1
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Elkholy MM, Fahmi MW, El-Haggar SM. Dynamic changes in the levels of sCD62L and SPARC in chronic myeloid leukaemia patients during imatinib treatment. J Clin Pharm Ther 2022; 47:2115-2129. [PMID: 36053969 DOI: 10.1111/jcpt.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Chronic myeloid leukaemia (CML) microenvironment is responsible for resistance of leukaemic cells to tyrosine kinase inhibitor, altered adhesion, increased proliferation and leukaemic cells growth and survival through the secretion of many soluble molecules. We aimed at monitoring soluble L-selectin (sCD62L) and secreted protein acidic and rich in cysteine (SPARC) levels in chronic phase chronic myeloid leukaemia (CP-CML) patients and assessing the impact of imatinib on these parameters. METHODS This prospective controlled clinical trial enrolled 35 subjects classified into two groups: control group included 10 healthy volunteers and CP-CML patients group included 25 newly diagnosed CP-CML patients received imatinib 400 mg once daily. sCD62L plasma levels, SPARC serum levels, breakpoint cluster region-Abelson1 (BCR-ABL1) %, complete blood count with differential, liver and kidney functions parameters were assessed at baseline and after 3 and 6 months of treatment. RESULTS AND DISCUSSION At baseline, sCD62L and SPARC were significantly elevated in CP-CML patients (p < 0.05) compared to control group. After 3 months of treatment, sCD62L was non-significantly decreased (p > 0.05), while surprisingly SPARC was significantly increased (p < 0.05) compared to baseline. Moreover, after 6 months of treatment, sCD62L was significantly decreased (p < 0.05) and SPARC was non-significantly decreased (p > 0.05) compared to baseline. In addition, sCD62L was significantly correlated with WBCs and neutrophils counts, while SPARC was significantly correlated with lymphocytes count at baseline and after 3 and 6 months of imatinib treatment. WHAT IS NEW AND CONCLUSION The elevated levels of sCD62L and SPARC at diagnosis in CP-CML patients could reflect their roles in CML pathogenesis and the dynamic changes in their levels during imatinib therapy might suppose additional mechanisms of action of imatinib beside inhibition of BCR-ABL. Furthermore, imatinib showed a significant impact on sCD62L and SPARC levels during treatment period.
Collapse
Affiliation(s)
- Mahmoud Mohamed Elkholy
- Clinical Pharmacy Department, Faculty of Pharmacy, Al Salam University in Egypt, Kafr El-Zayat, Egypt
| | - Maryan Waheeb Fahmi
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
Tripodo C, Bassani B, Jachetti E, Cancila V, Chiodoni C, Portararo P, Botti L, Vaenti C, Perrone M, Ponzoni M, Comoli PA, Lecchi M, Verderio P, Curti A, Colombo MP, Sangaletti S. Neutrophil extracellular traps arm DC vaccination against NPM-mutant myeloproliferation. eLife 2022; 11:69257. [PMID: 35471185 PMCID: PMC9068207 DOI: 10.7554/elife.69257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like chromatin structures composed by dsDNA and histones, decorated with antimicrobial proteins. Their interaction with dendritic cells (DCs) allows DC activation and maturation toward presentation of NET-associated antigens. Differently from other types of cell death that imply protein denaturation, NETosis preserves the proteins localized onto the DNA threads for proper enzymatic activity and conformational status, including immunogenic epitopes. Besides neutrophils, leukemic cells can release extracellular traps displaying leukemia-associated antigens, prototypically mutant nucleophosmin (NPMc+) that upon mutation translocates from nucleolus to the cytoplasm localizing onto NET threads. We tested NPMc+ immunogenicity through a NET/DC vaccine to treat NPMc-driven myeloproliferation in transgenic and transplantable models. Vaccination with DC loaded with NPMc+ NET (NPMc+ NET/DC) reduced myeloproliferation in transgenic mice, favoring the development of antibodies to mutant NPMc and the induction of a CD8+ T-cell response. The efficacy of this vaccine was also tested in mixed NPMc/WT bone marrow (BM) chimeras in a competitive BM transplantation setting, where the NPMc+ NET/DC vaccination impaired the expansion of NPMc+ in favor of WT myeloid compartment. NPMc+ NET/DC vaccination also achieved control of an aggressive leukemia transduced with mutant NPMc, effectively inducing an antileukemia CD8 T-cell memory response.
