCID: PMC6408575 DOI: 10.1038/s41408-019-0194-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/31/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The inv(16) acute myeloid leukemia-associated CBFβ-MYH11 fusion is proposed to block normal myeloid differentiation, but whether this subtype of leukemia cells is poised for a unique cell lineage remains unclear. Here, we surveyed the functional consequences of CBFβ-MYH11 in primary inv(16) patient blasts, upon expression during hematopoietic differentiation in vitro and upon knockdown in cell lines by multi-omics profiling. Our results reveal that primary inv(16) AML cells share common transcriptomic signatures and epigenetic determiners with megakaryocytes and erythrocytes. Using in vitro differentiation systems, we reveal that CBFβ-MYH11 knockdown interferes with normal megakaryocyte maturation. Two pivotal regulators, GATA2 and KLF1, are identified to complementally occupy RUNX1-binding sites upon fusion protein knockdown, and overexpression of GATA2 partly induces a gene program involved in megakaryocyte-directed differentiation. Together, our findings suggest that in inv(16) leukemia, the CBFβ-MYH11 fusion inhibits primed megakaryopoiesis by attenuating expression of GATA2/KLF1 and interfering with a balanced transcriptional program involving these two factors.
Collapse
|
33
|
Kidoya H, Muramatsu F, Shimamura T, Jia W, Satoh T, Hayashi Y, Naito H, Kunisaki Y, Arai F, Seki M, Suzuki Y, Osawa T, Akira S, Takakura N. Regnase-1-mediated post-transcriptional regulation is essential for hematopoietic stem and progenitor cell homeostasis. Nat Commun 2019; 10:1072. [PMID: 30842549 PMCID: PMC6403248 DOI: 10.1038/s41467-019-09028-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
The balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) maintains hematopoietic homeostasis, failure of which can lead to hematopoietic disorder. HSPC fate is controlled by signals from the bone marrow niche resulting in alteration of the stem cell transcription network. Regnase-1, a member of the CCCH zinc finger protein family possessing RNAse activity, mediates post-transcriptional regulatory activity through degradation of target mRNAs. The precise function of Regnase-1 has been explored in inflammation-related cytokine expression but its function in hematopoiesis has not been elucidated. Here, we show that Regnase-1 regulates self-renewal of HSPCs through modulating the stability of Gata2 and Tal1 mRNA. In addition, we found that dysfunction of Regnase-1 leads to the rapid onset of abnormal hematopoiesis. Thus, our data reveal that Regnase-1-mediated post-transcriptional regulation is required for HSPC maintenance and suggest that it represents a leukemia tumor suppressor.
Collapse
Affiliation(s)
- Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan.
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Nagoya, Showa-ku,, 466-8550, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita, 565-0871, Japan
| | - Yumiko Hayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University, 3-1-1 Maidashi, Fukuoka, Higashi-ku, 812-8582, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University, 3-1-1 Maidashi, Fukuoka, Higashi-ku, 812-8582, Japan
| | - Masahide Seki
- Department of Medical Genome Sciences Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Tokyo, Meguro-ku, 153-8904, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita, 565-0871, Japan.,Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Osaka, Suita,, 565-0871, Japan.
| |
Collapse
|
34
|
Alfayez M, Wang SA, Bannon SA, Kontoyiannis DP, Kornblau SM, Orange JS, Mace EM, DiNardo CD. Myeloid malignancies with somatic GATA2 mutations can be associated with an immunodeficiency phenotype. Leuk Lymphoma 2019; 60:2025-2033. [PMID: 30648453 DOI: 10.1080/10428194.2018.1551535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline mutations in GATA2 are associated with a complex immunodeficiency and cancer predisposition syndrome. Somatic GATA2mut in myeloid malignancies may impart a similar phenotype. We reviewed adult patients with a diagnosis of GATA2mut hematological malignancy who were referred to our HHMC for genetic testing, and identified to have somatic GATA2mut. Nine patients with a median age of 63 years were included. Six patients (66.7%) were males. Atypical CML and acute myeloid leukemia were the most common initial presentation. The median overall VAF was 47.14%. Monocytopenia was pronounced when the GATA2mut involved the C-terminal ZFD. GATA2 N-terminal ZFD mutations tend to be co-mutated with biCEBPAmut. Unlike germline GATA2 mutations, monocytopenia associated with somatic GATA2 mutations often resolved at remission. We concluded that similar to germline GATA2 mutations, a subset of somatic GATA2 mutations can impart a germline phenotype.
