1
|
Oikonomou A, Watrin T, Valsecchi L, Scharov K, Savino AM, Schliehe-Diecks J, Bardini M, Fazio G, Bresolin S, Biondi A, Borkhardt A, Bhatia S, Cazzaniga G, Palmi C. Synergistic drug interactions of the histone deacetylase inhibitor givinostat (ITF2357) in CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia identified by high-throughput drug screening. Heliyon 2024; 10:e34033. [PMID: 39071567 PMCID: PMC11277435 DOI: 10.1016/j.heliyon.2024.e34033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Combining multiple drugs broadens the window of therapeutic opportunities and is crucial for diseases that are currently lacking fully curative treatments. A powerful emerging tool for selecting effective drugs and combinations is the high-throughput drug screening (HTP). The histone deacetylase inhibitor (HDACi) givinostat (ITF2357) has been shown to act effectively against CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), a subtype characterized by poor outcome and enriched in children with Down Syndrome, very fragile patients with a high susceptibility to treatment-related toxicity. The aim of this study is to investigate possible synergies with givinostat for these difficult-to-treat patients by performing HTP screening with a library of 174 drugs, either approved or in preclinical studies. By applying this approach to the CRLF2-r MHH-CALL-4 cell line, we identified 19 compounds with higher sensitivity in combination with givinostat compared to the single treatments. Next, the synergy between givinostat and the promising candidates was further validated in CRLF2r cell lines with a broad matrix of concentrations. The combinations with trametinib (MEKi) or venetoclax (BCL2i) were found to be the most effective and with the greatest synergy across three metrics (ZIP, HAS, Bliss). Their efficacy was confirmed in primary blasts treated ex vivo at concentration ranges with a safe profile on healthy cells. Finally, we described givinostat-induced modifications in gene expression of MAPK and BCL-2 family members, supporting the observed synergistic interactions. Overall, our study represents a model of drug repurposing strategy using HTP screening for identifying synergistic, efficient, and safe drug combinations.
Collapse
Affiliation(s)
| | - Titus Watrin
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Luigia Valsecchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Angela Maria Savino
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Julian Schliehe-Diecks
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
2
|
Acharya L, Garg A, Rai M, Kshetri R, Grewal US, Dhakal P. Novel chimeric antigen receptor targets and constructs for acute lymphoblastic leukemia: Moving beyond CD19. J Investig Med 2024; 72:32-46. [PMID: 37497999 DOI: 10.1177/10815589231191811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults with a poor prognosis with relapsed or refractory (R/R) B-cell lineage ALL (B-ALL). Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has shown excellent response rates in RR B-ALL, but most patients relapse due to poor persistence of CAR T-cell therapy or other tumor-associated escape mechanisms. In addition, anti-CD19 CAR T-cell therapy causes several serious side effects such as cytokine release syndrome and neurotoxicity. In this review, we will discuss novel CAR targets, CAR constructs, and various strategies to boost CARs for the treatment of RR B-ALL. In addition, we discuss a few novel strategies developed to reduce the side effects of CAR.
Collapse
Affiliation(s)
- Luna Acharya
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alpana Garg
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Manoj Rai
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rupesh Kshetri
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Udhayvir S Grewal
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Prajwal Dhakal
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
3
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
4
|
Afkhami M, Ally F, Pullarkat V, Pillai RK. Genetics and Diagnostic Approach to Lymphoblastic Leukemia/Lymphoma. Cancer Treat Res 2021; 181:17-43. [PMID: 34626353 DOI: 10.1007/978-3-030-78311-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the genetics and biology of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia, ALL) has advanced rapidly in the past decade with advances in sequencing and other molecular techniques. Besides recurrent chromosomal abnormalities detected by karyotyping or fluorescence in situ hybridization, these leukemias/lymphomas are characterized by a variety of mutations, gene rearrangements as well as copy number alterations. This is particularly true in the case of Philadelphia-like (Ph-like) ALL, a major subset which has the same gene expression signature as Philadelphia chromosome-positive ALL but lacks BCR-ABL1 translocation. Ph-like ALL is associated with a worse prognosis and hence its detection is critical. However, techniques to detect this entity are complex and are not widely available. This chapter discusses various subsets of ALL and describes our approach to the accurate classification and prognostication of these cases.
Collapse
Affiliation(s)
- Michelle Afkhami
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| | - Feras Ally
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Vinod Pullarkat
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Raju K Pillai
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
5
|
Safarzadeh Kozani P, Safarzadeh Kozani P, O'Connor RS. In Like a Lamb; Out Like a Lion: Marching CAR T Cells Toward Enhanced Efficacy in B-ALL. Mol Cancer Ther 2021; 20:1223-1233. [PMID: 33903140 PMCID: PMC8285067 DOI: 10.1158/1535-7163.mct-20-1089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Combining synthetic biology with adoptive T-cell transfer has led to promising advances in the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Chimeric antigen receptors (CARs) are synthetic receptors that redirect T-cell specificity against cancer. CARs include "built-in" signaling domains that reprogram T-cell metabolism, enhance effector function, and support long-term persistence. Despite their success in blood-based malignancies, relapse can occur in CD19-redirected CAR T-cell therapies for several reasons, including poor engraftment, impaired in vivo proliferation, and T-cell senescence. Herein, we explain how subtle alterations in CAR design may overcome barriers to effective adoptive immunotherapy. We also discuss how the physiochemical properties of the single-chain variable fragment (scFv) affect differentiation and persistence. Moreover, we describe innovative advances in CAR engineering and provide insight into the development of humanized scFvs whose proposed benefits include increased persistence and improved clinical outcomes. Tumor cells can evade CAR T-cell-mediated detection and elimination due to the emergence or presence of CD19-negative leukemic cell subpopulations. We also discuss the opportunities and challenges in targeting other B-ALL-associated antigens. Identifying alternate targets is fundamentally necessary to restore the success of CAR T-cell therapies in CD19-negative patients with B-ALL.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Disease Management
- Genetic Engineering
- Humans
- Immunity
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Research Design
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
7
|
Wang WR, Chen NT, Hsu NY, Kuo IY, Chang HW, Wang JY, Su HJ. Associations among phthalate exposure, DNA methylation of TSLP, and childhood allergy. Clin Epigenetics 2021; 13:76. [PMID: 33836808 PMCID: PMC8035749 DOI: 10.1186/s13148-021-01061-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of thymic stromal lymphopoietin (TSLP) expressions is linked to asthma and allergic disease. Exposure to phthalate esters, a widely used plasticizer, is associated with respiratory and allergic morbidity. Dibutyl phthalate (DBP) causes TSLP upregulation in the skin. In addition, phthalate exposure is associated with changes in environmentally induced DNA methylation, which might cause phenotypic heterogeneity. This study examined the DNA methylation of the TSLP gene to determine the potential mechanism between phthalate exposure and allergic diseases. RESULTS Among all evaluated, only benzyl butyl phthalate (BBzP) in the settled dusts were negatively correlated with the methylation levels of TSLP and positively associated with children's respiratory symptoms. The results revealed that every unit increase in BBzP concentration in the settled dust was associated with a 1.75% decrease in the methylation level on upstream 775 bp from the transcription start site (TSS) of TSLP (β = - 1.75, p = 0.015) after adjustment for child's sex, age, BMI, parents' smoking status, allergic history, and education levels, PM2.5, formaldehyde, temperature; and relative humidity. Moreover, every percentage increase in the methylation level was associated with a 20% decrease in the risk of morning respiratory symptoms in the children (OR 0.80, 95% CI 0.65-0.99). CONCLUSIONS Exposure to BBzP in settled dust might increase children's respiratory symptoms in the morning through decreasing TSLP methylation. Therefore, the exposure to BBzP should be reduced especially for the children already having allergic diseases.