Collapse
Affiliation(s)
- Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, School of Medicine., University of Palermo, Palermo, Italy
| | - Barbara Bassani
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Jachetti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Department of Health Sciences, University of Palermo School of Medicine Palermo, Palermo, Italy
| | | | - Paola Portararo
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cesare Vaenti
- Tumor Immunology Unit, Department of Health Sciences, School of Medicine., University of Palermo, Palermo, Italy
| | - Milena Perrone
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Mara Lecchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Mario P Colombo
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
4
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
5
|
Sangaletti S, Botti L, Gulino A, Lecis D, Bassani B, Portararo P, Milani M, Cancila V, De Cecco L, Dugo M, Tripodo C, Colombo MP. SPARC regulation of PMN clearance protects from pristane-induced lupus and rheumatoid arthritis. iScience 2021; 24:102510. [PMID: 34142027 PMCID: PMC8188360 DOI: 10.1016/j.isci.2021.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
The secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein with unexpected immunosuppressive function in myeloid cells. We investigated the role of SPARC in autoimmunity using the pristane-induced model of lupus that, in mice, mimics human systemic lupus erythematosus (SLE). Sparc -/- mice developed earlier and more severe renal disease, multi-organ parenchymal damage, and arthritis than the wild-type counterpart. Sparc +/- heterozygous mice showed an intermediate phenotype suggesting Sparc gene dosage in autoimmune-related events. Mechanistically, reduced Sparc expression in neutrophils blocks their clearance by macrophages, through defective delivery of don't-eat-me signals. Dying Sparc -/- neutrophils that escape macrophage scavenging become source of autoantigens for dendritic cell presentation and are a direct stimulation for γδT cells. Gene profile analysis of knee synovial biopsies from SLE-associated arthritis showed an inverse correlation between SPARC and key autoimmune genes. These results point to SPARC down-regulation as a leading event characterizing SLE and rheumatoid arthritis pathogenesis.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Bassani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
6
|
Bassani B, Tripodo C, Portararo P, Gulino A, Botti L, Chiodoni C, Jachetti E, Bolli N, Ciciarello M, Joehrens K, Anagnostopoulos I, Na IK, Curti A, Colombo MP, Sangaletti S. CD40 Activity on Mesenchymal Cells Negatively Regulates OX40L to Maintain Bone Marrow Immune Homeostasis Under Stress Conditions. Front Immunol 2021; 12:662048. [PMID: 34084166 PMCID: PMC8168593 DOI: 10.3389/fimmu.2021.662048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background Within the bone marrow (BM), mature T cells are maintained under homeostatic conditions to facilitate proper hematopoietic development. This homeostasis depends upon a peculiar elevated frequency of regulatory T cells (Tregs) and immune regulatory activities from BM-mesenchymal stem cells (BM-MSCs). In response to BM transplantation (BMT), the conditioning regimen exposes the BM to a dramatic induction of inflammatory cytokines and causes an unbalanced T-effector (Teff) and Treg ratio. This imbalance negatively impacts hematopoiesis, particularly in regard to B-cell lymphopoiesis that requires an intact cross-talk between BM-MSCs and Tregs. The mechanisms underlying the ability of BM-MSCs to restore Treg homeostasis and proper B-cell development are currently unknown. Methods We studied the role of host radio-resistant cell-derived CD40 in restoring Teff/Treg homeostasis and proper B-cell development in a murine model of BMT. We characterized the host cellular source of CD40 and performed radiation chimera analyses by transplanting WT or Cd40-KO with WT BM in the presence of T-reg and co-infusing WT or - Cd40-KO BM-MSCs. Residual host and donor T cell expansion and activation (cytokine production) and also the expression of Treg fitness markers and conversion to Th17 were analyzed. The presence of Cd40+ BM-MSCs was analyzed in a human setting in correlation with the frequency of B-cell precursors in patients who underwent HSCT and variably developed acute graft-versus-host (aGVDH) disease. Results CD40 expression is nearly undetectable in the BM, yet a Cd40-KO recipient of WT donor chimera exhibited impaired B-cell lymphopoiesis and Treg development. Lethal irradiation promotes CD40 and OX40L expression in radio-resistant BM-MSCs through the induction of pro-inflammatory cytokines. OX40L favors Teff expansion and activation at the expense of Tregs; however, the expression of CD40 dampens OX40L expression and restores Treg homeostasis, thus facilitating proper B-cell development. Indeed, in contrast to dendritic cells in secondary lymphoid organs that require CD40 triggers to express OX40L, BM-MSCs require CD40 to inhibit OX40L expression. Conclusions CD40+ BM-MSCs are immune regulatory elements within BM. Loss of CD40 results in uncontrolled T cell activation due to a reduced number of Tregs, and B-cell development is consequently impaired. GVHD provides an example of how a loss of CD40+ BM-MSCs and a reduction in B-cell precursors may occur in a human setting.