Collapse
Affiliation(s)
- Mansour Alfayez
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sa A Wang
- b Department of Hematopathology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sarah A Bannon
- c Clinical Cancer Genetics Program , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Dimitrios P Kontoyiannis
- d Department of Infectious Diseases , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Steven M Kornblau
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jordan S Orange
- e Department of Pediatrics , Columbia University Medical Center , New York , NY , USA
| | - Emily M Mace
- e Department of Pediatrics , Columbia University Medical Center , New York , NY , USA
| | - Courtney D DiNardo
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
35
|
Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1. Proc Natl Acad Sci U S A 2018; 115:E10437-E10446. [PMID: 30322915 PMCID: PMC6217397 DOI: 10.1073/pnas.1812669115] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Somatic mutations in some splicing factor genes are frequently found in myelodysplastic syndromes (MDS) and MDS-related acute myeloid leukemia (AML), blood cancers with few effective treatment options. However, the pathophysiological effects of these mutations remain poorly characterized. Here, we report the establishment of mouse models to study a common splicing factor mutation, U2AF1(S34F). Production of the mutant protein in the murine hematopoietic compartment disrupts hematopoiesis in ways resembling human MDS. We further identified deletion of the Runx1 gene and other known oncogenic mutations as changes that might collaborate with U2af1(S34F) to give rise to frank AML in mice. However, the U2af1(S34F) mutation was absent in two of the three AML cases, raising the possibility that this mutant protein plays a dispensable role in tumor maintenance. Mutations affecting the spliceosomal protein U2AF1 are commonly found in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). We have generated mice that carry Cre-dependent knock-in alleles of U2af1(S34F), the murine version of the most common mutant allele of U2AF1 encountered in human cancers. Cre-mediated recombination in murine hematopoietic lineages caused changes in RNA splicing, as well as multilineage cytopenia, macrocytic anemia, decreased hematopoietic stem and progenitor cells, low-grade dysplasias, and impaired transplantability, but without lifespan shortening or leukemia development. In an attempt to identify U2af1(S34F)-cooperating changes that promote leukemogenesis, we combined U2af1(S34F) with Runx1 deficiency in mice and further treated the mice with a mutagen, N-ethyl-N-nitrosourea (ENU). Overall, 3 of 16 ENU-treated compound transgenic mice developed AML. However, AML did not arise in mice with other genotypes or without ENU treatment. Sequencing DNA from the three AMLs revealed somatic mutations homologous to those considered to be drivers of human AML, including predicted loss- or gain-of-function mutations in Tet2, Gata2, Idh1, and Ikzf1. However, the engineered U2af1(S34F) missense mutation reverted to WT in two of the three AML cases, implying that U2af1(S34F) is dispensable, or even selected against, once leukemia is established.