Collapse
Affiliation(s)
- Wan-Ru Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Wen Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
8
|
Xu X, Huang S, Xiao X, Sun Q, Liang X, Chen S, Zhao Z, Huo Z, Tu S, Li Y. Challenges and Clinical Strategies of CAR T-Cell Therapy for Acute Lymphoblastic Leukemia: Overview and Developments. Front Immunol 2021; 11:569117. [PMID: 33643279 PMCID: PMC7902522 DOI: 10.3389/fimmu.2020.569117] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy exhibits desirable and robust efficacy in patients with acute lymphoblastic leukemia (ALL). Stimulated by the revolutionized progress in the use of FDA-approved CD19 CAR T cells, novel agents with CAR designs and targets are being produced in pursuit of superior performance. However, on the path from bench to bedside, new challenges emerge. Accessibility is considered the initial barrier to the transformation of this patient-specific product into a commercially available product. To ensure infusion safety, profound comprehension of adverse events and proactive intervention are required. Additionally, resistance and relapse are the most critical and intractable issues in CAR T-cell therapy for ALL, thus precluding its further development. Understanding the limitations through up-to-date insights and characterizing multiple strategies will be critical to leverage CAR T-cell therapy flexibly for use in clinical situations. Herein, we provide an overview of the application of CAR T-cell therapy in ALL, emphasizing the main challenges and potential clinical strategies in an effort to promote a standardized set of treatment paradigms for ALL.
Collapse
Affiliation(s)
- Xinjie Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengkang Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinyi Xiao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qihang Sun
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoqian Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sifei Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zijing Zhao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhaochang Huo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yadav V, Ganesan P, Veeramani R, Kumar V D. Philadelphia-Like Acute Lymphoblastic Leukemia: A Systematic Review. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e57-e65. [PMID: 33485429 DOI: 10.1016/j.clml.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a subgroup of B-cell precursor ALL (BCP-ALL) with a gene expression profile analogous to Philadelphia-positive ALL and recurrent IKAROS Family Zinc Finger 1 (IKZF1) gene deletion despite lacking BCR-ABL1 (Breakpoint cluster region-ABL protooncogene) translocation. Although recognized to occur at all ages, the proportion of cases among BCP-ALL varies (< 10% in children and up to 30% in adolescents). In all age groups, males are more commonly affected. Generally, Ph-like ALL is associated with adverse clinical features and an increased risk of treatment failure with conventional approaches. Genetic alterations such as aberrant expression, point mutations, or fusion translocations lead to activation of cytokine receptors and signaling kinases, which affect the ABL1 (ABL class fusion) or Janus Kinase (JAK) signaling pathways. Several clinical trials are being conducted to understand whether specific tyrosine kinase inhibitor therapy can improve cure rates. This review summarizes the current literature available about this entity.
Collapse
Affiliation(s)
- Vineeta Yadav
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Raveendranath Veeramani
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India.