Collapse
Affiliation(s)
- Barbara Bassani
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Paola Portararo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Laura Botti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudia Chiodoni
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Elena Jachetti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Marilena Ciciarello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Institute of Hematology "Seràgnoli", Bologna, Italy
| | - Korinna Joehrens
- Charité-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
| | | | - Il-Kang Na
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Institute of Hematology "Seràgnoli", Bologna, Italy
| | - Mario P Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sabina Sangaletti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
7
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
8
|
Sangaletti S, Iannelli F, Zanardi F, Cancila V, Portararo P, Botti L, Vacca D, Chiodoni C, Di Napoli A, Valenti C, Rizzello C, Vegliante MC, Pisati F, Gulino A, Ponzoni M, Colombo MP, Tripodo C. Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-tumour interfaces. EBioMedicine 2020; 61:103055. [PMID: 33096480 PMCID: PMC7581880 DOI: 10.1016/j.ebiom.2020.103055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. Methods Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. Findings We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. Interpretation Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. Funding This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Line, Tumor
- Computational Biology/methods
- Disease Models, Animal
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Immunophenotyping
- In Situ Hybridization
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Models, Biological
- Phenotype
- Prognosis
- Sequence Analysis, RNA
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Fabio Iannelli
- Bioinformatics Core Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Zanardi
- Bioinformatics Core Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Davide Vacca
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arianna Di Napoli
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Cesare Valenti
- Department of Mathematics and Informatics, University of Palermo, Palermo, Italy
| | - Celeste Rizzello
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Federica Pisati
- Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University Milan, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy; Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
9
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Yu R, Zhang J, Zang Y, Zeng L, Zuo W, Bai Y, Liu Y, Sun K, Liu Y. iTRAQ-based quantitative protein expression profiling of biomarkers in childhood B-cell and T-cell acute lymphoblastic leukemia. Cancer Manag Res 2019; 11:7047-7063. [PMID: 31440093 PMCID: PMC6664257 DOI: 10.2147/cmar.s210093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose This study screened serum proteins to identify potential biomarkers for childhood B-cell and T-cell acute lymphoblastic leukemia (ALL). Patients and methods Serum collected from 20 newly diagnosed B-cell ALL, 20 T-cell ALL and 20 healthy children. The peptides from these samples were subjected to iTRAQ. Differentially expressed proteins (DEPs) were further validated by ELISA in 24 B-ALL, 24 T-ALL, and 24 healthy children. Results Bioinformatics analysis revealed several pathways, including atherosclerosis signaling, interleukin signaling and production in macrophages and clathrin-mediated endocytosis signaling, that were closely related to childhood T-cell ALL. Furthermore, four selected proteins, namely LRG1, S100A8, SPARC and sL-selectin, were verified by ELISA. These results were consistent with the results of the proteomics analysis. Conclusion Serum S100A8 may serve as new diagnostic biomarkers in childhood B-cell ALL and T-cell ALL.
Collapse
Affiliation(s)
- Runhong Yu
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Jingyu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Yuzhu Zang
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Li Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Yanhui Liu
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Kai Sun
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
11
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
12
|
Selicean SE, Tomuleasa C, Grewal R, Almeida-Porada G, Berindan-Neagoe I. Mesenchymal stem cells in myeloproliferative disorders - focus on primary myelofibrosis. Leuk Lymphoma 2018; 60:876-885. [PMID: 30277128 DOI: 10.1080/10428194.2018.1516881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primary myelofibrosis (PMF) is the most aggressive Philadelphia-negative (Ph-) myeloproliferative neoplasm (MPN), characterized by bone marrow (BM) insufficiency, myelofibrosis (MF), osteosclerosis, neoangiogenesis, and extramedullary hematopoiesis (EMH) in spleen and liver. Presently, there is no curative treatment for this disease and therapy consists primarily of symptom relief and, in selected cases, allogeneic hematopoietic stem cell transplant (alloHSCT). PMF's major defining characteristics, as well as several recently described aspects of its cellular and molecular pathophysiology all support a critical role for dysregulated cell-cell/cell-extracellular matrix interactions and cytokine/chemokine signaling within the BM niche in the natural history of this disease. This review will highlight current data concerning the involvement of the BM niche, particularly of mesenchymal stem cells (MSC), in PMF, and will then discuss the rationale for a stroma-directed treatment, and the advantages such an approach would offer over the current treatments focused on targeting the malignant clone.