Collapse
|
36
|
GATA2 regulates the erythropoietin receptor in t(12;21) ALL. Oncotarget 2017; 8:66061-66074. [PMID: 29029492 PMCID: PMC5630392 DOI: 10.18632/oncotarget.19792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 01/27/2023] Open
Abstract
The t(12;21) (p13;q22) chromosomal translocation resulting in the ETV6/RUNX1 fusion gene is the most frequent structural cytogenetic abnormality in children with acute lymphoblastic leukemia (ALL). The erythropoietin receptor (EPOR), usually associated with erythroid progenitor cells, is highly expressed in ETV6/RUNX1 positive cases compared to other B-lineage ALL subtypes. Gene expression analysis of a microarray database and direct quantitative analysis of patient samples revealed strong correlation between EPOR and GATA2 expression in ALL, and higher expression of GATA2 in t(12;21) patients. The mechanism of EPOR regulation was mainly investigated using two B-ALL cell lines: REH, which harbor and express the ETV6/RUNX1 fusion gene; and NALM-6, which do not. Expression of EPOR was increased in REH cells compared to NALM-6 cells. Moreover, of the six GATA family members only GATA2 was differentially expressed with substantially higher levels present in REH cells. GATA2 was shown to bind to the EPOR 5'-UTR in REH, but did not bind in NALM-6 cells. Overexpression of GATA2 led to an increase in EPOR expression in REH cells only, indicating that GATA2 regulates EPOR but is dependent on the cellular context. Both EPOR and GATA2 are hypomethylated and associated with increased mRNA expression in REH compared to NALM-6 cells. Decitabine treatment effectively reduced methylation of CpG sites in the GATA2 promoter leading to increased GATA2 expression in both cell lines. Although Decitabine also reduced an already low level of methylation of the EPOR in NALM-6 cells there was no increase in EPOR expression. Furthermore, EPOR and GATA2 are regulated post-transcriptionally by miR-362 and miR-650, respectively. Overall our data show that EPOR expression in t(12;21) B-ALL cells, is regulated by GATA2 and is mediated through epigenetic, transcriptional and post-transcriptional mechanisms, contingent upon the genetic subtype of the disease.
Collapse
|
37
|
Differential effects on gene transcription and hematopoietic differentiation correlate with GATA2 mutant disease phenotypes. Leukemia 2017. [PMID: 28642594 PMCID: PMC5770593 DOI: 10.1038/leu.2017.196] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterozygous GATA2 mutations underlie an array of complex hematopoietic and lymphatic diseases. Analysis of the literature reporting three recurrent GATA2 germline (g) mutations (gT354M, gR396Q and gR398W) revealed different phenotype tendencies. Although all three mutants differentially predispose to myeloid malignancies, there was no difference in leukemia-free survival for GATA2 patients. Despite intense interest, the molecular pathogenesis of GATA2 mutation is poorly understood. We functionally characterized a GATA2 mutant allelic series representing major disease phenotypes caused by germline and somatic (s) mutations in zinc finger 2 (ZF2). All GATA2 mutants, except for sL359V, displayed reduced DNA-binding affinity and transactivation compared with wild type (WT), which could be attributed to mutations of arginines critical for DNA binding or amino acids required for ZF2 domain structural integrity. Two GATA2 mutants (gT354M and gC373R) bound the key hematopoietic differentiation factor PU.1 more strongly than WT potentially perturbing differentiation via sequestration of PU.1. Unlike WT, all mutants failed to suppress colony formation and some mutants skewed cell fate to granulocytes, consistent with the monocytopenia phenotype seen in GATA2-related immunodeficiency disorders. These findings implicate perturbations of GATA2 function shaping the course of development of myeloid malignancy subtypes and strengthen complete or nearly complete haploinsufficiency for predisposition to lymphedema.
Collapse
|
38
|
Loke J, Assi SA, Imperato MR, Ptasinska A, Cauchy P, Grabovska Y, Soria NM, Raghavan M, Delwel HR, Cockerill PN, Heidenreich O, Bonifer C. RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Rep 2017; 19:1654-1668. [PMID: 28538183 PMCID: PMC5457485 DOI: 10.1016/j.celrep.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors. RUNX1-EVI1 directs a stem cell-like transcriptional network reliant on GATA2, whereas that of RUNX1-ETO-expressing cells is more mature and depends on RUNX1. However, both types of AML are dependent on the continuous expression of the fusion proteins. Our data provide a molecular explanation for the differences in clinical prognosis for these types of AML.