| | - Dinesh Kumar V
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
10
|
Cario G, Leoni V, Conter V, Baruchel A, Schrappe M, Biondi A. BCR-ABL1-like acute lymphoblastic leukemia in childhood and targeted therapy. Haematologica 2020; 105:2200-2204. [PMID: 33054045 PMCID: PMC7556506 DOI: 10.3324/haematol.2018.207019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gunnar Cario
- University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Veronica Leoni
- Dept. of Pediatrics, University of Milano-Bicocca, FondazioneMBBM/Ospedale San Gerardo, Monza, Italy
| | - Valentino Conter
- Dept. of Pediatrics, University of Milano-Bicocca, FondazioneMBBM/Ospedale San Gerardo, Monza, Italy
| | - André Baruchel
- Hôpital Universitaire Robert Debré, (APHP), Université de Paris, Paris, France
| | - Martin Schrappe
- University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Andrea Biondi
- Dept. of Pediatrics, University of Milano-Bicocca, FondazioneMBBM/Ospedale San Gerardo, Monza, Italy
| |
Collapse
|
11
|
Sia KCS, Zhong L, Mayoh C, Norris MD, Haber M, Marshall GM, Raftery MJ, Lock RB. Targeting TSLP-Induced Tyrosine Kinase Signaling Pathways in CRLF2-Rearranged Ph-like ALL. Mol Cancer Res 2020; 18:1767-1776. [PMID: 32801162 DOI: 10.1158/1541-7786.mcr-19-1098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) is characterized by aberrant activation of signaling pathways and high risk of relapse. Approximately 50% of Ph-like ALL cases overexpress cytokine receptor-like factor 2 (CRLF2) associated with gene rearrangement. Activated by its ligand thymic stromal lymphopoietin (TSLP), CRLF2 signaling is critical for the development, proliferation, and survival of normal lymphocytes. To examine activation of tyrosine kinases regulated by TSLP/CRLF2, phosphotyrosine (P-Tyr) profiling coupled with stable isotope labeling of amino acids in cell culture (SILAC) was conducted using two CRLF2-rearranged (CRLF2r) Ph-like ALL cell lines stimulated with TSLP. As a result, increased P-Tyr was detected in previously reported TSLP-activated tyrosine kinases and substrates, including JAK1, JAK2, STAT5, and ERK1/2. Interestingly, TSLP also increased P-Tyr of insulin growth factor 1 receptor (IGF1R) and fibroblast growth factor receptor 1 (FGFR1), both of which can be targeted with small-molecule inhibitors. Fixed-ratio combination cytotoxicity assays using the tyrosine kinase inhibitors BMS-754807 and ponatinib that target IGF1R and FGFR1, respectively, revealed strong synergy against both cell line and patient-derived xenograft (PDX) models of CRLF2r Ph-like ALL. Further analyses also indicated off-target effects of ponatinib in the synergy, and novel association of the Ras-associated protein-1 (Rap1) signaling pathway with TSLP signaling in CRLF2r Ph-like ALL. When tested in vivo, the BMS-754807/ponatinib combination exerted minimal efficacy against 2 Ph-like ALL PDXs, associated with low achievable plasma drug concentrations. Although this study identified potential new targets in CRLF2r Ph-like ALL, it also highlights that in vivo validation of synergistic drug interactions is essential. IMPLICATION: Quantitative phosphotyrosine profiling identified potential therapeutic targets for high-risk CRLF2-rearranged Ph-like ALL.
Collapse
Affiliation(s)
- Keith C S Sia
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Murray D Norris
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.,UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, Australia. .,UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, Australia
| |
Collapse
|
12
|
Hurtz C, Wertheim GB, Loftus JP, Blumenthal D, Lehman A, Li Y, Bagashev A, Manning B, Cummins KD, Burkhardt JK, Perl AE, Carroll M, Tasian SK. Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. J Clin Invest 2020; 130:3637-3653. [PMID: 32191635 PMCID: PMC7324172 DOI: 10.1172/jci134424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
Children and adults with Philadelphia chromosome-like B cell acute lymphoblastic leukemia (Ph-like B-ALL) experience high relapse rates despite best-available conventional chemotherapy. Ph-like ALL is driven by genetic alterations that activate constitutive cytokine receptor and kinase signaling, and early-phase trials are investigating the potential of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy to improve clinical outcomes. However, preclinical studies have shown that JAK or PI3K pathway inhibition is insufficient to eradicate the most common cytokine receptor-like factor 2-rearranged (CRLF2-rearranged) Ph-like ALL subset. We thus sought to define additional essential signaling pathways required in Ph-like leukemogenesis for improved therapeutic targeting. Herein, we describe an adaptive signaling plasticity of CRLF2-rearranged Ph-like ALL following selective TKI pressure, which occurs in the absence of genetic mutations. Interestingly, we observed that Ph-like ALL cells have activated SRC, ERK, and PI3K signaling consistent with activated B cell receptor (BCR) signaling, although they do not express cell surface μ-heavy chain (μHC). Combinatorial targeting of JAK/STAT, PI3K, and "BCR-like" signaling with multiple TKIs and/or dexamethasone prevented this signaling plasticity and induced complete cell death, demonstrating a more optimal and clinically pragmatic therapeutic strategy for CRLF2-rearranged Ph-like ALL.
Collapse
Affiliation(s)
- Christian Hurtz
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Gerald B. Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Joseph P. Loftus
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Anne Lehman
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Yong Li
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asen Bagashev
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Bryan Manning
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Katherine D. Cummins
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
- Center for Cellular Immunotherapies
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Alexander E. Perl
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Martin Carroll
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Sarah K. Tasian
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, and
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
14
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Zia S, Shahid R. Mutagenic players in ALL progression and their associated signaling pathways. Cancer Genet 2019; 233-234:7-20. [DOI: 10.1016/j.cancergen.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
|
16
|
Chen H, Wang XJ, Liu S, Yuan FF, Ai H, Chen L, Mi RH, Xiong YY, Li MJ, Fan RH, Yin QS, Wei XD. [The expression of CRLF2 in adult Ph negative acute B lymphocytic leukemia and its prognostic significance]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:822-827. [PMID: 30369203 PMCID: PMC7348285 DOI: 10.3760/cma.j.issn.0253-2727.2018.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Indexed: 12/04/2022]
Abstract
Objective: To detect the expression of CRLF2 in adult Ph negative acute B lymphocytic leukemia (B-ALL) in newly diagnosed cases, and to investigate the relationship between CRLF2 and the general clinical characteristics, efficacy and prognosis. Methods: 103 cases of newly diagnosed adult B-ALL patients were investigated from Apr 2016 to Dec 2017 in the Department of Hematology, Henan Cancer Hospital. Bone marrow samples was used to detect the expression of CRLF2 in leukemic cells. The expression of CRLF2 ≥20% was defined as CRLF2-high group and <20% was defined as CRLF2-low group. The clinical characteristics and prognosis of the two groups were compared. Results: The Median overall survival (OS) and disease free survial (DFS) in CRLF2-high group were 9.0 months and 4.25 months, respectively. CRLF2-low group were 15.5 months and 10.25 months, respectively. There was a statistically significant difference in median OS and DFS between the two groups (P=0.007, P=0.000) . The 18-month OS and DFS in CRLF2-high group were 38.6% and 25.1%, respectively. CRLF2-low group were 57.8% and 42.3%, respectively. Multivariate analysis showed high expression of CRLF2 was an independent risk factor for OS (HR=2.991, 95% CI 1.429-6.261, P=0.004) and DFS (HR=2.374, 95%CI 1.146-4.960, P=0.041) in patients. Conclusion: Patients with high expression of CRLF2 had poor prognosis.