Collapse
Affiliation(s)
- Sonia Emilia Selicean
- a Research Center for Functional Genomics and Translational Medicine , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,b Department of Hematology , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Ciprian Tomuleasa
- a Research Center for Functional Genomics and Translational Medicine , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,b Department of Hematology , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,c Department of Hematology , Ion Chiricuta Clinical Research Center , Cluj Napoca , Romania
| | - Ravnit Grewal
- d Department of Pathology , South African National Bioinformatics Institute , Cape Town , South Africa
| | - Graca Almeida-Porada
- e Wake Forest Institute for Regenerative Medicine , Wake Forest University School of Medicine , Winston-Salem , NC , USA
| | - Ioana Berindan-Neagoe
- a Research Center for Functional Genomics and Translational Medicine , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
13
|
Zacharaki D, Ghazanfari R, Li H, Lim HC, Scheding S. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals. Eur J Haematol 2018; 101:57-67. [DOI: 10.1111/ejh.13079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Dimitra Zacharaki
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Roshanak Ghazanfari
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Hongzhe Li
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Hooi Ching Lim
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
| | - Stefan Scheding
- Division of Molecular Hematology & Lund Stem Cell Center; Lund University; Lund Sweden
- Department of Hematology; Skåne University Hospital Lund; Lund Sweden
| |
Collapse
|
14
|
Gleitz HF, Kramann R, Schneider RK. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis. J Pathol 2018; 245:138-146. [PMID: 29570794 PMCID: PMC5969225 DOI: 10.1002/path.5078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 01/06/2023]
Abstract
Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1+ and leptin receptor+ mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1+ mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor+ stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hélène Fe Gleitz
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Haematology, Oncology, Haemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
The prognostic value of the myeloid-mediated immunosuppression marker Arginase-1 in classic Hodgkin lymphoma. Oncotarget 2018; 7:67333-67346. [PMID: 27637084 PMCID: PMC5341879 DOI: 10.18632/oncotarget.12024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 01/04/2023] Open
Abstract
Purpose Neutrophilia is hallmark of classic Hodgkin Lymphoma (cHL), but its precise characterization remains elusive. We aimed at investigating the immunosuppressive role of high-density neutrophils in HL. Experimental design First, N-HL function was evaluated in vitro, showing increased arginase (Arg-1) expression and activity compared to healthy subjects. Second, we measured serum level of Arg-1 (s-Arg-1) by ELISA in two independent, training (N = 40) and validation (N = 78) sets. Results s-Arg-1 was higher in patients with advanced stage (p = 0.045), B-symptoms (p = 0.0048) and a positive FDG-PET scan after two cycles of chemotherapy (PET-2, p = 0.012). Baseline levels of s-Arg-1 > 200 ng/mL resulted in 92% sensitivity and 56% specificity to predict a positive PET-2. Patients showing s-Arg-1 levels > 200 ng/mL had a shorter progression free survival (PFS). In multivariate analysis, PET-2 and s-Arg-1 at diagnosis were the only statistically significant prognostic variables related to PFS (respectively p = 0.0004 and p = 0.012). Moving from PET-2 status and s-Arg-1 level we constructed a prognostic score to predict long-term treatment outcome: low s-Arg-1 and negative PET-2 scan (score 0, N = 63), with a 3-Y PFS of 89.5%; either positive PET-2 or high s-Arg-1 (score 1, N = 46) with 3-Y PFS of 67.6%, and both positive markers (score 2, N = 9) with a 3-Y PFS of 37% (p = 0.0004). Conclusions We conclude that N-HL are immunosuppressive through increased Arg-1 expression, a novel potential biomarker for HL prognosis.
Collapse
|
16
|
Cutrona G, Tripodo C, Matis S, Recchia AG, Massucco C, Fabbi M, Colombo M, Emionite L, Sangaletti S, Gulino A, Reverberi D, Massara R, Boccardo S, de Totero D, Salvi S, Cilli M, Pellicanò M, Manzoni M, Fabris S, Airoldi I, Valdora F, Ferrini S, Gentile M, Vigna E, Bossio S, De Stefano L, Palummo A, Iaquinta G, Cardillo M, Zupo S, Cerruti G, Ibatici A, Neri A, Fais F, Ferrarini M, Morabito F. Microenvironmental regulation of the IL-23R/IL-23 axis overrides chronic lymphocytic leukemia indolence. Sci Transl Med 2018; 10:10/428/eaal1571. [DOI: 10.1126/scitranslmed.aal1571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
|
17
|
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018; 15:219-233. [PMID: 29311715 DOI: 10.1038/nrclinonc.2017.197] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several haematological malignancies, including multiple myeloma (MM) and acute myeloid leukaemia (AML), have well-defined precursor states that precede the development of overt cancer. MM is almost always preceded by monoclonal gammopathy of undetermined significance (MGUS), and at least a quarter of all patients with myelodysplastic syndromes (MDS) have disease that evolves into AML. In turn, MDS are frequently anteceded by clonal haematopoiesis of indeterminate potential (CHIP). The acquisition of additional genetic and epigenetic alterations over time clearly influences the increasingly unstable and aggressive behaviour of neoplastic haematopoietic clones; however, perturbations in the bone-marrow microenvironment are increasingly recognized to have key roles in initiating and supporting oncogenesis. In this Review, we focus on the concept that the haematopoietic neoplasia-microenvironment relationship is an intimate rapport between two partners, provide an overview of the evidence supporting a role for the bone-marrow niche in promoting neoplasia, and discuss the potential for niche-specific therapeutic targets.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Alexandre Detappe
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Kenneth C Anderson