Collapse
Affiliation(s)
- Justin Loke
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Maria Rosaria Imperato
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Pierre Cauchy
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Yura Grabovska
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Manoj Raghavan
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - H Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK.
| |
Collapse
|
39
|
GATA2 Inhibition Sensitizes Acute Myeloid Leukemia Cells to Chemotherapy. PLoS One 2017; 12:e0170630. [PMID: 28114350 PMCID: PMC5256934 DOI: 10.1371/journal.pone.0170630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
Drug resistance constitutes one of the main obstacles for clinical recovery of acute myeloid leukemia (AML) patients. Therefore, the treatment of AML requires new strategies, such as adding a third drug. To address whether GATA2 could act as a regulator of chemotherapy resistance in human leukemia cells, we observed KG1a cells and clinical patients’ AML cells with a classic drug (Cerubidine) and Gefitinib. After utilizing chemotherapy, the expression of GATA2 and its target genes (EVI, SCL and WT1) in surviving AML cells and KG1a cells were significantly enhanced to double and quadrupled compared to its original level respectively. Furthermore, with continuous chemotherapeutics, AML cells with GATA2 knockdown or treated with GATA2 inhibitor (K1747) almost eliminated with dramatically reduced expression of WT1, SCL, EVI, and significantly increased apoptotic population. Therefore, we propose that reducing GATA2 expression or inhibition of its transcription activity can relieve the drug resistance of acute myeloid leukemia cells and it would be helpful for eliminating the leukemia cells in patients.
Collapse
|
40
|
High expression of MAP7 predicts adverse prognosis in young patients with cytogenetically normal acute myeloid leukemia. Sci Rep 2016; 6:34546. [PMID: 27686215 PMCID: PMC5043276 DOI: 10.1038/srep34546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule-associated protein 7 (MAP7) plays an important role in cancer cells. In this study, we identified the prognostic significance of MAP7 expression in cytogenetically normal acute myeloid leukemia (CN-AML) patients (aged <60 years) based on several microarray datasets. In the first group (n = 129), high MAP7 expression (MAP7high) was associated with adverse overall survival (OS; P = 0.0441) and event-free survival (EFS; P = 0.0114) compared with low MAP7 expression (MAP7low). In addition, the prognostic significance of MAP7 was confirmed by European Leukemia Net (ELN) intermediate-I genetic categories and multivariable analysis. In the second independent group of CN-AML patients (aged <60 years), MAP7high was also associated with adverse OS (n = 88, OS; P = 0.00811). To understand the inherent mechanisms of MAP7's prognosis, we investigated genome-wide gene/microRNA expression signatures associated with MAP7 expression. Several known oncogenic genes/microRNAs and anti-oncogenic genes/microRNAs were disordered in MAP7high CN-AML patients. In conclusion, MAP7high is an adverse prognostic biomarker for CN-AML, which may be attributed to the distinctive genome-wide gene/microRNA expression and related cell signaling pathways.
Collapse
|
41
|
Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells. Cell Rep 2016; 16:2428-41. [PMID: 27545880 DOI: 10.1016/j.celrep.2016.07.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/17/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.
Collapse
Affiliation(s)
- Koichi R Katsumura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew W DeVilbiss
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
42
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
43
|
Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol 2016; 118:45-76. [PMID: 27137654 PMCID: PMC8572122 DOI: 10.1016/bs.ctdb.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcriptional regulators mediate the genesis and function of the hematopoietic system by binding complex ensembles of cis-regulatory elements to establish genetic networks. While thousands to millions of any given cis-element resides in a genome, how transcriptional regulators select these sites and how site attributes dictate functional output is not well understood. An instructive system to address this problem involves the GATA family of transcription factors that control vital developmental and physiological processes and are linked to multiple human pathologies. Although GATA factors bind DNA motifs harboring the sequence GATA, only a very small subset of these abundant motifs are occupied in genomes. Mechanistic studies revealed a unique configuration of a GATA factor-regulated cis-element consisting of an E-box and a downstream GATA motif separated by a short DNA spacer. GATA-1- or GATA-2-containing multiprotein complexes at these composite elements control transcription of genes critical for hematopoietic stem cell emergence in the mammalian embryo, hematopoietic progenitor cell regulation, and erythroid cell maturation. Other constituents of the complex include the basic helix-loop-loop transcription factor Scl/TAL1, its heterodimeric partner E2A, and the Lim domain proteins LMO2 and LDB1. This chapter reviews the structure/function of E-box-GATA composite cis-elements, which collectively constitute an important sector of the hematopoietic stem and progenitor cell cistrome.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Kirby D. Johnson
