1
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter Whole Blood Neutrophil Assay Preserving Physiological Lifespan and Functional Heterogeneity. SMALL METHODS 2024; 8:e2400373. [PMID: 38984758 PMCID: PMC11499044 DOI: 10.1002/smtd.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophils' inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here, a method - named "µ-Blood" - is presented that enables functional neutrophil assays using a microliter of unprocessed whole blood. µ-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In µ-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, µ-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan W Hendrikse
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Makenna Mai
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mehtab A Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zach Argall-Knapp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Sung Kim
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily A Wheat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Juang TD, Riendeau J, Geiger PG, Datta R, Lares M, Yada RC, Singh AM, Seroogy CM, Gern JE, Skala MC, Beebe DJ, Kerr SC. Micro blood analysis technology (μBAT): multiplexed analysis of neutrophil phenotype and function from microliter whole blood samples. LAB ON A CHIP 2024; 24:4198-4210. [PMID: 39104301 PMCID: PMC11335436 DOI: 10.1039/d4lc00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
There is an ongoing need to do more with less and provide highly multiplexed analysis from limited sample volumes. Improved "sample sparing" assays would have a broad impact across pediatric and other rare sample type studies in addition to enabling sequential sampling. This capability would advance both clinical and basic research applications. Here we report the micro blood analysis technology (μBAT), a microfluidic platform that supports multiplexed analysis of neutrophils from a single drop of blood. We demonstrate the multiplexed orthogonal capabilities of μBAT including functional assays (phagocytosis, neutrophil extracellular traps, optical metabolic imaging) and molecular assays (gene expression, cytokine secretion). Importantly we validate our microscale platform using a macroscale benchmark assay. μBAT is compatible with lancet puncture or microdraw devices, and its design facilitates rapid operations without the need for specialized equipment. μBAT offers a new method for investigating neutrophil function in populations with restricted sample amounts.
Collapse
Affiliation(s)
- Terry D Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | | | - Peter G Geiger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rupsa Datta
- Morgridge Institute for Research, Madison, WI, USA.
| | - Marcos Lares
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ravi Chandra Yada
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Christine M Seroogy
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Sheena C Kerr
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter whole blood neutrophil assay preserving physiological lifespan and functional heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.28.23294744. [PMID: 37693613 PMCID: PMC10491351 DOI: 10.1101/2023.08.28.23294744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophil inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here we present a method - named micro-Blood - that enables functional neutrophil assays using a microliter of unprocessed whole blood. micro-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In micro-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, micro-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
|
4
|
高 朝, 杨 逍, 刘 利, 王 月, 朱 灵, 周 金, 刘 勇, 杨 柯. [Inertial label-free sorting and chemotaxis of polymorphonuclear neutrophil in sepsis patients based on microfluidic technology]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1217-1226. [PMID: 38151946 PMCID: PMC10753322 DOI: 10.7507/1001-5515.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Indexed: 12/29/2023]
Abstract
Reduced chemotactic migration of polymorphonuclear neutrophil (PMN) in sepsis patients leads to decreased bacterial clearance and accelerates the progression of sepsis disease. Quantification of PMN chemotaxis in sepsis patients can help characterize the immune health of sepsis patients. Microfluidic microarrays have been widely used for cell chemotaxis analysis because of the advantages of low reagent consumption, near-physiological environment, and visualization of the migration process. Currently, the study of PMN chemotaxis using microfluidic chips is mainly limited by the cumbersome cell separation operation and low throughput of microfluidic chips. In this paper, we first designed an inertial cell sorting chip to achieve label-free separation of the two major cell types by using the basic principle that leukocytes (mainly granulocytes, lymphocytes and monocytes) and erythrocytes move to different positions of the spiral microchannel when they move in the spiral microchannel under different strength of inertial force and Dean's resistance. Subsequently, in this paper, we designed a multi-channel cell migration chip and constructed a microfluidic PMN inertial label-free sorting and chemotaxis analysis platform. The inertial cell sorting chip separates leukocyte populations and then injects them into the multi-channel cell migration chip, which can complete the chemotaxis test of PMN to chemotactic peptide (fMLP) within 15 min. The remaining cells, such as monocytes with slow motility and lymphocytes that require pre-activation with proliferative culture, do not undergo significant chemotactic migration. The test results of sepsis patients ( n=6) and healthy volunteers ( n=3) recruited in this study showed that the chemotaxis index (CI) and migration velocity ( v) of PMN from sepsis patients were significantly weaker than those from healthy volunteers. In conclusion, the microfluidic PMN inertial label-free sorting and chemotaxis analysis platform constructed in this paper can be used as a new tool for cell label-free sorting and migration studies.
Collapse
Affiliation(s)
- 朝茹 高
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 逍 杨
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 利娟 刘
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 月 王
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 灵 朱
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - 金华 周
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - 勇 刘
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 柯 杨
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
5
|
Ellett F, Irimia D. Passive redirection filters minimize red blood cell contamination during neutrophil chemotaxis assays using whole blood. LAB ON A CHIP 2023; 23:1879-1885. [PMID: 36857665 PMCID: PMC11343506 DOI: 10.1039/d2lc00903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neutrophils are the most numerous white blood cells and are the first to arrive at sites of inflammation and infection. Thus, neutrophil behavior provides a comprehensive biomarker for antimicrobial defenses. Several microfluidic tools have been developed to test neutrophil chemotaxis, phagocytosis, extrusion of extracellular traps, etc. Traditional tools rely on purified neutrophil samples, which require lengthy and expensive isolation procedures from large volumes of blood. In the absence of such isolation, visualizing neutrophils in blood is complicated by the overwhelming number of red blood cells (RBCs), which outnumber neutrophils by 1000 : 1. Recently, several microfluidic technologies have been designed to analyze neutrophils directly in blood, by separating neutrophils on selectin coated surfaces before the migration assay or blocking the advance of RBCs with the moving neutrophils. However, RBC contamination remains an issue, albeit with a reduced ratio, down to 1 : 1. Here, we present an RBC-debulking strategy for neutrophil assays based on microscale passive redirection filters (PRFs) that reduce RBC contamination down to as few as a 1 : 17 RBC to neutrophil ratio. We compare the performance of different PRF designs and measure changes in neutrophil chemotaxis velocity and directionality following immune stimulation of whole blood.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA.
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Yang X, Gao C, Liu Y, Zhu L, Yang K. Simplified Cell Magnetic Isolation Assisted SC 2 Chip to Realize "Sample in and Chemotaxis Out": Validated by Healthy and T2DM Patients' Neutrophils. MICROMACHINES 2022; 13:1820. [PMID: 36363840 PMCID: PMC9692824 DOI: 10.3390/mi13111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Neutrophil migration in tissues critically regulates the human immune response and can either play a protective role in host defense or cause health problems. Microfluidic chips are increasingly applied to study neutrophil migration, attributing to their advantages of low reagent consumption, stable chemical gradients, visualized cell chemotaxis monitoring, and quantification. Most chemotaxis chips suffered from low throughput and fussy cell separation operations. We here reported a novel and simple "sample in and chemotaxis out" method for rapid neutrophils isolation from a small amount of whole blood based on a simplified magnetic method, followed by a chemotaxis assay on a microfluidic chip (SC2 chip) consisting of six cell migration units and six-cell arrangement areas. The advantages of the "sample in and chemotaxis out" method included: less reagent consumption (10 μL of blood + 1 μL of magnetic beads + 1 μL of lysis buffer); less time (5 min of cell isolation + 15 min of chemotaxis testing); no ultracentrifugation; more convenient; higher efficiency; high throughput. We have successfully validated the approach by measuring neutrophil chemotaxis to frequently-used chemoattractant (i.e., fMLP). The effects of D-glucose and mannitol on neutrophil chemotaxis were also analyzed. In addition, we demonstrated the effectiveness of this approach for testing clinical samples from diabetes mellitus type 2 (T2DM) patients. We found neutrophils' migration speed was higher in the "well-control" T2DM than in the "poor-control" group. Pearson coefficient analysis further showed that the migration speed of T2DM was negatively correlated with physiological indicators, such as HbA1c (-0.44), triglyceride (-0.36), C-reactive protein (-0.28), and total cholesterol (-0.28). We are very confident that the developed "sample in and chemotaxis out" method was hoped to be an attractive model for analyzing the chemotaxis of healthy and disease-associated neutrophils.