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Sangaletti S, Tripodo C, Santangelo A, Castioni N, Portararo P, Gulino A, Botti L, Parenza M, Cappetti B, Orlandi R, Tagliabue E, Chiodoni C, Colombo MP. Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity. Cell Rep 2017; 17:233-248. [PMID: 27681434 DOI: 10.1016/j.celrep.2016.08.075] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) contributes to the biological and clinical heterogeneity of breast cancer, and different prognostic groups can be identified according to specific ECM signatures. In high-grade, but not low-grade, tumors, an ECM signature characterized by high SPARC expression (ECM3) identifies tumors with increased epithelial-to-mesenchymal transition (EMT), reduced treatment response, and poor prognosis. To better understand how this ECM3 signature is contributing to tumorigenesis, we expressed SPARC in isogenic cell lines and found that SPARC overexpression in tumor cells reduces their growth rate and induces EMT. SPARC expression also results in the formation of a highly immunosuppressive microenvironment, composed by infiltrating T regulatory cells, mast cells, and myeloid-derived suppressor cells (MDSCs). The ability of SPARC to induce EMT depended on the localization and suppressive function of myeloid cells, and inhibition of the suppressive function MDSCs by administration of aminobisphosphonates could revert EMT, rendering SPARC-overexpressing tumor cells sensitive to Doxil. We conclude that that SPARC is regulating the interplay between MDSCs and the ECM to drive the induction of EMT in tumor cells.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, 90129 Palermo, Italy
| | - Alessandra Santangelo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Nadia Castioni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, 90129 Palermo, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Mariella Parenza
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Barbara Cappetti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Rosaria Orlandi
- Molecular Targets Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elda Tagliabue
- Molecular Targets Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| |
Collapse
|
19
|
Yang B, Qu D, Zhao AL, Li Y, Meng RR, Yu JX, Gao P, Lin HP. Identification of differentially expressed genes in Budd‑Chiari syndrome by RNA‑sequencing. Mol Med Rep 2017; 16:8011-8018. [PMID: 28983615 PMCID: PMC5779883 DOI: 10.3892/mmr.2017.7621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/14/2017] [Indexed: 11/05/2022] Open
Abstract
Budd-Chiari syndrome (BCS) is an uncommon disease characterized by the occlusion or obstruction of hepatic venous outflow. The mechanism of BCS is still unclear and there are no accurate and effective diagnostic or therapeutic tools. In the present study, blood samples from BCS patients and healthy controls were used for RNA-sequencing. The differentially expressed genes (DEGs) in BCS patients compared with healthy controls were identified. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis and Protein-Protein Interaction (PPI) networks construction were performed for DEGs. A total of 405 DEGs including 317 upregulated and 88 downregulated DEGs were identified. The cytosol was the most significantly enriched GO term and the proteasome was also identified as significant enriched pathway. According to the PPI network of 30 DEGs (18 upregulated and 12 downregulated DEGs), synuclein α, tubulin β-2A class IIa and zinc finger protein Gfi-1b (GFIIB) were the three most significant hub proteins. In conclusion, several DEGs including secreted protein acidic and cysteine rich, lipocalin-2, GFI1B and proteasome-associated DEGs may be associated with the pathological process of BCS. These results can provide novel clues for the pathogenesis and provide novel diagnostic and therapeutic strategies for BCS.
Collapse
Affiliation(s)
- Bin Yang
- Department of Vascular Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dong Qu
- Department of General Surgery, Qufu People's Hospital, Qufu, Shandong 273100, P.R. China
| | - An-Li Zhao
- Department of Cardiology, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yu Li
- Department of Vascular Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ran-Ran Meng
- Department of Vascular Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ji-Xiang Yu
- Department of Vascular Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Peng Gao
- Department of Vascular Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hua Peng Lin
- Department of Hepatobiliary Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
20
|
Sangaletti S, Chiodoni C, Tripodo C, Colombo MP. Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments. Cancer Immunol Immunother 2017; 66:1059-1067. [PMID: 28501940 PMCID: PMC11029001 DOI: 10.1007/s00262-017-2014-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/06/2017] [Indexed: 01/09/2023]
Abstract
The complex interaction between cells undergoing transformation and the various stromal and immunological cell components of the tumor microenvironment (TME) crucially influences cancer progression and diversification, as well as endowing clinical and prognostic significance. The immunosuppression characterizing the TME depends on the recruitment and activation of different cell types including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Less considered is the non-cellular component of the TME. Here, we focus on the extracellular matrix (ECM) regulatory activities that, within the TME, actively contribute to many aspects of tumor progression, acting on both tumor and immune cells. Particularly, ECM-mediated regulation of tumor-associated immunosuppression occurs through the modulation of myeloid cell expansion, localization, and functional activities. Such regulation is not limited to the TME but occurs also within the bone marrow, wherein matricellular proteins contribute to the maintenance of specialized hematopoietic stem cell niches thereby regulating their homeostasis as well as the generation and expansion of myeloid cells under both physiological and pathological conditions. Highlighting the commonalities among ECM-myeloid cell interactions in bone marrow and TME, in this review we present a picture in which myeloid cells might sense and respond to ECM modifications, providing different ECM-myeloid cell interfaces that may be useful to define prognostic groups and to tailor therapeutic interventions.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, 20133, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, 20133, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, 20133, Milan, Italy.
| |
Collapse
|
21
|
Prakoura N, Chatziantoniou C. Matricellular Proteins and Organ Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J 2017; 7:e525. [PMID: 28157219 PMCID: PMC5386340 DOI: 10.1038/bcj.2017.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF.