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Xin Gao
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program,Corresponding author:
| |
Collapse
|
44
|
Johnson KD, Kong G, Gao X, Chang YI, Hewitt KJ, Sanalkumar R, Prathibha R, Ranheim EA, Dewey CN, Zhang J, Bresnick EH. Cis-regulatory mechanisms governing stem and progenitor cell transitions. SCIENCE ADVANCES 2015; 1:e1500503. [PMID: 26601269 PMCID: PMC4643771 DOI: 10.1126/sciadv.1500503] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/20/2015] [Indexed: 05/25/2023]
Abstract
Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.5) in GATA2, encoding a master regulator of hematopoiesis, underlies an immunodeficiency associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas an inversion relocalizes another GATA2 cis-element (-77) to the proto-oncogene EVI1, inducing EVI1 expression and AML, whether this reflects ectopic or physiological activity is unknown. We describe a mouse strain that decouples -77 function from proto-oncogene deregulation. The -77(-/-) mice exhibited a novel phenotypic constellation including late embryonic lethality and anemia. The -77 established a vital sector of the myeloid progenitor transcriptome, conferring multipotentiality. Unlike the +9.5(-/-) embryos, hematopoietic stem cell genesis was unaffected in -77(-/-) embryos. These results illustrate a paradigm in which cis-elements in a locus differentially control stem and progenitor cell transitions, and therefore the individual cis-element alterations cause unique and overlapping disease phenotypes.
Collapse
Affiliation(s)
- Kirby D. Johnson
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Guangyao Kong
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Xin Gao
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Yuan-I Chang
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Kyle J. Hewitt
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Rajalekshmi Prathibha
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| | - Erik A. Ranheim
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jing Zhang
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
- McArdle Laboratory for Cancer Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Emery H. Bresnick
- Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin–Madison Blood Research Program, Madison, WI 53705, USA
| |
Collapse
|
45
|
Liu X, Jiang B, Wang A, Di J, Wang Z, Chen L, Su X. GATA2 rs2335052 Polymorphism Predicts the Survival of Patients with Colorectal Cancer. PLoS One 2015; 10:e0136020. [PMID: 26287967 PMCID: PMC4546112 DOI: 10.1371/journal.pone.0136020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Background GATA binding protein 2 (GATA2) is a transcription factor that has essential roles in hematologic malignancies and progression of various solid tumors. Our previous studies suggested that high GATA2 expression is associated with recurrence of colorectal cancer (CRC). However, the influence of GATA2 single nucleotide polymorphisms (SNPs) on the survival of CRC remains unknown. Methods We genotyped GATA2 SNP rs2335052 using Sanger sequencing after PCR amplification, and determined GATA2 expression by immunohistochemistry in a cohort of 180 CRC patients. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between the GATA2 rs2335052 genotypes and the clinical outcome of CRC. Results We found that there was no significant correlation between the rs2335052 genotypes and the expression of GATA2. However, the Kaplan-Meier survival analysis suggested that the carriers of the A-allele of SNP rs2335052 were significantly associated with increased risk of recurrence and reduced disease-free survival (DFS), compared with those carrying the variant genotype of GG in rs2335052 (P = 0.021). Moreover, univariate and multivariate Cox regression analyses revealed that GATA2 SNP rs2335052 was an independent risk factor for the DFS of CRC patients. Conclusion Our results demonstrated that GATA2 SNP rs2335052 is an independent predictor for prognosis of CRC patients. This raised the possibility that SNP rs2335052 may serve as a potential indicator for predicting recurrence of CRC after curative colectomy.