Collapse
Affiliation(s)
- Xiao Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Chaoru Gao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
7
|
Nette F, Guerra de Souza AC, Laskay T, Ohms M, Dömer D, Drömann D, Rapoport DH. Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix. PLoS One 2022; 17:e0270456. [PMID: 35749549 PMCID: PMC9232129 DOI: 10.1371/journal.pone.0270456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional tracking of cells is one of the most powerful methods to investigate multicellular phenomena, such as ontogenesis, tumor formation or wound healing. However, 3D tracking in a biological environment usually requires fluorescent labeling of the cells and elaborate equipment, such as automated light sheet or confocal microscopy. Here we present a simple method for 3D tracking large numbers of unlabeled cells in a collagen matrix. Using a small lensless imaging setup, consisting of an LED and a photo sensor only, we were able to simultaneously track ~3000 human neutrophil granulocytes in a collagen droplet within an unusually large field of view (>50 mm2) at a time resolution of 4 seconds and a spatial resolution of ~1.5 μm in xy- and ~30 μm in z-direction. The setup, which is small enough to fit into any conventional incubator, was used to investigate chemotaxis towards interleukin-8 (IL-8 or CXCL8) and N-formylmethionyl-leucyl-phenylalanine (fMLP). The influence of varying stiffness and pore size of the embedding collagen matrix could also be quantified. Furthermore, we demonstrate our setup to be capable of telling apart healthy neutrophils from those where a condition of inflammation was (I) induced by exposure to lipopolysaccharide (LPS) and (II) caused by a pre-existing asthma condition. Over the course of our experiments we have tracked more than 420.000 cells. The large cell numbers increase statistical relevance to not only quantify cellular behavior in research, but to make it suitable for future diagnostic applications, too.
Collapse
Affiliation(s)
- Falk Nette
- Fraunhofer Research and Development Center for Marine and Cellular Biotechnology, Lübeck, Germany
| | | | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mareike Ohms
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniel Dömer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Daniel Drömann
- Medical Clinic III Pneumology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Daniel Hans Rapoport
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
8
|
Advances in microfluidics devices and its applications in personalized medicines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:191-201. [PMID: 35033284 DOI: 10.1016/bs.pmbts.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microfluidics is an exponentially growing area and is being used for numerous applications from basic science to advanced biotechnology and medicines. Microfluidics provides a platform to the research community for studying and building new strategies for the diagnosis and therapeutics applications. In the last decade, microfluidic have enriched the field of diagnostics by providing new solutions which was not possible with conventional detection and treatment methods. Microfluidics has the ability to precisely control and perform high-throughput functions. It has been proven as an efficient and rapid method for biological sample preparation, analysis and controlled drug delivery system. Microfluidics plays significant role in personalized medicine. These personalized medicines are used for medical decisions, practices and other interventions as well as for individual patients based on their predicted response or risk of disease. This chapter highlights microfluidics in developing personalized medical applications for its applications in diseases such as cancer, cardiovascular disease, diabetes, pulmonary disease and several others.
Collapse
|
9
|
Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-caprolactone) Nanofibrous Membrane. MEMBRANES 2021; 11:membranes11080569. [PMID: 34436332 PMCID: PMC8399938 DOI: 10.3390/membranes11080569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023]
Abstract
In this study, we developed a three-dimensional (3D) in vitro infection model to investigate the crosstalk between phagocytes and microbes in inflammation using a nanofibrous membrane (NM). Poly(ε-caprolactone) (PCL)-NMs (PCL-NMs) were generated via electrospinning of PCL in chloroform. Staphylococcus aureus and phagocytes were able to adhere to the nanofibers and phagocytes engulfed S. aureus in the PCL-NM. The migration of phagocytes to S. aureus was evaluated in a two-layer co-culture system using PCL-NM. Neutrophils, macrophages and dendritic cells (DCs) cultured in the upper PCL-NM layer migrated to the lower PCL-NM layer containing bacteria. DCs migrated to neutrophils that cultured with bacteria and then engulfed neutrophils in two-layer system. In addition, phagocytes in the upper PCL-NM layer migrated to bacteria-infected MLE-12 lung epithelial cells in the lower PCL-NM layer. S. aureus-infected MLE-12 cells stimulated the secretion of tumor necrosis factor-α and IL-1α in 3D culture conditions, but not in 2D culture conditions. Therefore, the PCL-NM-based 3D culture system with phagocytes and bacteria mimics the inflammatory response to microbes in vivo and is applicable to the biomimetic study of various microbe infections.
Collapse
|
10
|
Varone A, Nguyen JK, Leng L, Barrile R, Sliz J, Lucchesi C, Wen N, Gravanis A, Hamilton GA, Karalis K, Hinojosa CD. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it. Biomaterials 2021; 275:120957. [PMID: 34130145 DOI: 10.1016/j.biomaterials.2021.120957] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022]
Abstract
Successful translation of in vivo experimental data to human patients is an unmet need and a bottleneck in the development of effective therapeutics. Organ-on-Chip technology aims to address this need by leveraging recent significant advancements in microfabrication and biomaterials, which enable modeling of organs and their functionality. These microengineered chips offer researchers the possibility to recreate critical elements of native tissue architecture such as in vivo relevant tissue-tissue interface, air-liquid interface, and mechanical forces, including mechanical stretch and fluidic shear stress, which are crucial to recapitulate tissue level functions. Here, we present the development of a new, comprehensive 3D cell-culture system, where we combined our proprietary Organ-Chip technology with the advantages offered by three-dimensional organotypic culture. Leveraging microfabrication techniques, we engineered a flexible chip that consists of a chamber containing an organotypic epithelium, surrounded by two vacuum channels that can be actuated to stretch the hydrogel throughout its thickness. Furthermore, the ceiling of this chamber is a removable lid with a built-in microchannel that can be perfused with liquid or air and removed as needed for direct access to the tissue. The bottom part of this chamber is made from a porous flexible membrane which allows diffusive mass transport to and from the microfluidic channel positioned below the membrane. This additional microfluidic channel can be coated with endothelial cells to emulate a blood vessel and recapitulate endothelial interactions. Our results show that the Open-Top Chip design successfully addresses common challenges associated with the Organs-on-Chip technology, including the capability to incorporate a tissue-specific extracellular matrix gel seeded with primary stromal cells, to reproduce the architectural complexity of tissues by micropatterning the gel, and to extract the gel for H&E staining. We also provide proof-of-concept data on the feasibility of using the system with primary human skin and alveolar epithelial cells.
Collapse
Affiliation(s)
- Antonio Varone
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA; University of Crete Medical School, Department of Pharmacology, Heraklion, 71110, Greece.
| | - Justin Ke Nguyen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Lian Leng
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Riccardo Barrile
- University of Cincinnati, Department of Biomedical Engineering, Cincinnati, OH, 45221, USA
| | - Josiah Sliz
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | | | - Norman Wen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Achille Gravanis
- University of Crete Medical School, Department of Pharmacology, Heraklion, 71110, Greece
| | | | - Katia Karalis
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | | |
Collapse
|
11
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
12
|
Manning JE, Lewis JW, Marsh LJ, McGettrick HM. Insights Into Leukocyte Trafficking in Inflammatory Arthritis - Imaging the Joint. Front Cell Dev Biol 2021; 9:635102. [PMID: 33768093 PMCID: PMC7985076 DOI: 10.3389/fcell.2021.635102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
The inappropriate accumulation and activation of leukocytes is a shared pathological feature of immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Cellular accumulation is therefore an attractive target for therapeutic intervention. However, attempts to modulate leukocyte entry and exit from the joint have proven unsuccessful to date, indicating that gaps in our knowledge remain. Technological advancements are now allowing real-time tracking of leukocyte movement through arthritic joints or in vitro joint constructs. Coupling this technology with improvements in analyzing the cellular composition, location and interactions of leukocytes with neighboring cells has increased our understanding of the temporal dynamics and molecular mechanisms underpinning pathological accumulation of leukocytes in arthritic joints. In this review, we explore our current understanding of the mechanisms leading to inappropriate leukocyte trafficking in inflammatory arthritis, and how these evolve with disease progression. Moreover, we highlight the advances in imaging of human and murine joints, along with multi-cellular ex vivo joint constructs that have led to our current knowledge base.