Collapse
Affiliation(s)
- O Leiva
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S K Ng
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - S Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - K Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Abbonante V, Di Buduo CA, Gruppi C, Malara A, Gianelli U, Celesti G, Anselmo A, Laghi L, Vercellino M, Visai L, Iurlo A, Moratti R, Barosi G, Rosti V, Balduini A. Thrombopoietin/TGF-β1 Loop Regulates Megakaryocyte Extracellular Matrix Component Synthesis. Stem Cells 2016; 34:1123-33. [PMID: 26748484 DOI: 10.1002/stem.2285] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
Extracellular matrix (ECM) components initiate crucial biochemical and biomechanical cues that are required for bone marrow homeostasis. In our research, we prove that a peri-cellular matrix composed primarily of type III and type IV collagens, and fibronectin surrounds human megakaryocytes in the bone marrow. The data we collected support the hypothesis that bone marrow megakaryocytes possess a complete mechanism to synthesize the ECM components, and that thrombopoietin is a pivotal regulator of this new function inducing transforming growth factor-β1 (TGF-β1) release and consequent activation of the downstream pathways, both in vitro and in vivo. This activation results in a dose dependent increase of ECM component synthesis by megakaryocytes, which is reverted upon incubation with JAK and TGF-β1 receptor specific inhibitors. These data are pivotal for understanding the central role of megakaryocytes in creating their own regulatory niche within the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Umberto Gianelli
- Hematopathology Service, Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Celesti
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Achille Anselmo
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Vercellino
- Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomics and Disability, Salvatore Maugeri Foundation (FSM), Laboratory of Nanotechnology, Pavia, Italy
| | - Livia Visai
- Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomics and Disability, Salvatore Maugeri Foundation (FSM), Laboratory of Nanotechnology, Pavia, Italy
| | - Alessandra Iurlo
- Oncohematology of the Elderly Unit, Oncohematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Remigio Moratti
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
24
|
Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators Inflamm 2015; 2015:415024. [PMID: 26640324 PMCID: PMC4660030 DOI: 10.1155/2015/415024] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm where severity as well as treatment complexity is mainly attributed to a long lasting disease and presence of bone marrow stroma alterations as evidenced by myelofibrosis, neoangiogenesis, and osteosclerosis. While recent understanding of mutations role in hematopoietic cells provides an explanation for pathological myeloproliferation, functional involvement of stromal cells in the disease pathogenesis remains poorly understood. The current dogma is that stromal changes are secondary to the cytokine “storm” produced by the hematopoietic clone cells. However, despite therapies targeting the myeloproliferation-sustaining clones, PMF is still regarded as an incurable disease except for patients, who are successful recipients of allogeneic stem cell transplantation. Although the clinical benefits of these inhibitors have been correlated with a marked reduction in serum proinflammatory cytokines produced by the hematopoietic clones, further demonstrating the importance of inflammation in the pathological process, these treatments do not address the role of the altered bone marrow stroma in the pathological process. In this review, we propose hypotheses suggesting that the stroma is inflammatory-imprinted by clonal hematopoietic cells up to a point where it becomes “independent” of hematopoietic cell stimulation, resulting in an inflammatory vicious circle requiring combined stroma targeted therapies.
Collapse
|
25
|
Strauss L, Sangaletti S, Consonni FM, Szebeni G, Morlacchi S, Totaro MG, Porta C, Anselmo A, Tartari S, Doni A, Zitelli F, Tripodo C, Colombo MP, Sica A. RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis. Cancer Cell 2015; 28:253-69. [PMID: 26267538 DOI: 10.1016/j.ccell.2015.07.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 07/21/2015] [Indexed: 11/25/2022]
Abstract
Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Immunohistochemistry
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Monocytes/metabolism
- Monocytes/pathology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Myelopoiesis/genetics
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neutrophils/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Laura Strauss
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Sabina Sangaletti
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Gabor Szebeni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Sara Morlacchi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Maria Grazia Totaro
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Achille Anselmo
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Silvia Tartari
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Doni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Zitelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Mario P Colombo
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Antonio Sica
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy.