Collapse
Affiliation(s)
- H Chen
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital, Zhengzhou 450008, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pastorczak A, Sedek L, Braun M, Madzio J, Sonsala A, Twardoch M, Fendler W, Nebral K, Taha J, Bielska M, Gorniak P, Romiszewska M, Matysiak M, Derwich K, Lejman M, Kowalczyk J, Badowska W, Niedzwiecki M, Kazanowska B, Muszynska-Roslan K, Sobol-Milejska G, Karolczyk G, Koltan A, Ociepa T, Szczepanski T, Młynarski W. Surface expression of Cytokine Receptor-Like Factor 2 increases risk of relapse in pediatric acute lymphoblastic leukemia patients harboring IKZF1 deletions. Oncotarget 2018; 9:25971-25982. [PMID: 29899835 PMCID: PMC5995260 DOI: 10.18632/oncotarget.25411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
We prospectively examined whether surface expression of Cytokine Receptor-Like Factor 2 (CRLF2) on leukemic blasts is associated with survival and induction treatment response in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. Flow cytometric analysis of bone marrow-derived leukemia cells revealed that 7.51% (29/286) of 386 pediatric BCP-ALL patients were CRLF2-positive (CRLF2pos) at diagnosis. The median minimal residual disease (MRD) was lower in CRLF2pos than CRLF2-negative (CRLF2neg) patients on day 15 (MRD15) after induction therapy [0.01% (0.001-0.42%) vs. 0.45% (0.05-3.50%); p=0.001]. By contrast, the MRD15 was higher in Ikaros family Zinc Finger Protein 1 (IKZF1)-deleted BCP-ALL patients than in BCP-ALL patients without IKZF1 deletions [1.18% (0.06-12.0%) vs 0.33% (0.03-2.6%); p=0.003]. Subgroup analysis showed that MRD15 levels were lower in IKZF1Δ/CRLF2pos patients than in IKZF1Δ/CRLF2neg patients [0.1% (0.02-5.06%) vs. 2.9% (0.25-12%); p=0.005]. Furthermore, MRD15 levels were higher in IKZF1WT/CRLF2neg patients than in IKZF1WT/CRLF2pos patients [0.40% (0.04-2.7%) vs. 0.001% (0.001-0.01%)]. Despite the low MRD15 levels, IKZF1Δ/CRLF2pos patients showed poorer relapse-free survival (RFS) than other patient groups (p=0.003). These findings demonstrate that surface CRLF2 expression is associated with increased risk of relapse in pediatric BCP-ALL patients harboring IKZF1 deletions.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland
| | - Lukasz Sedek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Marcin Braun
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Pathology, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Joanna Madzio
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Sonsala
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Magdalena Twardoch
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Wojciech Fendler
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland.,Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Karin Nebral
- Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Joanna Taha
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland
| | - Marta Bielska
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland
| | - Patryk Gorniak
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Magdalena Romiszewska
- Department of Pediatrics, Oncology and Hematology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Matysiak
- Department of Pediatrics, Oncology and Hematology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Derwich
- Department of Pediatric Hematology, Oncology, Transplantology, Medical University of Poznań, Poznań, Poland
| | - Monika Lejman
- Department of Pediatric Hematology and Oncology, Medical University of Lublin, Lublin, Poland
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology and Oncology, Medical University of Lublin, Lublin, Poland
| | - Wanda Badowska
- Department of Pediatric Hematology and Oncology, Children's Hospital in Olsztyn, Olsztyn, Poland
| | - Maciej Niedzwiecki
- Department of Pediatrics, Hematology, Oncology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Bernarda Kazanowska
- Department of Transplantology, Pediatric Oncology and Hematology, Medical University of Wrocław, Wrocław, Poland
| | | | | | | | - Andrzej Koltan
- Department of Pediatric Hematology and Oncology, Collegium Medicum in Bydgoszcz, Mikolaj Kopernik University, Bydgoszcz, Poland
| | - Tomasz Ociepa
- Department of Pediatrics, Hematology and Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
18
|
Sarno J, Savino AM, Buracchi C, Palmi C, Pinto S, Bugarin C, Jager A, Bresolin S, Barber RC, Silvestri D, Israeli S, Dyer MJ, Cazzaniga G, Nolan GP, Biondi A, Davis KL, Gaipa G. SRC/ABL inhibition disrupts CRLF2-driven signaling to induce cell death in B-cell acute lymphoblastic leukemia. Oncotarget 2018; 9:22872-22885. [PMID: 29796158 PMCID: PMC5955419 DOI: 10.18632/oncotarget.25089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/19/2018] [Indexed: 01/31/2023] Open
Abstract
Children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) overexpressing the CRLF2 gene (hiCRLF2) have poor prognosis. CRLF2 protein overexpression leads to activated JAK/STAT signaling and trials are underway using JAK inhibitors to overcome treatment failure. Pre-clinical studies indicated limited efficacy of single JAK inhibitors, thus additional pathways must be targeted in hiCRLF2 cells. To identify additional activated networks, we used single-cell mass cytometry to examine 15 BCP-ALL primary patient samples. We uncovered a coordinated signaling network downstream of CRLF2 characterized by co-activation of JAK/STAT, PI3K, and CREB pathways. This CRLF2-driven network could be more effectively disrupted by SRC/ABL inhibition than single-agent JAK or PI3K inhibition, and this could be demonstrated even in primary minimal residual disease (MRD) cells. Our study suggests SCR/ABL inhibition as effective in disrupting the cooperative functional networks present in hiCRLF2 BCP-ALL patients, supporting further investigation of this strategy in pre-clinical studies.