Collapse
Affiliation(s)
| | | | | | - Helen M. McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Satti S, Deng P, Matthews K, Duffy SP, Ma H. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment. LAB ON A CHIP 2020; 20:3096-3103. [PMID: 32748936 DOI: 10.1039/d0lc00311e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fundamental challenge to multiplexing microfluidic chemotaxis assays at scale is the requirement for time-lapse imaging to continuously track migrating cells. Drug testing and drug screening applications require the ability to perform hundreds of experiments in parallel, which is not feasible for assays that require continuous imaging. To address this limitation, end-point chemotaxis assays have been developed using fluid flow to align cells in traps or sieves prior to cell migration. However, these methods require precisely controlled fluid flow to transport cells to the correct location without undesirable mechanical stress, which introduce significant set up time and design complexity. Here, we describe a microfluidic device that eliminates the need for precise flow control by using centrifugation to align cells at a common starting point. A chemoattractant gradient is then formed using passive diffusion prior to chemotaxis in an incubated environment. This approach provides a simple and scalable approach to multiplexed chemotaxis assays. Centrifugal alignment is also insensitive to cell geometry, enabling this approach to be compatible with primary cell samples that are often heterogeneous. We demonstrate the capability of this approach by assessing chemotaxis of primary neutrophils in response to an fMLP (N-formyl-met-leu-phe) gradient. Our results show that cell alignment by centrifugation offers a potential avenue to develop scalable end-point multiplexed microfluidic chemotaxis assays.
Collapse
Affiliation(s)
- Sampath Satti
- School of Biomedical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada
| | - Pan Deng
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada
| | - Kerryn Matthews
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada and British Columbia Institute of Technology, Canada
| | - Hongshen Ma
- School of Biomedical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada and Department of Urologic Sciences, University of British Columbia, Canada
| |
Collapse
|
14
|
Abstract
Neutrophil chemotaxis plays a vital role in human immune system. Compared with traditional cell migration assays, the emergence of microfluidics provides a new research platform of cell chemotaxis study due to the advantages of visualization, precise control of chemical gradient, and small consumption of reagents. A series of microfluidic devices have been fabricated to study the behavior of neutrophils exposed on controlled, stable, and complex profiles of chemical concentration gradients. In addition, microfluidic technology offers a promising way to integrate the other functions, such as cell culture, separation and analysis into a single chip. Therefore, an overview of recent developments in microfluidic-based neutrophil chemotaxis studies is presented. Meanwhile, the strength and drawbacks of these devices are compared.
Collapse
|
15
|
Berendsen JTW, Kruit SA, Atak N, Willink E, Segerink LI. Flow-Free Microfluidic Device for Quantifying Chemotaxis in Spermatozoa. Anal Chem 2020; 92:3302-3306. [PMID: 31994387 PMCID: PMC7031847 DOI: 10.1021/acs.analchem.9b05183] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current male fertility diagnosis tests focus on assessing the quality of semen samples by studying the concentration, total volume, and motility of spermatozoa. However, other characteristics such as the chemotactic ability of a spermatozoon might influence the chance of fertilization. Here we describe a simple, easy to fabricate and handle, flow-free microfluidic chip to test the chemotactic response of spermatozoa made out of a hybrid hydrogel (8% gelatin/1% agarose). A chemotaxis experiment with 1 μM progesterone was performed that significantly demonstrated that boar spermatozoa are attracted by a progesterone gradient.
Collapse
Affiliation(s)
- Johanna T W Berendsen
- BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , 7500 AE Enschede , The Netherlands
| | - Stella A Kruit
- BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , 7500 AE Enschede , The Netherlands
| | - Nihan Atak
- BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , 7500 AE Enschede , The Netherlands
| | - Ellen Willink
- BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , 7500 AE Enschede , The Netherlands
| | - Loes I Segerink
- BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , 7500 AE Enschede , The Netherlands
| |
Collapse
|
16
|
Boribong BP, Lenzi MJ, Li L, Jones CN. Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making. Front Immunol 2019; 10:359. [PMID: 30915068 PMCID: PMC6422936 DOI: 10.3389/fimmu.2019.00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the first responders to infection and play a pivotal role in many inflammatory diseases, including sepsis. Recent studies have shown that lipopolysaccharide (LPS), a classical pattern recognition molecule, dynamically programs innate immune responses. In this study, we show that pre-treatment with super-low levels of LPS [1 ng/mL] significantly dysregulate neutrophil migratory phenotypes, including spontaneous migration and altering neutrophil decision-making. To quantify neutrophil migratory decision-making with single-cell resolution, we developed a novel microfluidic competitive chemotaxis-chip (μC3) that exposes cells in a central channel to competing chemoattractant gradients. In this reductionist approach, we use two chemoattractants: a pro-resolution (N-Formyl-Met-Leu-Phe, fMLP) and pro-inflammatory (Leukotriene B4, LTB4) chemoattractant to model how a neutrophil makes a decision to move toward an end target chemoattractant (e.g., bacterial infection) vs. an intermediary chemoattractant (e.g., inflammatory signal). We demonstrate that naïve neutrophils migrate toward the primary end target signal in higher percentages than toward the secondary intermediary signal. As expected, we found that training with high dose LPS [100 ng/mL] influences a higher percentage of neutrophils to migrate toward the end target signal, while reducing the percentage of neutrophils that migrate toward the intermediary signal. Surprisingly, super-low dose LPS [1 ng/mL] significantly changes the ratios of migrating cells and an increased percentage of cells migrate toward the intermediary signal. Significantly, there was also an increase in the numbers of spontaneously migrating neutrophils after treatment with super-low dose LPS. These results shed light onto the directional migratory decision-making of neutrophils exposed to inflammatory training signals. Understanding these mechanisms may lead to the development of pro-resolution therapies that correct the neutrophil compass and reduce off-target organ damage.
Collapse
Affiliation(s)
- Brittany P Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark J Lenzi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline N Jones
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
17
|
Polini A, Del Mercato LL, Barra A, Zhang YS, Calabi F, Gigli G. Towards the development of human immune-system-on-a-chip platforms. Drug Discov Today 2019; 24:517-525. [PMID: 30312743 PMCID: PMC6440212 DOI: 10.1016/j.drudis.2018.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023]
Abstract
Organ-on-a-chip (OoCs) platforms could revolutionize drug discovery and might ultimately become essential tools for precision therapy. Although many single-organ and interconnected systems have been described, the immune system has been comparatively neglected, despite its pervasive role in the body and the trend towards newer therapeutic products (i.e., complex biologics, nanoparticles, immune checkpoint inhibitors, and engineered T cells) that often cause, or are based on, immune reactions. In this review, we recapitulate some distinctive features of the immune system before reviewing microfluidic devices that mimic lymphoid organs or other organs and/or tissues with an integrated immune system component.