Collapse
Affiliation(s)
- Xijuan Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Aidong Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
- * E-mail:
| |
Collapse
|
46
|
Nandakumar SK, Johnson K, Throm SL, Pestina TI, Neale G, Persons DA. Low-level GATA2 overexpression promotes myeloid progenitor self-renewal and blocks lymphoid differentiation in mice. Exp Hematol 2015; 43:565-77.e1-10. [PMID: 25907033 DOI: 10.1016/j.exphem.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/09/2023]
Abstract
The transcription factor GATA2 is highly expressed in hematopoietic stem cells and is downregulated during lineage maturation. Gain of function mutations, loss of function mutations, and overexpression of GATA2 have been reported in acute myeloid leukemia. In previous studies, we and others showed that GATA2 overexpression at high levels, similar to that seen in hematopoietic stem cells, blocked differentiation of hematopoietic stem cells and progenitors. To better understand the effects of GATA2, we designed a Tamoxifen-inducible GATA2-estrogen receptor (ERT) vector. In the absence of Tamoxifen, small amounts of GATA2-ERT were still able to enter the nucleus in mouse bone marrow (BM) cells, providing us with a tool to test the effects of low-level GATA2 overexpression. We observed that this low-level GATA2 overexpression enhanced self-renewal of myeloid progenitors in vitro and resulted in immortalization of BM cells to myeloid cell lines. Continuous GATA2-ERT expression was required for the proliferation of these immortalized lines. Myeloid expansion and a block in T and B lineage differentiation were observed in mice transplanted with GATA2-ERT-expressing BM cells. Myeloid expansion occurred after the granulocyte monocyte progenitor stage, and lymphoid block was distal to the common lymphoid progenitor in transgenic mice. GATA2 appeared to induce growth via downstream activation of Nmyc and Hoxa9. Our results demonstrate that GATA2 overexpression at low level confers self-renewal capacity to myeloid progenitors and is relevant to myeloid leukemia development.
Collapse
Affiliation(s)
- Satish K Nandakumar
- Department of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Kyle Johnson
- Department of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacy L Throm
- Department of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara I Pestina
- Department of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Derek A Persons
- Department of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
47
|
Epigenetic Determinants of Erythropoiesis: Role of the Histone Methyltransferase SetD8 in Promoting Erythroid Cell Maturation and Survival. Mol Cell Biol 2015; 35:2073-87. [PMID: 25855754 DOI: 10.1128/mcb.01422-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Erythropoiesis, in which committed progenitor cells generate millions of erythrocytes daily, involves dramatic changes in the chromatin structure and transcriptome of erythroblasts, prior to their enucleation. While the involvement of the master-regulatory transcription factors GATA binding protein 1 (GATA-1) and GATA-2 in this process is established, the mechanistic contributions of many chromatin-modifying/remodeling enzymes in red cell biology remain enigmatic. We demonstrated that SetD8, a histone methyltransferase that catalyzes monomethylation of histone H4 at lysine 20 (H4K20me1), is a context-dependent GATA-1 corepressor in erythroid cells. To determine whether SetD8 controls erythroid maturation and/or function, we used a small hairpin RNA (shRNA)-based loss-of-function strategy in a primary murine erythroblast culture system. In this system, SetD8 promoted erythroblast maturation and survival, and this did not involve upregulation of the established regulator of erythroblast survival Bcl-x(L). SetD8 catalyzed H4K20me1 at a critical Gata2 cis element and restricted occupancy by an enhancer of Gata2 transcription, Scl/TAL1, thereby repressing Gata2 transcription. Elevating GATA-2 levels in erythroid precursors yielded a maturation block comparable to that induced by SetD8 downregulation. As lowering GATA-2 expression in the context of SetD8 knockdown did not rescue erythroid maturation, we propose that SetD8 regulation of erythroid maturation involves multiple target genes. These results establish SetD8 as a determinant of erythroid cell maturation and provide a framework for understanding how a broadly expressed histone-modifying enzyme mediates cell-type-specific GATA factor function.