Collapse
Affiliation(s)
- Jolanda Sarno
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Stanford University, Stanford, CA, USA
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | | | - Chiara Buracchi
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Chiara Palmi
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Stefania Pinto
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Astraea Jager
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Stanford University, Stanford, CA, USA
| | - Silvia Bresolin
- Laboratory of Onco-Hematology, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Ruth C. Barber
- Leicester Drug Discovery & Diagnostic Centre, University of Leicester, Leicester, United Kingdom
| | - Daniela Silvestri
- Biostatistics and Clinic Epidemiology Center, University of Milano Bicocca, Monza, Italy
| | - Shai Israeli
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Martin J.S. Dyer
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom
| | - Giovanni Cazzaniga
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Garry P. Nolan
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Andrea Biondi
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
- Department of Pediatrics, ASST-Monza, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Kara L. Davis
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Stanford University, Stanford, CA, USA
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
19
|
Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget 2018; 9:22605-22617. [PMID: 29854301 PMCID: PMC5978251 DOI: 10.18632/oncotarget.25194] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current chemotherapy is quite toxic in growing children and more directed therapeutics are being sought. The IL-7R pathway is a major driver of ALL and here we evaluate two drugs directed to that pathway using a model of T cell ALL. Mutant gain-of-function IL-7Rα was transduced into an IL-7-dependent murine thymocyte line conferring ligand-independent survival and growth. JAK1 is associated with IL-7Rα and mediates signaling from the mutant receptor. In vitro, treating the transformed cell line with the JAK1/2 inhibitor ruxolitinib inhibited ligand-independent signaling and induced cell death. Transfer of the transformed cell line into mice resulted in aggressive leukemia and untreated mice succumbed in about three weeks. Treatment with ruxolitinib incorporated into chow showed a potent therapeutic benefit with reduction in leukemic burden and extension of survival. BCL-2 is an anti-apoptotic downstream mediator of the IL-7R survival mechanism. Venetoclax, an inhibitor of BCL-2, showed activity against the transformed cell line in vitro and could be combined with ruxolitinib in vivo. These findings support the therapeutic potential of treating T-ALL by targeting the IL-7R pathway.
Collapse
|
20
|
Ge Z, Gu Y, Zhao G, Li J, Chen B, Han Q, Guo X, Liu J, Li H, Yu MD, Olson J, Steffens S, Payne KJ, Song C, Dovat S. High CRLF2 expression associates with IKZF1 dysfunction in adult acute lymphoblastic leukemia without CRLF2 rearrangement. Oncotarget 2018; 7:49722-49732. [PMID: 27391346 PMCID: PMC5226542 DOI: 10.18632/oncotarget.10437] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023] Open
Abstract
Overexpression of cytokine receptor-like factor 2 (CRLF2) due to chromosomal rearrangement has been observed in acute lymphoblastic leukemia (ALL) and reported to contribute to oncogenesis and unfavorable outcome in ALL. We studied B-ALL and T-ALL patients without CRLF2 rearrangement and observed that CRLF2 is significantly increased in a subset of these patients. Our study shows that high CRLF2expression correlates with high-risk ALL markers, as well as poor survival. We found that the IKZF1-encoded protein, Ikaros, directly binds to the CRLF2 promoter and regulates CRLF2 expression in leukemia cells. CK2 inhibitor, which can increase Ikaros activity, significantly increases Ikaros binding in ALL cells and suppresses CRLF2 expression in an Ikaros-dependent manner. CRLF2 expression is significantly higher in patients with IKZF1 deletion as compared to patients without IKZF1 deletion. Treatment with CK2 inhibitor also results in an increase in IKZF1 binding to the CRLF2 promoter and suppression of CRLF2 expression in primary ALL cells. We further observed that CK2 inhibitor induces increased H3K9me3 histone modifications in the CRLF2 promoter in ALL cell lines and primary cells. Taken together, our results demonstrate that high expression of CRLF2 correlates with high-risk ALL and short survival in patients without CRLF2 rearrangement. Our results are the first to demonstrate that the IKZF1-encoded Ikaros protein directly suppresses CRLF2 expression through enrichment of H3K9me3 in its promoter region. Our data also suggest that high CRLF2 expression works with the IKZF1 deletion to drive oncogenesis of ALL and has significance in an integrated prognostic model for adult high-risk ALL.
Collapse
Affiliation(s)
- Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Yan Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Gang Zhao
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Qi Han
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xing Guo
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Juan Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Hui Li
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, 17033, USA
| | - Michael D Yu
- Sydney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107 USA
| | - Justin Olson
- University of Wisconsin at Stout, Menomonie, WI, 54751, USA
| | - Sadie Steffens
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, 17033, USA
| | - Kimberly J Payne
- Loma Linda University, Department of Pathology and Human Anatomy, Loma Linda, CA, 92350, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, 17033, USA
| |
Collapse
|
21
|
Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 2017; 130:2064-2072. [PMID: 28972016 DOI: 10.1182/blood-2017-06-743252] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/23/2017] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL), also referred to as BCR-ABL1-like ALL, is a high-risk subset with a gene expression profile that shares significant overlap with that of Ph-positive (Ph+) ALL and is suggestive of activated kinase signaling. Although Ph+ ALL is defined by BCR-ABL1 fusion, Ph-like ALL cases contain a variety of genomic alterations that activate kinase and cytokine receptor signaling. These alterations can be grouped into major subclasses that include ABL-class fusions involving ABL1, ABL2, CSF1R, and PDGFRB that phenocopy BCR-ABL1 and alterations of CRLF2, JAK2, and EPOR that activate JAK/STAT signaling. Additional genomic alterations in Ph-like ALL activate other kinases, including BLNK, DGKH, FGFR1, IL2RB, LYN, NTRK3, PDGFRA, PTK2B, TYK2, and the RAS signaling pathway. Recent studies have helped to define the genomic landscape of Ph-like ALL and how it varies across the age spectrum, associated clinical features and outcomes, and genetic risk factors. Preclinical studies and anecdotal reports show that targeted inhibitors of relevant signaling pathways are active in specific Ph-like ALL subsets, and precision medicine trials have been initiated for this high-risk ALL subset.