Collapse
Affiliation(s)
- Alessandro Polini
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Loretta L Del Mercato
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Adriano Barra
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; INFN, Sezione di Lecce, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; INdAM (GNFM), Sezione di Lecce, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Franco Calabi
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
18
|
Boribong BP, Rahimi A, Jones CN. Microfluidic Platform to Quantify Neutrophil Migratory Decision-Making. Methods Mol Biol 2019; 1960:113-122. [PMID: 30798526 DOI: 10.1007/978-1-4939-9167-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Neutrophils are the most abundant leukocytes in blood, serving as the first line of host defense in tissue damage and infections. Upon activation by chemokines released from pathogens or injured tissues, neutrophils migrate through complex tissue microenvironments toward sites of infections along the chemokine gradients, in a process named chemotaxis. However, current methods for measuring neutrophil chemotaxis require large volumes of blood and are often bulk, endpoint measurements. To address the need for rapid and robust assays, we engineered a novel dual gradient microfluidic platform that precisely quantifies neutrophil migratory decision-making with high temporal resolution. Here, we present a protocol to measure neutrophil migratory phenotypes (velocity, directionality) with single-cell resolution.
Collapse
Affiliation(s)
- Brittany P Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Amina Rahimi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Caroline N Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
19
|
Wu J, Kumar-Kanojia A, Hombach-Klonisch S, Klonisch T, Lin F. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. LAB ON A CHIP 2018; 18:3855-3864. [PMID: 30427358 DOI: 10.1039/c8lc00981c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chemotaxis plays a fundamental role in immune defense and cancer metastasis. Microfluidic devices are increasingly applied to studying chemotaxis, owing to their advantages of reduced reagent consumption, ability to control chemical gradients, tracking of individual cells, and quantification of chemotaxis. Many existing microfluidic chemotaxis devices suffer from limited throughput and complex operation. Here, we describe a microfluidic device with a radial channel design which allows for simultaneous chemotaxis tests of different cell types and different gradient conditions. This radial microfluidic device was capable of stand-alone stable gradient generation using passive pumping and pressure-balancing strategies. The device was validated by testing the migration of fast-migrating human neutrophils and two slower-migrating human breast cancer cell lines, MDA-MB-231 and MCF-7 cells. Furthermore, this radial microfluidic device was useful in studying the influence of the nuclear chromatin binding protein high mobility group A2 (HMGA2) on the migration of the human triple negative breast cancer cell line MDA-MB-231.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | | | |
Collapse
|
20
|
Muldur S, Marand AL, Ellett F, Irimia D. Measuring spontaneous neutrophil motility signatures from a drop of blood using microfluidics. Methods Cell Biol 2018; 147:93-107. [PMID: 30165965 DOI: 10.1016/bs.mcb.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neutrophils play an essential role in the protection against infection, as they are the most numerous circulating white blood cell population and the first responders to injury. Their numbers in blood are frequently measured in the clinic and used as an indicator of ongoing infections. During inflammation and sepsis, the ability of neutrophils to migrate is disrupted, which may increase the risk of infection, even when the neutrophil count is normal. However, measurements of neutrophil migration in patients are rarely performed because of the challenges of performing the migration assays in a clinical setting. Here, we describe a microfluidic assay that measures the spontaneous neutrophil migration signatures associated with sepsis. The assay uses one droplet of patient's blood in a microfluidic device, which circumvents the need for neutrophil isolation from blood. This assay may also be useful for the study of the effect of various immune modulators on neutrophil migration behavior from healthy volunteers and patients.
Collapse
Affiliation(s)
- Sinan Muldur
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA, United States
| | - Anika L Marand
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA, United States
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA, United States.
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA, United States.
| |
Collapse
|
21
|
Qasaimeh MA, Pyzik M, Astolfi M, Vidal SM, Juncker D. Neutrophil Chemotaxis in Moving Gradients. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mohammad A. Qasaimeh
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Division of Engineering; New York University Abu Dhabi; Abu Dhabi 129188 UAE
- Department of Mechanical and Aerospace Engineering; New York University; NY 11201 USA
| | - Michal Pyzik
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
- Division of Gastroenterology; Department of Medicine; Brigham &Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Mélina Astolfi
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
| | - Silvia M. Vidal
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
| | - David Juncker
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Genome Quebec Innovation Centre; McGill University; Montréal QC H3A 0G1 Canada
- Department of Neurology and Neurosurgery; McGill University; Montréal QC H3A 1A4 Canada
| |
Collapse
|
22
|
Tay HM, Dalan R, Li KHH, Boehm BO, Hou HW. A Novel Microdevice for Rapid Neutrophil Purification and Phenotyping in Type 2 Diabetes Mellitus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702832. [PMID: 29168915 DOI: 10.1002/smll.201702832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Neutrophil dysfunction is strongly linked to type 2 diabetes mellitus (T2DM) pathophysiology, but the prognostic potential of neutrophil biomarkers remains largely unexplored due to arduous leukocyte isolation methods. Herein, a novel integrated microdevice is reported for single-step neutrophil sorting and phenotyping (chemotaxis and formation of neutrophil extracellular traps (NETosis)) using small blood volumes (fingerprick). Untouched neutrophils are purified on-chip from whole blood directly using biomimetic cell margination and affinity-based capture, and are exposed to preloaded chemoattractant or NETosis stimulant to initiate chemotaxis or NETosis, respectively. Device performance is first characterized using healthy and in vitro inflamed blood samples (tumor necrosis factor alpha, high glucose), followed by clinical risk stratification in a cohort of subjects with T2DM. Interestingly, "high-risk" T2DM patients characterized by severe chemotaxis impairment reveal significantly higher C-reactive protein levels and poor lipid metabolism characteristics as compared to "low-risk" subjects, and their neutrophil chemotaxis responses can be mitigated after in vitro metformin treatment. Overall, this unique and user-friendly microfluidics immune health profiling strategy can significantly aid the quantification of chemotaxis and NETosis in clinical settings, and be further translated into a tool for risk stratification and precision medicine methods in subjects with metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Hui Min Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| | - Rinkoo Dalan
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3, Singapore, 639798, Singapore
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Han Wei Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| |
Collapse
|
23
|
Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, Hipolito J, Zhang M, Santos S, Hillier C, de Faria RL, Liu Y, Lin F. M kit: A cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron 2018; 99:259-267. [PMID: 28772229 PMCID: PMC5585005 DOI: 10.1016/j.bios.2017.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Zhigang Li
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yaoshuo Sang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Jolly Hipolito
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community areas, Winnipeg, MB, Canada
| | | | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
24
|
Abstract
Neutrophils are the most abundant leukocytes in blood serving as the first line of host defense in tissue damage and infections. Upon activation by chemokines released from pathogens or injured tissues, neutrophils migrate through tissues toward sites of infections along the chemokine gradients, in a process named chemotaxis. Studying neutrophil chemotaxis using conventional tools, such as a transwell assay, often requires isolation of neutrophils from whole blood. This process requires milliliters of blood, trained personnel, and can easily alter the ability of chemotaxis. Microfluidics is an enabling technology for studying chemotaxis of neutrophils in vitro with high temporal and spatial resolution. In this chapter, we describe a procedure for probing human neutrophil chemotaxis directly in one droplet of whole blood, without neutrophil isolation, using microfluidic devices. The same devices can be applied to the study the chemotaxis of neutrophils from small animals, e.g., mice and rats.
Collapse
Affiliation(s)
- Xiao Wang
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Burns Hospital, Boston, MA, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Burns Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Linear array of multi-substrate tracts for simultaneous assessment of cell adhesion, migration, and differentiation. Biotechniques 2017; 63:267-274. [PMID: 29235973 DOI: 10.2144/000114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 10/26/2017] [Indexed: 11/23/2022] Open
Abstract
Cell migration, which is central to a wide variety of life processes, involves integration of the extracellular matrix (ECM) with the internal cytoskeleton and motor proteins via receptors spanning the plasma membrane. Cell migration can be induced by a variety of signals, including gradients of external soluble molecules, differences in ECM composition, or electrical gradients. Current in vitro methods to study cell migration only test one substrate at a time. Here, we present a method for assessing cell adhesion, migration, and differentiation in up to 20 different test conditions simultaneously, using only minute amounts of target substrate. Our system, which we call the linear array of multi-substrate cell migration assay (LAMA), has two configurations for direct comparison of one or two cell types in response to an array of ECM constituents under the same culture conditions. This culture model utilizes only nanogram amounts of test substrates and a minimal number of cells, which maximizes the use of limited and expensive test reagents. Moreover, LAMA can also be used for high-throughput screening of potential pharmaceuticals that target ECM-dependent cell behavior and differentiation.