| |
Collapse
|
26
|
Vitali C, Bassani C, Chiodoni C, Fellini E, Guarnotta C, Miotti S, Sangaletti S, Fuligni F, De Cecco L, Piccaluga PP, Colombo MP, Tripodo C. SOCS2 Controls Proliferation and Stemness of Hematopoietic Cells under Stress Conditions and Its Deregulation Marks Unfavorable Acute Leukemias. Cancer Res 2015; 75:2387-99. [PMID: 25858143 DOI: 10.1158/0008-5472.can-14-3625] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Hematopoietic stem cells (HSC) promptly adapt hematopoiesis to stress conditions, such as infection and cancer, replenishing bone marrow-derived circulating populations, while preserving the stem cell reservoir. SOCS2, a feedback inhibitor of JAK-STAT pathways, is expressed in most primitive HSC and is upregulated in response to STAT5-inducing cytokines. We demonstrate that Socs2 deficiency unleashes HSC proliferation in vitro, sustaining STAT5 phosphorylation in response to IL3, thrombopoietin, and GM-CSF. In vivo, SOCS2 deficiency leads to unrestricted myelopoietic response to 5-fluorouracil (5-FU) and, in turn, induces exhaustion of long-term HSC function along serial bone marrow transplantations. The emerging role of SOCS2 in HSC under stress conditions prompted the investigation of malignant hematopoiesis. High levels of SOCS2 characterize unfavorable subsets of acute myeloid and lymphoblastic leukemias, such as those with MLL and BCR/ABL abnormalities, and correlate with the enrichment of genes belonging to hematopoietic and leukemic stemness signatures. In this setting, SOCS2 and its correlated genes are part of regulatory networks fronted by IKZF1/Ikaros and MEF2C, two transcriptional regulators involved in normal and leukemic hematopoiesis that have never been linked to SOCS2. Accordingly, a comparison of murine wt and Socs2(-/-) HSC gene expression in response to 5-FU revealed a significant overlap with the molecular programs that correlate with SOCS2 expression in leukemias, particularly with the oncogenic pathways and with the IKZF1/Ikaros and MEF2C-predicted targets. Lentiviral gene transduction of murine hematopoietic precursors with Mef2c, but not with Ikzf1, induces Socs2 upregulation, unveiling a direct control exerted by Mef2c over Socs2 expression.
Collapse
|
27
|
Spivak JL, Considine M, Williams DM, Talbot CC, Rogers O, Moliterno AR, Jie C, Ochs MF. Two clinical phenotypes in polycythemia vera. N Engl J Med 2014; 371:808-17. [PMID: 25162887 PMCID: PMC4211877 DOI: 10.1056/nejmoa1403141] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polycythemia vera is the ultimate phenotypic consequence of the V617F mutation in Janus kinase 2 (encoded by JAK2), but the extent to which this mutation influences the behavior of the involved CD34+ hematopoietic stem cells is unknown. METHODS We analyzed gene expression in CD34+ peripheral-blood cells from 19 patients with polycythemia vera, using oligonucleotide microarray technology after correcting for potential confounding by sex, since the phenotypic features of the disease differ between men and women. RESULTS Men with polycythemia vera had twice as many up-regulated or down-regulated genes as women with polycythemia vera, in a comparison of gene expression in the patients and in healthy persons of the same sex, but there were 102 genes with differential regulation that was concordant in men and women. When these genes were used for class discovery by means of unsupervised hierarchical clustering, the 19 patients could be divided into two groups that did not differ significantly with respect to age, neutrophil JAK2 V617F allele burden, white-cell count, platelet count, or clonal dominance. However, they did differ significantly with respect to disease duration; hemoglobin level; frequency of thromboembolic events, palpable splenomegaly, and splenectomy; chemotherapy exposure; leukemic transformation; and survival. The unsupervised clustering was confirmed by a supervised approach with the use of a top-scoring-pair classifier that segregated the 19 patients into the same two phenotypic groups with 100% accuracy. CONCLUSIONS Removing sex as a potential confounder, we identified an accurate molecular method for classifying patients with polycythemia vera according to disease behavior, independently of their JAK2 V617F allele burden, and identified previously unrecognized molecular pathways in polycythemia vera outside the canonical JAK2 pathway that may be amenable to targeted therapy. (Funded by the Department of Defense and the National Institutes of Health.).
Collapse
Affiliation(s)
- Jerry L Spivak
- From the Division of Hematology, Department of Medicine (J.L.S., D.M.W., O.R., A.R.M.), Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center (M.C.), and the Basic Science Institute (C.C.T.), Johns Hopkins University School of Medicine, Baltimore; the Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago (C.J.); and the Department of Mathematics and Statistics, College of New Jersey, Ewing (M.F.O.)
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sangaletti S, Tripodo C, Sandri S, Torselli I, Vitali C, Ratti C, Botti L, Burocchi A, Porcasi R, Tomirotti A, Colombo MP, Chiodoni C. Osteopontin Shapes Immunosuppression in the Metastatic Niche. Cancer Res 2014; 74:4706-19. [DOI: 10.1158/0008-5472.can-13-3334] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Sangaletti S, Tripodo C, Portararo P, Dugo M, Vitali C, Botti L, Guarnotta C, Cappetti B, Gulino A, Torselli I, Casalini P, Chiodoni C, Colombo MP. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies. Oncoimmunology 2014; 3:e28989. [PMID: 25083326 PMCID: PMC4108469 DOI: 10.4161/onci.28989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc-/- mice and BM chimeras retaining the Sparc-/- genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53-/-/Sparc-/- double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53-/-/Sparc+/+ counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis and progression of B-cell malignancies.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Paola Portararo
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Matteo Dugo
- Functional Genomics Core Facility; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Caterina Vitali
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Carla Guarnotta
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Barbara Cappetti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Ilaria Torselli
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Patrizia Casalini
- Molecular Therapies Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Mario P Colombo
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| |
Collapse
|
30
|
Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 2014; 123:4054-63. [PMID: 24833352 DOI: 10.1182/blood-2013-10-533711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.