Collapse
|
22
|
Sadras T, Heatley SL, Kok CH, Dang P, Galbraith KM, McClure BJ, Muskovic W, Venn NC, Moore S, Osborn M, Revesz T, Moore AS, Hughes TP, Yeung D, Sutton R, White DL. Differential expression of MUC4, GPR110 and IL2RA defines two groups of CRLF2-rearranged acute lymphoblastic leukemia patients with distinct secondary lesions. Cancer Lett 2017; 408:92-101. [PMID: 28866095 DOI: 10.1016/j.canlet.2017.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 12/26/2022]
Abstract
CRLF2-rearrangements (CRLF2-r) occur frequently in Ph-like B-ALL, a high-risk ALL sub-type characterized by a signaling profile similar to Ph + ALL, however accumulating evidence indicates genetic heterogeneity within CRLF2-r ALL. We performed thorough genomic characterization of 35 CRLF2-r cases (P2RY8-CRLF2 n = 18; IGH-CRLF2 n = 17). Activating JAK2 mutations were present in 34% of patients, and a CRLF2-F232C mutation was identified in an additional 17%. IKZF1 deletions were detected in 63% of cases. The majority of patients (26/35) classified as Ph-like, and these were characterized by significantly higher levels of MUC4, GPR110 and IL2RA/CD25. In addition, Ph-like CRLF2-r samples were significantly enriched for IKZF1 deletions, JAK2/CRLF2 mutations and increased expression of JAK/STAT target genes (CISH, SOCS1), suggesting that mutation-driven CRLF2/JAK2 activation is more frequent in this sub-group. Less is known about the genomics of CRLF2-r cases lacking JAK2-pathway mutations, but KRAS/NRAS mutations were identified in 4/9 non-Ph-like samples. This work highlights the heterogeneity of secondary lesions which may arise and influence intracellular-pathway activation in CRLF2-r patients, and importantly presents distinct therapeutic targets within a group of patients harboring identical primary translocations, for whom efficient directed therapies are currently lacking.
Collapse
Affiliation(s)
- Teresa Sadras
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Susan L Heatley
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Chung H Kok
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Phuong Dang
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Kate M Galbraith
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Barbara J McClure
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Walter Muskovic
- Molecular Diagnostics Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW, Australia
| | - Nicola C Venn
- Molecular Diagnostics Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW, Australia
| | - Sarah Moore
- Department of Genetic Pathology, SA Pathology, Adelaide, SA, Australia
| | - Michael Osborn
- SA Pathology at Women's & Children's Hospital, Adelaide, SA, Australia; Australian Genomic Health Alliance, Adelaide, SA, Australia
| | - Tamas Revesz
- SA Pathology at Women's & Children's Hospital, Adelaide, SA, Australia
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, UQ Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia; Oncology Services Group, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Timothy P Hughes
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - David Yeung
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Rosemary Sutton
- Molecular Diagnostics Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW, Australia; Australian Genomic Health Alliance, Adelaide, SA, Australia; School of Women's and Children's Health, Medicine, University of NSW, Sydney, NSW, Australia
| | - Deborah L White
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; Australian Genomic Health Alliance, Adelaide, SA, Australia.
| |
Collapse
|
23
|
Sadras T, Heatley SL, Kok CH, McClure BJ, Yeung D, Hughes TP, Sutton R, Ziegler DS, White DL. A novel somatic JAK2 kinase-domain mutation in pediatric acute lymphoblastic leukemia with rapid on-treatment development of LOH. Cancer Genet 2017; 216-217:86-90. [PMID: 29025600 DOI: 10.1016/j.cancergen.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 01/31/2023]
Abstract
We report a novel somatic mutation in the kinase domain of JAK2 (R938Q) in a high-risk pediatric case of B-cell acute lymphoblastic leukemia (ALL). The patient developed on-therapy relapse at 12 months, and interestingly, the JAK2 locus acquired loss of heterozygosity during treatment resulting in 100% mutation load. Furthermore, we show that primary ALL mononuclear cells harboring the JAK2 R938Q mutation display reduced sensitivity to the JAK1/2 ATP-competitive inhibitor ruxolitinib in vitro, compared to ALL cells that carry a more common JAK2 pseudokinase domain mutation. Our findings are in line with previous reports that demonstrate that mutations within the kinase domain of JAK2 are associated with resistance to type I JAK inhibitors. Importantly, given the recent inclusion of ruxolitinib in trial protocols for children with JAK pathway alterations, we predict that inter-patient genetic variability may result in suboptimal responses to JAK inhibitor therapy in a subset of cases. The need for alternate targeted and/or combination therapies for patients who display inherent or developed resistance to JAK inhibitor therapy will be warranted, and we propose that kinase-mutants less sensitive to type I JAK inhibitors may present a currently unexplored platform for investigation of improved therapies.
Collapse
Affiliation(s)
- Teresa Sadras
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Susan L Heatley
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Chung H Kok
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J McClure
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - David Yeung
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Timothy P Hughes
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Rosemary Sutton
- Molecular Diagnostics Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia; Australian Genomic Health Alliance, Australia; School of Women's and Children's Health, Medicine, University of NSW, Sydney, NSW, Australia
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Deborah L White
- Cancer Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; Australian Genomic Health Alliance, Australia.