Collapse
|
26
|
Hansen CE, Lam WA. Clinical Implications of Single-Cell Microfluidic Devices for Hematological Disorders. Anal Chem 2017; 89:11881-11892. [PMID: 28942646 DOI: 10.1021/acs.analchem.7b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell microfluidic devices are poised to substantially impact the hematology field by providing a high-throughput and rapid device to analyze disease-mediated biophysical cellular changes in the clinical setting in order to diagnose patients and monitor disease prognosis. In this Feature, we cover recent advances of single-cell microfluidic devices for studying and diagnosing hematological dysfunctions and the clinical impact made possible by these advances.
Collapse
Affiliation(s)
- Caroline E Hansen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Menon NV, Tay HM, Wee SN, Li KHH, Hou HW. Micro-engineered perfusable 3D vasculatures for cardiovascular diseases. LAB ON A CHIP 2017; 17:2960-2968. [PMID: 28740980 DOI: 10.1039/c7lc00607a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vessel geometries in microengineered in vitro vascular models are important to recapitulate a pathophysiological microenvironment for the study of flow-induced endothelial dysfunction and inflammation in cardiovascular diseases. Herein, we present a simple and novel extracellular matrix (ECM) hydrogel patterning method to create perfusable vascularized microchannels of different geometries based on the concept of capillary burst valve (CBV). No surface modification is necessary and the method is suitable for different ECM types including collagen, matrigel and fibrin. We first created collagen-patterned, endothelialized microchannels to study barrier permeability and neutrophil transendothelial migration, followed by the development of a biomimetic 3D endothelial-smooth muscle cell (EC-SMC) vascular model. We observed a significant decrease in barrier permeability in the co-culture model during inflammation, which indicates the importance of perivascular cells in ECM remodeling. Finally, we engineered collagen-patterned constricted vascular microchannels to mimic stenosis in atherosclerosis. Whole blood was perfused (1-10 dyne cm-2) into the microdevices and distinct platelet and leukocyte adherence patterns were observed due to increased shear stresses at the constriction, and an additional convective flow through the collagen. Taken together, the developed hydrogel patterning technique enables the formation of unique pathophysiological architectures in organ-on-chip microsystems for real-time study of hemodynamics and cellular interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Nishanth Venugopal Menon
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3, Singapore 639798
| | | | | | | | | |
Collapse
|
28
|
Yang K, Wu J, Zhu L, Liu Y, Zhang M, Lin F. An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood. J Vis Exp 2017. [PMID: 28671651 DOI: 10.3791/55615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neutrophil migration and chemotaxis are critical for our body's immune system. Microfluidic devices are increasingly used for investigating neutrophil migration and chemotaxis owing to their advantages in real-time visualization, precise control of chemical concentration gradient generation, and reduced reagent and sample consumption. Recently, a growing effort has been made by the microfluidic researchers toward developing integrated and easily operated microfluidic chemotaxis analysis systems, directly from whole blood. In this direction, the first all-on-chip method was developed for integrating the magnetic negative purification of neutrophils and the chemotaxis assay from small blood volume samples. This new method permits a rapid sample-to-result neutrophil chemotaxis test in 25 min. In this paper, we provide detailed construction, operation and data analysis method for this all-on-chip chemotaxis assay with a discussion on troubleshooting strategies, limitations and future directions. Representative results of the neutrophil chemotaxis assay testing a defined chemoattractant, N-Formyl-Met-Leu-Phe (fMLP), and sputum from a chronic obstructive pulmonary disease (COPD) patient, using this all-on-chip method are shown. This method is applicable to many cell migration-related investigations and clinical applications.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; University of Science and Technology of China; Department of Physics and Astronomy, University of Manitoba
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba; Department of Biosystems Engineering, University of Manitoba
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
| | | | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba; Department of Biosystems Engineering, University of Manitoba; Department of Immunology, University of Manitoba; Department of Biological Sciences, University of Manitoba;
| |
Collapse
|
29
|
Roy J, Mazzaferri J, Filep JG, Costantino S. A Haptotaxis Assay for Neutrophils using Optical Patterning and a High-content Approach. Sci Rep 2017; 7:2869. [PMID: 28588217 PMCID: PMC5460230 DOI: 10.1038/s41598-017-02993-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/21/2017] [Indexed: 12/30/2022] Open
Abstract
Neutrophil recruitment guided by chemotactic cues is a central event in host defense against infection and tissue injury. While the mechanisms underlying neutrophil chemotaxis have been extensively studied, these are just recently being addressed by using high-content approaches or surface-bound chemotactic gradients (haptotaxis) in vitro. Here, we report a haptotaxis assay, based on the classic under-agarose assay, which combines an optical patterning technique to generate surface-bound formyl peptide gradients as well as an automated imaging and analysis of a large number of migration trajectories. We show that human neutrophils migrate on covalently-bound formyl-peptide gradients, which influence the speed and frequency of neutrophil penetration under the agarose. Analysis revealed that neutrophils migrating on surface-bound patterns accumulate in the region of the highest peptide concentration, thereby mimicking in vivo events. We propose the use of a chemotactic precision index, gyration tensors and neutrophil penetration rate for characterizing haptotaxis. This high-content assay provides a simple approach that can be applied for studying molecular mechanisms underlying haptotaxis on user-defined gradient shape.
Collapse
Affiliation(s)
- Joannie Roy
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Biomedical Engineering Institute, University of Montreal, Montreal, Quebec, Canada
| | - Javier Mazzaferri
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Santiago Costantino
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. .,Biomedical Engineering Institute, University of Montreal, Montreal, Quebec, Canada. .,Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Weckmann M, Becker T, Nissen G, Pech M, Kopp MV. SiMA: A simplified migration assay for analyzing neutrophil migration. Cytometry A 2017; 91:675-685. [DOI: 10.1002/cyto.a.23114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/12/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Markus Weckmann
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| | - Tim Becker
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Fraunhofer Institute for Marine Biotechnology (Fraunhofer EMB); Lübeck Germany
| | - Gyde Nissen
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| | - Martin Pech
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| | - Matthias V. Kopp
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| |
Collapse
|
31
|
Ma Y, Pan JZ, Zhao SP, Lou Q, Zhu Y, Fang Q. Microdroplet chain array for cell migration assays. LAB ON A CHIP 2016; 16:4658-4665. [PMID: 27833945 DOI: 10.1039/c6lc00823b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Establishing cell migration assays in multiple different microenvironments is important in the study of tissue repair and regeneration, cancer progression, atherosclerosis, and arthritis. In this work, we developed a miniaturized and massive parallel microfluidic platform for multiple cell migration assays combining the traditional membrane-based cell migration technique and the droplet-based microfluidic technique. Nanoliter-scale droplets are flexibly assembled as building blocks based on a porous membrane to form microdroplet chains with diverse configurations for different assay modes. Multiple operations including in-droplet 2D/3D cell culture, cell co-culture and cell migration induced by a chemoattractant concentration gradient in droplet chains could be flexibly performed with reagent consumption in the nanoliter range for each assay and an assay scale-up to 81 assays in parallel in one microchip. We have applied the present platform to multiple modes of cell migration assays including the accurate cell migration assay, competitive cell migration assay, biomimetic chemotaxis assay, and multifactor cell migration assay based on the organ-on-a-chip concept, for demonstrating its versatility, applicability, and potential in cell migration-related research.