Collapse
|
31
|
Alachkar H, Santhanam R, Maharry K, Metzeler KH, Huang X, Kohlschmidt J, Mendler JH, Benito JM, Hickey C, Neviani P, Dorrance AM, Anghelina M, Khalife J, Tarighat SS, Volinia S, Whitman SP, Paschka P, Hoellerbauer P, Wu YZ, Han L, Bolon BN, Blum W, Mrózek K, Carroll AJ, Perrotti D, Andreeff M, Caligiuri MA, Konopleva M, Garzon R, Bloomfield CD, Marcucci G. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest 2014; 124:1512-24. [PMID: 24590286 DOI: 10.1172/jci70921] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.
Collapse
|
32
|
|
33
|
Sangaletti S, Tripodo C, Vitali C, Portararo P, Guarnotta C, Casalini P, Cappetti B, Miotti S, Pinciroli P, Fuligni F, Fais F, Piccaluga PP, Colombo MP. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 2014; 4:110-29. [PMID: 24189145 DOI: 10.1158/2159-8290.cd-13-0276] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered expression of matricellular proteins can become pathogenic in the presence of persistent perturbations in tissue homeostasis. Here, we show that autoimmunity associated with Fas mutation was exacerbated and transitioned to lymphomagenesis in the absence of SPARC (secreted protein acidic rich in cysteine). The absence of SPARC resulted in defective collagen assembly, with uneven compartmentalization of lymphoid and myeloid populations within secondary lymphoid organs (SLO), and faulty delivery of inhibitory signals from the extracellular matrix. These conditions promoted aberrant interactions between neutrophil extracellular traps and CD5(+) B cells, which underwent malignant transformation due to defective apoptosis under the pressure of neutrophil-derived trophic factors and NF-κB activation. Furthermore, this model of defective stromal remodeling during lymphomagenesis correlates with human lymphomas arising in a SPARC-defective environment, which is prototypical of CD5(+) B-cell chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
- Sabina Sangaletti
- 1Molecular Immunology Unit, 2Molecular Targeting Unit, and 3Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan; 4Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo; 5Hematopathology Section, Department of Hematology and Oncology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna; and 6Human Anatomy Section, Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shin M, Mizokami A, Kim J, Ofude M, Konaka H, Kadono Y, Kitagawa Y, Miwa S, Kumaki M, Keller ET, Namiki M. Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin β1. Prostate 2013; 73:1159-70. [PMID: 23532895 DOI: 10.1002/pros.22664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/26/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND The matricellular protein secreted protein acidic and rich in cysteine (SPARC) plays an important role on tumor metastasis and progression in several cancers. However, the roles of SPARC in prostate cancer (PCa) remain unclear. METHODS To identify SPARC protein in prostate tissue, immunohistochemical analysis of SPARC was conducted using human prostate tissue microarray. To detect SPARC expression in prostate cancer (LNCaP, DU145, and PC-3) and stromal cells, RT-PCR, western blot analysis, and ELISA was conducted. To reveal the function of exogenous SPARC in PCa cells, AKT phosphorylation was confirmed by western blot analysis after coculture with stromal cells. Proliferation and migration of PCa cells were examined by addition of SPARC. The interaction between SPARC and integrin β1 was confirmed by western blot analysis after immunoprecipitation. RESULTS SPARC protein was expressed well in normal tissue compared with PCa tissue. ELISA showed high secreted SPARC protein in normal prostate-derived stromal cell (PrSC) compared with PCa-derived stromal cell (PCaSC) and PCa. PCa cells cocultured with PrSC showed reduced AKT phosphorylation more than with PCaSC. PCa cells cocultured with PrSC whose SPARC was knocked-down restored AKT phosphorylation. Moreover, PCa cells treated with SPARC led to reduced AKT phosphorylation. Immunoprecipitation with SPARC revealed interaction of SPARC and integrin β1 in PCa cells. Inhibited proliferation and migration of PCa cells by SPARC was restored by integrin β1 neutralizing antibody. CONCLUSIONS Reduced SPARC secretion from stromal cells might affect PCa progression mediating through limiting AKT phosphorylation after interaction with integrin β1.
Collapse
Affiliation(s)
- Minkyoung Shin
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Takubo K. Mesenchymal stem cells as an essential hematopoietic stem cell niche component. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|