| |
Collapse
|
24
|
Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, Zweidler-McKay P, Lu X, Fawcett G, Wang SA, Konoplev S, Harvey RC, Chen IM, Payne-Turner D, Valentine M, Thomas D, Garcia-Manero G, Ravandi F, Cortes J, Kornblau S, O'Brien S, Pierce S, Jorgensen J, Shaw KRM, Willman CL, Mullighan CG, Kantarjian H, Konopleva M. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood 2017; 129:572-581. [PMID: 27919910 PMCID: PMC5290985 DOI: 10.1182/blood-2016-07-726588] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/26/2016] [Indexed: 11/20/2022] Open
Abstract
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a high-risk subtype of ALL in children. There are conflicting data on the incidence and prognosis of Ph-like ALL in adults. Patients with newly diagnosed B-cell ALL (B-ALL) who received frontline chemotherapy at MD Anderson Cancer Center underwent gene expression profiling of leukemic cells. Of 148 patients, 33.1% had Ph-like, 31.1% had Ph+, and 35.8% had other B-ALL subtypes (B-other). Within the Ph-like ALL cohort, 61% had cytokine receptor-like factor 2 (CRLF2) overexpression. Patients with Ph-like ALL had significantly worse overall survival (OS), and event-free survival compared with B-other with a 5-year survival of 23% (vs 59% for B-other, P = .006). Sixty-eight percent of patients with Ph-like ALL were of Hispanic ethnicity. The following were associated with inferior OS on multivariable analysis: age (hazard ratio [HR], 3.299; P < .001), white blood cell count (HR, 1.910; P = .017), platelet count (HR, 7.437; P = .005), and Ph-like ALL (HR, 1.818; P = .03). Next-generation sequencing of the CRLF2+ group identified mutations in the JAK-STAT and Ras pathway in 85% of patients, and 20% had a CRLF2 mutation. Within the CRLF2+ group, JAK2 mutation was associated with inferior outcomes. Our findings show high frequency of Ph-like ALL in adults, an increased frequency of Ph-like ALL in adults of Hispanic ethnicity, significantly inferior outcomes of adult patients with Ph-like ALL, and significantly worse outcomes in the CRLF2+ subset of Ph-like ALL. Novel strategies are needed to improve the outcome of these patients.
Collapse
Affiliation(s)
- Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Ken Chen
- Institute for Personalized Cancer Therapy, and
| | - Patrick Zweidler-McKay
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | - Richard C Harvey
- Department of Pathology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM; and
| | - I-Ming Chen
- Department of Pathology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM; and
| | | | - Marcus Valentine
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Deborah Thomas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan O'Brien
- Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, CA
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Cheryl L Willman
- Department of Pathology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM; and
| | | | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
25
|
Genomic and transcriptional landscape of P2RY8-CRLF2-positive childhood acute lymphoblastic leukemia. Leukemia 2016; 31:1491-1501. [PMID: 27899802 PMCID: PMC5508072 DOI: 10.1038/leu.2016.365] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1's critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Collapse
|
26
|
Senkevitch E, Durum S. The promise of Janus kinase inhibitors in the treatment of hematological malignancies. Cytokine 2016; 98:33-41. [PMID: 28277287 DOI: 10.1016/j.cyto.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 01/12/2023]
Abstract
The Janus kinases (JAK) are a family of kinases that play an essential role in cytokine signaling and are implicated in the pathogenesis of autoimmune diseases and hematological malignancies. As a result, the JAKs have become attractive therapeutic targets. The discovery of a JAK2 point mutation (JAK2 V617F) as the main cause of polycythemia vera lead to the development and FDA approval of a JAK1/2 inhibitor, ruxolitinib, in 2011. This review focuses on the various JAK and associated components aberrations implicated in myeloproliferative neoplasms, leukemias, and lymphomas. In addition to ruxolitinib, other JAK inhibitors are currently being evaluated in clinical trials for treating hematological malignancies. The use of JAK inhibitors alone or in combination therapy should be considered as a way to deliver targeted therapy to patients.
Collapse
Affiliation(s)
- Emilee Senkevitch
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Scott Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| |
Collapse
|
27
|
Therapeutic targeting of IL-7Rα signaling pathways in ALL treatment. Blood 2016; 128:473-8. [PMID: 27268088 DOI: 10.1182/blood-2016-03-679209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/27/2016] [Indexed: 01/06/2023] Open
Abstract
Increased understanding of pediatric acute lymphoblastic leukemia (ALL) pathobiology has led to dramatic improvements in patient survival. However, there is still a need to develop targeted therapies to enable reduced chemotherapy intensity and to treat relapsed patients. The interleukin-7 receptor α (IL-7Rα) signaling pathways are prime therapeutic targets because these pathways harbor genetic aberrations in both T-cell ALL and B-cell precursor ALL. Therapeutic targeting of the IL-7Rα signaling pathways may lead to improved outcomes in a subset of patients.
Collapse
|
28
|
CRLF2 overexpression identifies an unfavourable subgroup of adult B-cell precursor acute lymphoblastic leukemia lacking recurrent genetic abnormalities. Leuk Res 2015; 41:36-42. [PMID: 26754556 DOI: 10.1016/j.leukres.2015.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND A deregulated CRLF2 (d-CRLF2) expression was described in B-cell acute lymphoblastic leukemia without recurrent fusion genes (B-NEG ALL). While the role of d-CRLF2 in children has been extensively described, little is known about its role and impact in adult ALL. METHODS Expression levels of CRLF2 were evaluated by quantitative real-time PCR in 102 newly-diagnosed adult B-NEG ALL and correlated with the clinico-biological characteristics and outcome. Incidence and clinical impact of the P2RY8/CRLF2 transcript was also assessed. RESULTS High CRLF2 levels, as continuous variable, were significantly associated with hyperleucocytosis (p=0.0002) and thrombocytopenia (p=0.005); when a cut-point at ΔCt≤8 was applied, 35 cases (34.3%), mostly males (80%), proved positive for CRLF2 expression. High CRLF2 levels, as continuous or categorical variable, were associated with a worse disease-free (p=0.003 and p=0.015) and overall survival (p=0.017 and 0.0038). Furthermore, when CRLF2 was analyzed as a categorical variable, a high statistical association was found with IKZF1 deletion and mutations in the JAK/STAT pathway (p=0.001 and p<0.0001, respectively). Finally, the P2RY8/CRLF2 transcript, identified in 8/102 patients (7.8%), was associated with a poor outcome. CONCLUSIONS In adult B-NEG ALL, high CRLF2 expression is associated with distinct clinico-biological features and an unfavourable prognosis in both univariate and multivariate analysis; similarly, P2RY8/CRLF2 positivity correlates with a poor outcome. The quantification of CRLF2 is an important prognostic marker in adult B-lineage ALL without known genetic lesions.