Collapse
Affiliation(s)
- Yan Ma
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Ping Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Irimia D, Ellett F. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 2016; 100:291-304. [PMID: 27194799 DOI: 10.1189/jlb.5ru0216-056r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an indispensable component of the immune response, and leukocytes provide the first line of defense against infection. Although the major stereotypic leukocyte behaviors in response to infection are well known, the complexities and idiosyncrasies of these phenotypes in conditions of disease are still emerging. Novel tools are indispensable for gaining insights into leukocyte behavior, and in the past decade, microfluidic technologies have emerged as an exciting development in the field. Microfluidic devices are readily customizable, provide tight control of experimental conditions, enable high precision of ex vivo measurements of individual as well as integrated leukocyte functions, and have facilitated the discovery of novel leukocyte phenotypes. Here, we review some of the most interesting insights resulting from the application of microfluidic approaches to the study of the inflammatory response. The aim is to encourage leukocyte biologists to integrate these new tools into increasingly more sophisticated experimental designs for probing complex leukocyte functions.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
A real-time assay for neutrophil chemotaxis. Biotechniques 2016; 60:245-51. [PMID: 27177817 DOI: 10.2144/000114416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
Neutrophils are the predominant cells during acute phases of inflammation, and it is now recognized that these leukocytes play an important role in modulation of the immune response. Directed migration of these cells to the sites of injury, known as chemotaxis, is driven by chemoattractants present at the endothelial cell surface or in the extracellular matrix (ECM). Since uncontrolled or excessive neutrophil chemotaxis is involved in pathological conditions such as atherosclerosis and severe asthma, studying the chemical cues triggering neutrophil migration is essential for understanding the biology of these cells and developing new anti-inflammatory therapies. Although several methods have been developed to evaluate neutrophil chemotaxis, these techniques are generally labor-intensive or alter the native form of these cells and their physiological response. Here we report a rapid, non-invasive, impedance-based, and label-free assay for real-time assessment of neutrophil chemotaxis.
Collapse
|
34
|
Sepsis-induced impairment of neutrophil chemotaxis on a microfluidic chip. Immunol Lett 2016; 173:55-60. [DOI: 10.1016/j.imlet.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
|
35
|
Yamahashi Y, Cavnar PJ, Hind LE, Berthier E, Bennin DA, Beebe D, Huttenlocher A. Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D. Biomed Microdevices 2016; 17:100. [PMID: 26354879 DOI: 10.1007/s10544-015-9998-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Directed neutrophil migration in blood vessels and tissues is critical for proper immune function; however, the mechanisms that regulate three-dimensional neutrophil chemotaxis remain unclear. It has been shown that integrins are dispensable for interstitial three-dimensional (3D) leukocyte migration; however, the role of integrin regulatory proteins during directed neutrophil migration is not known. Using a novel microfluidic gradient generator amenable to 2D and 3D analysis, we found that the integrin regulatory proteins Kindlin-3, RIAM, and talin-1 differentially regulate neutrophil polarization and directed migration to gradients of chemoattractant in 2D versus 3D. Both talin-1-deficient and RIAM-deficient neutrophil-like cells had impaired adhesion, polarization, and migration on 2D surfaces whereas in 3D the cells polarized but had impaired 3D chemotactic velocity. Kindlin-3 deficient cells were able to polarize and migrate on 2D surfaces but had impaired directionality. In a 3D environment, Kindlin-3 deficient cells displayed efficient chemotaxis. These findings demonstrate that the role of integrin regulatory proteins in cell polarity and directed migration can be different in 2D and 3D.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Room 4205 MSB, Madison, WI, 53706, USA
| | - Peter J Cavnar
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Laurel E Hind
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Room 4205 MSB, Madison, WI, 53706, USA
| | - Erwin Berthier
- Department of Bioengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - David A Bennin
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Room 4205 MSB, Madison, WI, 53706, USA
| | - David Beebe
- Department of Bioengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Room 4205 MSB, Madison, WI, 53706, USA.
| |
Collapse
|
36
|
Moussavi-Harami SF, Mladinich KM, Sackmann EK, Shelef MA, Starnes TW, Guckenberger DJ, Huttenlocher A, Beebe DJ. Microfluidic device for simultaneous analysis of neutrophil extracellular traps and production of reactive oxygen species. Integr Biol (Camb) 2016; 8:243-52. [PMID: 26805445 PMCID: PMC4776335 DOI: 10.1039/c5ib00225g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil extracellular traps (NETs) were first reported in 2004, and since their discovery, there has been an increasing interest in NETs, how they are formed, their role in controlling infections, and their contribution to disease pathogenesis. Despite this rapid expansion of our understanding of NETs, many details remain unclear including the role of reactive oxygen species (ROS) in the formation of NETs. Further, to study NETs, investigators typically require a large number of cells purified via a lengthy purification regimen. Here, we report a microfluidic device used to quantify both ROS and NET production over time in response to various stimulants, including live bacteria. This device enables ROS and NET analysis using a process that purifies primary human neutrophils in less than 10 minutes and requires only a few microliters of whole blood. Using this device we demonstrate the ability to identify distinct capabilities of neutrophil subsets (including ROS production and NET formation), the ability to use different stimulants/inhibitors, and the ability to effectively use samples stored for up to 8 hours. This device permits the study of ROS and NETs in a user-friendly format and has potential for widespread applications in the study of human disease.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Medical Scientist Training Program, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jones CN, Hoang AN, Martel JM, Dimisko L, Mikkola A, Inoue Y, Kuriyama N, Yamada M, Hamza B, Kaneki M, Warren HS, Brown DE, Irimia D. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 2016; 100:241-7. [PMID: 26819316 DOI: 10.1189/jlb.5ta0715-310rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023] Open
Abstract
Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species-specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anh N Hoang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M Martel
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie Dimisko
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Mikkola
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshitaka Inoue
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H Shaw Warren
- Department of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane E Brown
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
38
|
Wu X, Newbold MA, Haynes CL. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform. Analyst 2016; 140:5055-64. [PMID: 26087389 DOI: 10.1039/c5an00967g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil transendothelial migration (TEM) is an essential physiological process that regulates the recruitment of neutrophils in response to inflammatory signals. Herein, a versatile hydrogel scaffold is embedded in a microfluidic platform that supports an endothelial cell layer cultured in the vertical direction and highly stable chemical gradients; this construct is employed to mimic the in vivo neutrophil TEM process. We found that the number of neutrophils migrating across the endothelial cell layer is dependent on the presented chemoattractant concentration and the spatial profile of the chemical gradient. Endothelial cells play a critical role in neutrophil TEM by promoting neutrophil morphological changes as well as expressing surface receptor molecules that are indispensable for inducing neutrophil attachment and migration. Furthermore, the microfluidic device also supports competing chemoattractant gradients to facilitate neutrophil TEM studies in complex microenvironments that more accurately model the in vivo system than simplified microenvironments without the complexity of chemical gradients. This work demonstrates that combinations of any two different chemoattractants induce more significant neutrophil migration than a single chemoattractant in the same total amount, indicating synergistic effects between distinct chemoattractants. The in vitro reconstitution of neutrophil TEM successfully translates planar neutrophil movement into in vivo-like neutrophil recruitment and accelerates understanding of cellular interactions between neutrophils and endothelial cells within the complicated physiological milieu.
Collapse
Affiliation(s)
- Xiaojie Wu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
39
|
Yildiz-Ozturk E, Yesil-Celiktas O. Diffusion phenomena of cells and biomolecules in microfluidic devices. BIOMICROFLUIDICS 2015; 9:052606. [PMID: 26180576 PMCID: PMC4491013 DOI: 10.1063/1.4923263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/18/2015] [Indexed: 05/05/2023]
Abstract
Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.