Collapse
|
48
|
Abstract
Heterozygous familial or sporadic GATA2 mutations cause a multifaceted disorder, encompassing susceptibility to infection, pulmonary dysfunction, autoimmunity, lymphoedema and malignancy. Although often healthy in childhood, carriers of defective GATA2 alleles develop progressive loss of mononuclear cells (dendritic cells, monocytes, B and Natural Killer lymphocytes), elevated FLT3 ligand, and a 90% risk of clinical complications, including progression to myelodysplastic syndrome (MDS) by 60 years of age. Premature death may occur from childhood due to infection, pulmonary dysfunction, solid malignancy and MDS/acute myeloid leukaemia. GATA2 mutations include frameshifts, amino acid substitutions, insertions and deletions scattered throughout the gene but concentrated in the region encoding the two zinc finger domains. Mutations appear to cause haplo-insufficiency, which is known to impair haematopoietic stem cell survival in animal models. Management includes genetic counselling, prevention of infection, cancer surveillance, haematopoietic monitoring and, ultimately, stem cell transplantation upon the development of MDS or another life-threatening complication.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
49
|
Histone deacetylase inhibitor SAHA epigenetically regulates miR-17-92 cluster and MCM7 to upregulate MICA expression in hepatoma. Br J Cancer 2014; 112:112-21. [PMID: 25393367 PMCID: PMC4453603 DOI: 10.1038/bjc.2014.547] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epigenetic therapy using histone deacetylase inhibitors (HDACi) has shown promise in clinical trials for the treatment of human malignancies. In addition to the immediate effects on the tumour cell growth, HDACi upregulates the expression of MHC class I-related chain molecules A and B (MICA and MICB), resulting in an enhanced susceptibility of tumour cells to natural killer cell-mediated lysis. The molecular mechanism underlying is still unclear. METHODS The transcriptional regulation mechanism underlying suberoylanilide hydroxamic acid (SAHA)-mediated regulation of MICA and related miRNA expression was investigated using promoter acetylation assays, bioinformatics analysis and chromatin immunoprecipitation assay. RESULTS SAHA upregulates the transcription of MICA/B by promoting MICA-associated histone acetylation while suppressing the MICA/B-targeting miRNAs miR-20a, miR-93 and miR-106b. The mechanism by which SAHA repressed miRNAs transcription involved repression of their host genes (miR-17-92 cluster and MCM7). SAHA downregulated the miR-17-92 cluster by abolishing tyrosine phosphorylation of STAT3 and decreased MCM7 transcription through localised histone deacetylation. CONCLUSIONS The HDACi SAHA epigenetically upregulates MICA expression through regulating the expression of miR-17-92 cluster and MCM7 in hepatoma, thus enhancing the sensitivity of HCC to natural killer cell-mediated lysis. This novel mechanism of action provides promise for HDACi in therapy of HCC.
Collapse
|
50
|
Katsumura KR, Yang C, Boyer ME, Li L, Bresnick EH. Molecular basis of crosstalk between oncogenic Ras and the master regulator of hematopoiesis GATA-2. EMBO Rep 2014; 15:938-47. [PMID: 25056917 DOI: 10.15252/embr.201438808] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Disease mutations provide unique opportunities to decipher protein and cell function. Mutations in the master regulator of hematopoiesis GATA-2 underlie an immunodeficiency associated with myelodysplastic syndrome and leukemia. We discovered that a GATA-2 disease mutant (T354M) defective in chromatin binding was hyperphosphorylated by p38 mitogen-activated protein kinase. p38 also induced multisite phosphorylation of wild-type GATA-2, which required a single phosphorylated residue (S192). Phosphorylation of GATA-2, but not T354M, stimulated target gene expression. While crosstalk between oncogenic Ras and GATA-2 has been implicated as an important axis in cancer biology, its mechanistic underpinnings are unclear. Oncogenic Ras enhanced S192-dependent GATA-2 phosphorylation, nuclear foci localization, and transcriptional activation. These studies define a mechanism that controls a key regulator of hematopoiesis and a dual mode of impairing GATA-2-dependent genetic networks: mutational disruption of chromatin occupancy yielding insufficient GATA-2, and oncogenic Ras-mediated amplification of GATA-2 activity.
Collapse
Affiliation(s)
- Koichi R Katsumura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Chenxi Yang
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Meghan E Boyer
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI, USA University of Wisconsin School of Pharmacy, Madison, WI, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|