Collapse
|
29
|
Cianferoni A, Spergel J. The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert Rev Clin Immunol 2015; 10:1463-74. [PMID: 25340427 DOI: 10.1586/1744666x.2014.967684] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine similar to IL- 7, whose gene is located on chromosome 5q22.1 and it exerts its biological function through the TSLP-Receptor (TSLP-R). TSLP is expressed primarily by epithelial cells at barrier surfaces such as the skin, gut and lung in response to danger signals. Since it was cloned in 1994, there has been accumulating evidence that TSLP is crucial for the maturation of antigen presenting cells and hematopoietic cells. TSLP genetic variants and its dysregulated expression have been linked to atopic diseases such as atopic dermatitis, asthma, allergic rhinitis and eosinophilic esophagitis.
Collapse
Affiliation(s)
- Antonella Cianferoni
- The Children's Hospital of Philadelphia - Allergy, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
30
|
Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood 2015; 126:629-39. [PMID: 26041741 DOI: 10.1182/blood-2014-11-612903] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/10/2015] [Indexed: 01/02/2023] Open
Abstract
Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.
Collapse
|
31
|
Huang TC, Cutler J, Bharne S, Zhong J, Weinstock D, Tyner J, Gojo I, Civin C, Pandey A. Integrated analysis of CRLF2 signaling in acute lymphoblastic leukemia identifies Polo-like kinase 1 as a potential therapeutic target. Leuk Lymphoma 2015; 56:1524-7. [PMID: 25213184 PMCID: PMC4420723 DOI: 10.3109/10428194.2014.963076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suryani S, Bracken LS, Harvey RC, Sia KCS, Carol H, Chen IM, Evans K, Dietrich PA, Roberts KG, Kurmasheva RT, Billups CA, Mullighan CG, Willman CL, Loh ML, Hunger SP, Houghton PJ, Smith MA, Lock RB. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther 2014; 14:364-74. [PMID: 25504635 DOI: 10.1158/1535-7163.mct-14-0647] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genome-wide studies have identified a high-risk subgroup of pediatric acute lymphoblastic leukemia (ALL) harboring mutations in the Janus kinases (JAK). The purpose of this study was to assess the preclinical efficacy of the JAK1/2 inhibitor AZD1480, both as a single agent and in combination with the MEK inhibitor selumetinib, against JAK-mutated patient-derived xenografts. Patient-derived xenografts were established in immunodeficient mice from bone marrow or peripheral blood biopsy specimens, and their gene expression profiles compared with the original patient biopsies by microarray analysis. JAK/STAT and MAPK signaling pathways, and the inhibitory effects of targeted drugs, were interrogated by immunoblotting of phosphoproteins. The antileukemic effects of AZD1480 and selumetinib, alone and in combination, were tested against JAK-mutated ALL xenografts both in vitro and in vivo. Xenografts accurately represented the primary disease as determined by gene expression profiling. Cellular phosphoprotein analysis demonstrated that JAK-mutated xenografts exhibited heightened activation status of JAK/STAT and MAPK signaling pathways compared with typical B-cell precursor ALL xenografts, which were inhibited by AZD1480 exposure. However, AZD1480 exhibited modest single-agent in vivo efficacy against JAK-mutated xenografts. Combining AZD1480 with selumetinib resulted in profound synergistic in vitro cell killing, although these results were not translated in vivo despite evidence of target inhibition. Despite validation of target inhibition and the demonstration of profound in vitro synergy between AZD1480 and selumetinib, it is likely that prolonged target inhibition is required to achieve in vivo therapeutic enhancement between JAK and MEK inhibitors in the treatment of JAK-mutated ALL.
Collapse
Affiliation(s)
- Santi Suryani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Lauryn S Bracken
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Richard C Harvey
- Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Keith C S Sia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - I-Ming Chen
- Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Kathryn Evans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Philipp A Dietrich
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Catherine A Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheryl L Willman
- Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Mignon L Loh
- Department of Pediatrics, University of California at San Francisco, San Francisco, California
| | - Stephen P Hunger
- University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia.
| |
Collapse
|
33
|
Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, Weigert O, Kopp N, Wu SC, Kim SS, Liu H, Tivey T, Christie AL, Elpek KG, Card J, Gritsman K, Gotlib J, Deininger MW, Makishima H, Turley SJ, Javidi-Sharifi N, Maciejewski JP, Jaiswal S, Ebert BL, Rodig SJ, Tyner JW, Marto JA, Weinstock DM, Lane AA. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med 2014; 21:71-5. [PMID: 25485910 PMCID: PMC4289115 DOI: 10.1038/nm.3751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.
Collapse
Affiliation(s)
- Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Adelmant
- 1] Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Tamburini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nobuaki Shindoh
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Yuka Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Weigert
- Department of Medicine III, Campus Grosshadern, Ludwig-Maximilians-University, and Helmholtz Center, Munich, Germany
| | - Nadja Kopp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuo-Chieh Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunhee S Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Trevor Tivey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kutlu G Elpek
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Jounce Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Joseph Card
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kira Gritsman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, USA
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shannon J Turley
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Javidi-Sharifi
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Siddhartha Jaiswal
- 1] Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin L Ebert
- 1] Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA
| | - Jarrod A Marto
- 1] Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Weinstock
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Zhong J, Sharma J, Raju R, Palapetta SM, Prasad TSK, Huang TC, Yoda A, Tyner JW, van Bodegom D, Weinstock DM, Ziegler SF, Pandey A. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau007. [PMID: 24573880 PMCID: PMC3935308 DOI: 10.1093/database/bau007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24
Collapse
Affiliation(s)
- Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Department of Oncology, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Institute of Bioinformatics, International Technology Park, Bangalore 560066, India, Manipal University, Madhav Nagar, Manipal 576104, India, Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mailcode L592, Portland, OR 97239, USA and Immunology Program, Benaroya Research Institute at Virginia Mason, 1201 9th Avenue S&C, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 2014; 71:365-78. [PMID: 23625073 PMCID: PMC11113825 DOI: 10.1007/s00018-013-1337-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.
Collapse
Affiliation(s)
- Noa Tal
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Shochat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Ifat Geron
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, California USA
| | - Dani Bercovich
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
|