Collapse
Affiliation(s)
- Ece Yildiz-Ozturk
- Department of Bioengineering, Faculty of Engineering, Ege University , 35100 Bornova-Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University , 35100 Bornova-Izmir, Turkey
| |
Collapse
|
40
|
Walsh DI, Lalli ML, Kassas JM, Asthagiri AR, Murthy SK. Cell Chemotaxis on Paper for Diagnostics. Anal Chem 2015; 87:5505-10. [DOI: 10.1021/acs.analchem.5b00726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David I. Walsh
- Department of Bioengineering, ‡Department of Chemical Engineering, §Department of Biology, ∥Barnett Institute
of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, United States
| | - Mark L. Lalli
- Department of Bioengineering, ‡Department of Chemical Engineering, §Department of Biology, ∥Barnett Institute
of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, United States
| | - Juliette M. Kassas
- Department of Bioengineering, ‡Department of Chemical Engineering, §Department of Biology, ∥Barnett Institute
of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, United States
| | - Anand R. Asthagiri
- Department of Bioengineering, ‡Department of Chemical Engineering, §Department of Biology, ∥Barnett Institute
of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, United States
| | - Shashi K. Murthy
- Department of Bioengineering, ‡Department of Chemical Engineering, §Department of Biology, ∥Barnett Institute
of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
41
|
Wu J, Hillier C, Komenda P, Lobato de Faria R, Levin D, Zhang M, Lin F. A Microfluidic Platform for Evaluating Neutrophil Chemotaxis Induced by Sputum from COPD Patients. PLoS One 2015; 10:e0126523. [PMID: 25961597 PMCID: PMC4427402 DOI: 10.1371/journal.pone.0126523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common lung disease characterized by breathing difficulty as a consequence of narrowed airways. Previous studies have shown that COPD is correlated with neutrophil infiltration into the airways through chemotactic migration. However, whether neutrophil chemotaxis can be used to characterize and diagnose COPD is not well established. In the present study, we developed a microfluidic platform for evaluating neutrophil chemotaxis to sputum samples from COPD patients. Our results show increased neutrophil chemotaxis to COPD sputum compared to control sputum from healthy individuals. The level of COPD sputum induced neutrophil chemotaxis was correlated with the patient's spirometry data. The cell morphology of neutrophils in a COPD sputum gradient is similar to the morphology displayed by neutrophils exposed to an IL-8 gradient, but not a fMLP gradient. In competing gradients of COPD sputum and fMLP, neutrophils chemotaxis and cell morphology are dominated by fMLP.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Craig Hillier
- Seven Oaks General Hospital, Winnipeg, MB, R2V 3M3, Canada
| | - Paul Komenda
- Seven Oaks General Hospital, Winnipeg, MB, R2V 3M3, Canada
| | | | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Zhang
- Seven Oaks General Hospital, Winnipeg, MB, R2V 3M3, Canada
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
| |
Collapse
|
42
|
Mazzaferri J, Roy J, Lefrancois S, Costantino S. Adaptive settings for the nearest-neighbor particle tracking algorithm. ACTA ACUST UNITED AC 2015; 31:1279-85. [PMID: 25480371 DOI: 10.1093/bioinformatics/btu793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/25/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The performance of the single particle tracking (SPT) nearest-neighbor algorithm is determined by parameters that need to be set according to the characteristics of the time series under study. Inhomogeneous systems, where these characteristics fluctuate spatially, are poorly tracked when parameters are set globally. RESULTS We present a novel SPT approach that adapts the well-known nearest-neighbor tracking algorithm to the local density of particles to overcome the problems of inhomogeneity. CONCLUSIONS We demonstrate the performance improvement provided by the proposed method using numerical simulations and experimental data and compare its performance with state of the art SPT algorithms. AVAILABILITY AND IMPLEMENTATION The algorithms proposed here, are released under the GNU General Public License and are freely available on the web at http://sourceforge.net/p/adaptivespt. CONTACT javier.mazzaferri@gmail.com SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Javier Mazzaferri
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4, Département de Médecine, Université de Montréal, Montréal, Canada H3T 3J7 and Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4
| | - Joannie Roy
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4, Département de Médecine, Université de Montréal, Montréal, Canada H3T 3J7 and Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4
| | - Stephane Lefrancois
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4, Département de Médecine, Université de Montréal, Montréal, Canada H3T 3J7 and Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4, Département de Médecine, Université de Montréal, Montréal, Canada H3T 3J7 and Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4
| | - Santiago Costantino
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4, Département de Médecine, Université de Montréal, Montréal, Canada H3T 3J7 and Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4, Département de Médecine, Université de Montréal, Montréal, Canada H3T 3J7 and Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4
| |
Collapse
|
43
|
Molteni R, Bianchi E, Patete P, Fabbri M, Baroni G, Dubini G, Pardi R. A novel device to concurrently assess leukocyte extravasation and interstitial migration within a defined 3D environment. LAB ON A CHIP 2015; 15:195-207. [PMID: 25337693 DOI: 10.1039/c4lc00741g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leukocyte extravasation and interstitial migration are key events during inflammation. Traditional in vitro techniques address only specific steps of cell recruitment to tissues and fail to recapitulate the whole process in an appropriate three-dimensional (3D) microenvironment. Herein, we describe a device that enables us to qualitatively and quantitatively assess in 4D the interdependent steps underlying leukocyte trafficking in a close-to-physiology in vitro context. Real-time tracking of cells, from initial adhesion to the endothelium and subsequent diapedesis to interstitial migration towards the source of the chemoattractant within the 3D collagen matrix, is enabled by the use of optically transparent porous membranes laid over the matrix. Unique features of the device, such as the use of non-planar surfaces and the contribution of physiological flow to the establishment of a persistent chemoattractant gradient, were assessed by numerical simulations and validated by proof-of-concept, simultaneous testing of differentially treated primary mouse neutrophils. This microfluidic platform offers new and versatile tools to thoroughly investigate the stepwise process of circulating cell recruitment to target tissues in vitro and to test novel therapeutics targeting various steps of the process.
Collapse
Affiliation(s)
- Raffaella Molteni
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Moussavi-Harami SF, Pezzi HM, Huttenlocher A, Beebe DJ. Simple microfluidic device for studying chemotaxis in response to dual gradients. Biomed Microdevices 2015; 17:9955. [PMID: 25893484 PMCID: PMC4768479 DOI: 10.1007/s10544-015-9955-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemotaxis is a fundamental biological process where complex chemotactic gradients are integrated and prioritized to guide cell migration toward specific locations. To understand the mechanisms of gradient dependent cell migration, it is important to develop in vitro models that recapitulate key attributes of the chemotactic cues present in vivo. Current in vitro tools for studying cell migration are not amenable to easily study the response of neutrophils to dual gradients. Many of these systems require external pumps and complex setups to establish and maintain the gradients. Here we report a simple yet innovative microfluidic device for studying cell migration in the presence of dual chemotactic gradients through a 3-dimensional substrate. The device is tested and validated by studying the migration of the neutrophil-like cell line PLB-985 to gradients of fMLP. Furthermore, the device is expanded and used with heparinised whole blood, whereupon neutrophils were observed to migrate from whole blood towards gradients of fMLP eliminating the need for any neutrophil purification or capture steps.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
45
|
Jones CN, Moore M, Dimisko L, Alexander A, Ibrahim A, Hassell BA, Warren HS, Tompkins RG, Fagan SP, Irimia D. Spontaneous neutrophil migration patterns during sepsis after major burns. PLoS One 2014; 9:e114509. [PMID: 25489947 PMCID: PMC4260850 DOI: 10.1371/journal.pone.0114509] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/09/2014] [Indexed: 02/07/2023] Open
Abstract
Finely tuned to respond quickly to infections, neutrophils have amazing abilities to migrate fast and efficiently towards sites of infection and inflammation. Although neutrophils ability to migrate is perturbed in patients after major burns, no correlations have yet been demonstrated between altered migration and higher rate of infections and sepsis in these patients when compared to healthy individuals. To probe if such correlations exist, we designed microfluidic devices to quantify the neutrophil migration phenotype with high precision. Inside these devices, moving neutrophils are confined in channels smaller than the neutrophils and forced to make directional decisions at bifurcations and around posts. We employed these devices to quantify neutrophil migration across 18 independent parameters in 74 blood samples from 13 patients with major burns and 3 healthy subjects. Blinded, retrospective analysis of clinical data and neutrophil migration parameters revealed that neutrophils isolated from blood samples collected during sepsis migrate spontaneously inside the microfluidic channels. The spontaneous neutrophil migration is a unique phenotype, typical for patients with major burns during sepsis and often observed one or two days before the diagnosis of sepsis is confirmed. The spontaneous neutrophil migration phenotype is rare in patients with major burns in the absence of sepsis, and is not encountered in healthy individuals. Our findings warrant further studies of neutrophils and their utility for early diagnosing and monitoring sepsis in patients after major burns.
Collapse
Affiliation(s)
- Caroline N. Jones
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Molly Moore
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laurie Dimisko
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Boston, Massachusetts, United States of America
| | - Andrew Alexander
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amir Ibrahim
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Bryan A. Hassell
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Boston, Massachusetts, United States of America
| | - H. Shaw Warren
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Departments of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ronald G. Tompkins
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shawn P. Fagan
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Irimia
- Surgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Guckenberger DJ, Berthier E, Beebe DJ. High-density self-contained microfluidic KOALA kits for use by everyone. ACTA ACUST UNITED AC 2014; 20:146-53. [PMID: 25424385 DOI: 10.1177/2211068214560609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-based assays are essential tools used by research labs in a wide range of fields, including cell biology, toxicology, and natural product discovery labs. However, in some situations, the need for cell-based assays does not justify the costs of maintaining cell culture facilities and retaining skilled staff. The kit-on-a-lid assay (KOALA) technology enables accessible low-cost and prepackageable microfluidic platforms that can be operated with minimal infrastructure or training. Here, we demonstrate and characterize high-density KOALA methods for high-throughput applications, achieving an assay density comparable to that of a 384-well plate and usability by hand with no liquid-handling equipment. We show the potential for high-content screening and complex assays such as quantitative immunochemistry assays requiring multiple steps and reagents.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Erwin Berthier
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA Department of Medical Microbiology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
47
|
Hamza B, Wong E, Patel S, Cho H, Martel J, Irimia D. Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integr Biol (Camb) 2014; 6:175-83. [PMID: 24419464 DOI: 10.1039/c3ib40175h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current paradigm of unidirectional migration of neutrophils from circulation to sites of injury in tissues has been recently challenged by observations in zebrafish showing that neutrophils can return from tissues back into the circulation. However, the relevance of these observations to human neutrophils remains unclear, the forward and reverse migration of neutrophils is difficult to quantify, and the precise conditions modulating the reverse migration cannot be isolated. Here, we designed a microfluidic platform inside which we observed human neutrophil migration in response to chemoattractant sources inside channels, simulating the biochemical and mechanical confinement conditions at sites of injury in tissues. We observed that, after initially following the direction of chemoattractant gradients, more than 90% of human neutrophils can reverse their direction and migrate persistently and for distances longer than one thousand micrometers away from chemoattractant sources (retrotaxis). Retrotaxis is enhanced in the presence of lipoxin A4 (LXA4), a well-established mediator of inflammation resolution, or Tempol, a standard antioxidant. Retrotaxis stops after neutrophils encounter targets which they phagocytise or on surfaces presenting high concentrations of fibronectin. Our microfluidic model suggests a new paradigm for neutrophil accumulation at sites of inflammation, which depends on the balance of three simultaneous processes: chemotaxis along diffusion gradients, retrotaxis following mechanical guides, and stopping triggered by phagocytosis.
Collapse
Affiliation(s)
- Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. LAB ON A CHIP 2014; 14:3241-7. [PMID: 25008971 PMCID: PMC4134926 DOI: 10.1039/c4lc00448e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microscale platforms are enabling for cell-based studies as they allow the recapitulation of physiological conditions such as extracellular matrix (ECM) configurations and soluble factors interactions. Gradient generation platforms have been one of the few applications of microfluidics that have begun to be translated to biological laboratories and may become a new "gold standard". Though gradient generation platforms are now established, their full potential has not yet been realized. Here, we will provide our perspective on milestones achieved in the development of gradient generation and cell migration platforms, as well as emerging directions such as using cell migration as a diagnostic readout and attaining mechanistic information from cell migration models.
Collapse
Affiliation(s)
- E Berthier
- Microtechnology Medicine and Biology Lab (MMB), Department of Biomedical Engineering, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
49
|
Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat Commun 2014; 5:4787. [PMID: 25183261 PMCID: PMC4155519 DOI: 10.1038/ncomms5787] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/24/2014] [Indexed: 12/22/2022] Open
Abstract
Leukocyte migration into tissues is characteristic of inflammation. It is usually measured in vitro as the average displacement of populations of cells towards a chemokine gradient, not acknowledging other patterns of cell migration. Here, we designed and validated a microfluidic migration platform to simultaneously analyze four qualitative migration patterns: chemo-attraction, -repulsion, -kinesis and -inhibition, using single-cell quantitative metrics of direction, speed, persistence, and fraction of cells responding. We find that established chemokines C5a and IL-8 induce chemoattraction and repulsion in equal proportions, resulting in the dispersal of cells. These migration signatures are characterized by high persistence and speed and are independent of the chemokine dose or receptor expression. Furthermore, we find that twice as many T-lymphocytes migrate away than towards SDF-1 and their directional migration patterns are not persistent. Overall, our platform characterizes migratory signature responses and uncovers an avenue for precise characterization of leukocyte migration and therapeutic modulators.
Collapse
|
50
|
Jones CN, Hoang AN, Dimisko L, Hamza B, Martel J, Irimia D. Microfluidic platform for measuring neutrophil chemotaxis from unprocessed whole blood. J Vis Exp 2014. [PMID: 24962731 DOI: 10.3791/51215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neutrophils play an essential role in protection against infections and their numbers in the blood are frequently measured in the clinic. Higher neutrophil counts in the blood are usually an indicator of ongoing infections, while low neutrophil counts are a warning sign for higher risks for infections. To accomplish their functions, neutrophils also have to be able to move effectively from the blood where they spend most of their life, into tissues, where infections occur. Consequently, any defects in the ability of neutrophils to migrate can increase the risks for infections, even when neutrophils are present in appropriate numbers in the blood. However, measuring neutrophil migration ability in the clinic is a challenging task, which is time consuming, requires large volume of blood, and expert knowledge. To address these limitations, we designed a robust microfluidic assays for neutrophil migration, which requires a single droplet of unprocessed blood, circumvents the need for neutrophil separation, and is easy to quantify on a simple microscope. In this assay, neutrophils migrate directly from the blood droplet, through small channels, towards the source of chemoattractant. To prevent the granular flow of red blood cells through the same channels, we implemented mechanical filters with right angle turns that selectively block the advance of red blood cells. We validated the assay by comparing neutrophil migration from blood droplets collected from finger prick and venous blood. We also compared these whole blood (WB) sources with neutrophil migration from samples of purified neutrophils and found consistent speed and directionality between the three sources. This microfluidic platform will enable the study of human neutrophil migration in the clinic and the research setting to help advance our understanding of neutrophil functions in health and disease.
Collapse
Affiliation(s)
- Caroline N Jones
- The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital; Harvard Medical School; Shriners Burns Hospital
| | - Anh N Hoang
- The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital; Harvard Medical School; Shriners Burns Hospital
| | - Laurie Dimisko
- The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital
| | - Bashar Hamza
- The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital
| | - Joseph Martel
- The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital; Harvard University School of Engineering and Applied Sciences
| | - Daniel Irimia
- The BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital; Harvard Medical School; Shriners Burns Hospital;
| |
Collapse
|